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Predicting Human Intent for Cooperative Physical Human-Robot
Interaction Tasks

Harsh Maithani, Juan Antonio Corrales Ramon and Youcef Mezouar

Abstract— In this paper, a robot assistive Impedance and
Admittance control methodology is proposed for a cooperative
physical human-robot interaction (pHRI) task. In a pHRI task
in which the human is the leader, the robot is a passive follower
as the human intention of desired motion and force to be applied
are unknown. It is generally difficult to predict the intention
of the human leader. Recurrent Neural Networks (RNN) with
Long Short-Term Memory (LSTM) units are employed to
forecast the position,velocity and force anticipated to be applied
by the human. The estimated parameters are integrated into the
impedance and admittance controllers via a target impedance
model which aids the robot in becoming a proactive partner of
the human by sharing the physical load. The same methodology
is also applied to the Minimum Jerk model which allows the
robot to follow the Minimum Jerk trajectory without knowing
the trajectory parameters in advance.

I. INTRODUCTION
We are living in times where technology has made rapid

advancements in every sphere of human life and activity.
Robots are becoming omnipresent and it is only a matter
of time before they become an essential part of human
households. Robots have been used in industrial settings
since many decades, however due to safety purposes in-
dustrial robots have been traditionally kept isolated from
human operators. As such collaboration between humans
and robots has been limited. But now there is a growing
emphasis on incorporating robots in more intimate environ-
ments alongside humans to make full use of both human and
robot capabilities by working in teams. This has resulted
in the development of new generation robots which are
lightweight (e.g KUKA LWR), can be programmed on the fly
etc. Some examples where physical human-robot interaction
(pHRI) has been used recently are - collaborative object
transportation [1], object swinging [2], assistive welding [3],
car windshield positioning [4] etc. Impedance Control and
Admittance Control are popular control techniques used for
physical human-robot interaction tasks as they establish a
dynamic relationship between the robot and the environment.
Hogan [5] introduced the Impedance Control scheme for
robotic manipulators. The equations for both the Impedance
and Admittance Control are the same but the inputs/outputs
are different. In the Impedance Control scheme the input
is displacement/velocity and output is force whereas in the
Admittance Control scheme the input is force and output is
displacement/velocity.

In the field of computational neuroscience and motor
control there has been significant investigation into the
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Fig. 1. A cooperative physical Human-Robot Interaction task. The user
moves the tool continuously between two points 30 cms apart along a single
degree of freedom, using either Impedance or Admittance Control, with a
laser pointer attached to the end-effector of the robot. The position and
velocity of the end-effector are recorded, as well as the force applied by
the human. An RNN with LSTM units is trained over each of the datasets
to predict the desired human motion.

mathematical modeling of natural human limb motion, in
both unconstrained and constrained environments. The main
models that have been found to explain the motion are the
Minimum Jerk Model (MJM) [6], the Minimum Torque-
Change Model [7] and Fitts Law [8]. Although these models
were determined with an individual human, later it was estab-
lished that they are applicable even in dyadic interactions. An
important aspect of pHRI is the component of transparency.
The system becomes more transparent if the robot partner
behaves like a human and shows predictable behaviour. As
such the impedance parameters of the robot controller should
be determined to enable transparent cooperation between the
human and the robot. It was shown in [9] that the MJM
is followed in Human-Human Interaction tasks. [10] used
the MJM to determine the human impedance parameters in
a pHRI task. In [11] it was demonstrated experimentally
that the MJM is applicable even for pHRI tasks. In several
works involving Human-Robot Interaction, the efficacy of the
proposed controller is measured by determining if it allows
the human to follow the Minimum Jerk trajectory naturally
[12]. One disadvantage of the MJM model is that it requires



knowledge of the trajectory parameters in advance. Also, it is
not flexible to accommodate sudden changes in the trajectory
being pursued by the human. Furthermore in [13] it was
showed that for constrained tasks that involve an exchange of
forces, the resulting trajectory complies more with the Min-
imum Torque-Change model. However inspite of this, the
MJM model is used popularly for simple pHRI tasks where
the robot controller has to be developed or the performance
of the controller studied. In [14] a Fuzzy Inference System
was tuned to the MJM to output the damping coefficient
to be used in a variable admittance control scheme. In [15]
a Reinforcement Learning algorithm was used to determine
the damping coefficient for a variable admittance controller
while complying with the MJM without any knowledge of
the initial and final position or the duration of the motion.

In pHRI tasks generally the human and the robot act as
either a leader or a follower. If the human is the leader
and the human intent is unknown to the robot then the
robot is limited to the role of a passive follower and the
robot assistance is limited, which might even obstruct the
free motion of the human. Several works have focused on
estimating the human intent to make the robot an active
follower. In [16] a modified Hidden Markov Model (HMM)
was used to determine the human-intended path in a pHRI
task. In [19] force and motion data were encoded into a
HMM for a joint load transport problem using multiple
observations where the partner of the human was a mobile
robot. The MJM was used in a pHRI task in [17], and by
estimating the unknown parameters in real-time the MJM
gave the predicted motion of the human partner. Similarly
[18] estimated the time duration of motion in a simplified
MJM using an extended Kalman Filter. [20] used an extended
Kalman Filter to predict the motion of the human, and the
accuracy of predictions was used to fluctuate the role of the
robot between a leader and a follower. Radial Basis Function
Neural Networks were used in [21] to estimate the human
motion intention. This work was extended in [24] to adapt
to human motion intention changes during the motion itself.
The Learning from Demonstration methodology was used in
[22], where Gaussian Mixture Models were utilized to learn
the task model and used for a collaborative carrying and
positioning of load task, which was then integrated with an
adaptive impedance controller.

The RNN-LSTM algorithm [25] has been popular recently
for prediction and classification using long time-series data.
In [26] RNN-LSTM was used for predicting pedestrian
motion in cluttered environments, whereas in [27] it was used
for anticipating driver activity. To the best of our knowledge
the RNN-LSTM architecture has not been used before for
motion estimation/prediction for cooperative human-robot
tasks.

In this paper we will consider a cooperative human-
robot task in which the human user holds a tool which is
mounted to the end-effector of a robot along with a force-
torque sensor. The robot is constrained to move along a
single cartesian direction. Using either Impedance Control
or Admittance Control the user moves the tool between two

specified points repetitively according to his own comfortable
speed. We record 3 parameters - the position and velocity
of motion directly from the robot controllers and the force
applied from the force sensor. We were able to generate a
huge dataset for each of the 3 recorded parameters (which
we refer to as the ‘Natural Motion’ dataset). Furthermore,
using the Minimum Jerk model [6] we can generate another
dataset independently. Using a RNN-LSTM architecture we
can train one separate neural network over each of the 4
datasets and predict the future values of each variable using
input data. These predicted values can be integrated into the
controllers to make the robot a proactive partner and share
the load of the human in the task.

The contributions of our work are as follows -
1) For periodic tasks, this methodology can be used to

encode the motion data.
2) For the Minimum Jerk model, the trajectory parameters

such as the distance to be traversed and the time
duration are required to be known in advance. Using
the trained algorithm over the ‘Minimum Jerk Model’
dataset, we can eliminate this requirement.

3) By training the algorithm over velocities in the Natural
Motion dataset, the reference velocity can be acquired
using the trained algorithm instead of the MJM. As the
trained algorithm is customized for a particular person,
hence the assistance offered by the robot will be natural
and intuitive to him.

4) By training the algorithm over applied forces in the
Natural Motion dataset, the robot can provide the
assistive force itself and lessen the load on the human
partner.

5) The trained algorithm for one person can be used as a
reference for another person i.e this methodology can
be used for training purposes.

II. PRELIMINARIES

A. Impedance Control

For a robot the kinematics are written as

x(t) = f(q) (1)

where x(t) ∈ <n and q ∈ <n are positions/orientations
in the Cartesian space and coordinates in the joint space
respectively. Differentiating (1) with respect to time results
in

ẋ(t) = J(q)q̇ (2)

where J(q) ∈ <n×n is the Jacobian matrix. Differentiating
(2) with respect to time results in

ẍ(t) = J̇(q)q + J(q)q̈ (3)

The robot arm dynamics in the joint space for a non-
redundant robot are given by

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ − JT (q)Fr (4)

where M(q) ∈ <n×n is the symmetric bounded positive-
definite inertia matrix; C(q, q̇)q̇ ∈ <n is the Coriolis and
Centrifugal forces;G(q) ∈ <n is the gravitational force; τ ∈



<n is the vector of control input; Fr ∈ <n denotes the force
exerted by the robot on the environment at the end-effector.
As we are considering a pHRI task so the environment here
is the human, specifically the human hand. In the Cartesian
space the robot dynamics can be written as

Mx(q)ẍ+ Cx(q, q̇)ẋ+Gx(q) = u− Fr (5)

where Mx(q) = J−T (q)M(q)J−1(q),
Cx(q, q̇) = J−T (q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q),
Gx(q) = J−T (q)G(q), u = J−T (q)τ

The most common interaction controllers for physical
human-robot tasks are Admittance and Impedance Control.
Both controllers need a target impedance model for the robot
and differ only with regards to the input and output. The
target impedance model can be written as a mass-damper-
spring equation

Md(ẍ− ẍd) +Bd(ẋ− ẋd) +Kd(x− xd) = Fd (6)

where Md, Bd,Kd are the virtual inertia,damping and stiff-
ness of the robot respectively. Fd is the desired force and xd
can be interpreted as the rest position of the virtual mass-
damper-spring system.

For physical human-robot interaction tasks in which a
human arm is in contact with the robot the human arm can
similarly be modeled as a mass-damper-spring system

Mhẍh +Bhẋh +Kh(xh − xhd) = Fh (7)

where Mh, Bh,Kh are the limb inertia,damping and stiffness
respectively and Fh is the force applied by the arm at
the wrist. The limb impedance values are not fixed and
depend from person to person as well as on the task being
carried out. xh is the position of the human wrist in the
robot frame and xhd can be interpreted as the desired target
position. Discussion on the limb impedance parameters or
their calculation are not in the purview of this paper.

The Impedance/Admittance Control scheme in general
is a “Reactive” Control Scheme. Predicting or anticipating
any of the factors mentioned above for future time steps
constitutes “Predictive/Anticipatory” Control. For “Direct
Teaching Mode” i.e for the robot to freely follow the motion
of the human we can set Kd = 0 or x = xd. This essentially
eliminates the spring component of the robot impedance
model and hence avoids any restoring forces.

In this paper we make the assumption that the human
holds the tool rigidly such that the forces are transmitted
completely to the robot. We also assume that the hand is
close enough to the end effector to assume that the positions,
velocities and forces discussed in this paper are of/at the end-
effector of the robot. Thus we can assume xd = xhd, ẋh = ẋ
and ẍh = ẍ.

In Admittance Control (popularly called Position-based
Impedance Control) the input is the force applied by the en-
vironment and the output is displacement/velocity as shown
in Fig. 2. In our case the force is applied by the human
on the tool and measured by the force-torque sensor i.e
Fr = Fd = −Fh. The desired position xd calculated using
(6) is passed to the Position Controller of the robot.

Fig. 2. Admittance Control (Position-based Impedance Control)

In Impedance Control (Torque-based Impedance Control)
the input is displacement/velocity and output is force as
shown in Fig. 3. The equation of the dynamics becomes

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + JT (q)(−Fr + Fh) (8)

where Fr = Fd

Fig. 3. Torque-based Impedance Control

From the previous equations we can see that in a robot
Admittance/Impedance Controller we can

1) Vary the Impedance parameters Md, Bd,Kd of the
robot model. This is known as Impedance Shaping.
The parameters can be varied according to the limb
impedance parameters Mh, Bh,Kh or ẋ/ẍ/Fh/∆Fh

or some heuristic.
2) Vary the force applied by the robot Fr as a part of a

higher level control strategy.
3) Amplify the force applied by the user by varying η

in Fr = ηFh (using Impedance Control). This is
sometimes called Power Assist and is used specially
for exoskeletons and assistive / rehabilitative robots.

4) Estimate the intended motion xd of the human user
if the robot is the follower (one of the objectives of
this paper). This is known as motion estimation or
human intention estimation. xd can also be a reference
trajectory from trajectory planners or for tracking tasks.

5) Use a reference ẋd from models such as Minimum
Jerk model or Minimum Torque Change model that
are known to be representative of natural human limb
motion.

B. Minimum Jerk Trajectory

In [6] it was shown that during natural point to point
motion the human arm tends to minimize the cost function
of mean-square jerk. The Minimum Jerk trajectory for a one
degree of freedom motion can be expressed as

x(t) = x0 + (xf − x0)(6ζ5 − 15ζ4 + 10ζ3) (9)



where tf is the duration of motion. It is assumed that the
velocity is zero both at the beginning and the end of the
movement (ẋ0 = ẋf = 0) where x0 is the initial hand
position coordinates and xf is the final position respectively,
ζ = t/tf , 0 ≤ ζ ≤ 1. The velocity at each time instant
corresponding to the MJM can be computed through numeric
differentiation of the above equation.

The velocity given at each time instant by the MJM
can be taken as a desired velocity for a robot-assisted
Impedance/Admittance Control scheme. If the end effector
follows the desired velocity during the task then it can
provide a natural human-like feeling to the user while per-
forming the task and ensure high transparency. The Minimum
Jerk model is used in many works that have focused on robot
assistance schemes such as in [14], [15].

C. Long Short-Term Memory Model

Recurrent Neural Networks are a powerful type of neu-
ral networks that are used for processing sequential data
especially temporal data as they have an internal memory.
As such they are useful for making predictions using time-
series data. RNNs can be improved by using what are called
LSTM units, whose structure maintains memory over time
by utilizing multiple gates to control what information to
keep and what to forget. Each LSTM unit has an input gate
(i), output gate (o), and forget gate (f), each gate serving the
role as their name suggests. It is known RNNs are unable to
efficiently backpropagate error when the sequence becomes
too long due to the problem of vanishing and exploding
gradients. However LSTM units are effective in handling this
issue due their ability to maintain a more constant error that
can be backpropagated through time. As a result, RNNs with
LSTM units are able to learn long-term dependencies within
data sequences that were not possible only with RNNs. The
LSTM formulation described in [25] is used here. Given an
input sequence x̄1, x̄2, ..., x̄t LSTM maps the input sequence
to a sequence of hidden states h1, h2, ..., ht (which are also
the outputs) by passing information through a combination
of gates:
The Input gate (for updating the cell) is

it = σg(Wix̄t +Riht−1 + bi) (10)

The Forget gate (for reseting the cell/forgetting) is

ft = σg(Wf x̄t +Rfht−1 + bf ) (11)

The Cell candidate (for adding information to the cell) is

gt = σc(Wgx̄t +Rght−1 + bg) (12)

where σc is the state activation function which here is
σc = tanh(x̄)
The Output gate is

ot = σg(Wox̄t +Roht−1 + bo) (13)

σg is the gate activation function which here is the sigmoid
function i.e σ(x) = (1 + e−x̄)−1

The Memory Cell state at timestep t is

ct = ft � ct−1 + it � gt (14)

Here � is the Hadamard product (element-wise multipli-
cation of vectors). The memory cell selectively retains in-
formation from previous timesteps by controlling what to
remember via the forget gate ft.
The Hidden state (also called Output state) at time step t is

ht = ot � σc(ct) (15)

The Hidden State is passed as input to the next timestep.
Wi,Wf ,Wg are the learnable input weights, Ri, Rf , Rg are
the learnable recurrent weights and bi, bf , bg are the learnable
bias.

The sigmoid function is a good activation function, and
hence is used for the 3 gates - In, Out and Forget in the
LSTM units as it outputs a value between 0 and 1. However
for the memory cell, the values should be able to increase or
decrease which is not possible with the sigmoid function
as the output is always non-negative, hence we use the
hyperbolic tangent function (tanh) as the activation function
for the memory cell.

Using memory cells and hidden states LSTM units are able
to retain information and stacking of numerous LSTM units
is possible by using the ht values at each layer as inputs to
the next layer.

III. EXPERIMENTS

Our experimental apparatus consisted of a KUKA LWR
4+ robot with 7 degrees of freedom, with a 6-axis ATI
Gamma force-torque sensor mounted at the end-effector. We
did not utilize the redundancy of the robot. The force-torque
sensor provided a 6-dimensional wrench in the sensor
frame at 1000 Hz. The joint encoders of the robot, through
forward and differential kinematics computed the position
and linear velocity of the end-effector of the robot at 500
Hz. The high level program was written in MATLAB and
connected to the network via ROS (using the MATLAB
Robotics Toolbox). A laser pointer was attached rigidly to
a cylindrical tool mounted below the force-torque sensor.
The laser pointer enabled the user to track the motion of
the end-effector. Even though the sensors had different
sampling rates we recorded the data at the same rate as we
generated an individual dataset for each of the variables -
position,velocity and force.

Fig. 4. Prediction of future velocity using the RNN-LSTM trained on
the Minimum Jerk velocity dataset. The controller was Admittance Control.
Here the RNN-LSTM is tested on a Minimum Jerk trajectory with x0 =
t0 = 0, xf = 0.4 m and tf = 3 seconds. The RMSE was 0.003. These
predicted values can be taken as the desired velocity ẋd in the impedance
model.



Fig. 5. The figure on the left shows the position values in the Natural Motion training dataset. The controller was Admittance Control. More than 30
cycles were recorded with varying speeds in each cycle. The figure on the right shows the prediction of future positions using the RNN-LSTM trained on
the position values of the Natural Motion dataset. The RMSE was 0.002. These predicted values can be taken as the desired position xd in the impedance
model.

Fig. 6. The figure on the left shows the velocity values in the Natural Motion training dataset. The controller was Admittance Control. The dataset had
a mixture of cycles with some cycles being fast movements while some were slow. The figure on the right shows the prediction of future velocities using
the RNN-LSTM trained on the velocity values of the Natural Motion dataset. The RMSE was 0.0045. These predicted values can be taken as the desired
velocity ẋd in the impedance model.

Fig. 7. The figure on the left shows the force values in the Natural Motion training dataset. The controller was Impedance Control. The figure on the
right shows the prediction of future force values using the RNN-LSTM trained on the force values of the Natural Motion dataset. The RMSE was 0.3.
These predicted values can be taken as the Fr = Fd in (8).

For Impedance Control the controller used was the in-built
Cartesian Impedance Controller with the following control
law

τ = JT (Kd(x−xd) +Bd(bd)) +fdynamics(q, q̇, q̈) (16)

where q ∈ <n is the joint position vector, Kd is the stiffness
matrix in the end-effector frame,Bd is the damping matrix
in the end-effector frame (bd is the damping ratio), x and xd
have the same notation as before, in the global frame. The
translational stiffness Kx,Ky,Kz ∈ [0.01, 5000] N/m and
rotational stiffness KAz

,KBy
,KCx

∈ [0.01, 300] N/m-rad
For collecting the datasets we needed the laser pointer

(i.e the tool) to be facing downwards vertically all the time,
so we set the Rotation Matrix of the pose to be constant,
the values of KAz ,KBy ,KCx were set to 300 N/m-rad. The
value of damping was set to bd = 0.7 and xd = x.

For Admittance Control we used the in-built Joint Position
Controller. The desired virtual impedance Values were Md=1
kg, Bd = 10 Ns/m and Kd = 10 N/m.

We generated multiple datasets for validating our RNN-
LSTM architecture. We refer to the first dataset as the ‘Nat-
ural Motion’ dataset as it comprised of natural motions of
the human. For the Natural Motion dataset we asked the user
to move the tool continuously between two specified points
along a single degree of freedom. The distance between the

two points was 30 cms. The user was asked to move the tool
at varying speeds in each cycle. The position and velocity
of the end-effector was recorded from the robot controllers
and the force applied was measured using the force-torque
sensor. Two such ‘Natural Motion’ datasets were created,
one using Impedance Control and the other with Admittance
Control.

The last dataset was that of a large number of trajectories
according to the MJM. For the ‘Minimum Jerk’ velocity
dataset, we generated trajectories with x0 = t0 = 0 and
varied the value of xf ∈ [0.1, 0.5] with step size of 0.1, and
tf ∈ [1, 10] with a time-step of 0.1.

We took 90 percent of the complete datasets as the training
dataset. The entire architecture consisted of 4 layers- an
input layer, an LSTM layer, a fully connected layer, and
a regression layer. The number of features was 1 as we had
only a single variable for each dataset. Similarly as only 1
output was expected, the number of responses was 1. The
number of hidden units was taken as 200 and the maximum
number of epochs was set to 250.

The results of the predictions of the LSTM on the training
set (10 percent of the complete datasets) is shown in Figures
(4)-(7). The predictions are made for the immediate next
time-step. The prediction accuracy is summarized in Table
I. It is visible that the proposed methodology is accurate in



predicting the parameters. As a future work the immediate
next step would be to study the increase in robot assistance
using the proposed methodology. It could also be interesting
to study the variation of robot impedance parameters with
prediction of the human intention to facilitate cooperative
pHRI tasks.

TABLE I
PREDICTION ACCURACY

Parameter Root Mean Square Error
Velocity (m/s) (Minimum Jerk dataset) 0.003

Position (m) 0.002
Velocity (m/s) (Natural Motion dataset) 0.0045

Force (N) 0.3

IV. CONCLUSION

In this paper a new methodology has been proposed
to predict the position, velocity and force applied by the
human in a cooperative physical human-robot interaction
task. The forecasted parameters can be integrated into the
Impedance Control scheme and make the robot a proactive
partner in sharing the physical load of the human. The
proposed methodology uses a RNN-LSTM architecture and
can accurately forecast parameters after being trained on
a sample dataset. Accuracy of the predictions on the test
dataset confirm the efficacy of the proposed method.
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