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Growth of analytic functions in an ultrametric open disk and branched values

Kamal Boussaf, Alain Escassut

Introduction and main theorems

Let IK be an algebraically closed field complete with respect to an ultrametric absolute value. In [START_REF] Boussaf | Growth of p-adic entire functions and applications[END_REF] and [START_REF] Boussaf | Order, type and cotype of growth for p-adic entire functions, a survey with additional properties. p-adic Numbers[END_REF] we defined the order of growth and the type of growth for entire functions in IK in a similar way as it is known for complex entire functions [START_REF] Rubel | Entire and meromorphic functions[END_REF] and we also defined a cotype of growth strongly linked to the order and the type: in most of the cases the cotype is the product of the order of growth by the type of growth.

Here we consider analytic functions in an "open" disk.

Notations and definitions: For every r > 0, we denote by d(0, r -) the disk {x ∈ IK | |x| < r} and by d(0, r) the disk {x ∈ IK | |x| ≤ r}. Throughout the paper, we fix R > 0 and we put D = d(0, R -). We denote by A(D) the IK-algebra of analytic functions in D i.e. the power series ∞ n=0 a n x n converging in the disk D, which are the power series such that lim sup

n→+∞ n |a n | ≤ 1 R
, and we denote by M(D) the field of fractions of A(D) also called the meromorphic functions in D [START_REF] Amice | Les nombres p-adiques[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF]. |f |(r) = +∞ [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF].

We denote by log the Neperian Logarithm. In order to define a growth order similarly as it was done in the algebra of entire functions in IK [START_REF] Boussaf | Growth of p-adic entire functions and applications[END_REF], [START_REF] Boussaf | Order, type and cotype of growth for p-adic entire functions, a survey with additional properties. p-adic Numbers[END_REF], we can define in A(D) a growth order in the following way: given r ∈]0, R[, as it was done in complex analysis [START_REF] Cao | The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc[END_REF], [START_REF] Chyzhykov | Linear differential equations and logarithmic derivative estimates[END_REF], [START_REF] Heittokangas | On complex differential equations in the unit disc[END_REF], given an unbounded function f ∈ A(D), when r is close enough to R, we put Then ρ(f ) is called the order of growth of f . On the other hand, for every r ∈]0, R[, we denote by q(f, r) the number of zeros of f in d(0, r), taking multiplicity into account. If the set of the s > 0 such that lim r→R -q(f, r)(R -r) s = 0 is empty, we put θ(f ) = +∞. Else, we then denote by θ(f ) the lowest bound of the s > 0 such that lim

r→R - q(f, r)(R -r) s = 0. Similarly, if the set of the s > 0 such that lim r→R -log(|f |(r))(R -r) s = 0 is empty, we put λ(f ) = +∞. Else, we denote by λ(f ) the lowest bound of the s > 0 such that lim r→R -log(|f |(r))(R -r) s = 0. And if 0 < ρ(f ) < +∞, we put σ(f, r) = log(|f |(r))(R -r) ρ(f ) , σ(f ) = lim sup r→R - σ(f, r), ψ(f, r) = q(f, r)(R -r) ρ(f ) and ψ(f ) = lim sup r→R - ψ(f, r). We call σ(f ) the type of growth of f and ψ(f ) the cotype of growth of f .
Let us recall that, as far as ultrametric entire functions are concerned, the order of growth is equal to the lowest bound of the s > 0 such that lim

r→+∞ log(|f |(r)) r s = 0
and to the lowest bound of the s > 0 such that lim r→+∞ q(f, r) r s = 0. Here we will try to prove similar results. This paper is aimed at showing relations between these expressions ρ(f ), σ(f ), ψ(f ).

Notation: We will denote by A * (D) the set of unbounded functions f ∈ A(D) such that 0 < ρ(f ) < +∞.

Theorems 1 and 2 are easy and don't need any proof:

Theorem 1: Let f, g ∈ A * (D). Then ρ(f + g) ≤ max(ρ(f ), ρ(g)) and ρ(f g) = max(ρ(f ), ρ(g)). Corollary 1.1: Let f, g ∈ A * (D). Then ρ(f n ) = ρ(f ) ∀n ∈ IN * . If ρ(f ) > ρ(g), then ρ(f + g) = ρ(f ). Theorem 2: Let f ∈ A * (D) and let P ∈ IK[x] be non-constant. Then ρ(P • f ) = ρ(f ). Theorem 3: Let f, g ∈ A * (D). Then ψ(f g) ≤ ψ(f ) + ψ(g). Moreover, if ρ(f ) = ρ(g) then max(ψ(f ), ψ(g)) ≤ ψ(f g). Remark 2: Let f ∈ A * (D). If s > θ(f ), then by definition, lim r→R -q(f, r)(R -r) s = 0. But if s < θ(f ) then lim sup r→R - q(f, r)(R -r) s = +∞ because if lim sup r→R - q(f, r)(R -r) s < +∞,
we can find s ∈]s, θ(f )[ and then we can check that lim

r→R - q(f, r)(R -r) s = 0, a contra- diction. Thanks to the classical inequality |f |(r) ≤ |f |(r) r [7]
, the following Theorem 4 is then immediate:

Theorem 4: Suppose IK has characteristic 0. Let f ∈ A * (D). Then ρ(f ) ≤ ρ(f ).
Remark 3: In a field of characteristic p = 0, certain analytic functions have a null derivative. This is why we must suppose that IK has characteristic 0 in all statement involving derivatives.

In complex analysis, many estimates were given concerning the growth order of solutions of linear differential equations [START_REF] Cao | The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc[END_REF], [START_REF] Chyzhykov | Linear differential equations and logarithmic derivative estimates[END_REF], [START_REF] Heittokangas | On complex differential equations in the unit disc[END_REF]. Here, by Corollary 1.1 and Theorem 4 we can immediately obtain Corollary 4.1 which is similar but more general than Theorem C in [START_REF] Cao | The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc[END_REF]: Corollary 4.1: Suppose IK has characteristic 0. Consider the differential equation (E) f (n) + a n-1 (x)f (n-1) (x) + ... + a 0 (x)f (x) = 0 with a j ∈ A * (D), j = 0, ..., n-1 and ρ(a j ) < ρ(a 0 ) ∀j = 1, ..., n-1. Then every non-trivial solution f of (E) satisfies ρ(f ) ≥ ρ(a 0 ).

Theorem 5: Let f ∈ A * (D). Then λ(f ) = ρ(f ).
Remark 4: Similar results to Corollary 4.1 and Theorem 5 hold for entire functions thanks to results of [START_REF] Boussaf | Growth of p-adic entire functions and applications[END_REF] but were not stated in [START_REF] Boussaf | Growth of p-adic entire functions and applications[END_REF] and [START_REF] Boussaf | Order, type and cotype of growth for p-adic entire functions, a survey with additional properties. p-adic Numbers[END_REF].

Theorem 6: Let f, g ∈ A * (D). Then σ(f g) ≤ σ(f ) + σ(g). If ρ(f ) ≥ ρ(g), then σ(f ) ≤ σ(f g). If ρ(f ) = ρ(g), then max(σ(f ), σ(g)) ≤ σ(f g). If ρ(f ) = ρ(g) and σ(f ) > σ(g) then σ(f + g) ≥ σ(f ). If ρ(f + g) = ρ(f ) ≥ ρ(g) then σ(f + g) ≤ max(σ(f ), σ(g)). Corollary 6.1: Let f, g ∈ A * (D) be such that ρ(f ) = ρ(g). Then σ(f + g) ≤ max(σ(f ), σ(g)). Theorem 7: Let f ∈ A * (D). Then θ(f ) -1 ≤ ρ(f ) ≤ θ(f ). Moreover, if ψ(f ) < ∞, then ρ(f ) = θ(f ).
Theorem 7 obviously suggests the following conjecture:

Conjecture: Let f ∈ A * (D). Then ρ(f ) = θ(f ).
Concerning relations between ρ, σ and ψ, we dont have all relations obtained when f is an entire function. However, we can obtain this theorem:

Theorem 8: Let f ∈ A * (D). If ψ(f ) < +∞, then σ(f ) = 0.
Theorem 9: Suppose IK has residue characteristic 0. Then for every f ∈ A * (D) we have ρ(f

) = ρ(f ), θ(f ) = θ(f ), σ(f ) = σ(f ) and ψ(f ) = ψ(f ).
Remark 5: Theorem 9 does not hold in residue characteristic p > 0 because there exist functions f ∈ A * (D) such that ρ(f ) > 0 and that f is bounded, as shows the following

example with R = 1: g(x) = ∞ m=0 x p m p m . We can see that g (x) = ∞ n=0
x p m -1 hence g is bounded and therefore ρ(g ) = 0. However, consider the sequence (r m ) m∈IN defined as

r m = 1 - 1 p m . We can check that |g|(r m ) ≥ p m (r m ) p m , hence log(|g|(r m )) ≥ m + p m log(r m ) = m + p m log 1 - 1 p m .
When m is big enough, we have log 1

-1 p m ≥ -2 p m , hence log |g|(r m )) ≥ m -p m 2 p m = m -2.
Therefore, when m is big enough, we have

log log(|g|(r m ))) -log(r m ) ≥ log(m -2) -log(1 -1 p m ) > log(m -2) 2 p m = p m 2 log(m -2).
Thus, we have ρ(g) = +∞.

Remark 6: Theorem 9 applies for instance to the complex Levi-Civita field whose residue characteristic is 0 [START_REF] Shamseddine | A brief survey of the study of power series and analytic functions on the Levi-Civita fields[END_REF].

In [START_REF] Boussaf | Complex and p-adic branched functions and growth of entire functions[END_REF], relations were examined between growth of entire functions and perfectly branched values. Now, we can look at possible similar relations.

Definition: Let f ∈ M(D).

A value b ∈ IK is called perfectly branched value for f if all zeros of f -b but finitely many are multiple. Now, we must recall the notations of Nevanlinna's functions.

Notation: Let f ∈ M(D) be such that f (0) = 0 and f (0) = ∞. We denote by Z(r, f ) the counting function of zeros of f in D in the following way. Let (a n ), 1 ≤ n ≤ u(r) be the finite sequence of zeros of f such that 0 < |a n | ≤ r, of respective order s n .

We set Z(r, f ) = Next, we denote by Z(r, f ) the counting function of zeros of f without multiplicity:

Z(r, f ) = u(r) n=1 (log r -log |a n |) and so, Z(r, f ) is called the counting function of zeros of f in D ignoring multiplicity.
In the same way, we put

N (r, f ) = Z(r, 1 f ) and N (r, f ) = Z(r, 1 f 
).

Now we can define the characteristic Nevanlinna function of

f in ]0, R[ as T (r, f ) = max(Z(r, f ), N (r, f )).
Remark 7: If we change the origin, the functions Z, N, T are not changed, up to an additive constant.

Theorem 10 was already stated in Theorem 3 of [START_REF] Boussaf | Complex and p-adic branched functions and growth of entire functions[END_REF]. Here we just complete the proof. We can easily obtain Theorem 11:

Theorem 11: Suppose IK has characteristic 0. Let f, g ∈ A * (D) be such that ρ(f ) > ρ(g). Then lim inf r→R - T (r, g) T (r, f ) = 0.
By Theorem 11 and Remark 8, we can now derive Corollary 11.1: we can suppose without loss of generality [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF].

Corollary 11.1: Let f, g ∈ A * (D) be such that ρ(f ) = ρ(g).
In the proofs of Theorem 3, 5, 6, 7, 8 we can suppose that R belongs to |IK| by sending our ground field into a field admitting a value group equal to IR + . Therefore we can assume R = 1 without loss of generality, through an obvious change of variable.

Proof of Theorem 3. Set ρ(f ) = s, ρ(g) = t. Without loss of generality we can assume s ≥ t. By Theorem 1, we have ρ(f.g) = ρ(f ) = s. Now, for each r > 0, we have q(f.g, r) = q(f, r) + q(g, r) hence

ψ(f g) = lim sup r→R - (q(f, r) + q(g, r))(R -r) s ≤ lim sup r→R - q(f, r)(R -r) s + lim sup r→R - q(g, r)(R -r) t hence ψ(f g) ≤ ψ(f ) + ψ(g). Now, suppose s = t. Then ψ(f g) = lim sup r→R - (q(f, r) + q(g, r))(R -r) s ≥ lim sup r→R - max(q(f, r), q(g, r))(R -r) s = max(ψ(f ), ψ(g)),
which ends the proof.

Proof of Theorem 5: First we will prove that ρ(f ) ≤ λ(f ). Obviously, we can assume that λ(f ) < +∞. Let s be such that lim

r→R -log(|f |(r))(R -r) s = 0. Let us fix > 0. For r close enough to R, we have log(|f |(r))(R -r) s ≤ , hence log(|f |(r)) ≤ (R -r) s , therefore log(log(|f |(r))) ≤ log -s log(R -r) hence log(log(|f |(r))) (-log(R -r)) ≤ log( ) (-log(R -r))
+ s, and hence lim sup

r→R - log(log(|f |(r))) (-log(R -r)) ≤ s
i.e. ρ(f ) ≤ s. This is true for every s such that lim r→R -log(|f |(r))(R -r) s = 0 and hence ρ(f ) ≤ λ(f ).

On the other hand, we notice that, by definition of λ(f ), either λ(f ) = 0 and then λ(f ) ≤ ρ(f ), or

λ(f ) = sup{s ∈]0, +∞[ | lim sup r→R - log(|f |(r))(R -r) s > 0}.
Thus, suppose that λ(f ) > 0. Let us take s ∈]0, λ(f )[. We have a number b > 0 such that lim sup

r→R - (log(|f |(r)(R -r) s ) ≥ b > 0. Let us fix ∈]0, b[. There exists a sequence (r n ) n∈IN in ]0, R[ such that lim n→+∞ r n = R and such that, when n is big enough, we have b -≤ log(|f |(r n ))(R -r n ) s , hence -s log(R -r n ) + log(b -) < log(log(|f |(r n ))) therefore s + log(b -) (-log(R -r n )) ≤ log(log(|f |(r n )) (-log(R -r n )) .
Consequently, lim sup 

σ(f g) = lim sup r→R - log(|f.g|(r))(R -r) s ≤ lim sup r→R - log(|f |(r))(R -r) s + lim sup r→R - log(|g|(r))(R -r) t = σ(f ) + σ(g).
On the other hand,

σ(f ) = lim sup r→R - log(|f |(r))(R -r) s ≤ lim sup r→+R - (log(|f g|(r))(R -r) s . But ρ(f g) = s, hence σ(f ) ≤ σ(f g). Particularly, if ρ(f ) = ρ(g), then max(σ(f ), σ(g)) ≤ σ(f g). Now, suppose again that ρ(f ) = ρ(g) = s and suppose σ(f ) > σ(g). Let s = ρ(f ), b = σ(f ). Then b > 0. Let (r n ) n∈IN be a sequence such that lim n→+∞ r n = R and lim n→+∞ (log(|f |(r n ))(R -r n ) s ) = b.
Since σ(g) < σ(f ), we notice that when n is big enough we have |g|(r n ) < |f |(r n ). Consequently, when n is big enough, we have |f +g|(r n ) = |f |(r n ) and hence [START_REF] Amice | Les nombres p-adiques[END_REF] lim

n→+∞ (log(|f + g|(r n )))(R -r n ) s ) = b.
By definition of σ we have σ(f

+ g) ≥ lim n→+∞ (log(|f + g|(r n )))(R -r n ) ρ(f +g) . By Theorem 1, we have ρ(f + g) ≤ s, hence σ(f + g) ≥ lim n→+∞ (log(|f + g|(r n )))(R -r n ) ρ(f +g) ≥ lim n→+∞ (log(|f + g|(r n )))(R -r n ) s = lim n→+∞ log(|f |(r n ))(R -r n ) s = σ(f ) therefore by (1), σ(f + g) ≥ σ(f ).
Finally, suppose now that ρ(f + g) = ρ(f ) ≥ ρ(g). Let s = ρ(f ) and t = ρ(g). Then,

σ(f + g) = lim sup r→R - (log(|f + g|(r)))(R -r) s ≤ max lim sup r→R - (log(|f |(r)))(R -r) s , lim sup r→R - (log(|g|(r)))(R -r) s ≤ max lim sup r→R - (log(|f |(r)))(R -r) s , lim sup r→R - (log(|g|(r)))(R -r) t = max(σ(f ), σ(g))
which ends the proof.

In the proof of Theorem 11, we will use the following Lemma G and in the proof of of Theorem 10 we will use the following Lemmas J: Lemma G: Let f ∈ A(D). The following three statements are equivalent:

1) f ∈ A * (D), 2) lim r→R -|f |(r) = +∞ 3) lim r→R -T (r, f ) = +∞.
In the proof of Theorem 7 we will need the basic Lemma L due to the concavity of Logarithm and the classical Theorem T ( Corollary 22.27 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]): 

Lemma L: Let a ∈ [1,

Theorem T:[8], (Theorem 22.26)

Let f ∈ A * (D) be such that f (0) = 0 and let (a n ) n∈IN be the sequence of zeros of f , of respective multiplicity order w n , with

|a n | ≤ |a n+1 |. Let c n = |a n |, n ∈ IN. Suppose c n ≤ r < c n+1 . Then log(|f |(r) = log |f (0)| + k n=0 w n (log(r) -log(c n )) . Corollary T.1: Let f ∈ A * (D) and let r 1 , r 2 ∈]0, R[ with r 1 < r 2 . Then r 2 r 1 q(f,r 1 ) ≤ |f |(r 2 ) |f |(r 1 ) ≤ r 2 r 1 q(f,r 2 )
.

Proof of Theorem 7: We will denote by | . | ∞ the Archimedean absolute value of IR. Let us first choose s > θ(f ). Then lim

r→R - q(f, r)(R -r) s = 0. Now, since lim r→R - |f |(r) = +∞, we can take ∈]0, R[ such that |f |( ) > e.
Then we can take b > 0 such that

q(f, r) ≤ b(R -r) -s ∀r ∈ [ , R[. Now, taking r ∈ [ , R[, by Theorem T, we have log(|f |(r)) ≤ log(|f |( ))) + q(f, r)(log( r )) which leads to log(|f |(r)) ≤ log(|f |( ))) + b(R -r) -s (log( r )) hence log(log(|f |(r))) ≤ log log(|f |( ))) + b(R -r) -s (log( r ))
therefore, by Lemma L, we can derive i.e.

(

) log(log(|f |(r))) ≤ log(log(|f |( ))) + log(b) -s log(R -r) + log((log( r )) + log(2) 2 
Consequently, by (2), we obtain

log(log(|f |(r))) -log(R -r) ≤ log(log(|f |( ))) -log(R -r) + log(b) -log(R -r) + s + log(log( r )) + log(2) -log(R -r) .
We can check that lim

r→R - log(log(|f |( ))) + log(b) -log(R -r) = lim r→R - log(log( r ) + log(2) -log(R -r) = 0
and hence lim sup

r→R - log(log(|f |(r))) -log(R -r) ≤ s. Consequently, choosing > 0, there exists u ∈ [ , R[ such that log(log(|f |(r))) -log(R -r) ≤ s + ∀r ∈ [u, R[ and hence ρ(f ) ≤ s + .
But since that holds for every s > θ(f ) and for every > 0, we have ρ(f ) ≤ s and hence ρ(f ) ≤ θ(f ).

Let us now show that ρ(f ) ≥ θ(f ) -1. By Corollary T.1, we have

(3) log(|f |(r)) -log(|f |( r 2 R )) ≥ q(f, r 2 R )(log(r) -log( r 2 R )) = q(f, r 2 R )(log(R) -log(r)).
Consider now a number s < θ(f ) and a sequence (r n

) n∈IN of ]0, R[ such that lim n→+∞ r n = R
and such that lim sup

n→+∞ q(f, r n )(R -r n ) s ≥ b > 0. Then by (3) we have log(|f |(r n )) ≥ b(log(R) -log(r n )) R - r 2 n R s Consequently, log(log(|f |(r n ))) ≥ log(b) + log(log(R) -log(r n ))) -s log(R -r n ) + log(R + r n ) + s log(R)
and therefore

log(log(|f |(r n ))) -log(R -r n ) ≥ log(b) -log(R -r n ) + log(log(R) -log(r n )) -log(R -r n ) + s 1 + log(R + r n ) + log(R) -log(R -r n ) .
Clearly,

lim n→+∞ log(b) log(R -r n ) = lim n→+∞ log(R + r n ) + log(R) log(R -r n ) = 0
and by elementary reasonings, we can check that lim

t→R - log(log(R) -log(t)) log(R -t) = 1, therefore lim n→+∞ log(log(R) -log(r n )) log(R -r n ) = 1. Consequently, lim sup n→+∞ log(log(|f |(r n ))) -log(R -r n ) ≥ s -1
and therefore lim sup

r→R - log(log(|f |(r))) -log(R -r) ≥ s -1.
That holds for every s < θ(f ) and shows that if θ(f ) < +∞, then ρ(f ) ≥ θ(f ) -1. Next, if θ(f ) = +∞, then we would have ρ(f ) = +∞, which is excluded by hypothesis since f ∈ A * (D). Consequently, the inequality ρ(f ) ≥ θ(f ) -1 is established.

Without loss of generality, we can assume that f (0) = 0. Let us now show that ρ(f ) ≥ θ(f ) when ψ(f ) < +∞. Suppose θ(f ) > ρ(f ) and let s ∈]ρ(f ), θ(f )[. Then by Remark 2 we have lim sup

r→R - q(f, r)(R -r) s = +∞, but then lim sup r→R - q(f, r)(R -r) ρ(f ) = +∞, i.e. ψ(f ) =
+∞, a contradiction. Therefore θ(f ) ≤ ρ(f ) and hence whenever ψ(f ) < +∞, we have θ(f ) = ρ(f ).

Proof of Theorem 8: Let us fix > 0 and let R be such that log(R) -log(R ) = . Leq (a n ) n∈IN be the sequence of zeros of f , for each n ∈ IN, let w n be the order of a n and let r n = |a n |. Now, let u be the biggest integer n such that r n < R and for each r > 0, let m(r) be the biggest integer n such that r n ≤ r

Let A u = u n=0 w n and let B u = log(|f (0)|) + u n=0 w n (log(R ) -log(r n )). Let us take r ∈]R , R[. Now,we can write σ(r, f ) ψ(r, f ) = B u + m(r) n=u+1 w n (log(r) -log(r n )) A u + m(r) n=u+1 w n . But by hypothesis, log(r) -log(r n ) ≤ ∀n ≥ u, hence σ(r, f ) ψ(r, f ) ≤ B u + m(r) n=u+1 w n A u + m(r) n=u+1 w n . Let us put φ(r) = m(r) n=u+1 w n . Thus σ(f, r) ψ(f, r) ≤ B u + φ(r) A u + φ(r) .
But since f belongs to A * (D), it has infinitely many zeros in D, hence φ(r) is an increasing unbounded function tending to +∞ when r tends to R. Consequently, it is obvious that

lim r→R σ(r, f ) ψ(r, f ) = 0.
Therefore, if lim sup r→R -ψ(r, f ) < +∞, then σ(f ) = 0.

Proof of Theorem 9: Without loss of generality, we can assume that f (0) = 0. Then, since IK has residue characteristic 0, we have q(f , r) = q(f, r) - shows that ρ(f ) = ρ(f ).
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Next, we have

σ(f , r) = log(|f |(r)) -log(r) (R -r) ρ(f ) = σ(f, r) -(log(r))(R -r) ρ(f )
and then lim sup

r→R - log(|f |(r)) -log(r) (R -r) ρ(f ) = lim sup r→R - log(|f |(r)) (R -r) ρ(f )
i.e. σ(f ) = σ(f ). In the same way, then ψ(f ) = ψ(f ). From Theorem N2 [START_REF] Boussaf | Order, type and cotype of growth for p-adic entire functions, a survey with additional properties. p-adic Numbers[END_REF] or Theorem 40.24 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], we can extract the following statement:

Theorem N [START_REF] Boussaf | Order, type and cotype of growth for p-adic entire functions, a survey with additional properties. p-adic Numbers[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF] Suppose IK has characteristic 0. Let f ∈ M(D) and let b 1 , ..., b q ∈ IK. Then

(q -1)T (r, f ) ≤ q j=1 Z(r, f -b j ) + N (r, f ) + O(1)
Proof of Theorem 10: Without loss of generality, we can place ourselves in an algebraically closed spherically complete extension to obtain the same conclusion because the Nevanlinna functions are the same in such an extension. Then, by Lazard's Theorem (Theorem 29.6 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]) we can suppose that f and g have no common zeros. Next, we can suppose that f (0) = g(0) = 0 and set φ = f g . We have T (r, φ) = max(T (r, f ), T (r, g)). Now, by hypothesis, there exists γ < But here, for each j = 1, 2, 3, we notice that Z(r, φ -b j ) ≤ Z(r, φ -b j ) 2 + q j log(r) with

q j ∈ IN and by Lemma J, Z(r, φ -b j ) = Z(r, f -b j g) ≤ max(T (r, f ), T (r, g)) + O(1). But since T (r n , f ) > T (r n , g), we have T (r n , φ -b j ) ≤ T (r n , f ) + O(1), hence Z(r, φ -b j ) ≤ T (r n ,f ) 2 + q j log(r n ) + O(1)
. Then, putting q = q 1 + q 2 + q 3 , by ( 2) we obtain

2T (r n , f ) ≤ 3T (r n , f ) 2 + T (r n , g) + q log(r n ) + O(1)
hence by (1), Since lim n→+∞ -β(R -r n ) -t = -∞, we see a contradiction which finishes the proof.

T (r n , f ) ≤ ( 1 2 + γ)T (r n , f ) + O(1), with γ < 1 

1 Let f = ∞ n=0 a

 n=0 n x n ∈ A(D). Given r ∈]0, R[, we put |f |(r) = sup n∈IN {|a n |r n }. Then we know that |f |(r) = sup |x|=r |f (x)|, that | . | is an ultrametric absolute value on A(D) and that a function f ∈ A(D) is unbounded if and only if lim r→R -

  ρ(f, r) = log(log(|f |(r))) -log(R -r) and ρ(f ) = lim sup r→R - ρ(f, r), hence ρ(f ) = lim sup r→R - log(log(|f |(r)))-log(R -r) .

  log r -log |a n |) and so, Z(r, f ) is called the counting function of zeros of f in D, counting multiplicity.

Theorem 10 :

 10 Suppose IK has characteristic 0. Let f, g ∈ A * (D) be such that lim sup r→R - T (r, f ) T (r, g) > 2. Then both f g and g f have at most two perfectly branched values.

  most two perfectly branched values. Now, when ρ(f ) = ρ(g), we can still give some precisions. Theorem 12: Suppose IK has characteristic 0. Let f, g ∈ A * (D) and suppose that ρ(f ) = ρ(g) and σ(f ) = σ(g). Then both f g and g f have at most three perfectly branched values. Moreover, if 2σ(g) < σ(f ) or if 2σ(f ) < σ(g) then f g and g f have at most two perfectly branched values. By Theorems 10 and 11, we can derive Corollary 12.1: Corollary 12.1: Suppose IK has characteristic 0. Let f, g ∈ A * (D) be such that f g admits four distinct perfectly branched values. Then ρ(f ) = ρ(g) and σ(f ) = σ(g). The proofs The proofs of Theorems 1 and 2 are immediate. The proof of Theorem 4, is also immediate thanks to the property |f |(r) ≤ |f |(r) r for functions having a zero at 0, what

  n→+∞ log(log(|f |(r n )) (-log(R -r n ))≥ s, therefore ρ(f ) ≥ s. But this holds for every s < λ(f ). Thus, ρ(f ) ≥ λ(f ) and finally, ρ(f ) = λ(f ).Proof ofTheorem 6: Let s = ρ(f ), t = ρ(g) and suppose s ≥ t. When r is close enough to R, we have max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r)) and by Theorem 1, we have ρ(f g) = s. Therefore

  +∞[ and b ∈ [0, +∞[. Then log(a + b) ≤ log(a) + log(b + 1). Proof: Indeed, since a ≥ 1, we have log(a + b) ≤ log(a(b + 1)) = log(a) + log(b + 1).

( 1 )

 1 log(log(|f |(r))) ≤ log(log(|f |( ))) + log b(R -r) -s (log( r )) + 1 . Now, since s > 0, there obviously exists h ∈ [ , R[ such that b(R -r) -s ≥ 1 ∀r ∈ [h, R -[, therefore by Lemma L again, log(log(|f |(r))) ≤ log(log(|f |( ))) + log b(R -r) -s (log( r ) + log(1 + 1)

  ∀r ∈]0, R[ and |f |(r) = |f |(r) r ∀r ∈]0, R[ [7], [8], and therefore we can easily check that log log(|f |(r)) -log(r) -log(R -r) = log(log(|f |(r))) -log(R -r) Now take > 0. There obviously exists r 0 ∈]0, R[ such that log(|f |(r) -≤ log(|f |(r) -log(r) ∀r ∈ [r 0 , R[, hence log(|f |(r) -≤ log(|f |(r) ≤ log(|f |(r) ∀r ∈ [r 0 , R[, therefore log(log(|f |(r)) -) -log(R -r) < log(log(|f |(r))) -log(R -r) < log(log(|f |(r))) -log(R -r) . Consequently, since lim r→R -|f |(r) = +∞, we have lim sup r→R - ρ(f , r) = lim sup r→R - ρ(f, r), which

Lemma J :

 : Suppose IK has characteristic 0. Let φ = f g ∈ M(D) with f, g ∈ A * (D) having no common zero. Then, given b ∈ IK, we have Z(r, φ -b) = Z(r, f -bg) ≤ max(T (r, f ), T (r, g)) + O(1) = T (r, φ) + O(1).

3 j=1Z

 3 (r n ) n∈IN in ]0, R[ such that lim n→+∞ r n = R and such that (1) T (r n , g) ≤ γT (r n , f ) ∀n ∈ IN.Suppose that φ has 3 perfectly branched values b j , j = 1, 2, 3. Applying Theorem N we have[START_REF] Boussaf | Growth of p-adic entire functions and applications[END_REF] 2T (r, φ) ≤ (r, φ -b j ) + N (r, φ) + O(1).

2 a 1 . 4 j=1ZT 3 j=1Z

 2143 contradiction since, by Lemma G, we have lim r→R - T (r, f ) = +∞. Similarly, considering 1 φ , we can see that g f has at most two branched values. Proof of Theorem 11: Let γ = ρ(g) ρ(f ) and let (r n ) n∈IN be a sequence in ]0, R[ such that lim n→+∞ r n = R and lim n→+∞ log(log(|f |(r n ))) -log(R -r n ) = ρ(f ). By hypothesis, we have lim n→+∞ log(log(|g|(r n ))) log(log(|f |(r n ))) ≤ γ hence lim n→+∞ log(T (r n , g)) log(T (r n , f )) ≤ γ.Take β ∈]γ, 1[. Then when n is big enough, we can getT (r n , g) T (r n , f ) ≤ (T (r n , f )) β-But since β <1 and since, by Lemma G, lim n→∞ T (r n , f ) = +∞, one sees that lim n→∞ (T (r n , f )) β-1 = 0, which ends the proof. Proof of Theorem 12: Without loss of generality, we can suppose that σ(f ) > σ(g) and, as explained in the proof of Theorem 10, we can suppose that f and g have no common zero and satisfy f (0) = g(0) = 0. Put φ = f g . Then we have T (r, φ) = max(T (r, f ), T (r, g)), r > 0. Put ρ(f ) = t. There exist γ > 0 and a sequence (r n ) n∈IN in ]0, R[ such that lim n→+∞ r n = R and log(|f|(r n ))(R -r n ) t ≥ log(|g|(r n ))(R -r n ) t + γ, ∀n ∈ IN hence log(|f |(r n )) ≥ γ(R -r n ) -t + log(|g|(r n )), ∀n ∈ IN consequently,(1)T (r n , f ) ≥ γ(R -r n ) -t + T (r n , g), ∀n ∈ IN.Consequently,(2)T (r n , φ) = T (r n , f )when n is big enough. Suppose now that φ admits 4 perfectly branched values b j , j = 1, 2, 3, 4 and let q be the total number of zeros of order 1 of the φ -b j , j = 1, 2, 3, 4.Applying Theorem N to φ, we have3T (r n , φ) ≤ (r n , φ -b j ) + N (r n , φ)) + O(1) (3) ≤ 4T (r n , f ) 2 + q log(r n ) + T (r n , g) + O(1)hence by[START_REF] Amice | Les nombres p-adiques[END_REF],3T (r n , f ) ≤ 2T (r n , f ) + T (r n , f ) + q log(r n ) -γ(R -r n ) -t + O(1) therefore 3T (r n , f ) ≤ 2T (r n , f ) + T (r n , f ) -γ(R -r n ) -t + O(1)Clearly lim n→+∞ +q log(r n ) -γ(R -r n ) -t = -∞ and hence that inequality is absurd when n is big enough, which ends the proof of the first claim.Suppose now that 2σ(g) < σ(f ) and set β = σ(f ) 2 -σ(g). So, there exists a sequence(r n ) n∈IN in ]0, R[ such that lim n→+∞ r n = R and 2T (r n , g)(R -r n ) t + 2β ≤ T (r n , f )(R -r n ) (r n , g) ≤ T (r n , f ) 2 -β(R -r n ) -t ∀n ∈ IN.Suppose now that φ has three perfectly branched values b j , j = 1, 2, 3. Similarly to (3), thanks to (4) now we can get 2T (r n , φ) = 2T (r n , f ) ≤ (r n , φ -b j ) + Z(r n , g) + O(1)≤ 3T (r n , f ) 2 + T (r n , f ) 2 -β(R -r n ) -t + O(1)).
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