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A SHORT NOTE ON A PAIR OF MEROMORPHIC
FUNCTIONS IN A p-ADIC FIELD, SHARING A FEW SMALL

ONES

ALAIN ESCASSUT AND C.C. YANG

Abstract. Let f, g, be two meromorphic functions on a complete ultrametric
algebraically closed field IK of characteristic 0, or two meromorphic functions
in an open disk of IK, that are not quotients of bounded analytic functions by
polynomials. If f and g share I.M. 9 small meromorphic functions then f = g.

If f and g have finitely many poles and share I.M. 4 small meromorphic
functions, then f = g.

1. Main results

Let IK be a complete ultrametric algebraically closed field of characteristic
0. Let us fix a ∈ IK and let R ∈]0, +∞[. We denote by d(a, R−) the disk
{x ∈ IK | |x− a| < R}.

We denote by A(IK) the IK-algebra of entire functions in IK and by M(IK)
the field of meromorphic functions which is its field of fractions. We denote by
A(d(a, R−)) the IK-algebra of analytic functions in d(a, R−) i.e. the set of power
series converging in the disk d(a, R−). and by M(d(a, R−)) the field of mero-
morphic functions in d(a, R−) i.e. the field of fractions of A(d(a, R−)). More-
over, we denote by Ab(d(a, R−)) the IK-algebra of functions f ∈ A(d(a, R−))
that are bounded in d(a, R−), by Mb((.a, R−)) its field of fractions and we put

Mu(d(a, R−)) =M((.a, R−)) \ Ab(.a, R−))

We define N(r, f) ([1], chapter 40 or [3], chapter 2) in the same way as for
complex meromorphic functions [2]. Let f be a meromorphic function in all IK
having no zero and no pole at 0. Let (an)n∈IN be the sequence of poles of f , of
respective order sn, with |an| ≤ |an+1| and, given r > 0, (resp. r ∈]0, R[), let q(r)
be such that |aq(r)| ≤ r, |aq(r)+1| > r. We then denote by N(r, f) the counting
function of the zeros of f , counting multiplicity, as usual: for all r > 0, we put

N(r, f) =

q(r)∑
j=0

sj(log |(aJ)| − log(r)). Moreover, we denote by N(r, f) the count-

ing function of the poles of f , ignoring multiplicity as

q(r)∑
j=0

(log |(aJ)| − log(r)).

Next, we define the counting function of zeros of f as Z(r, f) = N(r,
1

f
) and we

put Z(r, f) = N(r,
1

f
). Finally we put T (r, f) = max(Z(r, f), N(r, f)). Then
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T (r, f) is strictly increasing and has most of properties of the characteristic func-
tion of a complex function, concerning operations (see [1], chapter 40 and [3],
chapter 2.)

A function w ∈ M(IK) (resp. w ∈ M(d(a, R−))) is called a small function

with respect to f if lim
r→+∞

T (r, w)

T (r, f)
= 0 (resp. lim

r→R−

T (r, w)

T (r, f)
= 0) and we denote by

Mf (IK) (resp.
Mf (d(a, R−))) the set of small functions with espect to f .

Two functions f, g ∈M(IK) (resp. f, g ∈Mu(d(a, R−))) are said to share I.M.
a small function w ∈Mf (IK)∩Mg(IK) (resp. w ∈Mf (d(a, R−))∩Mg(d(a, R−)))
if f(z) = w(z) holds if and only if g(z) = w(z).

Here we aim at studying the problem of two meromorphic functions sharing
I.M. a few small meromorphic functions in order to show that these two functions
are equal. Indeed thanks to Yamanoi’s Nevanlinna Second Main Theorem, a
similar result is known in complex analysis when two meromorphic functions share
5 small meromorphic functions. But in p-adic analysis, no Theorem similar to
Yamanoi’s Theorem is known. Thus, we have studied and used tools or arguments
other than Yamanoi’s Theorem to derive some similar results as follows.

Theorem 1: Let f, g ∈M(IK) be transcendental (resp. f, g ∈Mu(d(a, R−)))
and share I.M. q small functions wj ∈Mf (IK) ∩Mg(IK) (j = 1, ..., q)
(resp. wj ∈Mf (d(a, R−)) ∩Mg(d(a, R−)) (j = 1, ..., q)). Then

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Theorem 2: Let f, g ∈M(IK) be transcendental (resp. f, g ∈Mu(d(a, R−)))
and share I.M. 9 distinct small functions (other than the constant ∞) wj ∈
Mf (IK) ∩Mg(IK) (j = 1, ..., 9) (resp. wj ∈ Mf (d(a, R−)) ∩Mg(d(a, R−)) (j =
1, ..., 9)). Then f = g.

Theorem 3: Let f, g ∈M(IK) be transcendental (resp. f, g ∈Mu(d(a, R−)))
have finitely many poles and share I.M. 4 distinct small functions (other than the
constant ∞) wj ∈ Mf (IK) ∩Mg(IK) (j = 1, ..., 4) (resp. wj ∈ Mf (d(a, R−)) ∩
Mg(d(a, R−)) (j = 1, ..., 4)). Then f = g.

Corollary: Let f, g ∈ A(IK) be transcendental (resp. f, g ∈ Au(d(a, R−)))
share I.M. 4 distinct small functions (other than the constant ∞) wj ∈Mf (IK)∩
Mg(IK) (j = 1, ..., 4)
(resp. wj ∈Mf (d(a, R−)) ∩Mg(d(a, R−)) (j = 1, ..., 4)). Then f = g.

Remark: The results known in complex analysis suggest that the number 9
obtained in Theorem 2 might be improved, concerning p-adic meromorphic func-
tions. On the contrary, concerning analytic functions or meromorphic functions
with finitely many poles, the number 4 obtained in Theorem 3 seems the best
possible.
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2. The proofs

In order to prove the theorems, we need to recall the following three lemmas.
Lemma 1 comes from Theorem 40.8 in [1].

Lemma 1: Let f, g ∈ M(IK) (resp. let f, g ∈ M(d(a, R−))). Then T (r, f +
g) ≤ T (r, f) + T (r, g) + O(1).Moreover, if f and g have finitely many poles then
T (r, f + g) ≤ max(T (r, f), T (r, g)) + O(log(r)).

The following Lemma 2 is Lemma 40.10 in [1] (see also Proposition 2.5 in [3]):

Lemma 2: Let f ∈ M(IK). Then T (r, f) ≤ O(log(r)) in ]0, +∞[ if and only
if f belongs to IK(x). Let f ∈ M(d(a, R−)). Either f ∈ Mb(d(a, R−)) and then
T (r, f) is bounded in ]0, R[ or f ∈Mu(d(a, R−)) and then lim

r→R−
T (r, f) = +∞.

The following Lemma 3 comes from Theorem 43.10 in [1] (see also Theorem
2.21 in [3]).

Lemma 3: Let f ∈M(IK) (resp. let f ∈Mu(d(a, R−))) and let w1, w2, w3 ∈
Mf (IK) (resp. let w1, w2, w3 ∈Mf (d(a, R−))). Then

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + Z(r, f − w3) + o(T (r, f)).

The following Lemma 4 comes from Corollary 43.12 in [1].

Lemma 4: Let f ∈ M(IK) (resp. let f ∈ Mu(d(a, R−))) have finitely many
poles and let w1, w2 ∈Mf (IK) (resp. let w1, w2 ∈Mf (d(a, R−))). Then

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)).

Proof of Theorem 1: Suppose that f and g belong toM(IK), are not identical
and share I.M. q small functions wj ∈ Mf (IK) ∩ Mg(IK) (j = 1, ..., q) (resp.
wj ∈Mf (d(a, R−)) ∩Mg(d(a, R−)) (j = 1, ..., q)).

Lat b be a zero of f −wi for a certain index i. Then it is also a zero of g−wi.

Suppose that b is counted several times in the sum

q∑
j=1

Z(r, f − wj), which means

that it is a zero of another function f − wh for a certain index h 6= i. Then
we have wi(b) = wh(b) and hence b is a zero of the function wi − wh which

belongs to Mf (IK). Now, put Z̃(r, f − w1) = Z(r, f − w1) and for each j > 1,

let Z̃(r, f − wj) be the counting function of zeros of f − wj in the disk d(a, r−)
ignoring multiplicity and avoiding the zeros already counted as zeros of f−wh for

some h < j. Consider now the sum

q∑
j=1

Z̃(r, f − wj). Since the functions wI −wj

belong to Mf (IK), clearly, we have
q∑

j=1

Z(r, f − wj) =

q∑
j=1

Z̃(r, f − wj) = o(T (r, f)
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.
It’s clear, from the assumption, that f(x)−wj(x) = 0impliesg(x)−wj(x) = 0

and hence f − g = 0. It follows that
q∑

j=1

Z(r, f − wj) ≤ Z(r, f − g).

Consequently,
q∑

j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Now, if f and g belong to M(d(a, R−)), the proof is exactly the same.

Proof of Theorems 2 and 3: Consider first the hypothese of Theorem 2.
Suppose that f and g are not identical and share 9 small functions wj ∈Mf (IK)∩
Mg(IK) (j = 1, ..., 9) (resp. wj ∈ Mf (d(a, R−)) ∩Mg(d(a, R−)) (j = 1, ..., 9)).
Let us now put M(r) = max(T (r, f), T (r, g)). By Lemma 3, we can write

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + Z(r, f − w3) + o(T (r, f)),

T (r, f) ≤ Z(r, f − w4) + Z(r, f − w5) + Z(r, f − w6) + o(T (r, f))

and

T (r, f) ≤ Z(r, f − w7) + Z(r, f − w8) + Z(r, f − w9) + o(T (r, f))

hence by Theorem 1,

3T (r, f) ≤
9∑

j=1

T (r, f − wj) + o(T (r, f)) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g))

and similarly,

3T (r, g) ≤
9∑

j=1

T (r, g − wj)) + o(T (r, g) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g))

therefore

(1) 3M(r) ≤ T (r, f − g) + o(M(r)).

But by Lemma 1, T (r, f−g) ≤ T (r, f)+T (r, g)+O(1) ≤ 2M(r)+O(1), therefore
by (1) we obtain 3M(r) ≤ 2M(r) + o(M(r)).

Now, if f and g are transcendental meromorphic functions, this is absurd by
Lemma 2 and proves that f and g are identical. And if f and g belong to
Mu(d(a, R−)), then by Lemma 4 this is absurd because r is then bounded. That
finishes the proof of Theorem 2.

Consider now the hypothese of Theorem 3 and suppose that f and g are
meromorphic transcendental functions with finitely many poles, (resp. belong
to Mu(d(a, R−)) with finitely many poles), and share 4 small functions wj ∈
Mf (IK) ∩Mg(IK) (j = 1, ..., 4) (resp. wj ∈ Mf (d(a, R−)) ∩Mg(d(a, R−)) (j =
1, ..., 4)). By Lemma 4, we can write

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)),
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and
T (r, f) ≤ Z(r, f − w3) + Z(r, f − w4) + o(T (r, f))

hence by Theorem 1,

2T (r, f) ≤
4∑

j=1

T (r, f − wj) + o(T (r, f)) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g))

and similarly,

2T (r, g) ≤
4∑

j=1

T (r, g − wj) + o(T (r, g) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g))

therefore

(2) 2M(r) ≤ T (r, f − g) + o(M(r)).

But since f and g have finitely many poles, by Lemma 1 we have T (r, f − g) ≤
M(r) + O(1). Therefore by (2) we obtain 2M(r) ≤ M(r) + o(M(r)), which is
absurd in the same way as for Theorem 2 and ends the proof of Theorem 3.
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