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ULTRAFILTERS AND ULTRAMETRIC BANACH ALGEBRAS
OF LIPSCHITZ FUNCTIONS

MONIQUE CHICOURRAT AND ALAIN ESCASSUT

Abstract. The aim of this paper is to examine Banach algebras of bounded
Lipschitz functions from an ultrametric space IE to a complete ultrametric field
IK. Considering them as a particular case of what we call C-compatible algebras
we study the interactions between their maximal ideals or their multiplicative
spectrum and ultrafilters on IE. We study also their Shilov boundary and
topological divisors of zero. Furthermore, we give some conditions on abstract
Banach IK-algebras in order to show that they are algebras of Lipschitz func-
tions on an ultrametric space through a kind of Gelfand transform. Actually,
given such an algebra A, its elements can be considered as Lipschitz functions
from the set of characters on A provided with some distance λA. If A is already
the Banach algebra of all bounded Lipschitz functions on a closed subset IE
of IK, then the two structures are equivalent and we can compare the original
distance defined by the absolute value of IK, with λA.

1. Introduction and general results in topology

Let IK be an ultrametric complete field and IE be an ultrametric space. It is
well known that the set of maximal ideals of a Banach IK-algebra is not sufficient
to describe its spectral properties: we have to consider the set of continuous
multiplicative semi-norms often called the multiplicative spectrum [1], [6], [10].

First, we generalize results obtained in [8] and [9] to some Banach algebras
of uniformly continuous bounded functions which we call semi-compatible and
C-compatible and which are related to the contiguity relation yet considered in
these papers. Actually, considering such an algebra S, we describe interactions
between the contiguity relation defined on ultrafilters on IE and maximal ideals
or the multiplicative spectrum of S. We prove that the Shilov boundary of S
is the multiplicative spectrum itself. Next we consider the Stone space of some
Boolean subring of the clopen sets of IE which turns out to be a compactification
of IE homeomorphic to the multiplicative spectrum.

These results particularly apply to the algebra of bounded Lipschitz functions
and also to the algebras of bounded differentiable or strictly differentiable func-
tions when IE is a subset of IK. Furthermore we get some particular properties
in these algebras for example about their topological divisors of zero.

Finally, we define a kind of Gelfand transform and we give conditions in order
to make an ultrametric Banach IK-algebra appear as an algebra of Lipschitz
functions on an ultrametric space.
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2 MONIQUE CHICOURRAT AND ALAIN ESCASSUT

The main results were stated without any proof in a short paper that was
published in the proceedings of a conference [3]. Here we detail them with all the
main proofs.

Notations and definitions: Let IK be a field which is complete with respect
to an ultrametric absolute value | . | and let IE denote a metric space whose
distance δ is ultrametric. Given a ∈ IE and r > 0, we denote by dIE(a, r−) the
open ball {x ∈ IE | δ(a, x) < r} and particularly in IK we denote by d(a, r−) the
open disk {x ∈ IK | |x−a| < r}. In the same way we denote by dIE(a, r) the closed
ball {x ∈ IE | δ(a, x) ≤ r} and by d(a, r) the closed disk {x ∈ IK | |x − a| ≤ r}.
Moreover, in IK, we denote by C(a, r) the set {x ∈ IK | |x− a| = r}.

We denote by | . |∞ the Archimedean absolute value of IR.

If F ⊂ IE, the function u defined on IE by u(x) = 1 if x ∈ IF and u(x) = 0 if
x /∈ F , is called the characteristic function of F .

Given two subsets A, B of IE, we put δ(A,B) = inf{δ(x, y) | x ∈ A, y ∈ B}.
Given a subset F of IE such that F 6= ∅ and F 6= IE, we call codiameter of F the
number δ(F, IE \ F ). If F = ∅ or F = IE, we say that its codiameter is infinite.
The set F will be said to be uniformly open if its codiameter is strictly positive.

We will denote by lG(IE) the family of uniformly open subsets of IE. In [8] and
[13], dealing with the Banaschewski compactification of IE the authors considered
the Boolean ring of clopen sets of IE (with the usual addition ∆ and multiplica-
tion ∩). In Section 4 we will consider the Boolean ring of uniformly open sets.
Actually, we have the following lemmas that are easily checked:

Lemma 1.1. Given two uniformly open subsets F , G, then F ∪ G, F ∩ G and
IE \G are uniformly open.

Corollary 1.2. lG(IE) is a Boolean ring with respect to the addition ∆ and the
multiplication ∩.

Lemma 1.3. Given two subsets A and B of IE, there exists a uniformly open
subset F such that A ⊂ F and B ⊂ IE \ F if and only if δ(A,B) > 0.

Lemma 1.4. Let f be a uniformly continuous function from IE to IK and let
M > 0.

1) If D is a uniformly open subset of IK, then so is the set F = {x ∈ IE | f(x) ∈
D}.

2) Given M > 0, the sets E1 = {x ∈ IE |f(x)| ≥M} and E2 = {x ∈ IE |f(x)| ≤
M} are uniformly open.

Corollary 1.5. Let f be a uniformly continuous function from IE to IK, let M > 0

and let h > 0. Then {x ∈ IE |
∣∣∣|f(x)| −M

∣∣∣
∞
≤ h} is uniformly open.

We can easily prove the following:

Lemma 1.6. Let F be a subset of IE and let u be its characteristic function. The
3 following statements are equivalent:

1) F is uniformly open,
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2) u is Lipschitz,
3) u is uniformly continuous.

Notations: Given a normed IK-algebra whose norm is ‖ . ‖, we denote by ‖ . ‖sp
the spectral semi-norm that is associated and defined as ‖f‖sp = lim

n→+∞

(
‖fn‖

) 1
n
.

We denote by B the algebra of bounded uniformly continuous functions from IE to
IK and by ‖ . ‖0 the norm of uniform convergence on IE defined on any subalgebra
of B.

Lemma 1.7. Let A be a commutative unital Banach IK-algebra of bounded func-
tions defined on IE. Then ‖f‖0 ≤ ‖f‖sp ≤ ‖f‖ ∀f ∈ A. Moreover, given f ∈ A
satisfying ‖f‖sp < 1, then lim

n→+∞
‖fn‖ = 0.

Proof. The norm ‖ . ‖0 is power multiplicative and classically it is bounded by the
norm ‖ . ‖ of A, it is then bounded by ‖ . ‖sp. The last claim is immediate. �

Definition: We will call semi-compatible algebra a unital Banach IK-algebra S
of uniformly continuous bounded functions f from IE to IK satisfying the two
following properties:

1) every function f ∈ S such that infx∈E |f(x)| > 0 is invertible in S,
2) for every subset F ⊂ IE, the characteristic function of F belongs to S if and

only if F is uniformly open,
Moreover, a semi-compatible algebra S will be said to be C-compatible if it satisfies

3) the spectral semi-norm of S is equal to the norm ‖ . ‖0.

Given a subset X of S, we call spectral closure of X, denoted by X̃, the closure
of X with respect to the semi-norm ‖ . ‖sp; and X will be said to be spectrally

closed if X = X̃.

Remark 1.8. B provided with the norm ‖ . ‖0 is easily seen to be C-compatible.

Throughout the paper, we will denote by S a semi-compatible IK-
algebra.

More notations: Let F be a filter on IE. Given a function f from IE to IK
admitting a limit along F , we will denote by lim

F
f(x) this limit.

Then we will denote by I(F , S) the ideal of the f ∈ S such that lim
F
f(x) = 0.

Notice that the unity does not belong to I(F , S), so I(F , S) 6= S.
Given a ∈ IE, we will denote by I(a, S) the ideal of the f ∈ S such that

f(a) = 0 and by I ′(a, S) the ideal of the f ∈ S such that there exists an open
neighborhood L of a such that f(x) = 0 ∀x ∈ L.

We will denote by Max(S) the set of maximal ideals of S and by MaxIE(S)
the set of maximal ideals of S of the form I(a, S), a ∈ IE.

Given a set F , we shall denote by U(F ) the set of ultrafilters on F .

Definition: Ultrafilters U , V on IE are said to be contiguous if for every H ∈
U , L ∈ V , we have δ(H,L) = 0. We shall denote by (R) the relation defined on
U(IE) as U(R)V if U and V are contiguous.
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Remark 1.9. The contiguity relation on ultrafilters on IE is a particular case of
the relation on ultrafilters defined by Labib Haddad and in other terms by Pierre
Samuel in a uniform space [11], [12]. This relation on a uniform space actually is
an equivalence relation.

Lemma 1.10 is classical:

Lemma 1.10. Let U be an ultrafilter on IE. Let f be a bounded function from IE
to IK. The function |f | from IE to IR+ defined as |f |(x) = |f(x)| admits a limit
along U . Moreover, if IK is locally compact, then f(x) admits a limit along U .

The following lemmas are immediate:

Lemma 1.11. The spectral closure of an ideal of S is an ideal of S..

Lemma 1.12. If a subset Y of S is spectrally closed, it is closed with respect to
the norm ‖ . ‖ of S.

Lemma 1.13. Every maximal ideal M of S is spectrally closed.

Proof. By Lemma 1.11 the spectral closure M̃ of M is an ideal. If M is not

spectrally closed, then M̃ = S, hence there exists t ∈ S such that 1− t ∈M and

‖t‖sp < 1. Consequently, lim
n→+∞

‖tn‖ = 0, therefore the series (
∞∑
n=0

tn) converges

and (
∞∑
n=0

tn)(1− t) = 1 and hence the unity belongs to M, a contradiction. �

Proposition 1.14 now is easy:

Proposition 1.14. Given an ultrafilter U on IE, I(U , S) is a prime ideal. More-
over, I(U , S) is closed with respect to the norm ‖ . ‖0 and then is spectrally
closed.

Proof. Since U is an ultrafilter, it is straightforward that I(U , S) is prime. Let
us now check that I(U , S) is closed with respect to the norm ‖ . ‖0. Indeed let
g belong to the closure of I(U , S) with respect to ‖ . ‖0, let b = lim

U
|g(x)| and

suppose b > 0. There exists f ∈ I(U , S) such that ‖f − g‖0 < b and then

b =
∣∣ lim
U
|f(x)| − lim

U
|g(x)|

∣∣
∞ ≤ lim

U
|f(x)− g(x)| ≤ ‖f − g‖0 < b,

a contradiction showing that I(U , S) is closed with respect to the norm ‖ . ‖0.
Therefore, since ‖ . ‖0 ≤ ‖ . ‖sp, it is closed with respect to the norm ‖ . ‖sp. �

By lemma 1.3, we have the following lemma:

Lemma 1.15. Let U , V be ultrafilters on IE. Then U and V are not contiguous
if and only if there exists a uniformly open set H ∈ U such that IE \H ∈ V.

Corollary 1.16. Let U ,V be ultrafilters on IE. Then U and V are contiguous if
and only if they contain the same uniformly open sets.
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Corollary 1.17. Relation (R) is an equivalence relation on U(IE).

Theorem 1.18. Let U , V be ultrafilters on IE. Then I(U , S) = I(V , S) if and
only if U and V are contiguous.

Proof. Suppose that U , V are not contiguous. By Lemma 1.15, there exists a
uniformly open set H ∈ U such that IE\H ∈ V . Then the characteristic function
u of H belongs to I(V , S) and does not belong to I(U , S).

Conversely, suppose that I(U , S) 6= I(V , S). Without loss of generality, we can
assume that there exists f ∈ I(U , S)\I(V , S). Then lim

V
|f(x)| is a number l > 0.

There exists L ∈ V such that
∣∣∣|f(x)|− l

∣∣∣
∞
<
l

3
∀x ∈ L and then |f(x)| ≥ 2l

3
∀x ∈

L. Therefore, by Lemma 1.4 the set L′ = {x ∈ IE | |f(x)| ≥ 2l

3
} is a uniformly

open set that belongs to V . But the set H = {x ∈ IE | |f(x)| ≤ l

3
} is a uniformly

open set of U since lim
U
|f(x)| = 0 and clearly H ∩ L′ = ∅. Consequently, U and

V are not contiguous. �

Theorem 1.19 looks like certain Bezout-Corona statements and is obtained
through an adaptation of Theorem 5 in [8] :

Theorem 1.19. Let f1, ..., fq ∈ S satisfy inf
x∈IE

( max
1≤j≤q

|fj(x)|) > 0. Then there exists

g1, ..., gq ∈ S such that
q∑
j=1

fj(x)gj(x) = 1 ∀x ∈ IE.

Notation: Let f ∈ S and let ε > 0. We set D(f, ε) = {x ∈ IE | |f(x)| ≤ ε}.

Corollary 1.20. Let I be an ideal of S different from S. The family of sets

{D(f, ε), f ∈ I, ε > 0}
generates a filter FI,S on IE such that I ⊂ I(F I,S, S).

2. Maximal and prime ideals of S

Except Theorems 2.8 and 2.10 and their corollaries, most of results of this
section were given in [8] for the algebra of uniformly continuous functions.

Theorem 2.1. Let M be a maximal ideal of S. There exists an ultrafilter U on
IE such that M = I(U , S). Moreover, M is of codimension 1 if and only if every
element of S converges along U . In particular if U is convergent, then M is of
codimension 1.

Proof. Indeed, by Corollary 1.20, we can consider the filter FM,S and we have
M⊂ I(FM,S, S). Let U be an ultrafilter thinner than FM,S. So, we have M⊂
I(FM,S, S) ⊂ I(U , S). But since M is a maximal ideal, either M = I(U , S), or
I(U , S) = S. But obviously, I(U , S) 6= S, hence M = I(U , S).
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Now assume thatM is of codimension 1 and let χ be the IK-algebra homomor-
phism from S to IK admitting M for kernel. Let f ∈ S and let b = χ(f). Then
f − b belongs to the kernel ofM, hence lim

U
f(x)− b = 0, hence lim

U
f(x) = b and

every element of S converges along U .
Conversely if every element of S admits a limit along U then the mapping χ

which associates to each f ∈ S its limit along U is a IK-algebra homomorphism
from S to IK admitting M for kernel.

In particular if U converges to a point a then each f in S converges to f(a)
along U . �

By Lemma 1.10 and Theorem 2.1, the following corollary is immediate:

Corollary 2.2. Let IK be a locally compact field. Then every maximal ideal of S
is of codimension 1.

Remark 2.3. If IK is locally compact, a maximal ideal of codimension 1 of S is
not necessarily of the form I(U , S) for some Cauchy ultrafilter U , as shown in [8].

Notation: We will denote by Y(R)(IE) the set of equivalence classes on U(IE)
with respect to the relation (R).

By Theorem 1.18, we can get Corollary 2.4:

Corollary 2.4. Let M be a maximal ideal of S. There exists a unique H ∈
Y(R)(IE) such that M = I(U , S) for every U ∈ H.

Now, the following Theorem together with Theorem 2.1 caracterize all maximal
ideals of S.

Theorem 2.5. Let U be an ultrafilter on IE. Then I(U , S) is a maximal ideal of
S.

Proof. Let I = I(U , S) and letM be a maximal ideal of S containing I. Then by
Theorem 2.1 there exists an ultrafilter V such that M = I(V , S). Suppose now
I(U , S) 6= I(V , S). Then, U and V are not contiguous. Consequently, by Lemma
1.15 there exists a uniformly open subset F ∈ V that does not belong to U and
hence its characteristic function u ∈ S belongs to I(U , S) but does not belong to
I(V , S). Thus, u belongs to I but does not belong to M, a contradiction to the
hypothesis. �

Using Corollary 2.4 and Theorem 2.5, we can prove Corollary 2.6:

Corollary 2.6. The mapping that associates to each maximal ideal M of S the
class with respect to (R) of ultrafilters U , such that M = I(U , S), is a bijection
from Max(S) onto Y(R)(IE).

The following Theorem is quite easy:
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Theorem 2.7. Let F be a Cauchy filter on IE and letM = I(F , S). Then every
function f ∈ S converges to a limit θ(f) along F and M is a maximal ideal of
codimension 1.

Notation: For any subset F of IE, we denote by uF its characteristic function.
LetM be a maximal ideal of S and let U ∈ U(IE) be such thatM = I(U , S). By
Theorem 1.18 and Corollary 1.16 we can define the set OM of all uniformly open
subsets of IE which belong to U . We denote by CM the set {uIE\L | L ∈ OM} and
by JM the set of all functions f ∈ S which are equal to 0 on some L ∈ OM.

Given a ∈ IE, recall that I ′(a, S) is the ideal of the functions f ∈ S equal to 0
on an open subset of IE containing a.

Theorem 2.8. Let M be a maximal ideal of S.
1) JM is an ideal of S containing CM,
2) JM is the ideal of S generated by CM and JM = {fu | f ∈ S, u ∈ CM},
3) If P is a prime ideal of S contained in M, then JM ⊂ P.
4) if M = I(a, S), then I ′(a, S) = JM.

Proof. 1) Let us check that JM is an ideal of S. Let f, g ∈ JM. So, there exist
F, G ∈ OM such that f(x) = 0 ∀x ∈ F, g(x) = 0 ∀x ∈ G, hence f(x)− g(x) =
0 ∀x ∈ F ∩G. Since F ∩G belongs to OM, f − g lies in JM. And obviously, for
every h ∈ S, we have h(x)f(x) = 0 ∀x ∈ F , hence fh lies in JM.

Next, JM contains CM because given L ∈ OM, the set IE\L is uniformly open
then uIE\L belongs to S and is equal to 0 on L.

2) Notice that if f ∈ S and u ∈ CM, then by 1) fu belongs to JM. Conversely,
if f ∈ JM and L ∈ OM are such that f(x) is equal to 0 on L, then uIE\L belongs
to CM and f = fuIE\L. This proves that JM = {fu | f ∈ S, u ∈ CM} and that
JM is the ideal generated by CM.

3) It is sufficient to prove that CM is included in P . Indeed, let U ∈ U(IE) be
such thatM = I(U , S) and let L ∈ OM. Then L ∈ U and uL /∈M. So, uL /∈ P .
But uL.uIE\L = 0. Thus uIE\L belongs to P since P is prime.

4) Each open neighborhood of a contains a disk that also is a uniformly open
neighborhood of a, which ends the proof. �

Corollary 2.9. Let U be an ultrafilter on IE and let P be a prime ideal included in
I(U , S). Let L ∈ U be uniformly open and let H = IE\L. Then the characteristic
function u of H belongs to P.

Recall that for any normed IK-algebra (G, ‖ . ‖), the closure of an ideal of G is
an ideal of G.

Theorem 2.10. The closure of JM with respect to the norm ‖ . ‖0 is equal to
M.

Proof. Let f ∈ M = I(U , S). Then for every ε > 0 the set L = D(f, ε) belongs
to U and L is uniformly open. Therefore L belongs to OM and the characteristic
function u of IE \ L lies in CM, so that fu ∈ JM. But f(x)− uf(x) = 0 ∀x /∈ L
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and |f(x) − uf(x)| = |f(x)| ≤ ε ∀x ∈ L, so ‖f − uf‖0 ≤ ε and hence M is the
closure of JM with respect to the norm ‖ . ‖0 since, by Proposition 1.14, M is
closed with respect to the norm ‖ . ‖0. �

Corollary 2.11. Let P be a prime ideal contained inM. ThenM is the closure
of P with respect to ‖ . ‖0.

Corollary 2.12. The closure with respect to ‖ . ‖0 of a prime ideal of S is a
maximal ideal of S and a prime ideal of S is contained in a unique maximal ideal
of S.

Corollary 2.13. A prime ideal of S is a maximal ideal if and only if it is closed
with respect to ‖ . ‖0.

If M = I(a, S), then JM = I ′(a, S). Therefore we have the following Corol-
lary:

Corollary 2.14. The closure of I ′(a, S) with respect to ‖ . ‖0 is I(a, S).

Remark 2.15. I(a, S) is not necessarily the closure of I ′(a, S) in S with respect
to the norm ‖ . ‖ of S, see Proposition 7.9 of Section 7.

Corollary 2.16. If S is C-compatible then:
1) M is the spectral closure of JM and the spectral closure of any prime ideal

is contained in M;
2) A prime ideal is maximal if and only if it is spectrally closed.

3. Multiplicative spectrum

The multiplicative spectrum of a Banach IK-algebra was first introduced by B.
Guennebaud [10] and was at the basis of Berkovich’s theory [1].

Notations and definitions: Let G be a normed IK-algebra. We denote by
Mult(G, ‖ . ‖) the set of continuous multiplicative algebra semi-norms of G pro-
vided with the topology of pointwise convergence, which means that a basic
neighborhood of some ψ ∈ Mult(G, ‖ . ‖) is a set of the form W (ψ, f1, ..., fq, ε),
with fj ∈ G and ε > 0, which is the set of φ ∈ Mult(G, ‖ . ‖) such that
|ψ(fj) − φ(fj)|∞ ≤ ε ∀j = 1, ..., q. The topological space Mult(G, ‖ . ‖) is
then compact (see [10], or Theorem 6.2 in [6]).

Given φ ∈ Mult(G, ‖ . ‖), we call kernel of φ the set of the x ∈ S such that
φ(x) = 0 and we denote it by Ker(φ). It is a prime closed ideal of G with respect
to the norm ‖ . ‖ [6].

We denote by Multm(G, ‖ . ‖) the set of continuous multiplicative semi-norms
of G whose kernel is a maximal ideal and by Mult1(G, ‖ . ‖) the set of continuous
multiplicative semi-norms of G whose kernel is a maximal ideal of codimension 1.
Particularly, considering the algebra S, we denote by MultIE(S, ‖ . ‖) the set of
continuous multiplicative semi-norms of S whose kernel is a maximal ideal of the
form I(a, S), a ∈ IE. We denote by Υ(G) the set of IK-algebra homomorphisms
from G to IK.

Theorem 3.1 is classical [5]:
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Theorem 3.1. Let G be a unital commutative ultrametric Banach IK-algebra.
For each f ∈ G, ‖f‖sp = sup{φ(f) | φ ∈ Mult(G, ‖ . ‖)}. For every χ ∈ Υ(G),
we have |χ(f)| ≤ ‖f‖sp ∀f ∈ G.

More notations: Let us recall that in S, we have ‖ . ‖0 ≤ ‖ . ‖sp and that if
S is C-compatible, then ‖ . ‖0 = ‖ . ‖sp.

For any ultrafilter U ∈ U(IE) and any f ∈ S, |f(x)| has a limit along U since f
is bounded (see lemma 1.10.). Then we denote by ϕU the mapping from S to IR
defined by ϕU(f) = lim

U
|f(x)|. Given a ∈ IE we denote by ϕa the mapping from

S to IR defined by ϕa(f) = |f(a)|. These maps belong to Mult(S, ‖ . ‖) since
‖ . ‖0 ≤ ‖ . ‖sp ≤ ‖ . ‖. Particularly, the elements of MultIE(S, ‖ . ‖) are the
ϕa, a ∈ IE.

Proposition 3.2. Let a ∈ IE. Then I(a, S) is a maximal ideal of S of codimen-
sion 1 and ϕa belongs to Mult1(S, ‖ . ‖).

Moreover, for every algebra homomorphism χ from S to IK, its kernel is a
maximal ideal of codimension 1 of the form I(U , S) with U ∈ U(IE) and χ is
defined as χ(f) = lim

U
f(x), while ϕU(f) = |χ(f)|.

Proof. The first part is clear. The second comes from the proof of theorem 2.1:
actually we proved that if M is of codimension 1 then every f ∈ S has a limit
along U and lim

U
f(x) = χ(f). �

The following Proposition 3.3 is immediate:

Proposition 3.3. Let U be an ultrafilter on IE. Then ϕU belongs to the closure
of MultIE(S, ‖ . ‖).

Remark 3.4. According to Remark 2.3, if IK is locally compact we haveMax1(S) 6=
MaxIE(S) and hence Mult1(S, ‖ . ‖) 6= MultIE(S, ‖ . ‖) because given a maximal
ideal I(U , S) which does not belong to MaxIE, we can define ϕU ∈Mult(S, ‖ . ‖)
which does not belong to MultIE(S, ‖ . ‖).

Given φ ∈Mult(S, ‖. ‖), it is well known that Ker(φ) is a prime closed ideal,
with respect to the norm ‖ . ‖ of S. Actually we have the following proposition:

Proposition 3.5. For each φ ∈ Mult(S, ‖. ‖), Ker(φ) is a prime spectrally
closed ideal.

Proof. Let φ ∈ Mult(S, ‖. ‖) and let f belong to the spectral closure of Ker(φ).
There exists a sequence (fn)n∈IN of Ker(φ) such that limn→∞ ‖fn − f‖sp = 0.
By Theorem 3.1, since φ(g) ≤ ‖g‖sp ∀g ∈ S, we have lim

n→∞
φ(fn − f) = 0. But

φ(fn) = 0 ∀n ∈ IN, hence φ(fn − f) = φ(f) and hence φ(f) = 0. Therefore, f

belongs to Ker(φ), which means that K̃er(φ) = Ker(φ). �

By Corollary 2.16, we have the following corollary:

Corollary 3.6. If S is C-compatible, then Mult(S, ‖ . ‖) = Multm(S, ‖ . ‖).

The following Theorem is classical (Theorem 6.15 in [6]).
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Theorem 3.7. Let G be a commutative unital ultrametric Banach IK-algebra.
For every maximal ideal M of G, there exists φ ∈ Multm(S, ‖ . ‖) such that
M = Ker(φ).

Definition: Recall that a unital commutative Banach IK-algebra is said to be
multbijective if every maximal ideal is the kernel of only one continuous multi-
plicative semi-norm.

Remark 3.8. There exist some rare cases of ultrametric Banach algebras that are
not multbijective [5].

Theorem 3.9. Suppose S is C-compatible. Then S is multbijective. Precisely if
ψ ∈ Mult(S, ‖ . ‖) and Ker(ψ) = M then ψ = ϕU for every ultrafilter U such
that M = I(U , S).

Proof. Let ψ ∈ Multm(S, ‖ . ‖), let M = Ker(ψ) and U be an ultrafilter such
that M = I(U , S).

Let f ∈ S. Notice that if f ∈ M then ψ(f) = ϕU(f) = 0. Now we assume
that f /∈ M. So ψ(f) and ϕU(f) are both strictly positive. We prove that they
are equal.

First let ε > 0 and consider the set L = {x ∈ IE : |f(x)| ≤ ϕU(f) + ε}. This set
belongs to U and by Lemma 1.4, it is uniformly open. Therefore its characteristic
function u lies in S. We have ϕU(u) = 1. Consequently, we can derive that ψ(u) =
1 because u is idempotent and does not belong to M. Therefore ψ(uf) = ψ(f)
and ϕU(uf) = ϕU(f). By Theorem 3.1, we have ψ(f) = ψ(uf) ≤ ‖uf‖sp = ‖uf‖0
because S is C-compatible. But by definition of L we have: ‖uf‖0 ≤ ϕU(f) + ε.
Therefore, ψ(f) ≤ ϕU(f) + ε. This holds for every ε > 0. Consequently we may
conclude that ψ(f) ≤ ϕU(f) for every f ∈ S.

We prove now the inverse inequality. We have ϕU(f) > 0, so consider the set

W = {x ∈ IE : |f(x)| ≥ ϕU (f)
2
}. Again this is a uniformly open set which belongs

to U . Let w be the characteristic function of W and put g = wf + (1 − w).
We have ϕU(w) = 1 and ϕU(1 − w) = 0 so w /∈ M and 1 − w ∈ M. Since
M = Ker(ψ) we then have ψ(1−w) = 0 and ψ(w) = 1 because w is idempotent.
Finally ψ(g) = ψ(f) and ϕU(g) = ϕU(f).

On the other hand, we can check that |g(x)| ≥ min
(
1, ϕU (f)

2

)
for all x ∈ IE,

hence g is invertible in S. Putting h =
1

g
, using the first inequality proved above,

we have

ψ(f) = ψ(g) =
1

ψ(h)
≥ 1

ϕU(h)
= ϕU(g) = ϕU(f).

That concludes the proof. �

Remark 3.10. It follows from the preceding theorem that for a C-compatible
S, two ultrafilters on IE that are not contiguous define two distinct continuous
multiplicative semi-norms on S, this particularly applies to the algebra B of all
uniformly continuous functions [8].

Corollary 3.11. Suppose S is C-compatible. For every φ ∈Mult(S, ‖ . ‖) there
exists a unique H ∈ Y(R)(IE) such that φ(f) = lim

U
|f(x)| ∀f ∈ S, ∀U ∈ H.
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Moreover, the mapping Ψ that associates to each φ ∈Mult(S, ‖ . ‖) the unique
H ∈ YR(IE) such that φ(f) = lim

U
|f(x)| ∀f ∈ S, ∀U ∈ H, is a bijection from

Mult(S, ‖ . ‖) onto Y(R)(IE).

Assuming that S is C-compatible, since by Theorem 3.9 each element φ ∈
Mult(S, ‖ . ‖) is of the form ϕU , Corollary 3.12 is obvious:

Corollary 3.12. If S is C-compatible, then MultIE(S, ‖ . ‖) is dense in Mult(S, ‖ . ‖).

The following theorem below is given as Theorem 14 in [8] concerning the
algebra B of uniformly continuous functions and we can generalize it through a
similar proof:

Theorem 3.13. The topological space IE, provided with its distance δ, is home-
omorphic to MultIE(S, ‖ . ‖) provided with the restricted topology from that of
Mult(S, ‖ . ‖) .

Corollary 3.14. Mult(S, ‖ . ‖) is a compactification of the topological space IE.

Theorem 3.15. Let φ = ϕU ∈Multm(S, ‖ . ‖), with U an ultrafilter on IE, let Γ

be the field
S

Ker(φ)
and let θ be the canonical surjection from S onto Γ. Then,

the mapping defined on Γ by |θ(f)| = φ(f) ∀f ∈ S, is the quotient norm ‖ . ‖′
of ‖ . ‖0 defined on Γ and is an absolute value on Γ. Moreover, if Ker(φ) is of
codimension 1, then this absolute value is the one defined on IK and coincides
with the quotient norm of the norm ‖ . ‖ of S.

Proof. Let M = Ker(ϕU). Let t ∈ Γ and let f ∈ S be such that θ(f) = t.
So, ‖t‖′ ≥ lim

U
|f(s)|. Conversely, take ε > 0 and let V = {x ∈ IE : |f(x)| ≤

lim
U
|f(s)|+ ε}. By Lemma 1.4, the set V is uniformly open and belongs to U .

The characteristic function u of IE \ V belongs to M and so does uf . But by
construction, (f − uf)(x) = 0 ∀x ∈ IE \ V and (f − uf)(x) = f(x) ∀x ∈ V .
Consequently, ‖f − uf‖0 ≤ lim

U
|f(s)|+ ε and therefore ‖t‖′ ≤ ‖f − uf‖0 ≤

lim
U
|f(s)|+ ε. This finishes proving the equality ‖θ(f)‖′ = lim

U
|f(s)| and hence

the mapping defined by |θ(f)| = φ(f), f ∈ S is the quotient norm ‖ . ‖′ of ‖ . ‖0.
Then it is multiplicative, hence it is an absolute value on Γ.

Now, suppose thatM is of codimension 1. Then Γ is isomorphic to IK and its
absolute value ‖ . ‖′ is continuous with respect to the topology of IK, hence it is
equal to the absolute value of IK. Finally consider the quotient norm ‖ . ‖q of the
norm ‖ . ‖ of S: that quotient norm of course bounds the quotient norm ‖ . ‖′
which is the absolute value of IK. If f ∈ S and b = θ(f), we have f − b ∈M and
‖θ(f)‖q ≤ ‖b‖ = |b| = |θ(f)| = ‖θ(f)‖′, which ends the proof. �

Corollary 3.16. Suppose that S is C-compatible. Let φ ∈ Mult(S, ‖ . ‖), let Γ

be the field
S

Ker(φ)
and let θ be the canonical surjection from S onto Γ. Then,

the mapping defined on Γ by |θ(f)| = φ(f),∀f ∈ S is the quotient norm ‖ . ‖′ of
‖ . ‖0 on Γ and is an absolute value on Γ. Moreover, if Ker(φ) is of codimension
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1, then this absolute value is the one defined on IK and coincides with the quotient
norm of the norm ‖ . ‖ of S.

Remark 3.17. It is not clear whether an algebra S admits a prime closed ideal
P (with respect to the norm ‖ . ‖) which is not a maximal ideal. If it admits
such a prime closed ideal, then it is not the kernel of a continuous multiplicative
semi-norm. In such a case, the quotient algebra by P has no continuous absolute
value extending that of IK, although it has no divisors of zero. Such a situation
can happen in certain Banach algebras [2].

Definition and notation: Given a IK-normed algebra G, we call Shilov bound-
ary of G a closed subset F of Mult(G, ‖ . ‖) that is minimum with respect to
inclusion, such that, for every x ∈ G, there exists φ ∈ F such that φ(x) = ‖x‖sp.

Let us recall the following Theorem given in [7]:

Theorem 3.18. Every normed IK-algebra admits a Shilov boundary.

Notation: Given a normed IK-algebra G, we denote by Shil(G) the Shilov
boundary of G.

Lemma 3.19. Let us fix a ∈ IE. For every r > 0, let Z(a, r) be the set of
ϕU , U ∈ U(IE), such that dIE(a, r) belongs to U . The family {Z(a, r) |r ∈]0, 1[}
makes a basis of the filter of neighborhoods of ϕa.

Proof. Let W (ϕa, f1, ..., fq, ε) be a neighborhood of ϕa in Mult(S, ‖ . ‖). There
exists r > 0 such that, whenever δ(a, x) ≤ r we have |fj(x) − fj(a)| ≤ ε ∀j =
1, ..., q and therefore, clearly, |ϕU(fj) − ϕa(fj)|∞ ≤ ε ∀j = 1, ...q for every U
containing dIE(a, r). Thus Z(a, r) is included in W (ϕa, f1, ..., fq, ε).

Conversely, consider a set Z(a, r) with r ∈]0, 1[, let u be the characteristic func-
tion of dIE(a, r) and consider W (ϕa, u, r). Given ψ = ϕU ∈ W (ϕa, u, r), we have
|ψ(u)− ϕa(u)|∞ ≤ r. But |ψ(u)− ϕa(u)|∞ = |ψ(u)− 1|∞ = |lim

U
|u(x)| − 1|∞. If

dIE(a, r) belongs to U , then lim
U
|u(x)| = 1 and therefore |lim

U
|u(x)| − 1|∞ = 0. But

if dIE(a, r) does not belong to U , then lim
U
|u(x)| = 0 and therefore |lim

U
|u(x)| − 1|∞ =

1. Consequently, since r < 1, W (ϕa, u, r) is included in Z(a, r), which finishes
proving that the family of Z(a, r), r ∈]0, 1[ is a basis of the filter of neighborhoods
of ϕa. �

Theorem 3.20. Suppose S is C-compatible. The Shilov boundary of S is equal
to Mult(S, ‖ . ‖).

Proof. We will show that for every a ∈ IE, ϕa belongs to Shil(S). So, let us
fix a ∈ IE and suppose that ϕa does not belong to Shil(S). Since Shil(S) is a
closed subset of Mult(S, ‖ . ‖), there exists a neighborhood of ϕa that contains
no element of Shil(S). Therefore, by the preceding lemma, there exists s > 0
such that Z(a, s) contains no element of Shil(S). Now, let D = dIE(a, s) and let
u be the characteristic function of D. Since any φ ∈Mult(S, ‖ . ‖) satisfies either
φ(u) = 1 or φ(u) = 0, there exists θ ∈ Shil(S) be such that θ(u) = ‖u‖sp = 1.
Then, θ is of the form ϕU , with U ∈ U(IE) and U does not contain D. But since
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u(x) = 0 ∀x ∈ IE \D, we have θ(u) = 0, a contradiction. Consequently, for every
a ∈ IE, ϕa belongs to Shil(S) which is a closed subset of Mult(S, ‖ . ‖) and since,
by Corollary 3.12, MultIE(S, ‖ . ‖) is dense in Mult(S, ‖ . ‖), Shil(S) is equal to
Mult(S, ‖ . ‖). �

We finally give the following theorem. It will be useful in section 8. It was
proved in [10] and is also stated with a different proof in [1].

Theorem 3.21. Let G be a unital commutative ultrametric Banach IK-algebra
and let X be a clopen subset of Mult(G, ‖ . ‖). Then there exists an idempotent
u in G such that φ(u) = 1 ∀φ ∈ X, φ(u) = 0 ∀φ /∈ X.

4. The Stone space of lG(IE).

It was proved in [8] that for the algebra A of continuous bounded functions
from IE to IK, the Banaschewski compactification of IE is homeomorphic to
Mult(A, ‖ . ‖0). Here we get some similar version for C-compatible algebras.

We have defined the Boolean ring lG(IE) of uniformly open subsets of IE pro-
vided with the operations ∆ for the addition and ∩ for the multiplication. Let
Σ(IE) be the set of non-zero ring homomorphisms from lG(IE) onto the field IF2

provided with the topology of pointwise convergence. This is the Stone space of
the Boolean ring lG(IE), it is a compact space (see for example [13] for further
details).

For every U ∈ U(IE), we denote by ζU the ring homomorphism from lG(IE) onto
IF2 defined by ζU(O) = 1 for every O ∈ lG(IE) that belongs to U and ζU(O) = 0
for every O ∈ lG(IE) that does not belong to U .

Particularly, given a ∈ IE, we denote by ζa the ring homomorphism from lG(IE)
onto IF2 defined by ζa(O) = 1 for every O ∈ lG(IE) that contains a and ζa(O) = 0
for every O ∈ lG(IE) that does not contain a.

Throughout this section, we suppose that S is a C-compatible alge-
bra.

Remark 4.1. Let Σ′(IE) be the set of ζa, a ∈ IE. The mapping that associates
ζa to any a ∈ IE defines a surjective mapping from IE onto Σ′(IE). That mapping
is also injective because given a, b ∈ IE, there exists a uniformly open subset F
such that a ∈ F and b /∈ F .

By Corollary 3.11, we have a bijection Ψ from Mult(S, ‖ . ‖) onto Y(R)(IE)
associating to each φ ∈Mult(S, ‖ . ‖) the unique H ∈ Y(R)(IE) such that φ(f) =
lim
U
|f(x)|, U ∈ H, f ∈ S, i.e. φ = ϕU for every U ∈ H.

On the other hand, let us take some H ∈ Y(R)(IE) and ultrafilters U , V in H.
Since U ,V have the same uniformly open subsets of IE, we have ζU = ζV and
hence we can define a mapping Ξ from YR(IE) into Σ(E) which associates to each
H ∈ YR(IE) the ζU such that U ∈ H.

Lemma 4.2. Ξ is a bijection from Y(R)(IE) onto Σ(IE).
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Proof. Indeed, Ξ is clearly injective by Corollary 1.16.
Now, let us check that Ξ is surjective. Let θ ∈ Σ(IE). Since θ is a ring

homomorphism for the Boolean operations, the family of uniformly open sets X
satisfying θ(X) = 1 generates a filter F . Let U ∈ U(IE) be thinner than F and let
H be the class of U with respect to (R). We will check that θ = Ξ(H) = ζU . Let
O be a uniformly open subset that belongs to U . Then IE \O does not belong to
U and therefore it does not belong to F , so θ(IE\O) = 0, consequently θ(O) = 1.
And now, let O be a uniformly open subset that does not belong to U . Then O
does not belong to F , hence θ(O) = 0, which ends the proof. �

We put Φ = Ξ ◦ Ψ and hence Φ is a bijection from Mult(S, ‖ . ‖) onto Σ(IE).
Notice that for every ultrafilter U , Ψ(ϕU) is the class H of U with respect to (R)
and Ξ(H) = ζU so Φ(ϕU) = ζU .

Theorem 4.3. Φ is a homeomorphism once Σ(IE) and Mult(S, ‖ . ‖) are provided
with topologies of pointwise convergence.

Proof. Recall that for any U ∈ U(IE), a neighborhoods basis of ϕU inMult(S, ‖ . ‖)
is given by the family of sets of the form W (ϕU , f1, ..., fq, ε) with f1, ..., fq ∈ S,
ε > 0 and

W (ϕU , f1, ..., fq, ε) = {ϕV |
∣∣∣ lim
U
|fj(x)| − lim

V
|fj(x)|

∣∣∣
∞
≤ ε, j = 1, ..., q }.

On the other hand, for any U ∈ U(IE), a neighborhood basis for ζU in Σ(IE) is
given by the family of sets V (ζU , O1, ..., Oq) where O1, ..., Oq belong to lG(E) and

V (ζU , O1, ..., Oq) = {ζV | ζU(Oj) = ζV(Oj), j = 1, ..., q}.
Notice also that if F belongs to lG(IE) and if u is its characteristic function,

then for any U ∈ U(IE), we have ζU(F ) = 1 if and only if F ∈ U , i.e. if and only
if lim
U
|u(x)| = 1. Otherwise, both ζU(F ) and lim

U
|u(x)| are equal to 0. Therefore,

the relation ∣∣∣ lim
U
|u(x)| − lim

V
|u(x)|

∣∣∣
∞
≤ 1

2
holds if and only if ζU(F ) = ζV(F ). Recall that for every U ∈ U(IE) we have
Φ(ϕU) = ζU .

We will show that Φ is continuous. Consider O1, ..., Oq ∈ lG(IE), U ∈ U(IE) and
the neighborhood V (ζU , O1, ..., Oq) of ζU . From the preceding remark, ζV belongs
to V (ζU , O1, ..., Oq) if and only if for every j = 1, ..., q, ζU(Oj) = ζV(Oj), i.e. if for
every j = 1, ..., q, ∣∣∣ lim

U
|uj(s)| − lim

V
|uj(x)|

∣∣∣
∞
≤ 1

2

i.e. if ϕV belongs to W (ϕU , u1, ..., uq,
1

2
). Consequently, this proves that Φ is

continuous.
We will now prove that Φ−1 is also continuous. Consider f1, ..., fq ∈ S,

ε > 0, U ∈ U(IE) and the neighborhood W (ϕU , f1, ..., fq, ε) which is obviously
q⋂
j=1

W (ϕU , fj, ε). Let us fix i ∈ {1, ..., q}. Put ai = lim
U
|fi(x)| and Oi = {x ∈
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IE |
∣∣∣|fi(x)| − ai

∣∣∣
∞
≤ ε

2
}. By Lemma 1.4 Oi is uniformly open and of course it

belongs to U . Thus we have V (ζU , Oi) = {ζV | Oi ∈ V}. Now let V ∈ U(IE) be
such that Oi ∈ V and put

O′i = {x ∈ IE |
∣∣∣ |fi(x)| − lim

V
|fi(x)|

∣∣∣
∞
≤ ε

2
}. Then O′i is uniformly open also and

it belongs to V . Therefore, Oi ∩ O′i belongs to V . Take x ∈ Oi ∩ O′i. We have∣∣∣ |fi(x)| − ai
∣∣∣
∞
≤ ε

2
and

∣∣∣ |fi(x)| − lim
V
|fi(x)|

∣∣∣
∞
≤ ε

2
, so

∣∣∣lim
V
|fi(x)| − ai

∣∣∣
∞
≤ ε

and hence ϕV belongs to W (ϕU , fi, ε). This holds for every i = 1, ..., q. Therefore

we can conclude that if ζV belongs to V (ζU , O1, ..., Oq), which is

q⋂
i=1

V (ζU , Oi), then

ϕV belongs to

q⋂
i=1

W (ϕU , fi, ε) which is W (ϕU , f1, ..., fq, ε). This finishes proving

that Φ−1 is continuous too, and hence it is a homeomorphism. �

Corollary 4.4. The space Σ(IE) is a compactification of IE which is equivalent
to the compactification Mult(S, ‖ . ‖).

Remark 4.5. For a C-compatible algebra S, the compactification Σ(IE) coincides
with the Guennebaud-Berkovich multiplicative spectrum of S. This is not the
Banaschewski compactification, which corresponds to the Stone space associated
to the Boolean ring of clopen sets of IE.

5. About the completion of IE

Notations: We denote by ÎE the completion of IE and by δ̂ the continuation

of δ to IE. We then identify IE with a dense subset of ÎE. The following theorem
is well known:

Theorem 5.1. Every uniformly continuous function f from IE to IK has a unique

extension to a uniformly continuous function f̂ from ÎE to IK and we have ‖f‖0 =

‖f̂‖0.

Notations: We denote by Ŝ the set of functions f̂ , f ∈ S. Given f ∈ S, we

put ‖f̂‖ = ‖f‖.
We have the following proposition:

Proposition 5.2. The normed IK-algebra (Ŝ, ‖ . ‖) is isomorphic to (S, ‖ . ‖)
and it is semi-compatible with respect to ÎE. Moreover, if S is C-compatible, so

is Ŝ.

Proof. Obviously (Ŝ, ‖ . ‖) is isomorphic to (S, ‖ . ‖) and therefore it is a Banach
IK-algebra. Now we prove that it is semi-compatible.

1) Take f ∈ S such that infbIE {|f̂(x)| | x ∈ ÎE} > 0. Then inf
IE
{|f(x)| | x ∈ IE} > 0

and hence f is invertible in S. Now, if g ∈ S and fg = 1, then f̂ ĝ = 1 hence f̂ is

invertible in Ŝ.
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2) Let F̂ be a subset of ÎE and let u be its characteristic function. Obviously, if

u ∈ Ŝ, then, using Lemma 1.6, F̂ is uniformly open in ÎE since u is uniformly
continuous.

Assume now that F̂ is uniformly open in ÎE. Put F = F̂ ∩ IE. If F̂ = ∅, then

F = ∅ and u = 0. Next, if F̂ 6= ∅, then F 6= ∅ because F̂ is open and IE is dense

in ÎE. So, we have IE \ F = (ÎE \ F̂ ) ∩ IE and δ(F, IE \ F ) ≥ δ̂(F̂ , ÎE \ F̂ ) > 0.
Therefore, F is uniformly open in IE, hence its characteristic function u′ lies in S.
But u′ is the restriction of u to IE and u is uniformly continuous. Consequently,

by theorem 5.1, u = û′ and hence u belongs to Ŝ.

3) Suppose now that S is C-compatible. Clearly, the spectral norm on Ŝ is

induced by that of S and hence it is ‖ . ‖0. Therefore Ŝ is C-compatible. �

Remark 5.3. Every result obtained in sections 2 and 3 also holds for the algebra

(Ŝ, ‖ . ‖). Particularly, we have Corollary 5.4.

Corollary 5.4. The mapping which associates to every M̂ ∈Max(Ŝ) the equiv-

alence class H ∈ Y(R)(ÎE) such that M = I(U , Ŝ) for all U ∈ H, is a bijection

from Max(Ŝ) onto Y(R)(ÎE).

On another hand, the algebras (S, ‖ . ‖) and (Ŝ, ‖ . ‖) are isometric and so are

(S, ‖ . ‖0) and (Ŝ, ‖ . ‖0). Therefore, the mapping from Max(S) to Max(Ŝ) which

associates to each maximal idealM of S the ideal M̂ = {f̂ | f ∈M} is bijective

and the ideals M̂ and M are isometric. Furthermore, since (S, ‖ . ‖) is multbi-

jective, so is (Ŝ, ‖ . ‖) and Mult(Ŝ, ‖ . ‖) can be identified with Mult(S, ‖ . ‖).

Notice that any ultrafilter U on IE generates an ultrafilter Û on ÎE and for any

f ∈ S, we have lim
U
|f(x)| = limbU |f̂(x)|. Thus, for each ultrafilter U on IE, the ideal

I(U , S) corresponds to the ideal I(Û , Ŝ) of Ŝ. Then, using results of Section 2
concerning S, we have the following Theorem:

Theorem 5.5. For each maximal ideal M̂ of Ŝ:

1) There exists an ultrafilter U on IE such that M̂ = I(Û , Ŝ),
2) There exists a unique equivalence class H of Y(R)(IE) such that U belongs to

H if and only if M̂ = I(Û , Ŝ).

By Corollary 5.4 and Theorem 5.5, we get this Corollary 5.6:

Corollary 5.6. The mapping from Y(R)(IE) to Y(R)(ÎE) that associates to the

equivalence class of any ultrafilter U in Y(R)(IE) the equivalence class of Û in

Y(R)(ÎE) is bijective. In particular every ultrafilter of ÎE is contiguous in ÎE to Û
for some ultrafilter U of IE.

6. Algebras B, L, D, E

As recalled in Section 1, we denote by B the Banach IK-agebra of bounded
uniformly continuous functions from IE to IK. Next, we denote by L the set of



ULTRAFILTERS AND ULTRAMETRIC LIPSCHITZ FUNCTIONS 17

bounded Lipschitz functions from IE to IK. Whenever IE is a subset of IK, we
denote by D the subset of L of differentiable functions in IE and by E the subset

of L of functions such that for every a ∈ IE,
f(x)− f(y)

x− y
has a limit when x

and y tend to a separately. Following [9] the functions of E are called strictly
differentiable.

Given f ∈ L, we put ‖f‖1 = sup
x,y∈IE
x6=y

|f(x)− f(y)|
δ(x, y)

and ‖f‖ = max(‖f‖0, ‖f‖1).

In particular, if f ∈ D, then ‖f‖1 = sup
x,y∈IE
x 6=y

|f(x)− f(y)|
|x− y|

.

Remark 6.1. If IE ⊂ IK, then E ⊂ D ⊂ L.

As noticed in Section 1, (B, ‖ . ‖0) is a semi-compatible algebra. In [9], it was
proved that the algebra here denoted by E is a Banach IK-algebra with respect
to the norm ‖ . ‖.

Theorem 6.2 presents no difficulty:

Theorem 6.2. L, D and E are normed IK-algebras with respect to the norm ‖ . ‖.

Now we can prove that L, D and E also are Banach algebras. First we will
prove that L is a Banach IK-algebra and then we will show that D and E are
closed in L when IE ⊂ IK.

Theorem 6.3. L, D and E are Banach IK-algebras with respect to the norm ‖ . ‖.

Proof. Let (fn)n∈IN be a Cauchy sequence of L. Take ε > 0 and let N(ε) ∈ IN be
such that ‖fn− fm‖ ≤ ε ∀m, n ≥ N(ε). Since ‖fn− fm‖0 ≤ ε ∀m, n ≥ N(ε), the
sequence (fn)n∈IN converges with respect to the norm ‖ . ‖0 to a function g such
that ‖fn − g‖0 ≤ ε ∀n ≥ N(ε). On the other hand, since the sequence (fn)n∈IN is
a Cauchy sequence for the norm ‖ . ‖1, then for all x, y ∈ IE, such that x 6= y,
we have

|fn(x)− fm(x)− (fn(y)− fm(y))|
δ(x, y)

≤ ε ∀m,n ≥ N(ε)

and therefore, fixing n and passing to the limit on m, for all x, y ∈ IE, such that
x 6= y we get

|fn(x)− g(x)− (fn(y)− g(y))|
δ(x, y)

≤ ε ∀n ≥ N(ε).

This is true for all x, y ∈ IE, x 6= y and shows that fn − g belongs to L.
Consequently, g also belongs to L. Particularly we notice that ‖g − fn‖1 ≤ ε,
hence ‖g − fn‖ ≤ ε. Thus the sequence (fn)n∈IN does converge to g in L.

Suppose now that IE ⊂ IK and let us show that D is closed in L. Take a
sequence (fn)n∈IN converging to a limit f ∈ L and let us show that f belongs
to D. As noticed above, since the sequence (fn)n∈IN is a Cauchy sequence with
respect to the norm ‖ . ‖1, the sequence (f ′n)n∈IN is a Cauchy sequence with respect
to the norm ‖ . ‖0. Let h be its limit for this norm. This limit is then bounded in
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IE. We will show that f is differentiable and that f ′ = h. Fix a ∈ IE and ε > 0.
For all x ∈ IE and for every n ∈ IN, we have∣∣∣f(x)− f(a)

x− a
− h(a)

∣∣∣
=
∣∣∣f(x)− f(a)− (fn(x)− fn(a))

x− a
+
fn(x)− fn(a)

x− a
− f ′n(a) + f ′n(a)− h(a)

∣∣∣
≤ max

(∣∣∣f(x)− f(a)− (fn(x)− fn(a))

x− a

∣∣∣, ∣∣∣fn(x)− fn(a)

x− a
− f ′n(a)

∣∣∣, |f ′n(a)− h(a)|
)

≤ max
(
‖f − fn‖,

∣∣∣fn(x)− fn(a)

x− a
− f ′n(a)

∣∣∣, ‖f ′n − h‖0).
We can fix N ∈ IN such that ‖f − fN‖ ≤ ε and ‖f ′N − h‖0 ≤ ε. Then there exists
r > 0 such that, for all x ∈ d(a, r), we have∣∣∣fN(x)− fN(a)

x− a
− f ′N(a)

∣∣∣ ≤ ε

and thus, we have ∣∣∣f(x)− f(a)

x− a
− h(a)

∣∣∣ ≤ ε.

This proves that f ′(a) = h(a). Therefore f is differentiable and f ′ = h.
A similar proof shows that E also is closed in D. �

Remark 6.4. Concerning D, one can ask why we do not consider a norm of the
form ‖f‖d = max(‖f‖0, ‖f ′‖0) instead of the above norm ‖ . ‖ where ‖ . ‖1
is defined with the help of the Lipschitz inequality. Indeed, ‖ . ‖d is a norm of
IK-algebra. But the problem is that the algebra D is not complete with respect to
that norm, in the general case. The example given in [9] (Remark 2) shows that
we can’t obtain a Banach algebra in that way because a sequence that converges
with respect to that norm may have a limit which is not differentiable at certain
points.

Remark 6.5. Now, suppose that every non empty circle C(0, r) has at least two

classes and consider a function f differentiable in IE and a a point of ÎE\ IE. Then

in general, f̂ is not differentiable at a, as the following example shows. Let IE be
the set {x ∈ IK | 0 < |x| ≤ 1} and let (an)n∈IN be a sequence in IE such that

|an| < |an−1|, lim
n→+∞

|an| = 0.

For each n ∈ IN, put rn = |an|. Let g be the function defined on IE by g(x) =
an ∀x ∈ d(an, r

−
n ) and

g(x) = 0 ∀x ∈ IE \ (
∞⋃
n=1

d(an, r
−
n )).



ULTRAFILTERS AND ULTRAMETRIC LIPSCHITZ FUNCTIONS 19

We can check that g is differentiable and Lipschitz in IE. But ĝ(0) = 0 and
ĝ is not differentiable at 0. Indeed, let (bn)n∈IN be a sequence of IE such that
|bn| = |bn − an| = rn ∀n ∈ IN. Now,

g(an)− ĝ(0)

an − 0
= 1 ∀n ∈ IN

whereas
g(bn)− ĝ(0)

bn − 0
= 0 ∀n ∈ IN,

which shows that
ĝ(x)− ĝ(0)

x
has no limit at 0. Therefore g is not differentiable

in ÎE. In the same way, we can show that ĝ is strictly differentiable in IE but not

in ÎE.

Theorem 6.6. An element of L,D, E is invertible if and only if inf{|f(x)| | x ∈ IE} > 0.

Proof. Suppose that inf{|f(x)| | x ∈ IE} > 0 and put g(x) =
1

f(x)
. Let us first

show that f belongs to L. Indeed, let m = inf{|f(x)| | x ∈ IE}. Then

|g(x)− g(y)|
δ(x, y)

=
|f(y)− f(x)|
|f(x)f(y)|δ(x, y)

≤ |f(y)− f(x)|
m2δ(x, y)

which proves that g belongs to L. Similarly, if f ∈ D (resp. f ∈ E), then g
belongs to D (resp. to E). �

Theorem 6.7. In each algebra L, D, E, the spectral norm ‖ . ‖sp is ‖ . ‖0.

Proof. Take f ∈ L and n ∈ IN. Without loss of generality, we can suppose that
‖f‖0 ≥ 1. We have

‖fn‖ = max
(
‖fn‖0, sup

x,y∈E,x 6=y

|(f(x))n − (f(y))n|
δ(x; y)

)
.

We notice that |(f(x))n − (f(y))n| ≤ |f(x)− f(y)|(‖f‖0)n−1 and hence

sup
x,y∈E,x 6=y

|(f(x))n − (f(y))n|
δ(x; y)

≤ (‖f‖0)n−1 sup
x,y∈E,x 6=y

|(f(x))− (f(y))|
δ(x; y)

= (‖f‖0)n−1‖f‖1.

Consequently, we get

‖f‖0 ≤ ‖f‖sp ≤ n
√
‖f‖1(‖f‖0)

n−1
n .

Then when n tends to +∞, we get ‖f‖sp = ‖f‖0 ∀f ∈ L. This is then true in D
and E too. �

Theorem 6.8. The IK-algebras L,D, E are C-compatible algebras.

Proof. Indeed, by Theorems 6.3, 6.6 and 6.7, we just have to check that a subset
F of IE is uniformly open if and only if its characteristic function belongs to L
(resp. to D, resp. to E), which is immediate by Lemma 1.6. �
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7. Particular properties of the algebras B,L,D, E.

A first specific property of the algebras B,L,D, E concerns maximal ideals of
finite codimension.

Notation: For convenience, we will denote here by T one of the algebras
B,L,D, E and by T ∗ the IL-algebra of bounded uniformly continuous functions
(resp. Lipschitz functions, resp. differentiable functions, resp. strictly differen-
tiable functions) from IE to IL.

Lemmas 7.1 and 7.2 are basic results in algebra:

Lemma 7.1. Let IL be a finite algebraic extension of IK of the form IL = IK[a] of
degree d provided with the absolute value which extends that of IK. Let f ∈ T ∗.

Then f is of the form
d−1∑
j=0

ajfj, with fj ∈ T for j = 0, ..., d − 1. So, T ∗ is

isomorphic to T ⊗ IL.

Lemma 7.2. Let IL be a finite algebraic extension of IK provided with the absolute
value which extends that of IK. Suppose there exists a morphism of IK-algebra, χ,
from T onto IL. Then χ has a continuation to a surjective morphism of IL-algebra
χ∗ from T ∗ to IL.

Proof. Let d = [IL : IK]. Suppose first that IL is of the form IK[a]. Then by

Lemma 7.1, any f in T ∗ is of the form
d−1∑
j=0

ajfj, where the fj are functions from

IE to IK for j = 0, ..., d − 1. We then set χ∗(f) =
d−1∑
n=0

ajχ(fj). The conclusion is

then straightforward.
Consider now the general case. We can obviously write IL in the form IK[b1, ..., bq].

Writing ILj for the extension IK[b1, ..., bj] we have ILj = ILj−1[bj]. By induction on
j, using the just proved preceding result we get that for each j = 1, ..., q, χ has a
continuation to a surjective morphism of ILj-algebra, χ∗j , from (T ⊗ ILj) onto ILj.
Taking j = q ends the proof since T ⊗ ILq = T ∗. �

We can now state the following theorem whose proof is similar to that of
Theorem 3.7 in [9] but here concerns the algebras L,D, E . Actually, that result
may be generalized to all semi-compatible algebras, provided that IK is a perfect
field [4], a condition that we avoid here.

Theorem 7.3. Every maximal idealM of T of finite codimension is of codimen-
sion 1.

Proof. Let IL be the field
T

M
and T ∗ be defined as in the preceding theorem.

Then T ∗ is a C-compatible IL-algebra. Now, let χ be the quotient morphism
from T over IL whose kernel is M. By Lemma 7.2 χ admits an extension to a
morphism χ∗ from T ∗ to IL. Since T ∗ is semi-compatible and since the kernel
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of χ∗ is a maximal ideal M∗ of T ∗, there exists an ultrafilter U on IE such that
M∗ = I(U , T ∗).

Let g ∈ T and let b = χ(g) ∈ IL. Then we have χ∗(g − b) = 0, hence g − b
belongs to M∗, therefore lim

U
g(x)− b = 0 i.e. lim

U
g(x) = b. But since g ∈ T ,

g(x) belongs to IK for all x ∈ IE. Therefore, since IK is complete, b belongs to
IK. But by definition χ is a surjection from T onto IL, hence every value b of IL
is the image of some g ∈ T and hence it lies in IK, therefore IL = IK. �

Remark 7.4. In [5], it is shown that in the algebra of bounded analytic functions
in the open unit disk of a complete ultrametric algebraically closed field, any
maximal ideal which is not defined by a point of the open unit disk is of infinite
codimension. Here, we may ask whether the same holds. In the general case no
answer is obvious. We can only answer a particular case.

Theorem 7.5. Suppose IE ⊂ IK and let M = I(U , T ) be a maximal ideal of T
where U is an ultrafilter on IE. If U is a Cauchy filter, then M is of codimension
1. Else, M is of infinite codimension.

Proof. Suppose first that U is a Cauchy ultrafilter. By Theorem 2.7, M is of
codimension 1. Now, suppose that U is not a Cauchy filter and consider the
identity map g defined on IE. Then g has no limit on U , therefore by Theorem
2.1 again, M is not of codimension 1. But then by Theorem 7.3, M is not of
finite codimension. �

Notation: Given a commutative unital Banach IK-algebra S, we denote by
Max1(S) the set of maximal ideals of S of codimension 1 and by MaxIE(S) the
set of maximal ideal of S of the form I(a, S), a ∈ IE.

Corollary 7.6. Suppose IE is a closed subset of IK . Then Max1(T ) = MaxIE(T ).

Remark 7.7. Consider φ ∈ Mult(L, ‖ . ‖), let M = Ker(φ) and let θ be the

canonical surjection from L onto
L
M

. By Theorem 3.15, the quotient norm of

the quotient field
L
M

is just the quotient norm of the uniform convergence norm

‖ . ‖0 and is equal to the absolute value of IK. In the case of a maximal ideal
of infinite codimension, we can’t apply Banach’s Theorem and there is no reason
to think that the quotient norm is equivalent to the absolute value defined as
|θ(f)| = lim

U
|f(x)|.

Definition: Given a IK-normed algebra A whose norm is ‖ . ‖, we call topo-
logical divisor of zero an element f ∈ A such that there exists a sequence (un)n∈IN

of elements of A such that inf
n∈IN
‖un‖ > 0 and lim

n→+∞
fun = 0.

Theorem 7.8. Suppose that IE has no isolated points. Then an element of an
algebra L is a topological divisor of zero if and only if it is not invertible.

Proof. It is obvious that an invertible element of L is not a topological divisor of
zero. Now, consider an element f ∈ L that is not invertible. By Theorem 6.6, we
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have inf
x∈IE
|f(x)| = 0. Therefore, there exists a sequence of disks (dIE(an, rn))n∈IN

with lim
n→∞

rn = 0, such that |f(x)| ≤ 1

n
, ∀x ∈ dIE(an, rn), ∀n ∈ IN∗.

Since the points an are not isolated, for every n ∈ IN we can fix bn ∈ dIE(an, rn)
such that bn 6= an.

For each n ∈ IN∗, let tn = δ(an, bn) and hn be the characteristic function of
dIE(an, t

−
n ). Notice that 0 < tn ≤ rn so lim

n→∞
tn = 0. Now hn belongs to L and

clearly satisfies

(1)
|hn(x)− hn(y)|

δ(x, y)
≤ 1

tn
∀x, y ∈ IE, x 6= y.

Moreover, we notice that
|hn(an)− hn(bn)|

δ(an, bn)
=

1

tn
hence

(2) ‖hn‖1 =
1

tn
∀n ∈ IN∗.

Let l ∈ IK be such that |l| ∈]0, 1[. Since the valuation on IK is not trivial, for
each n ∈ IN, we can find an element τn ∈ IK such that |l|tn≤ |τn| ≤ tn. We put
wn = τnhn for all n ∈ IN. Then clearly we have

(3) ‖wn‖0 = |τn|‖hn‖0 = |τn| ≤ tn

and by (2), we have

(4) |l| ≤ ‖wn‖1 =
|τn|
tn
≤ 1

Hence

(5) |l| ≤ ‖wn‖ ≤ max(1, |τn|) ∀n ∈ IN∗.

Consider now the sequence (fwn)n∈IN∗ . By (3), we have ‖fwn‖0 ≤ tn‖f‖0, hence

(6) lim
n→∞

‖fwn‖0 = 0.

Furthermore for all x, y ∈ IE, we have

|f(x)wn(x)− f(y)wn(y)|
δ(x, y)

≤ max
(
|f(x)|. |wn(x)− wn(y)|

δ(x, y)
, |wn(y)|. |f(x)− f(y)|

δ(x, y)

)
and by (3) it is easily seen that

(7) |wn(y)|. |f(x)− f(y)|
δ(x, y)

≤ tn‖f‖1.

On the other hand, if x ∈ dIE(an, rn), we have : |f(x)| ≤ 1

n
, hence by (4),

(8) |f(x)|. |wn(x)− wn(y)|
δ(x, y)

≤ 1

n

and by (7) and (8), we obtain

(9)
|f(x)wn(x)− f(y)wn(y)|

δ(x, y)
≤ max(

1

n
, tn‖f‖1).
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Similarly, since x and y play the same role, if y belongs to dIE(an, rn), we obtain
the same inequality.

Suppose now that neither x nor y belongs to dIE(an, rn). Then wn(x) = wn(y) =
0, therefore

(10)
|f(x)wn(x)− f(y)wn(y)|

δ(x, y)
≤ max(

1

n
, tn‖f‖1).

Consequently, by (9) and (10) we have proved that ‖fwn‖1 ≤ max(
1

n
, tn‖f‖1).

Hence lim
n→∞

‖fwn‖1 = 0 and by (6) lim
n→∞

‖fwn‖ = 0 which, together with (5), ends

the proof. �

Finally, we can prove this last result: given a ∈ IE, I(a,L) is not necessarily
the closure of I ′(a,L), while by Corollary 2.14, it is its spectral closure.

Proposition 7.9. Suppose that the set IE is included in an ultrametric field IF
and contains a disk d(0, R) of the field IF. There exists f ∈ I(0,L) that does not
belong to the closure of I ′(0,L) with respect to the norm ‖ . ‖ of L.

Proof. Let ω ∈ IF be such that 0 < |ω| < 1. For every n ∈ IN, set rn = |ω|−n,

let an ∈ C(0, rn), let Fn = d(an, r
−
n ) and let L =

∞⋃
n=1

Fn. Let f be the function

defined in IE as f(x) = 0 ∀x ∈ IE \ L and f(x) = an ∀x ∈ Fn, n ∈ IN.
We notice that f belongs to L. Indeed, let x, y ∈ IE with x 6= y. If f(x) 6= f(y),

then at least one of the points x and y belongs to L. Suppose that y ∈ L.
Suppose first that x /∈ L. Then f(x) = 0 and y belongs to some disk d(an, r

−
n )

and hence |f(y)| = |an| = rn, whereas |x− y| ≥ rn, therefore
∣∣∣f(x)− f(y)

x− y

∣∣∣ ≤ 1.

Suppose now that x and y belong to L. Say, x belongs to d(am, r
−
m) and

y belongs to d(an, r
−
n ) with m < n since f(x) 6= f(y). Then |f(x)| = rm <

rn = |f(y)|, hence |f(x) − f(y)| = |f(y)| = rn and |x − y| = |y| = rn therefore∣∣∣f(x)− f(y)

x− y

∣∣∣ ≤ 1. Thus we have checked that
∣∣∣f(x)− f(y)

x− y

∣∣∣ ≤ 1 ∀x, y ∈ IE, x 6= y.

That finishes proving that f belongs to L.
Now, by construction, we can see that f belongs to I(0,L). However, we

will check that f does not belong to the closure of I ′(0,L). Let h ∈ I ′(0,L).
There exists a disk d(0, rq) such that h(x) = 0 ∀x ∈ d(0, rq). Consequently,
f(x)−h(x) = f(x) ∀x ∈ d(0, rq). But we notice that f(x) = 0 ∀x ∈ C(0, rq)\Fq.

So, when x belongs to Fq and y belongs to C(0, rq)\Fq, we have
∣∣∣f(x)− f(y)

x− y

∣∣∣ = 1,

therefore ‖f − h‖ ≥ ‖f − h‖1 ≥ 1. This proves that I(0,L) is not the closure of
I ′(0,L) with respect to the norm ‖ . ‖. �

8. A kind of Gelfand transform

A Gelfand transform is not easy to find on ultrametric Banach algebras, due
to the existence of maximal ideals of infinite codimension. However, here we can
obtain a kind of Gelfand transform under certain hypotheses on the multiplicative
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spectrum in order to find again an algebra of bounded Lipschitz functions on some
ultrametric space.

Notations: Let (A, ‖ . ‖) be a commutative unital Banach IK-algebra which is
not a field. Let Υ(A) be the set of algebra homomorphisms from A onto IK and
let λA be the mapping from A × A to IR+ defined by λA(χ, ζ) = sup{|χ(f) −
ζ(f)| | ‖f‖ ≤ 1}.

Given χ ∈ Υ(A), we denote by |χ| the element of Mult(A, ‖ . ‖) defined as
|χ|(f) = |χ(f)|, f ∈ A. Given D ⊂ Υ(A), we put |D| = {|χ|, χ ∈ D}.

The following Lemma is easily checked:

Lemma 8.1. λA is an ultrametric distance on Υ(A) such that λA(χ, ξ) ≤ 1 ∀χ, ξ ∈
A.

Definition: Let (A, ‖ . ‖) be a unital commutative ultrametric Banach IK-
algebra. The algebra (A, ‖ . ‖) will be said to be L-based if it satisfies the following:

a) Mult1(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖),

b) the spectral semi-norm ‖ . ‖sp is a norm,

c) For every uniformly open subset D of Υ(A) with respect to λA, the closures
of |D| and |Υ(A) \D| are disjoint open subsets of Mult(A, ‖ . ‖).

Theorem 8.2. Let (A, ‖ . ‖) satisfy properties a) and b) above. Then the algebra
A is algebraically isomorphic to an algebra C of bounded Lipschitz functions from
the ultrametric space IE = (Υ(A), λA) to IK. Identifying A with C, the following
are true.

i) The spectral norm ‖ . ‖sp of A is equal to the uniform convergence norm ‖ . ‖0
on IE.

ii) Every f ∈ A such that inf{|χ(f)| : χ ∈ Υ(A)} > 0 is invertible in A.
iii) There exists a constant c ≥ 1 such that the Lipschitz semi-norm defined

as ‖f‖1 = sup
(
{|f(x)− f(y)|

λA(x, y)
| x, y ∈ IE, x 6= y}

)
satisfies ‖f‖1 ≤ c‖f‖ for all

f ∈ A and the topology defined by ‖ . ‖ on A is stronger than the topology induced
by the norm ‖ . ‖L of the Banach IK-algebra L of all bounded Lipschitz functions
from IE to IK, where ‖f‖L = max(‖f‖0, ‖f‖1), f ∈ L.

Proof. We first show that A is isomorphic to a sub-IK-algebra of the algebra of
bounded functions from IE to IK. For each f ∈ A and χ ∈ IE, we put f ◦(χ) = χ(f)
and then we define a bounded function f ◦ from IE to IK. Let us check that this
mapping Θ associating to each f ∈ A the function f ◦ is injective. Indeed, Θ
is obviously an algebra homomorphism whose kernel is the intersection J of
all maximal ideals of codimension 1. But thanks to Properties a), b) and to
Theorem 3.1, we can check that J = (0). Consequently Θ is injective and hence
A is isomorphic to a subalgebra C of the algebra of bounded functions from IE to
IK. Hencefore we will identify an element f of A with the function it defines on
IE.
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Let us now show that every g ∈ A is Lipschitz, with respect to the distance
λA. Let χ, ζ ∈ IE and let g ∈ A be such that ‖g‖ ≤ 1. Then we have

|χ(g)− ζ(g)| ≤ sup{|χ(f)− ζ(f)|, ‖f‖ ≤ 1} = λA(χ, ζ).

Now in general, take g ∈ A and ν ∈ IK such that |ν| ≥ ‖g‖. Let h =
g

ν
. Then

|χ(h)−ζ(h)| ≤ λA(χ, ζ) hence |χ(g)−ζ(g)| ≤ |ν|λA(χ, ζ), therefore g is Lipschitz.
Consequently, A can be identified with a Banach IK-algebra of bounded Lips-

chitz functions from the ultrametric space IE to IK.

We will now show that the statements i), ii) and iii) are true. Thanks to
Property a) and Theorem 3.1, it is immediately seen that the spectral norm
‖ . ‖sp of A is the uniform convergence norm ‖ . ‖0 on IE; hence i) is true.

Let us now show that whenever |χ(f)| ≥ m > 0 for all χ ∈ Υ(A), then f is
invertible in A. Indeed, suppose that f is not invertible. Then there exists a max-
imal ideal M that contains f . By theorem 3.7, there exists φ ∈ Mult(A, ‖ . ‖)
such that M = Ker(φ) and then φ(f) = 0. Given r > 0, let us denote again by
W (φ, f, r) the neighborhood of φ : {ψ ∈ Mult(A, ‖ . ‖) | |ψ(f) − φ(f)|∞ ≤ r}.
Now, let us recall that Υ(A) is the set of characters of A, hence Mult1(A, ‖ . ‖)
is just the set of |χ|, χ ∈ Υ(A). Thus, since Mult1(A, ‖ . ‖) is dense in
Mult(A, ‖ . ‖), there exists a sequence χn of Υ(A) such that for every n ∈ IN,

|χn| belongs to the neighborhood W (φ, f,
1

n
) and hence, φ(f) = lim

n→+∞
|χn(f)|,

i.e. φ(f) = lim
n→+∞

χn(f) = 0, a contradiction because |χ(f)| ≥ m ∀χ ∈ Υ(A).

Consequently, f is invertible in A i.e. ii) holds.

Finally let us prove iii). Let f ∈ A. Notice that if ‖f‖ ≤ 1 then for every

x, y ∈ IE with x 6= y we have, by definition of λA,
|f(x)− f(y)|
λA(x, y)

≤ 1 and hence

‖f‖1 ≤ 1.

Suppose first that the valuation of IK is dense. Take ε > 0 and ν ∈ IK such

that ‖f‖ ≤ |ν| ≤ ‖f‖ + ε. Then

∥∥∥∥fν
∥∥∥∥ ≤ 1 and hence

∥∥∥∥fν
∥∥∥∥

1

≤ 1, i.e. ‖f‖1 ≤ |ν|

and ‖f‖1 ≤ ‖f‖+ ε. This holds for all ε > 0 and hence we have ‖f‖1 ≤ ‖f‖.

Suppose now that IK has a discrete valuation. Let µ = sup{|x| | x ∈ IK, |x| <
1} and take ν ∈ IK such that |ν| = µ.

If ‖f‖ = 1 then ‖f‖1 ≤ ‖f‖. If ‖f‖ < 1 then we can find n ∈ IN such that

µn+1 ≤ ‖f‖ ≤ µn. Hence putting g =
f

νn
, we have µ ≤ ‖g‖ ≤ 1 and hence we

have ‖g‖1 ≤ 1. Therefore,
‖g‖1
‖g‖

≤ ‖g‖1
µ
≤ 1

µ
. But

‖g‖1
‖g‖

=
‖f‖1
‖f‖

hence
‖f‖1
‖f‖

≤ 1

µ

which finishes proving
‖f‖1
‖f‖

≤ c, with c =
1

µ
≥ 1. Consequently, we have

‖f‖1 ≤ c‖f‖ for all f ∈ A such that ‖f‖ ≤ 1.
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If ‖f‖ > 1 then there exists n ∈ IN such that ‖f‖ ≤ 1

µn+1
. Putting h = νn+1f

we have ‖h‖ ≤ 1 hence ‖h‖1 ≤ c‖h‖ which gives again ‖f‖1 ≤ c‖f‖. Finally
‖f‖1 ≤ c‖f‖ for every f ∈ A.

On the other hand, by Lemma 1.7, we have ‖f‖sp ≤ ‖f‖ ∀f ∈ A, hence

‖f‖ ≥ max(‖f‖sp,
1

c
‖f‖1) ≥

1

c
max(‖f‖0, ‖f‖1) for all f ∈ A, which proves that

the norm ‖ . ‖ of A is at least as strong as the norm of the Banach IK-algebra of
all bounded Lipschitz functions on IE. �

Theorem 8.3. As in the preceding theorem, let (A, ‖ . ‖) satisfy properties a)
and b). Identifying again A with C, the three statements below are equivalent:
α) (A, ‖ . ‖) is L-based i.e. Property c) is satisfied;
β) (A, ‖ . ‖) is C-compatible;
γ) (A, ‖ . ‖) satisfies the following Property c’): for every uniformly open subset

D of IE, there exists gD ∈ A such that inf
χ∈D
|χ(gD)| > sup

χ/∈D
|χ(gD)|.

Proof. Notice that by the preceding theorem, A is C-compatible if and only if A
satifies the property 2) of C-compatible algebras.

Assume that (A, ‖ . ‖) is L-based. Let D be a uniformly open subset of IE.
By Property c), the closure F of |D| in Mult(A, ‖ . ‖) is a closed open set and
so is the closure G of |Υ(A) \ D| and the two closures are disjoint. On the
other hand, by Property a), we have F ∪ G = Mult(A, ‖ . ‖). Therefore, F
and G are two disjoint open closed subsets making a partition of Mult(A, ‖ . ‖).
Consequently, by Theorem 3.21, there exists an idempotent u ∈ A such that
φ(u) = 1 ∀φ ∈ F and φ(u) = 0 ∀φ /∈ F . Particularly we have |χ|(u) = 1 ∀χ ∈ D
and |χ|(u) = 0 ∀χ ∈ Υ(A) \D and then, since u is idempotent, χ(u) = 1 ∀χ ∈ D
and χ(u) = 0 ∀χ ∈ Υ(A) \ D i.e. u(χ) = 1 ∀χ ∈ D and u(χ) = 0 ∀χ /∈ D.
Consequently, u is the characteristic function of D and it is in A. Hence (A, ‖ . ‖)
is a C-compatible algebra and hence α implies β .

Assuming now that A is C-compatible, for every uniformly open subset D of
IE, the characteristic function u of D belongs to A and clearly, we have:
inf
χ∈D
|χ(gD)| = 1 > sup

χ/∈D
|χ(gD)| = 0. Thus, Property c’) is satisfied and hence β

implies γ.

Finally assume that property c’) is satisfied and let us prove that c) is satisfied.
Let D be a uniformly open subset of IE and let gD ∈ A be such that

inf
χ∈D
|χ(gD)| > sup

χ/∈D
|χ(gD)|.

Let t = inf
χ∈D
|χ(gD)| and s = sup

χ/∈D
|χ(gD)|. The mapping [φ ∈ Mult(A, ‖ . ‖) 7→

φ(gD) ∈ IR] defines a continuous function since Mult(A, ‖ . ‖) is provided with
the pointwise convergence. So the sets L1 = {φ ∈Mult(A, ‖ . ‖), φ(gD) ≥ t} and
L2 = {φ ∈Mult(A, ‖ . ‖) , φ(gD) ≤ s} are disjoint closed subsets of Mult(A, ‖ . ‖)
and we have |D| ⊂ L1 and |Υ(A) \ D| ⊂ L2. So L1 contains the closure of |D|
and L2 contains the closure of |Υ(A)\D|. But the closures of |D| and |Υ(A)\D|
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recover Mult(A, ‖ . ‖) since Mult1(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖), so we get
that the closures of |D| and |Υ(A) \ D| make a partition of Mult(A, ‖ . ‖) and
finally are disjoint open sets. �

By Theorems 8.3, 3.9, 3.20 and Corollary 3.6 we obtain the following corollary:

Corollary 8.4. Let A be a L-based algebra. Then Mult(A, ‖ . ‖) = Multm(A, ‖ . ‖).
Moreover, A is multbijective. Further, Shil(A) = Mult(A, ‖ . ‖).

Theorem 8.5. Let A be a L-based algebra. Then Υ(A) is complete with respect
to the distance λA.

Proof. Recall that by Theorems 8.2 and 8.3, A is C-compatible and the elements
of A are Lipschitz functions, with respect to λA on IE = Υ(A) and particu-
larly they are uniformly continuous functions. Let (χn)n∈IN be a Cauchy se-
quence of (Υ(A), λA). Then the Fréchet filter F generated by this sequence is a
Cauchy filter on Υ(A) and by Theorem 2.7, the ideal M = I(F , A) is a maxi-
mal ideal of codimension 1 and hence it defines an element θ of Υ(A) satisfying
θ(f) = lim

F
f(x) = lim

n→+∞
f(χn) = lim

n→+∞
χn(f), for every f ∈ A. Let us check that

θ is the limit of the Cauchy sequence (χn)n∈IN.
Let us fix ε > 0 and let N ∈ IN be such that for all integers n,m greater

than N , λA(χn, χm) ≤ ε. Then for every f ∈ A such that ‖f‖ ≤ 1, we have
|χn(f) − χm(f)| ≤ ε ans thus |χn(f) − θ(f)| ≤ ε. Hence λA(χn, θ) ≤ ε, which
ends the proof. �

Notation: In the following theorems we denote by T one of the IK-algebras
L,D, E .

Theorem 8.6. Suppose IE is a closed subset of IK. Let Z be the mapping from
IE into Υ(T ) that associates to each point a ∈ IE the element of Υ(T ) whose
kernel is I(a, T ). Then Z is a bijection from IE onto Υ(T ). Moreover, we have
|b− a| ≥ λT (a, b) ∀a, b ∈ IE.

Proof. Z obviously is an injection from IE into Υ(T ). Now, let χ ∈ Υ(T ) and
let M = Ker(χ). By Theorem 2.1, there exists an ultrafilter U on IE such
that Ker(χ) = I(U , T ). Since M is of codimension 1 and since IE is closed, by
Theorem 7.5, U converges in IE to a point c ∈ IE. Consequently, Z is surjective.

Now we will show that |b − a| ≥ λT (a, b) ∀a, b ∈ IE. Let us take a, b ∈ IE,
with a 6= b and consider λT (a, b) = sup{|f(a)− f(b)|, ‖f‖ ≤ 1}. Recall that,
when IE ⊂ IK, in algebras T , we have defined the Lipschitz semi-norm ‖f‖1 as

‖f‖1 = sup{|f(x)− f(y)|
|x− y|

, x 6= y}. For every f ∈ T such that ‖f‖ ≤ 1 we have

‖f‖1 ≤ 1 and thus |f(a)− f(b)| ≤ |a− b|. Therefore |b− a| ≥ λT (a, b). �

Corollary 8.7. Suppose IE is a closed subset of IK. Then every uniformly open
subset of Υ(T ) with respect to λT is a uniformly open subset of IE with respect to
the absolute value of IK.

Theorem 8.8. Suppose IE is a closed subset of IK. Then T is a L-based algebra.
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Proof. By Theorem 7.5, Mult1(T, ‖ . ‖) = MultIE(T, ‖ . ‖). By Theorem 6.8, T is
C-compatible, hence by Corollary 3.12 Mult1(T, ‖ . ‖) is dense in Mult(T, ‖ . ‖).
Next ‖ . ‖0 is a norm equal to ‖ . ‖sp. So, Properties a) and b) are satisfied.

Consider now a uniformly open subset D of IE with respect to λT . Identifying
IE with Υ(T ), by Corollary 8.7 D is also uniformly open with respect to the
absolute value of IK. Consequently, the characteristic function u of D belongs to
T and we have inf

x∈D
|u(x)| = 1 > 0 = sup

x/∈D
|u(x)|. So we get property c’) of theorem

8.3, which ends the proof. �

Notation: Let (A, ‖ . ‖) be a L-based algebra. We will denote by Ã the al-
gebra of all bounded Lipschitz functions from the space IE = (Υ(A), λA) to
IK and we denote by ‖ . ‖˜ the norm ‖ . ‖˜ = max(‖ . ‖0, ‖ . ‖1̃) where ‖f‖1̃ =

sup{|f(x)− f(y)|
λA(x, y)

x, y ∈ IE x 6= y} for every f ∈ Ã.

Theorem 8.9. Let IE be a closed subset of IK and A be the L-based algebra of
all bounded Lipschitz functions from IE to IK provided with the norm ‖ . ‖ =
max(‖ . ‖0, ‖ . ‖1). Then the algebras A and A˜are identical and the norms ‖ . ‖
and ‖ . ‖˜are equivalent. In particular, a bounded function f is Lipschitz with
respect to the distance | . | of IE if and only if it is Lipschitz with respect to λA.
Next, we have |x− y| ≥ λA(x, y) ∀x, y ∈ IE and if IE is bounded, then there exists
a constant M ≥ 1 such that |x− y| ≤ MλA(x, y) ∀x, y ∈ IE and the distance λA
is equivalent to the distance | . | of IE.

Proof. Identifying IE with Υ(A), by Theorem 8.6 we have |b − a| ≥ λA(a, b) for
all a and b in IE and consequently, if f ∈ A˜then f ∈ A and ‖f‖1 ≤ ‖f‖1̃ for all
f ∈ A. Furthermore, by Theorem 8.2 (and its proof), we also have A ⊂ A˜and
there exists a constant c ≥ 1 such that ‖f‖1˜≤ c‖f‖ for all f ∈ A.

We conclude that the algebras A and A˜are equal and for every f ∈ A we
finally have : ‖f‖ ≤ ‖f ‖̃ ≤ c‖f‖, which proves that these norms are equivalent.

Moreover, if IE is bounded with respect to the distance defined by the absolute
value of IK, then the identity map lies in A and hence is Lipschitz with respect to
λA, therefore we have a constant M > 0 such that MλA(x, y) ≥ |x− y|, ∀x, y ∈
A. �

Remark 8.10. By Lemma 8.1, we have λA(x, y) ≤ 1 ∀x, y ∈ A. Therefore, if IE
is not bounded with respect to the absolute value of IK, there exists no M > 0
such that MλA(x, y) ≥ |x− y| ∀x, y ∈ A.
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