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Finite codimensional maximal ideals in subalgebras

of ultrametric uniformly continuous functions

by Monique Chicourrat, Bertin Diarra and Alain Escassut

Abstract: Let IE be a complete ultrametric space, let IK be a perfect complete ultra-
metric field and let A be a Banach IK-algebra which is either a full IK-subalgebra of the
algebra of continuous functions from IE to IK owning all characteristic functions of clopens
of IE, or a full IK-subalgebra of the algebra of uniformly continuous functions from IE to
IK owning all characteristic functions of uniformly open subsets of IE. We prove that all
maximal ideals of finite codimension of A are of codimension 1.

Introduction: Let IE be a complete metric space provided with an ultrametric distance
δ, let IK be a perfect complete ultrametric field and let S be a full IK-subalgebra of the
IK-algebra of continuous (resp. uniformly continuous) functions complete with respect to
an ultrametric norm ‖ . ‖ that makes it a Banach IK-algebra [3].

In [2], [4], [5], [6] we studied several examples of Banach IK-algebras of functions and
showed that for each example, each maximal ideal is defined by ultrafilters [1], [7], [8] and
that each maximal ideal of finite codimension is of codimension 1: that holds for continuous
functions [4] and for all examples of functions we examine in [2], [5], [6]. Thus, we can
ask whether this comes from a more general property of Banach IK-algebras of functions,
what we will prove here.

Here we must assume that the ground field IK is perfect, which makes that
hypothesis necessary in all theorems.

Definitions and notations: A subset D of IE is said to be clopen (resp.uniformly open)
if it is closed and open (resp. if inf

x∈D y∈IE\D
δ(x, y) > 0).

The algebra S will be said to be semi-admissiible if it satisfies the two following
properties:

1) For every clopen subset D of IE, the characteristic function of D belongs to S,
2) For every f ∈ S such that infIE |f(x)| > 0, f is invertible in S.

The algebra S will be said to be semi-compatible [2] if it satisfies the two following
properties:

1) For every uniformly open subset D of IE, the characteristic function of D belongs
to S,

2) For every f ∈ A such that infIE |f(x)| > 0, f is invertible in S.

Examples: 1) The Banach algebra of all bounded continuous functions from IE to IK,
provided with the uniform norm ‖ . ‖0 on IE, is semi-admissible.

2) Let A be the algebra of bounded functions from IE to IK such that, for every a ∈ IE,
there exists a ball B(a) = {x ∈ IE | δ(a, x) < r(a)} such that f(x) = f(a) ∀x ∈ B(a).
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Then the closure of A with respect to the uniform norm ‖ . ‖0 is easily seen to be a
semi-admissible algebra (different from Example 1) whenever IE is not separable).

3) Let B be the Banach algebra of bounded uniformly continuous functions from IE
to IK provided with the uniform norm ‖ . ‖0 on IE. Then B is a semi-compatible algebra.

4) Let L be the algebra of bounded Lipschitzian functions from IE to IK provided with

the norm ‖ . ‖ defined as ‖f‖ = max(‖f‖0, supx,y∈IE,x 6=y
|f(x)− f(y)|

δ(x, y)
). Then L is proved

to be a semi-compatible IK-Banach algebra [2].

Throughout the paper, we denote by S a IK-algebra that is either semi-
admissible or semi-compatible.

The following Theorem A plays a major role in the proof of our theorems. Con-
cerning semi-compatible algebras, it just comes from Theorem 3.1 in [2]. Concerning
semi-adimissible algebras, we can generalize Theorem 5.1 in [4] and then Corollary 5.2 to
any semi-admissible algebras. Thus, we obtain Theorem A:

Theorem A: Let M be a maximal ideal of S. There exist ultrafilters U on IE such that
M is the set of f ∈ S such that lim

U
f(x) = 0. Moreover, if every f ∈ S converges along

U , then M is of codimension 1.

In order to prove our main theorems we first need several basic results. In [5], [6], we
have proved a proposition that we can easily generalize:

Proposition P1: Let IL be a finite algebraic extension of IK provided with the absolute
value which extends that of IK. Let A be a unital commutative IK-algebra. Suppose there
exists a morphism of IK-algebra, χ, from A onto IL. Let Â be the IL-algebra IL⊗IKA. Then
χ has continuation to a surjective morphism of IL-algebra χ̂ from Â to IL.

Proof: The above theorem is given as Theorem 3.5 in [5], but on the one hand, the proof
was made by using the primitive element theorem, though the field is not supposed to be
perfect (but one can generalize it when the field is not perfect). On the other hand the
surjective property was not specified.

Let d = [IL : IK]. Since IK is perfect we can suppose that IL is of the form IK[a]. Let

f, g ∈ Â. Then f is of the form
d−1∑
j=0

ajfj , fj ∈ S, j = 0, ..., d− 1 and g is of the form

d−1∑
j=0

ajgj , gj ∈ S, j = 0, ..., d− 1.

We can now define χ̂ on Â as χ̂(f) =
d−1∑
j=0

ajχ(fj). Then obviously, χ̂ is IK-linear. On the

other hand, for each q ∈ IN, aq is of the form Pq(a) where Pq ∈ IK[x], deg(Pq) ≤ d − 1.
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Then χ̂(aq) = χ̂(Pq(a)) = Pq(χ̂(a)) = Pq(a) = aq. Next,

χ̂(fg) = χ̂
(

(
d−1∑
j=0

ajfj)(
d−1∑
j=0

ajgj)
)

= χ̂
( ∑

0≤m≤d−1
0≤n≤d−1

am+nfmgn

)

=
∑

0≤m≤d−1
0≤n≤d−1

am+nχ(fm)χ(gn) = (
d−1∑
j=0

ajχ(fj))(
d−1∑
j=0

ajχ(gj)) = χ(f)χ(g).

Thus, the extension of χ is proved. It is then immediately checked that χ̂ is surjective:
since Â is a IL-algebra, it contains the field IL and every morphism χ̂ from Â obviously
satisfies χ̂(c) = c ∀c ∈ IL.

Remark: Proposition P1 holds in under much more general hypotheses, without assum-
ing that IK is perfect and that IL is algebraic over IK.

The following proposition P2 is essential for establishing P3 and all theorems:

Proposition P2: Let IL = IK[a] be a finite extension of IK of degree t, provided with the
unique absolute value extending that of IK and let a2, ..., at be the conjugates of a over IK,
with a1 = a. Let Ŝ = IL⊗IK S and let g =

∑t−1
j=0 a

jfj , fj ∈ S be such that infIE |g(x)| > 0.

For every k = 1, ..., t, let gk =
∑t−1
j=0 a

j
kfj , fj ∈ S. Then

t∏
k=1

gk belongs to S and
t∏

k=2

gk

belongs to Ŝ.

Proof: Since IL = IK[a1] by definition, we have

N = IK[a1, ........, , at] = IK[a1][a2, ........, at] = IL[a2, ........., at]

and N is a normal extension of IK and IL respectively.
Thus, assuming that a1, ........., as belong to IL, we have IL = IK[a1, ........, as] and

N = IK[a1....., as, as+1, ......., at] = IK[a1, ........, as][as+1, ......., at] = IL[as+1, ......, at].
Put G′ = {σ ∈ G : σ(x) = x, ∀x ∈ L} with the extension N |IL which is Galoisian,

of Galois group G′ = G(N |IL) the subfield IL of N corresponds to the subgroup G′ of G
through the Galois correspondance.

Now, given σ ∈ G, set σ(g) =
t−1∑
j=0

(σ(a))jfj . Let F =
t∏

k=1

gk =
∏
σ∈G

σ(g). Then F

belongs to S if and only if for every τ ∈ G, τ(F ) = F . Now, we have

τ(F ) =
∏
σ∈G

τ ◦ σ(g) =
∏
ζ∈G

ζ(g) = F,

therefore F belongs to S.
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On the other hand the roots ai, for s + 1 ≤ i ≤ t are conjugate over IL. Therefore
if s + 1 ≤ i ≤ t, there exists θ ∈ G′ = G(N |IL) such that ai = θ(as+1). It follows that
gi =

∑t−1
j=0 a

j
ifj =

∑t−1
j=0 θ(as+1)jfj = θ(

∑t−1
j=0 a

j
s+1fj) = θ(gs+1)

Let H =
t∏

i=s+1

gi =
∏
θ∈G′

θ(gs+1). Then H belongs to Ŝ if and only if τ(H) = H ∀τ ∈

G′. Now, we have τ(H) =
∏
θ∈G′ τ ◦ θ(gs+1) =

∏
ζ∈G′ ζ(gs+1) = H, therefore H belongs

to Ŝ. Consequently, since
∏s
i=2 gi belongs to Ŝ, one gets that (

∏s
i=2 gi) ·H =

∏t
i=2 gi is

an element of Ŝ.

We can now establish the following Proposition P3:

Proposition P3: Let IL = IK[a] be a finite extension of IK of degree t, provided with
the unique absolute value extending that of IK and let a2, ..., at be the conjugates of a over
IK, with a1 = a. Let Ŝ = IL ⊗IK S and let g ∈ Ŝ be such that infIE |g(x)| > 0. Then g is
invertible in Ŝ.

Proof: Let g =
∑t
j=0 a

jfj , fj ∈ S and for every k = 1, ..., t, let gk =
∑t
j=0 a

j
kfj , fj ∈ S.

Then, by Proposition P2,
t∏

k=1

gk belongs to S and in the same way,
t∏

k=2

gk belongs to Ŝ.

Now, since infIE |g(x)| is a number m > 0, we have |
t∏

k=1

gk| ≥ mt because in IL, we have

|gk(x)| = |g1(x)| ∀k = 1, 2, ..., t, ∀x ∈ IE. Consequently,
t∏

k=1

gk is invertible in S.

There exists f ∈ S such that
t∏

k=1

gk.f = 1. Since by Proposition P2,
t∏

k=2

gk belongs to

Ŝ one sees that
t∏

k=2

gk.f is an element of Ŝ. Hence g = g1 is invertible in Ŝ with inverse

g−1 =
t∏

k=2

gk.f

Definition and notation: In the following Proposition P4 and in the theorems we
will have to consider the tensor product norm We remind here some general facts ( for
completeness one can sees [9]). Let IL be a complete valued field extension of IK and A be
a unital, ultrametric IK-Banach algebra. Given z ∈ IL⊗IK A, we put

‖z‖⊗ = inf{max
i∈I
|bi|.‖xi‖ |

∑
i∈I

bi ⊗IK xi = z, Ifinite}.

This norm ‖ . ‖⊗ will be called the (projective) tensor product norm. It is an ultrametric
norm.
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In any unital IK-algebra A, let 1A be the unity of A. Then for b ∈ IL and x ∈ A, one
has ‖b⊗x‖⊗ = |b|.‖x‖. In particular for any b ∈ IL, (resp. x ∈ A), one has ‖b⊗1A‖⊗ = |b|
(resp. ‖1IK ⊗ y‖⊗ = ‖x‖.) Hence one has an isometric identification of IL (resp. A) with
IL⊗K 1A (resp. 1IL ⊗IK A).

Furthermore, one verifies that with the tensor norm, the tensor product IL⊗IKA, of the
two unital IK-algebras IL and A is a normed unital IK-algebra. It is also a unital IL-algebra
(obtained by extension of scalars). The completion IL⊗̂IKA of IL⊗IK A with respect to the
tensor product norm ‖ . ‖⊗ (called the topological tensor product) is a unital IK-Banach
algebra as well as a IL-Banach algebra.-

Now assume that IL is of finite dimension d over IK. Fix a IK-basis (ej)1≤j≤d of IL.

It is readily seen that any z ∈ IL⊗IK A can be written in the unique form z =
d∑
j=1

ej ⊗ yj

and ‖z‖⊗ = ‖
d∑
j=1

ej ⊗ yj‖⊗ ≤ max
1≤j≤d

|ej |.‖yj‖.

On the other hand let us consider for b =
d∑
j=1

βjej ∈ IL the norm ‖b‖1 = max
1≤j≤d

|βj |.|ej |.

One has |b| ≤ ‖b‖1 and since IL is finite dimensional, there exists α > 0 such that
α max

1≤j≤d
|βj |.|ej | ≤ |b| ≤ max

1≤j≤d
|βj |.|ej |. Considering the dual basis (e′j)1≤j≤d of (ej)1≤j≤d

and the continuous linear operators e′j⊗ idA of IL⊗IKA into IK⊗IKA = A, one proves that
α max

1≤j≤d
|ej |.‖yj‖ ≤ ‖z‖⊗ ≤ max

1≤j≤d
|ej |.‖yj‖ = ‖z‖1.

That means that the norms ‖ . ‖⊗ and ‖ . ‖1 of IL⊗IKA are equivalent. One immedi-
ately sees that IL⊗IK A equiped with the norm ‖z‖1 = max

1≤j≤d
|ej |‖yj‖ is isomorphic to the

product IK-Banach space Ad and then it is complete. It follows that (IL ⊗IK A, ‖ . ‖⊗) is
complete and IL⊗IK A = IL⊗̂IKA.

One then has the following Theorem B more or less contained in [9] (Chapter 4).

Theorem B: If IL is a finite extension of IK and A is a commutative unital IK-Banach
algebra, then with the tensor product norm ‖ . ‖⊗, the tensor product IL ⊗IK A of the
IK-algebras IL and A is a IK-Banach algebra as well as a Banach algebra over IL.

Taking A = S, we can now conclude.

Proposition P4 : Let IL = IK[a] be a finite extension of IK of degree t, provided with
the unique absolute value extending that of IK. Then the algebra Ŝ = IL ⊗IK S provided
with the tensor product norm ‖ ‖⊗, is complete.

Moreover, Ŝ can be identified with the Banach IL-algebra of functions f from IE to IL

of the form f =
t−1∑
j=0

ajfj and Ŝ is a semi-admissible (resp. semi-compatible) IL-algebra.

Proof: By construction, Ŝ is the set of functions f =
t−1∑
j=0

ajfj with fj ∈ S. Since each
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fj is continuous (resp. uniformly continuous), so is f . By Theorem B, Ŝ is a Banach
IL-algebra. Next, given a clopen subset set (resp. a uniformly open subset) D of IE,
the characteristic function u of D exists in S and hence it belongs to Ŝ. Finally, given
an element g ∈ Ŝ such that infx∈IE |g(x)| > 0, by Proposition P3, g is invertible in Ŝ.
Therefore, Ŝ is semi-admissible (resp. semi-compatible).

Theorem 1 : Let IL be a finite extension of IK of degree t, provided with the unique
absolute value extending that of IK and let Ŝ = IL⊗IKS be provided with the tensor product
norm. Then Ŝ is a semi-admissible (resp. semi-compatible) Banach IL-algebra.

Proof: By definition, IL is of the form IK[b1, ..., bq] with IK[b1, ..., bj ] strictly included in
IK[b1, ..., bj+1], j = 1, ..., q − 1. Put ILj = IL[b1, ..., bj ], j = 1, ..., q and Ŝj = ILj ⊗IK S.
Suppose we have proved that Ŝj is semi-admissible (resp. semi-compatible) for some j < q.
Next, since ILj+1 = ILj [bj+1], by Proposition P4, Ŝj+1 is semi-admissible (resp. semi-
compatible). Therefore, by induction, Ŝq = Ŝ is a semi-admissible (resp. semi-compatible)
Banach IL-algebra.

Theorem 2: Let M be a maximal ideal of finite codimension of S. Then M is of
codimension 1.

Proof: Let IL be the field
S

M
and let Ŝ = IL ⊗IK S be provided with the tensor norm

product. By Theorem 1, Ŝ is semi-admissible (resp. semi-compatible). Now, let χ be
the morphism from S over IL whose kernel is M. Let g ∈ S and let b = χ(g) ∈ IL. By
Proposition P1, χ admits an extension to a morphism χ̂ from Ŝ to IL. Now, since Ŝ is
semi-admissible (resp. semi-compatible) and since the kernel of χ̂ is a maximal ideal M̂
of Ŝ, by Proposition A there exists an ultrafilter U on IE such that M̂ = I(U , Ŝ). Take
g ∈ S and let b = χ(g). Then we have χ̂(g − b) = 0, hence g − b belongs to M̂, therefore
lim
U
g(x)− b = 0 i.e. lim

U
g(x) = b. But since g ∈ S, g(x) belongs to IK for all x ∈ IE.

Therefore, since IK is complete, b belongs to IK. But by definition χ is a surjection from S
onto IL, hence every value b of IL actually lies in IK and hence IL = IK.

Let us now recall the following result that we can extract from Theorem 4.8 in [2]:

Theorem C: Let M be a maximal ideal of codimension 1 of S. Then the quotient norm

of the field
S

M
is equal to the absolute value of IK.

Theorem 3: Suppose IE ⊂ IK and let M = I(U , S) be a maximal ideal of S where U is
an ultrafilter on IE and suppose that the identical function belongs to S. If U is a Cauchy
filter, then M is of codimension 1. Else, M is of infinite codimension.

Proof: Suppose first that U is a Cauchy ultrafilter. By Theorem C , we can assume that
U converges to a point a of the completion ÎE of IE with respect to δ. Then, by Theorem
A, the ideal M̂ is of codimension 1 and so is M. Now, suppose that U is not a Cauchy
filter. Consider the identical function g defined on IE. Then g has no limit on U , therefore
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by Theorem A again, M is not of codimension 1. But then by Theorem 2, M is not of
finite codimension.

Remark: In Proposition P2 and P3 we have to consider conjugates of an algebraic
element over IK. This is why we take a perfect field. It is an interesting conjecture that
the theorems hold without that hypothesis.
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