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Abstract

The clinical success of trastuzumab in breast cancer
taught us that appropriate tumor evaluation is
mandatory for the correct identification of patients
eligible for targeted therapies. Although HER2 protein
expression by immunohistochemistry (IHC) and gene
amplification by fluorescence in situ hybridization
(FISH) assays are routinely used to select patients to
receive trastuzumab, both assays only partially predict
response to the drug. In the case of epidermal growth
factor receptor (EGFR), the link between the presence
of the receptor or its amplification and response to
anti-EGFR therapies could not be demonstrated. Even
less is known for HER3 and HER4, mainly due to lack
of robust and validated assays detecting these proteins.
It is becoming evident that, besides FISH and IHC,
we need better assays to quantify HER receptors and
categorize the patients for individualized treatments.
Here, we present the current available methodologies
to measure HER family receptors and discuss the
clinical implications of target quantification.
perior to single agents in a neoadjuvant setting [15-17].
Introduction
The HER family (also called ErbB or epidermal growth
factor receptor (EGFR) family) comprises four trans-
membrane receptor tyrosine kinases, EGFR (or HER1),
HER2, HER3, and HER4. These receptors signal through
homo- and heterodimerization and promote cell prolif-
eration, motility, and invasion [1]. Dysregulated expres-
sion and activity of HER family members is frequent in
breast cancer. Overexpression of EGFR1, HER2 and
HER3 is generally associated with poor prognosis
whereas high expression of HER4 is associated with a
better outcome [2-7]. Up to 25% of breast carcinomas
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overexpress HER2. High levels of this oncogene, almost
invariably as a consequence of genomic amplification of
a region of chromosome 17 (17q21) including the HER2
locus, drives aggressive disease and is an important
therapeutic target.
Monoclonal antibodies (that is, trastuzumab, pertuzu-

mab, T-DM1) and small molecule kinase inhibitors (that
is, lapatinib, neratinib and afatinib) are the main strat-
egies to target HER2 in breast cancer. Trastuzumab, in
combination with chemotherapy, has significantly in-
creased both progression-free survival (PFS) and overall
survival in patients with advanced disease [8,9] as well
as in the early (adjuvant) setting [10,11]. Lapatinib, given
in combination with capecitabine, has shown clinical
activity in HER2-positive breast cancer patients that
became refractory to trastuzumab-based therapy [12].
Moreover, measurable clinical benefit is observed also
when lapatinib is administered as a single agent or
in combination with paclitaxel as first-line treatment
[13,14]. Recently, the antitumor activity of dual HER2
blockade (trastuzumab in combination with either lapa-
tinib or pertuzumab) was proven to be significantly su-

EGFR has been shown to be highly expressed in triple-
negative breast cancer (TNBC), both in cell lines and in
patients [18]. Moreover, preclinical studies have demon-
strated that the inhibition of EGFR affects growth in
TNBC cell lines [19]. These findings provided the ra-
tionale to test the efficacy of anti-EGFR agents, such as
the antibodies cetuximab and panitumumab, in TNBC
patients. In the metastatic setting, cetuximab in combin-
ation with chemotherapy showed some promising activ-
ity [20-22]. Nevertheless, no substantial improvements
in either PFS or overall survival were achieved in these
patients. A small pilot study testing the efficacy of pani-
tumumab in combination with standard chemotherapy
in TNBC patients in the neoadjuvant setting showed a
pathological complete response rate of 46.8% [23]. How-
ever, the relevance of these findings will be assessed only
when PFS and/or overall survival data are available.
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There are several unanswered questions about which
patients with breast cancer are most likely to benefit
from one or another form of anti-HER targeted therapy
and which type of determination methodology is most
appropriate.
DNA-based, RNA-based, and protein-based assays

have been developed to determine the HER status of
breast tumors. To date, exploitation of the overexpres-
sion of HER2 is part of the management of a breast
cancer patient whereas EGFR, HER3, and HER4 deter-
minations are still exploratory and not used in clinical
practice. As a matter of fact, to be eligible for anti-HER
therapy such as trastuzumab, specimens have to be
HER2-positive as determined by immunohistochemistry
(IHC) analysis or harbor HER2/neu gene amplification
by fluorescence in situ hybridization (FISH). Although
these tests have become the benchmarks for defining
tumors as HER2-positive, considerable controversy still
exists regarding the accuracy, reliability, and inter-
observer variability of these assay methods. It is esti-
mated that up to 20% of HER2 testing performed in the
field may be inaccurate when validated against central or
'expert' laboratories [24,25]. A recent round-robin study
conducted to evaluate current HER2 testing methods
and their potential impact on clinical outcomes showed
that interpretation issues (especially when dealing with
IHC or FISH equivocal results as defined by the Ameri-
can Society of Clinical Oncologists (ASCO)/College of
American Pathologists (CAP) guidelines) and/or HER2
tumor heterogeneity may play a significant role in dis-
cordant results [26].
In an effort to improve the accuracy and consistency

of HER2 testing, a joint task force of ASCO and CAP
proposed guideline recommendations for HER2 testing
using either IHC or FISH [27]. Among ‘HER2-positive’
tumors (defined by consensus criteria), there is a wide
range of variability in terms of HER2-gene amplification
and protein expression measured by conventional semi-
quantitative methods such as the HercepTest®. The
possibility that a quantitative analysis of HER family pro-
tein expression could improve the prediction of HER-
targeting drugs has led to the evaluation of alternative
and more quantitative tests. Despite that, the 2013
ASCO/CAP Update Committee concluded that there
was insufficient evidence to warrant inclusion of these
new assays to determine HER2 status in unselected
patients due to lack of a consistent body of evidence
on their analytical validity, clinical validity, and clinical
utility [27].
In this review we address these issues by evaluating

the current methodologies used for HER family status
determination and discussing the clinical implications of
HER family quantification on response to anti-HER
treatment. In Additional file 1 we list the Food and
Drug Administration (FDA) approved/Clinical Laboratory
Improvement Amendments certified diagnostic tests avail-
able to measure HER receptors in the clinic.

Methodologies
HER status assessment at the protein level
Immunohistochemistry
IHC is the primary technique used to determine protein
expression status in a patient sample. It is a simple, fast,
easy to implement and relatively inexpensive method
for protein detection. Slides are incubated with an anti-
body directed against the HER receptor protein, labeled,
and finally made visible with a chromogen, resulting
in a staining localized in the cellular compartment
where the protein target is expressed (membrane,
cytosol, nucleus). The more the protein is present, the
stronger the staining will be. Traditionally, assessment
of protein expression is done by visual estimation of
staining intensity and is reported as binary (positive
versus negative), four-tiered (0, 1+, 2+, and 3+), or
semiquantitative continuous variable as for the H score
((% at 0) × 0 + (% at 1+) × 1 + (% at 2+) × 2 + (% at 3+) × 3;
range = 0 to 300) results [28].
For companion diagnostic tests, guidelines are gener-

ally issued to guide pathologists in the interpretation
and scoring of the staining. The HER2 scoring guidelines
recommended by ASCO/CAP classified HER2 expres-
sion as 0 (no staining or faint incomplete membrane
staining observed in ≤10% of tumor cells), 1+ (faint/
barely perceptible incomplete membrane staining in >10%
of tumor cells), 2+ (circumferential membrane staining
that is incomplete and/or weak/moderate and within >10%
of tumor cells or complete and circumferential membrane
staining that is intense and within ≤10% of tumor cells) or
3+ (circumferential membrane staining that is complete,
intense, and within >10% of tumor cells). Tumors with
scores 0 and 1+ were considered negative; 2+ was consid-
ered equivocal and required FISH reflex testing; 3+ was
considered positive and eligible for trastuzumab [29].
Despite the effort to standardize HER2 status deter-

mination, current guidelines do not restrict the type
and characteristics of IHC assay to be used for HER2
protein expression. The use of FDA approved tests
such as HercepTest® (DAKO, Carpinteria, CA, USA),
PATHWAY anti-HER-2/neu (Ventana Medical systems,
Roche, Tuscon, AZ, USA), InSite™ Her-2/neu (Biogenex,
Freemont, CA, USA) as well as fully automated
staining systems such as Ventana Benchmark (Ventana
Medical systems, Roche, Tuscon, AZ, USA) and Leica
Microsystems Bondmax (Leica, Newcastle, UK) may
certainly minimize process variability and improve assay
repeatability and reproducibility. Nevertheless, many la-
boratories developed tests with different antibodies di-
rected against other HER2 epitopes (intracellular versus
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extracellular), which may show non-overlapping spec-
ificities and be differently influenced by preanalytical
factors [30-32].
Interpretation of membrane staining can be optimized

using quantitative image analysis such as the automated
quantitative analysis (AQUA) system [33]. AQUA is a
fluorescence IHC-based method that provides objective
and continuous protein expression scores for tissues by
using automated fluorescence microscopy and advanced
image analysis algorithms. It is important to note, how-
ever, that there are as yet no clinical data related to
AQUA’s predictive ability.
Other software applications include Aperio Scanscope

(Aperio Technologies; Vista, CA, USA), Definiens
(Carlsbad, CA, USA) and Vysis AutoVysion (Abbott
Molecular, Des Plaines, IL, USA) among others. These
applications can reduce the subjectivity of a traditional
scoring system and provide a more reproducible protein
expression score [34,35].

Enzyme-linked immunosorbent assay
HER2 receptor protein extracellular domain (ECD, p105)
is released into the circulation after cleavage by matrix
metalloproteinases and its levels can be measured in the
serum using an enzyme-linked immunosorbent assay
approved by the FDA (Siemens Healthcare, Erlangen,
Germany). Elevated levels of serum HER2 ECD have been
shown to be both prognostic and predictive of response to
trastuzumab in HER2-positive tumors [36,37]. Serum
ECD values have been suggested, therefore, as an alterna-
tive technique for determining HER2 status, although
available results are controversial. First, not all patients
with HER2-positive tumors appear to have elevated serum
ECD values and patients with HER2-negative tumors can
also have elevated ECD values. Second, the reported data
come from studies including a limited number of patients,
thus making current evidences still insufficient to consider
basing treatment decisions on ECD levels in routine
clinical practice. A large meta-analysis study [38] has
combined the data of four trastuzumab trials in meta-
static breast cancer and showed that, from the com-
bined dataset (N = 322 patients), there was no correlation
between baseline ECD value and tumor response. ECD
values decreased upon initiation of combination therapy
irrespective of treatment and tumor response. Further-
more, disease progression was not reliably predicted by an
increase in ECD levels. Therefore, the use of ECD values
in treatment decision making was not recommended.

VeraTag™ proximity-based assay
The VeraTag™ proximity-based assay (HERmark® Breast
Cancer Assay; Monogram Biosciences, Inc., South San
Francisco, CA, USA) enables precise quantitative
measurements of total HER-2 expression and HER2
homodimers in formalin-fixed, paraffin-embedded (FFPE)
tissue specimens [39,40]. The HERmark assay was devel-
oped based on a proprietary proximity-based technology
platform that enables accurate quantification of proteins
and protein-protein complexes through the release of a
fluorescent tag (VeraTag reporter, Monogram Biosciences)
conjugated to a pair of monoclonal antibodies directed to
unique epitopes on the HER2 receptor in molecular prox-
imity [40]. The continuous total HER-2 expression results
are grouped as HERmark negative, HERmark equivocal,
and HERmark positive. The threshold for a positive
HERmark test is based on the comparison with HER2
tests performed in 1,090 breast tumor reference samples
(central IHC and central in situ hybridization) from three
different study cohorts. The HERmark assay can detect
HER2 at amounts of 2,500 up to more than 1 million re-
ceptors per cell, and is thus said to be 7 to 10 times more
sensitive than IHC. The assay has been validated ac-
cording to the specifications prescribed by the Clinical
Laboratory Improvement Amendments and is performed
only in the CAP-certified clinical reference laboratory at
Monogram Biosciences (US). VeraTag™ proximity-based
assays have been developed also to measure total EGFR,
EGFR-EGFR homodimers and EGFR-HER2 heterodimers
[40-42], p95 [43], total HER3, HER3-HER3 homodimers
and HER3-phosphoinositide 3-kinase (PI3K) complex het-
erodimers [44] and the phosphorylated forms of EGFR,
HER2, and HER3.

Protein interaction measurements
Clinical application of protein-protein interactions has
uncovered many potential targets for novel drug devel-
opment or drug resistance mechanisms [45], with the
MDM2-p53 interaction [46,47] and B-Raf inhibition be-
ing examples of recent successes [48]. More recently,
incorporation of protein interaction data was shown to
also improve the predictive performance of prognostic
gene expression signatures [49,50]. Despite the import-
ance of adjunct information supplied by the protein
interactome configuration to improve the existing prog-
nostic signatures for predicting patient outcome [50],
this protein interaction information has rarely been
incorporated in diagnostic/prognostic assays.
Fluorescence lifetime imaging microscopy (FLIM) is

based on quantifying the non-radiative transfer of energy
between the donor and acceptor fluorophores and can
only occur when the two molecules are no further apart
than 10 nm, consistent with being in molecular contact
[51-53]. Various automated imaging platforms, including
ours, measure Förster resonance energy transfer (FRET) -
the decrease in donor lifetime, the gold standard for FRET
measurements (reviewed recently in [54]) - to directly
monitor validated protein-protein interactions [55-61] and
post-translational modifications, including conformational



Nuciforo et al. Breast Cancer Research  (2015) 17:53 Page 4 of 12
changes, in cultured cells [58,62-66]. A two antibody
FRET/FLIM approach was originally applied, by ourselves
and others, to human cancer tissues to detect the nano-
proximity between a donor fluorophore-conjugated anti-
protein kinase C or anti-EGFR antibody, and an acceptor
fluorophore-labeled phospho-specific antibody, providing
highly specific quantification of phosphorylation [67,68].
Detailed methodology for sample preparation and instru-
mentation can be found elsewhere [69,70]. We have now
extended this method to measure endogenous protein-
protein interactions in archived pathological material [71].
The presence of autofluorescence in stromal and epithelial
components may cause difficulties in accurately determin-
ing the fluorescence lifetime of fluorophores in FFPE tissue
samples [72]. By circumventing the autofluorescence issue
using a new analysis algorithm [73], we have recently
described the first clinical utilization of this refined FLIM
assay (using Alexa546 and Cy5 as donor and acceptor
fluorophores, respectively) to quantify the level of HER1-
HER3 dimer formation in FFPE tissues from basal-like
breast cancer patients who were treated with a neoadjuvant
anti-EGFR treatment (cetuximab or panitumumab) [74].
Moreover, we have demonstrated the existence of EGFR-
HER4 dimers in breast cancer cells and how these dimers
are important for cell motility [75].
Liquid chromatography-tandem mass spectrometry-

based proteomics has emerged as the most effective
method to study complex proteomes. In this approach,
the proteins representing a proteome are analyzed after
enzymatic digestion by liquid chromatography coupled
to mass spectrometry (MS). Although this approach is a
powerful tool to identify proteins in complex biological
samples [76,77], it is not optimal for systematic quantifi-
cation of these proteins because of the stochastic nature
and the limited sensitivity of the approach. During the
past few years, targeted proteomics has been shown to
be complementary to the more widely used discovery
proteomic methods. In targeted proteomics, only pre-
determined peptide ions are selected for detection and
quantification in a sample. The main MS approach sup-
porting targeted proteomics is selected reaction moni-
toring (SRM), where specific MS assays are generated a
priori and used to selectively detect and quantify pro-
teins of interest in a sample. This approach can provide
objective quantification and multiplex capabilities with
high sensitivity and in an antibody-free setting [78-80].
SRM methods have long been used to quantify low-
abundance protein targets in plasma [81] but application
of these techniques to FFPE tissue samples has, until
recently, been hindered by incomplete solubilization of
samples [82,83]. The Liquid Tissue-(SRM) diagnostic
technology platform is a newly developed proteomic
method that overcomes this limitation, allowing for pre-
cise protein quantification in FFPE tissues. Microdissected
FFPE tumor tissues are subjected to Liquid Tissue pro-
cessing to reverse formalin crosslinks. This is followed by
trypsinization to completely solubilize all of the protein in
the sample. This tryptic peptide mixture is then subjected
to SRM analysis using stable isotope-labeled control pep-
tides for accurate quantification [83-85]. Multiple reports
have demonstrated that comparable results may be ob-
tained between formalin fixed and matching frozen tissue
[84,86]. The reliability of this approach for analysis of pro-
teins in any biological sample including FFPE patient
tumor tissue has been demonstrated [87-91], thus widen-
ing the application of MS to patient-derived tissue with a
consequent profound impact on patient stratification and
targeted cancer therapeutics.
Reverse phase protein array (RPPA) and collaborative

enzyme enhanced reactive-immunoassay (CEER) are
nano-scaled dot blot platforms allowing the detection of
multiple proteins (both total and phosphorylated) in
many samples simultaneously. They do not require large
amounts of sample but are not suitable for FFPE tissue.
For RPPA protein lysates are immobilized onto microar-
rays and then probed with the primary antibodies of
choice. Detection is performed by quantification of the
labels (fluorescent, colorimetric or other kinds) bound to
either the primary or, more often, the secondary anti-
body added to amplify the signal. RPPA allows testing
hundreds of samples at the same time and multiplexing
is performed by analyzing multiple arrays spotted with
the same protein lysates with different antibodies [92].
CEER takes advantage of the immunocomplexes

formed between antibodies printed on a nitrocellulose
microarray surface with the target molecules in cell
lysates. Once the complexes are formed, two detector
antibodies (one conjugated to glucose oxidase and an-
other conjugated to horse radish peroxidase (HRP)) are
added. Target detection (expressed as computational
units (CU)) requires the presence of both detector
antibodies, and the enzyme channeling event between
glucose oxidase and HRP will not occur unless both
antibodies are in close proximity [93]. The main differ-
ence with RPPA is that, instead of protein lysate, anti-
bodies are immobilized in cellulose arrays. This means
that, contrary to RPPA, CEER is capable of measuring
the expression of dozens of targets simultaneously in the
same sample.
Further studies are needed to prove the clinical rele-

vance of the above described methods.

HER status assessment at the DNA level
In situ hybridization
FISH is considered the gold standard method for gene
amplification status determination. FISH uses fluores-
cently labeled probes (usually red) that are complemen-
tary to a part of the target gene. After hybridization to
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the complementary DNA on the slide, the probes can be
visualized with a fluorescence microscope. A second
probe labeled with a different fluorochrome (usually
green) directed against the centromeric region of the
chromosome containing the target gene is generally used
as control for polysomy. The number of copies of the
target gene and centromere probe can be estimated and
the ratio determined.
CISH (chromogenic in situ hybridization) is an alter-

native for FISH. It uses an immunoperoxidase reaction
to visualize the target gene probe, which allows scoring
with a conventional light microscope. CISH has several
advantages over FISH: signal does not fade and the slides
can be kept permanently and allows better preservation
of morphology. One of the main limitations of CISH is
that most of the available assays are still monoprobe
assays, meaning that there is no correction with a
centromere control probe and only the absolute gene
copy number is scored.
Similar to CISH, silver in situ hybridization (SISH)

technology uses a non-fluorescent method where the
HRP bound to the probe catalyses the reduction of silver
acetate to produce a black signal. Several studies showed
a good correlation between FISH, CISH, SISH, and IHC
for HER2 status determination [94-100].
Recently released ASCO/CAP guidelines recommended

that HER2 must be considered in situ hybridization (ISH)-
positive based on a single-probe average HER2 copy
number ≥6.0 signals/cell or dual-probe HER2/CEP17
ratio ≥2.0 or dual-probe HER2/CEP17 ratio <2.0 with
an average HER2 copy number ≥6.0 signals/cell [27].
Whether the centromere control probes for polysomy 17
are really necessary is a matter of debate given that it has
been proven by several studies that true polysomy 17 is
very rare in breast carcinomas [101]. Concurrent evalu-
ation of several chromosome 17 genes using multiple-
probe FISH or multiplex ligation-dependent probe
amplification showed that focal amplifications encompass-
ing the centromere - and not true polysomy - are the most
common explanation for increases in CEP17 signals
[102,103]. These results suggest that CEP17 copy number
assessment by standard ISH is not a useful surrogate for
polysomy 17. Compared with IHC, ISH assays, in which
the target gene copy number is counted, are considered to
be more quantitative analytically. However, ISH is not a
direct measurement of the protein and just because a
change in gene copy number is observed does not neces-
sarily mean that it is expressed. In addition, the procedure
is time consuming and new 'fast' FISH assays are under
development to reduce the turnaround time [104].

PCR-based techniques
PCR-based techniques such as multiplex ligation-
dependent probe amplification [105] have several
advantages over ISH-based assays. First, they are more
quantitative and results are easier to interpret. Second,
they require only small amounts of DNA and are not
affected by DNA degradation, thus performing well with
FFPE samples. Third, they can be multiplexed, allowing
simultaneous interrogation of multiple genes or different
parts of genes, representing an ideal and low cost prescre-
ening tool. Head-to-head comparisons between IHC,
FISH, and CISH have shown good correlation among
technologies [106-109]. The main weaknesses of PCR-
based assays are that they do not preserve tissue morph-
ology, may require sample macro- or microdissection to
enrich for tumor content, heterogeneity can be missed
and contamination with normal or ductal carcinoma in
situ may lead to both false-negative and false-positive
results.

HER status assessment at the RNA level
Due to multiplexing capability, RNA-based tests are usu-
ally used to generate global gene expression signatures
rather than single gene measurements. All these signa-
tures work using proprietary algorithms that generate a
score based on the expression levels of the genes
measured that can determine risk factors, incidence,
prognoses and responses to systemic therapies. Clinically
validated gene expression tests that include one or more
HER family members in their gene lists are discussed
below.
The Oncotype DX assay (Genomic Health, Redwood

City, CA, USA) uses RT-PCR as a primary technique
and work on RNA extracted from FFPE samples. The
assay measures the expression of a panel of 21 genes
(only HER2 is included among the HER family genes)
and the results are provided as a recurrence score.
Although the assay was approved as a prognostic test
predictive of breast cancer recurrence in women with
newly diagnosed, early stage breast cancer, it also as-
sesses the benefit from certain types of chemotherapy
[110]. Recently, Genomic Health started reporting estro-
gen receptor (ER), progesterone receptor (PR), and
HER2 results separately in addition to the recurrence
score. Although high overall concordance (greater than
91%) between HER2 by IHC or FISH assay and quantita-
tive RT-PCR using the Oncotype DX test has been
reported [111,112], an independent study showed a
false-negative rate for Oncotype DX RT-PCR for HER2
of >50% [113].
TargetPrint™ (Agendia, Irvine, CA, USA/Amsterdam,

The Netherlands) is a microarray-based gene expression
test that allows quantitative assessment of ER, PR and
HER2 at the RNA level in breast cancer. Compared with
IHC results, HER2 gene expression levels provided by
TargetPrint™ have been shown to be more reproducible
and truly quantitative. Results were validated against
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IHC and showed an overall concordance greater that
95% [114-116]. Its use is currently proposed in case of
equivocal or unreliable IHC results, discordance between
two separate tests, discordance of test results and clini-
copathologic features or technical failure of IHC/FISH/
CISH.
The NanoString Prosigna™ (NanoString Technologies,

Seattle, WA, USA) assay measures the expression levels
of 50 target genes (including HER2) plus eight constitu-
tively expressed normalization genes (PAM50) to classify
a tumor as one of four intrinsic subtypes (luminal A,
luminal B, HER2-enriched, and basal-like), which have
been shown to be prognostic [117,118]. In addition to
identifying a tumor’s intrinsic subtype, the PAM50 signa-
ture generates an individualized score estimating a pa-
tient’s probability of disease recurrence by weighting the
molecular subtype correlations, a subset of proliferation
genes, and pathologic tumor size [118,119]. Based on
these data, the FDA-cleared and CE-marked Prosigna™
assay, based on the PAM50 gene expression signature,
has recently been shown to predict the risk of distant re-
currence in women with hormone receptor-positive
early stage breast cancer treated with 5 years of endo-
crine therapy [120-122]. The Nanostring nCounter sys-
tem uses color-coded probes that bind directly to the
RNA transcript without reverse transcription and PCR
amplification [123] and work in frozen or FFPE tissues
with equivalent ease and efficiency [124]. Assay controls
are included to ensure that test samples and the test
process meet pre-defined quality thresholds.
The PAM50 gene signature may be run also by classic

quantitative PCR and can also provide quantitative and
qualitative gene expression scores for the standard bio-
markers usually measured semi-quantitatively by IHC -
ER, PR and HER2. Using the quantitative PCR cutoff for
ERBB2 expression, a study found high specificity (609/
624 samples that were low ERBB2 were also HER2-
negative by IHC/CISH), while 53% (109/190) of tumors
with intermediate-high ERBB2 expression were HER2-
positive [125]. This same study and the MA.5 trial [126]
found that only about two-thirds of clinically HER2-
positive tumors are classified as HER2-enriched. Thus,
only a subset of the IHC-defined groups overlap with
PAM50 subtype classification.
Although some literature shows an overall high con-

cordance between standard techniques such as IHC and
FISH assays and quantitative RT-PCR [111,127-129],
there are several practical issues that should be consid-
ered when conducting RNA-based analyses. First, the
presence of normal tissue within the tumor sample is a
major source of subtype misclassification [130]. There-
fore, identification of the region of viable invasive breast
carcinoma by a pathologist is critical before any RNA
extraction is performed. Second, RNA shows greater
instability compared with DNA and proteins and thus
the selection of technologies that may prevent/overcome
RNA degradation is important.

Clinical implications
The fundamental principle of targeted therapy is to
specifically harm tumor cells that depend on a definite
target for proliferation and survival, sparing non-tumor
cells from damage. In many cases, the target is a protein
with activating mutations that is present only in tumor
cells, facilitating the specificity of the therapy (for
example, Braf-mutant melanomas, EGFR-mutant lung
cancer), allowing profound inhibition of the target before
the emergence of side effects. In the case of HER recep-
tors in breast cancer the target is a protein that, al-
though not carrying any activating alterations, is present
in much higher amounts in tumor cells compared with
normal cells. In these cases one would guess that the
higher is the difference in target expression between
normal and tumor cells, the wider is the therapeutic
window. However, only the presence of the target or its
semiquantitative expression (and not the absolute levels)
is currently taken into consideration in clinical practice.
There is an increasing body of evidence indicating that

the levels of HER2 in HER2-positive tumors can influ-
ence the response to HER2-targeted therapy, converging
to the common conclusion that 'more HER2, more
response' [131-137]. Quantitative HER2 expression or
homodimer levels determined by the HERmark assay
correlated with clinical outcome of trastuzumab therapy
better than IHC or central FISH studies in patients with
metastatic breast cancer. Interestingly, patients with
HER2 gene amplification by FISH but low HER2 pro-
tein expression or homodimer levels as measured by
HERmark responded poorly to trastuzumab-containing
therapy, suggesting that not all gene-amplified tumors
overexpress the target of trastuzumab [135]. Similarly, ab-
solute HER2 quantification in an homogeneous group of
HER2-positive breast cancer (IHC 3+) using triple quadru-
pole MS was predictive of a better response to trastuzumab
in both adjuvant and metastatic settings [136].
But perhaps this is valid until a certain limit. First, the

link between the level of HER2 amplification and out-
come in patients treated with trastuzumab has been
proven only in the neoadjuvant setting [138], whereas
other studies failed to demonstrate this association
[139,140]. Second, although the clinical benefit from
HER2 blockade increases with the level of the target,
there may be tumors with extraordinarily high levels of
HER2 that are actually more resistant to the therapeutic
pressure [141-144]. It is unclear whether this is due to
insufficient engagement of the receptor by the targeted
agents. In any case, validation of these findings in a lar-
ger cohort of patients is necessary. Third, the intriguing
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observation from B-31 and N9831 studies that tumors
that failed to be confirmed as HER2-positive after
central laboratory testing may still derive benefit from
trastuzumab [145,146] and the complex relationship
between HER2, ER, and trastuzumab sensitivity outlined
by the study suggest that quantitative HER2 measure
alone may not be sufficient, and combination with
other markers may be more predictive of trastuzumab
response [147].
Since dual HER2 blockade (trastuzumab combined

with either pertuzumab or lapatinib) is proving to be
more effective than single agent treatment, it will be
interesting to investigate whether HER2 absolute levels
predict response in this setting as well. In the neoadju-
vant setting, this seems to be the case. HER2 levels were
measured by HERmark in the primary tumors of
patients enrolled in the NeoALTTO trial, testing the
activity of trastuzumab in combination with lapatinib
compared with single agent treatments, and a positive
correlation was found between constitutive HER2 ex-
pression and benefit from dual blockade [148].
One of the mechanisms proposed for the synergy

observed when combining lapatinib and trastuzumab (at
least in preclinical models) is the stabilization and mem-
brane accumulation of HER2 as a consequence of recep-
tor kinase inhibition [149]. One may wonder, therefore,
whether lapatinib could sensitize tumors with relatively
low levels of HER2 to the antitumor activity of trastuzu-
mab. Testing this possibility, however, is not as easy as it
sounds. First, a threshold above which tumors benefit
from anti-HER2 therapy (but are still considered 'low
expressing tumors') needs to be defined by quantitative
methodology. Then, other therapeutic options should be
considered to exclude the possibility that these patients
can achieve better response from other agents. Genomic
analysis of the tumors would be very helpful in these
cases as the identification of actionable genetic alter-
ations may guide the choice of therapy. Finally, HER-
targeted therapeutic agents such as lapatinib have been
shown to stabilize/enhance the HER2-HER3 dimer in
preclinical cell models [149]. The quantification of this
dimer (as described above), which is believed to be the
most potent of all HER dimers with regard to driving
cellular proliferation [150,151], will provide important
and non-redundant information to that provided by
HER protein expression to help clinicians to understand
and/or predict the heterogeneity in clinical response.
The quantification of HER3 in response to lapatinib-

containing therapies may also be of relevance. In fact,
compensatory upregulation of HER3 upon lapatinib
treatment has been described both in preclinical models
and in patients with HER2-positive breast cancer [152].
The addition of compounds blocking HER3 or the
downstream PI3K/AKT pathway significantly potentiates
the antitumor effects of lapatinib, underscoring the im-
portance of this occurrence. Because of the mechanistic
relationship between EGFR and HER2, EGFR measure-
ment may provide a method for personalizing treatment
in breast cancer, beyond the single assay for HER2. Pa-
tients with high EGFR using the EGFR antibody D38B1
did not appear to benefit from concurrent trastuzumab
in the N9831 trial using the fluorescence-based AQUA
quantitative platform [153]. Based on these results, it
may be hypothesized that the subset of tumors with high
EGFR expression may better respond to lapatinib or dual
HER blockade compared with trastuzumab alone.
The absolute levels of EGFR may be predictive for re-

sponse to anti-EGFR therapy in TNBC patients. We re-
cently showed that patients with tumors expressing high
levels of EGFR were more likely to achieve pathological
complete response following panitumumab-based ther-
apy [74]. Furthermore, we found that EGFR levels
tended to decrease in the residual tumors collected at
surgery compared with the primary tumor before the
commencement of therapy, indicating that the levels of
EGFR may be influenced by the therapeutic pressure. It
remains to be defined whether this is a global downregu-
lation of EGFR in all tumor cells or is a positive selection
of cells with lower EGFR expression.
As a matter of fact, the acquired loss of expression of

HER receptors may be an obvious mechanism of resist-
ance to targeted therapy according to the simple para-
digm 'no target, no response'. This has also been
described in HER2-positive breast cancer patients upon
treatment with trastuzumab-based therapy [154]. There-
fore, measuring the levels of HER receptors at the time
of progression to targeted therapy should be encouraged
to avoid persevering with similar targeted approaches.

Conclusion and perspectives
It is becoming evident that the 'simple detection' of the
HER receptors in breast cancer is not sufficient to pre-
dict the benefit that patients will achieve from anti-HER
therapy. The example of HER2 is archetypal. We know
that HER2-positive patients benefit from anti-HER2
therapy, but now we also know that 15 to 20% of these
patients express levels of the receptors that are almost
comparable with HER2-negative tumors. And, more im-
portantly, these patients do not achieve the same benefit
from anti-HER2 therapy as do patients with high HER2
expression. This is especially true in the neoadjuvant set-
ting in patients undergoing dual HER2 blockade [148].
Let’s make an example of how relevant these findings

can be. The disease-free survival data from the ALTTO
adjuvant trial (comparing patients that received lapati-
nib, trastuzumab or the combination of the two agents)
were recently released [155]. The take home message
was that the combination was not significantly superior
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to trastuzumab single agent in preventing relapses to
therapy. These findings were somehow surprising since
the NeoALTTO trial clearly demonstrated that dual
HER2 blockade is more effective than monotherapy in
the neoadjuvant setting. But if we dissect the data we
realize that many variables could have influenced this
outcome. First, the number of PFS events taken into
consideration was lower than the one needed for the
planned statistical analysis. Second, a significant per-
centage of patients enrolled in the combination arm
were not treated with a full dose of lapatinib (for
toxicity reasons). In a study where the 'control arm'
(trastuzumab-based therapy) is known to cure more
than 80% of patients, these factors may have diluted the
possible improvement in PFS. Thus, it is not so surpris-
ing that the difference observed in the ALTTO trial was
not significant. It would be interesting to quantify the
levels of HER2 in these samples and correlate them with
clinical response. Perhaps we will identify a subset of pa-
tients with high HER2 expression that is more sensitive
to dual HER2 blockade and shows significant clinical
benefit in the long term. Fortunately, these samples are
available for future biomarker analyses, including HER2
quantification.
For EGFR things are far behind. The basis for test-

ing anti-EGFR therapy in TNBC was the knowledge
that overexpression of EGFR occurs in up to 50% of
cases [156]. But a real stratification based on how
much EGFR these tumors express has never been
made. Now we have evidence that, the higher the
levels of EGFR, the higher the probability to achieve
pathological complete response from cetuximab- or
panitumumab-based therapy in the neoadjuvant set-
ting [74]. Again, one would wonder whether the re-
ported activity of anti-EGFR therapy in TNBC (or even in
head and neck and colon cancers) would be different if
stratification based on the EGFR levels had been done in
these clinical trials.

Conclusion
In conclusion, HER receptor quantification may be more
tedious than FISH or IHC but it can help in stratifying
and selecting patients for anti-HER therapy. Measuring
the levels of the targets in patients undergoing 'targeted'
therapy sounds like a good idea.
Additional file

Additional file 1: A table listing laboratory diagnostic tests cleared
by the Food and Drug Administration or offered by central
laboratories under Clinical Laboratory Improvement Amendments
measuring HER receptors in the clinic. *Epidermal growth factor
(EGFR), HER2 and HER3. #Approved for colorectal cancer. LDT, laboratory
developed test; Q, quantitative; QL, qualitative; SQ, semiquantitative.
Abbreviations
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receptor; ER: Estrogen receptor; FDA: Food and Drug Administration;
FFPE: Formalin-fixed, paraffin-embedded; FISH: Fluorescence in situ
hybridization; FLIM: Fluorescence lifetime imaging microscopy;
FRET: Förster resonance energy transfer; HRP: Horse radish peroxidase;
IHC: Immunohistochemistry; ISH: In situ hybridization; MS: Mass spectrometry;
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