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Abstract. In the context of metal additive manufacturing, one of the
most attractive tasks to be robotized is the cleaning process of metal
powder after the printing operations. This task presents a challenging
scenario for most of robot manipulation approaches in the literature.
In this paper we present an approach, marker-less and real time afford-
able, which address the cleaning problem like a shape manipulation con-
trol problem. This control strategy is designed as an optimization prob-
lem. The error function is written as a lagrangian function using an
objective function based on Gaussian Mixture Model (GMM). The local
optimization is performed by a gradient descent and a global optimiza-
tion process is used to avoid local minima.

Keywords: robot control, image processing, manipulation, granular ma-
terial, optimization, non-rigid registration

1 Introduction

Robotize cleaning process in metal additive manufacturing nowadays is a hot
topic because this process is still handmade, regardless, the manipulated mate-
rial is an unhealthy substance for people. Metal powder can be easily inhaled
and absorbed by cardiovascular system, producing serious health disorders. In
addition, this material also presents explosive behavior in contact with oxygen,
making the manipulation of this material unsafe [1]. Moreover, during the print-
ing process of pieces, it is wasted more than half of the source product since
just a few parts of the powder material is melted. Therefore, we make safer and
ecological additive industry by robotizing this task since we avoid involve hu-
man operators in risky situation and the rates of re-usability and recycling are
increased.

We define the cleaning task as a close-loop form control strategy to drive the
robot to the parts to be cleaned while avoiding obstacles. Specially, we consider
the operation of removing powder as a soft manipulation task where the powder
bed plus the printed piece plus the powder is a whole object (Fig. 1). So, here
the goal is to transform the current object shape (cube of powder with the object
inside) into a desired one (the object without any powder). During last years
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Fig. 1: Platform setup where (a) shows the real robot in front of a table with
one object occluded inside the powder. Image (b) represents the virtual scenario
with object, solid cylinder, which is covered by the powder, transparent cube.
(c) Front view of the virtual scenario.

in the literature, we find a few approaches aimed to resolve concrete problems
in object (granular material) manipulation tasks, such as [2]. Others like, the
work [3] by Sanchez et al. makes a review of advances in robotic manipulation
task of non-rigid objects. Works [4, 5] by Mateo et al. present a method for un-
derstanding how the surface changes during manipulation task, implementing a
Dijkstra-based method to model the deformation of the object. The authors also
present a method in [6] to predict when the object surface changes drastically
during manipulation tasks to achieve dexterous manipulation and prevent dam-
ages in objects. The previous cited works are focused mainly in the perception
of the objects, but works more related to the control of robots for the manip-
ulation of elastic objects are [7, 8] by Navarro-Alarcon, in which an strategy to
control the shape of objects with robots, using Fourier transform as features, is
presented. In this line, works like [9, 10] realize similar tasks, where Cherubini in
[9] presents a study to understand how to address the dexterous manipulation of
granular materials using robot hands without a previous planning. At the same
time Schenck et al. in [10] present a deep learning strategy to teach robots to
address the problem presented by Cherubini.

The contribution of this work lies in the proposal methodology (strategy) to
resolve the problem of powder removal in metal additive manufacturing. Being
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the goal of this strategy the transformation of the current shape of the scenario
to the desired one. The methodology combines visual perception techniques,
optimization methods and robot control schemes. The robot should be moved
to minimize the disparity between the current shape and the target shape. We
decided to use a strategy to drive the robot to those surface points with maximum
disparity and at the same time closest to the current robot position. Here, the
disparity is computed using a registration point set method. In the literature
there are works which address the problem of registering two different non-
rigid surfaces: Coherent Point Drift (CPD) [11]; Volume Deformation [12]; or
Killing Fusion [13]. All these works follow the same key concept, retrieve the
transformation (deformation) which map one surface to another as rigidly as
possible. The control of the robot is formalized using a gradient descent algorithm
to optimize the robot velocity [14, 15], expressed in R3 manifold.

2 Strategy Definition

This approach is devoted to defining the control policy for robotic manipulation
tasks in cleaning operations. This method continuously controls a robot until the
task is done, without stops for sensing neither re-planning. We consider finished
the task when the current scenario shape matches with a reference (or target)
scenario. The diagram of the method is pictured in Fig. 2. As is illustrated
in the flowchart, the framework splits the approach into three different blocks:
perception; and control; level planning. We use the visual perception part to
generate the control references (attractors points) used in the robot control.
These emerge from the disparity map W , computed in the block (e) in Fig. 2,
by using the reference D∗ and current D depth images of the scenario.

We use a 3D model to define the target scenario, i.e. a mesh composed by the
platform (powder bed) where the printed piece will be built and the piece itself
(Fig. 1 (b) flat surface and cylinder). Using the 3D model, we create a virtual
depth image D∗. By a ray tracing technique using a virtual camera placed in the
same pose than the real one, a top-view configuration. Where the camera z-axis
(optical view axis) is aligned with the z-axis of the world reference frame (Fig. 1
(c)). We use as world frame the bottom-right corner of the scenario (Fig. 1 (b)).

Once we have the set of projected points x ∈ D∗ and y ∈ D in image space,
we re-project this set into the euclidean space as the set of N points X ∈ RN×3
and Y ∈ RN×3. This is done by the well-known re-projection equation X = P+x
where the projection matrix P = K [I3×3 | 03×1] is composed by the extended
intrinsic camera parameters matrix K4×3, and a matrix 3× 4, extrinsic camera
parameters, where the first block is an identity matrix I3×3 and the last column
03×1 (a zero column). The Moore-Penrose pseudo-inverse projection matrix is
computed as P+ = (PTP)−1PT . Equally for the current projected points y ∈ D
to obtain Y. To both point sets (point clouds) X and Y, we execute a pass-
through filter fp : RN×3 → RM×3, where M < N , (Fig. 2 (a) and (b)) to select
those points which lie in the current depth layer li (Fig. 1 (c)), according with,

fp(X, zlow, zup) = {X | zX > zlow ∧ zX < zup} , (1)
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Fig. 2: Method flowchart. The perception task follows an open-loop scheme where
is being compared current and target scenario. Control part is designed as a
close-loop for minimizing the error between current and target robot position.

where zX is the z component of any point in {X1, X2, · · · , XM} ∈ X.
We use the Canny edge filter fc [16] to extract the contours of the silhouette,

in the image projection of the survivor points X′ and Y′ in equation 1. Function
fc (Fig. 2 (c) and (d)) works in image space, thus x′ and y′ are projected before
to apply this filter. We use x′ = PX′ (and y′ = PY′) relation to project back the
3D points into image plane. Thus, final X and Y point sets are composed by the
point re-projection of the sets fc(x

′) and fc(y
′). We compute the error between

the two final point sets X and Y using Coherent Point Drift (CPD) operator [17,
11] (Fig. 2). CPD is a 3D registration algorithm aimed to resolve the problem
of 3D non-rigid alignment. This operation returns a set of transformations t ∈
R3×N , that represent the translations between each pair of correlated points.

2.1 Map Function fm

Disparity field W is used in this work to balance the importance of each bound-
ary point Y according to the robot pose r and the visual feedback t. So, we
purpose the following mapping function fm : RN×3 → RN subject to the robot
pose r and t to get W (Fig. 2 block (e)). Thus, the fundamental idea of this func-
tion is to define a reachability rank of points. That is, weight with the maximum
likelihood the point with better ratio between: distance to r; and maximum dis-
parity between current Y ∈ R3 and the desired X ∈ R3 position. Note that here,
we keep using the correlation space between X and Y obtained after applying
CPD algorithm beside robot position r.

Mathematically, we can express the mapping function fm (Y | r, t) as a mul-
tiplication of two different weights terms W = WtWd. Where Wd is the vector
of weights according to the robot pose r (i.e. distance between point in the
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current surface and the robot) and Wt with the visual feedback (i.e. distance
between current and desired surfaces). Then, Wt is formally expressed like the
normalized vector according with infinity norm, i.e. the set of t̂ is weighted with
respect to the maximum t̂. This is because we emphasize those points with more
transformation, formally this is as follows,

t̂ = ‖t‖2, Wt =
t̂∥∥t̂∥∥∞ (2)

where t̂ is a vector in RN stacking all euclidean norm of all elements in t. On
the other hand, Wd is the normalized distance vector d = Y− r according with
the negative infinity norm, i.e. the set d̂ is balanced w.r.t. the minimum d̂. This
is because we look for the closest point,

d̂ = ‖d‖2, Wd =
d̂∥∥∥d̂∥∥∥
−∞

. (3)

Values in Equation 2 and 3 are bounded in the range (0, 1], thus W is also
bounded in the same range. Where the most relevant point Yi ∈ Y is valued
with a 1.

2.2 Objective Function Definition

At this point all filter, registration and mapping functions used in the perception
block are presented. This subsection is devoted to present the objective function
used in the control law which is shown in Fig. 2.

Control here is formalized as an optimization problem where the parameters
that minimize the objective function should be found. In our case, the parameter
that we want to optimize is the robot velocity. The goal (or objective) is to
move the robot r to the maximum-interesting points W , discussed above. Our
objective function is constrained to the fact that the robot does not have to cross
over the desired shape X. This constraint is imposed because X is the contour
of the solid 3D printed object plus the machine support (powder bed Fig. 1),
therefore crossing over this area means a collision between the robot and the
scene.

To convert a constrained into an unconstrained problem, we use the Lagrange
multipliers method [18]. Using this function, we can find the local minimal of
our objective function subject to our constraint,

L (r, w) = f (r)− wg (r | X) (4)

where, f(r) is the objective function, g (r | X) is the equality constraint and
w (free parameter, in our experimentation w = 1

2 ) is a weight to balance the
relevance of g. Note that in L is still differentiable.
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Because the intrinsically noisy nature of image sensors, we define the objec-
tive function using a Mixture Model (MM) function. Concretely the MM used
here is the Gaussian Mixture Model GMM,

f (r) = − log

N∑
i

αiN (r | Yi, σ), (5)

where N (r | Yi, σ) is a Gaussian distribution function centered in the point yi
with a spread factor of σ and a peak value equal to αi. Note that there is a
Gaussian for each point in the current contour. Gaussian’s peak in GMM is
treated as the prior-knowledge (in our case W) of the i-th distribution and is
bounded between [0, 1]. In the other hand, constraint equation g is defined in
terms of an exponential artificial field,

g (r | X) ≡ E (r | X) . (6)

Note that we do not use the Gaussian Mixture Model to represent the position
of the robot but to relate the current robot pose with respect to the points in the
current surface shape Y. Also, MM is used to deal with the intrinsic uncertainty
of visual information.

Following section shows more detailed develop about objective function f ,
constraint g and lagrangian L.

3 Task-Space Robotic Control

The most straightforward approach to move a robot is to design a velocity con-
troller which relates the error function variations during time ė with the robot
velocity V = [υ, ω], Chaummette and Hutchinson in [19]. Formally, this is writ-
ten as ė = ∇eV, where ∇e is the gradient of the error function e, υ ∈ R3 is the
linear velocity and ω ∈ R3 the angular velocity, thus the velocity vector is in
V ∈ R6.

In this work the error function is equivalent to the Lagrangian equation 4,
e ≡ L (r, w). Considering that the hidden idea is to minimize the error ensuring
that the decreasing follows a monotonic exponential function with respect to
time ė = −λee, being the controller gain λe an scalar positive constant, the
obtained expression is as follow,

V = −λe∇e+e. (7)

where ∇e+ is the Moore-Penrose pseudo-inverse gradient matrix.
We extend the control law (equation 7) to optimize the spread σ of N while

the robot velocity V. Therefore, our final velocity vector V̄ ≡ [V, σ̇] ∈ R7 is
composed by V and the gaussian’s spread time variation σ̇. Consequently, the
gradient ∇e is differentiated also with respect to σ, not just w.r.t. the robot pose.
This is because by controlling the spread of GMM variance, we are controlling
the velocity of the robot. The idea is to situate the robot pose in the slop of the
GMM where it is the maximum value variation of the function and therefore the
gradient have the maximum value.
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3.1 Error definition

As it has been introduced before, removing particle media from a scene can be
considered as a surface shape control problem. Then, controlling the difference
between desired X and current Y shapes can be expressed as the optimization
of an error function e. Moreover, the error function e, as we discussed above, is
equivalent to the lagrangian operator L, defined in equation 4.

Objective function f in L is defined using a GMM in equation 5, where the
i-th gaussian distribution N (r | Yi, σ) is defined as,

N (r| Yi, σ) = exp

(
−1

2

‖r − Yi‖2
σ2

)
, (8)

and the prior-knowledge (guassian’s peak) of the i-th gaussian is equivalent to
αi ≡ Wi. The potential field term E is designed using a sigmoid function and is
defined as follows,

E (r | X) = − 1

1 + exp (−‖r −X‖−∞)
(9)

As the equation shows this potential barrier is based on the minimum distance
between any point of the desired surface X and current robot pose of r. There-
fore, the potential barrier is going to be governed just by the closest desired
contour point Xi to r.

Then, by injecting equation 8 and 9 in 4 we obtain our error function as,

e = − log

[
M∑
i

Wi exp

(
−1

2

‖r − Yi‖2
σ2

)]
+ w

1

1 + exp (−‖r −X‖−∞)
(10)

Equation 10 represents the error function of our method. This formulation
can be see has a problem of regularization where we have two different forces:
attraction (first term); and repulsive (second term). As it is expressed in the
first part of the equation, as smaller is the difference between robot pose with
the points in current surface shape ‖r − Yi‖2, smaller is the energy of the error
function. In contrast the second term as smaller is the distance between the
robot pose and the point in desired surface shape −‖r − X‖−∞, bigger is the
energy of the error function.

4 Global robot pose Optimization & Level planning

We use the Deterministic annealing algorithm [20] to govern the global behavior
of our control scheme, while the control scheme is devoted to walk towards the
most interesting points in the current surface according with W . The global
optimization strategy prevents that the system falls in stationary state. These
stationary states are reached when the robot position is too far from the influence
of f or too close to the GMM’s peak. This global optimization is as follows,

σt+1 =

{
λσσt, e < ε1

λ−1σ σt, e > ε2
(11)
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(a)

(b)

(c)

Fig. 3: Experiments over 3 different scenarios. Green dot represents robot pose,
path is represented in white color, current surface is the red surface and purple
is the desired surface. Note that the purple area is a restricted area for the robot.

where λσ is the global gain of the system and ε1 and ε2 are the thresholds used
for activating the global optimization.

In the other hand, the global evolution of the cleaning task l1 → l2 → · · · → li
evolves by removing layers of powder (Fig. 1). The method flowchart as a level
planning block (Fig. 2 block (i)) aimed to move the robot in z-direction in the
cleaning task. Then, the depth range are zlow = zlow +∆z and zup = zup +∆z
(this is a range area surrounding a level li) if the differences between current
and target surfaces is lower than a desired value ‖X−Y‖2 < ε3.

5 Experiments

Here, a set of 3 different simulations are designed (Fig 3), assuming the robot
should clean in z direction, i.e. layer by layer, where each test represents a depth
map in a specific layer. This strategy is chosen because it reduces drastically
the point set density (because only those points in the silhouette of the shape
are considered) in comparison to take all the points in the 3D surface, hence
the computational time is reduced proportionally. We first evaluate the char-
acteristics of the proposed method using simulations. And secondly, we have
implemented this strategy in a real robot to prove the viability. This approach
has 2 different gains: one for the local optimization λe; and the other for the
global optimization λσ. Moreover, this scheme has three bound parameters ε1,
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Fig. 4: The disparity between shapes evolution over time. x-axis represents the
iteration

ε2 and ε3, two first to keep e in a desired level and the last to know when a
depth level is cleaned (or deformed). Due the fact that this strategy comprised
a global optimization step to bound the error function inside an error levels,
this method cannot be evaluated directly on the study of the error evolution.
Therefore, the convergence is analyzed based on the shape similarities evolution
between current and target shapes.

We found that the behavior of system is suitable for each test, doing just a
single set up of these parameters. The gains for error minimization and variance
optimization are λe = 0.03 and λσ = 200. The limits for error function in this
experimentation are set in the range ε1 = 0.1 and ε2 = 0.15. Additionally, we
have initialized the value of GMM spread to σ = 0.005. One of the advantages
of this method is the smooth transformation that generates. This ability can be
appreciated in Fig. 3(a) where the shape is transformed from a square to a circle.
This kind of behavior is progressively doing the task while avoiding problems of
local minimum. In this work, we consider that the robot is in a local minimum
when this is stop and still remind powder to remove. Although it is not common,
we still have problem with local minima in concave shapes. In other hand, the
Fig. 3(b) presents a challenging situation where three unconnected powder areas
should be removed. This test shows how the system deals with local tasks to get
a global solution. The experiment 3(c)) was designed to demonstrate how the
controller manages to convert a simple shape into a much more complex shape
(concave shape).

It is demonstrated for all experiments that the system presents a local and
global behavior. All experiments complete their task after approximately 2500
iterations. The time to process a single iteration depends on the amount of
points in the silhouette. More concretely the relation between the number of
points and the time to perform the task is linear. In these experiments, the
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(a) (b)

Fig. 5: Evolution over the time (x-axis) of: (a) GMM σ, y-axis; and (b) error e
function, y-axis

silhouette is composed by point set of around 300 elements and the time to
compute an iteration is approximated 0.01s. As it is mentioned before, the system
convergence is achieved when the disparity between surfaces (ranged in [0, 1]) is
less than a desired value. A desired disparity of 0.015 was set for the experiments.
Fig 4 shows the evolution (monotonic decrease) of disparity for experiment 3
(Fig. 3(c)). In the other hand, the associated error evolution is presented in
Fig 5(b) and shows how this error falls until a bounded error is achieved and
during all the task the system works to keep this error inside the limits. Fig. 5
shows global optimization evolution according to the plot presented in Fig. 5(b).
GMM variance evolution is plotted in Fig. 5(a) and it can be observed how the
σ is being progressively update using local minimum optimization until, approx.
iteration 600, when error value (Fig 5(b)) fall down the low limit. Then the value
of σ is globally updated, to recover rapidly the robot velocity, according to the
equation 11 (Fig. 5(a)). And again, the GMM variance is locally updated.

Finally, we implement this approach over a real platform to demonstrate its
applicability in real scenarios (Fig. 6). We use the collaborative robot Baxter
equipped with a Kinect camera in the end effector of the right arm and an AR10
humanoid hand in the left arm. We decided to use a hard actuation (touching)
over the material (kinetic sand) to avoid uncertainties produced by soft actuation
(vacuum aspiration). Fig. 6 presents a series of key frames of the manipulation
task. This experiment is following the described trajectory in the third simulated
test (Fig. 3(c)).

6 Conclusions

This work presents a novel approach to manipulate granular materials using a
robotic manipulator. Here, it is defined the cleaning tasks problems as a shape
deformation problem. The goal is reached using our proposed control scheme
based on a Gaussian Mixture Model. One of the major contributions of this
work is the novel control scheme which combines local and global optimization
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(a) (b)

(c) (d)

Fig. 6: Real robot experiment. Hard actuation over kinetic sand.

by means of a gradient descent and a Deterministic Annealing method. Another
important contribution is that here the task control is not defined in terms
of error evolution. The error evolution here is just used to control the robot
velocity. In contrast here, task evolution is defined in terms of surface shape
disparity (Fig. 4). The experiments show that this method reach solutions in
real time when the point density of silhouette contour is low.

But this approach cannot guaranty an optimal solution when desired shape
has complex topology (many concave shapes). In this work we initialize the
gaussian distribution’s spread although this can be discovered by the global op-
timization algorithm. We do this because as near these values are to the optimal
ones, the convergence is faster. This fact opens the possibility to extend this
method to predict optimal values of σ by prior clues using learning strategies.
Similarly, the definitions of boundaries in the energy function can be improved
by using another source of information which predicts best boundaries for each
problem.
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