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SUMMARY

Centromeres define the chromosomal position where kinetochores form to link the chromosome to micro-

tubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone

H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone

chaperones, which handle the non-nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing

cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC

SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear pro-

tein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co-ex-

pressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N-terminal tail and the

histone fold domain of non-nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3

deposition, identifying NASPSIM3 as a CenH3 histone chaperone.
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INTRODUCTION

Eukaryotic DNA is organized into chromatin using histones

as components of its building blocks, the nucleosomes.

The incorporation of different histone variants into the

nucleosome determines nucleosome stability, DNA acces-

sibility and higher order chromatin organization. The his-

tone variant CenH3 is unique in that its incorporation is

limited to the centromeres (Talbert et al., 2002; Lermon-

tova et al., 2015; Rosin and Mellone, 2017). CenH3 deposi-

tion is a pre-requisite for centromere formation and in turn

kinetochore assembly, ensuring equal partitioning of

genetic material between daughter cells during cell

division.

Escort, deposition and eviction of the different histone

variants depend on histone chaperones that play an impor-

tant role in defining discrete chromatin landscapes impor-

tant for genome function, stability and cell identity

(Hammond et al., 2017). These different histone chaperones,

defined ‘as factors that associatewith histones and stimulate

a reaction involving histone transfer without being part of

the final product’ (De Koning et al., 2007), execute distinct

functions in an interaction network, which has been exten-

sively characterized in animals and yeast. Recently, 22 and

25 genes encoding histone chaperones in Arabidopsis and

rice, respectively, have been identified (Tripathi et al., 2015).
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These proteins were classified into seven different families,

namely NAP (NUCLEOSOME ASSEMBLY PROTEIN), CAF1

(CHROMATIN ASSEMBLY FACTOR 1), SPT6 (SUPPRESSOR

OF TY ELEMENT 6), ASF1 (ANTI-SILENCING FACTOR 1),

HIRA (HISTONE REGULATOR A), NASP (NUCLEAR AUTO-

ANTIGENIC SPERM PROTEIN) and FACT (FACILITATES

CHROMATIN TRANSCRIPTION). While some of these his-

tone chaperones are known to specifically deposit a particu-

lar variant, such as H3.1 that is assembled by CAF-1 (Jiang

and Berger, 2017; Benoit et al., 2019), which histone chaper-

ones store, escort and deposit the centromeric histone vari-

ant CenH3, initially termed HTR12 (Talbert et al., 2002, 2012)

in Arabidopsis, still remains unknown. In line with the low

conservation of CenH3 proteins between species (Mattiroli

et al., 2015), several distinct CenH3 chaperones have been

identified. These include the Holliday junction recognition

protein (HJURP) in humans (Dunleavy et al., 2009; Foltz

et al., 2009), Scm3 in Saccharomyces cerevisiae and in

Schizosaccharomyces pombe (Stoler et al., 2007; Pidoux

et al., 2009), the fly-specific protein CAL1 in Drosophila

(Phansalkar et al., 2012; Chen et al., 2014) and the Sim3 pro-

tein, a homolog of mammalian histone chaperone NASP, in

S. pombe (Dunleavy et al., 2007). HJURP specifically inter-

acts with the pre-nucleosomal dimer CenH3–H4 (Dunleavy

et al., 2009; Foltz et al., 2009; Mattiroli et al., 2015) and is

required for de novo CenH3 deposition thereby also deter-

mining the position of novel centromeres (Barnhart et al.,

2011). Scm3 localizes to centromeres and is necessary for

loading of CenH3 to the centromeres of S. pombe (Pidoux

et al., 2009), while Sim3 has been suggested to escort

CenH3 proteins (Dunleavy et al., 2007). Mammalian NASP

has been initially identified as a linker histone chaperone

(Richardson et al., 2000) and was later detected in the

cytosolic and nuclear ASF1 complex using mass spec-

trometry analysis or after biochemical fractionation

(Jasencakova et al., 2010; Apta-Smith et al., 2018). It shut-

tles newly synthesized H3–H4 dimers in the cytosol from

heat shock proteins (HSPs) to ASF1 (Campos et al., 2010)

and is involved in tending a reservoir of H3–H4 histones

(Cook et al., 2011). However, by immunostaining, NASP

was mainly detected in the nucleoplasm (Apta-Smith

et al., 2018). Purified recombinant human sNASP pro-

moted the assembly of nucleosomes containing H3 vari-

ants including CenH3CENP-A (Osakabe et al., 2010), but,

in vivo, reducing NASP levels does not affect soluble

CenH3 levels (Cook et al., 2011), therefore a direct implica-

tion of mammalian NASP in CenH3 escort or deposition

remains to be shown. Arabidopsis NASPSIM3 localizes to

the nucleoplasm as observed for yeast Sim3 and mam-

malian NASP. It can bind monomeric H3.1 and H3.3 his-

tones, while in vitro NASPSIM3 also interacts with H3.1–H4
or H3.3–H4 dimers (Maksimov et al., 2016).

Here we identify NASPSIM3 as a binding partner of Ara-

bidopsis CenH3. Highly expressed in actively dividing

tissues, with a similar pattern as CenH3, NASPSIM3 does

not tightly interact with chromatin suggesting that it plays

a role in escorting non-nucleosomal CenH3 histones. In

line with this role, reducing NASPSIM3 expression nega-

tively affects CenH3 deposition at centromeres.

RESULTS

NASPSIM3 binds CenH3

To screen for yet unknown interactors of Arabidopsis

CenH3, we performed immunoprecipitation coupled to

mass spectrometry. To this aim we used inflorescences of

plants expressing CenH3 as an EYFP fusion (the genomic

coding region of CenH3 fused to the EYFP coding sequence)

and precipitated gCenH3�EYFP with an anti-GFP antibody

before submitting the co-immunoprecipitated proteins to

mass spectrometry analysis. Plants expressing EYFP alone

served as a negative control. In four independent

gCenH3�EYFP mass spectrometry samples we identified

between six and 14 peptides (coverage 15.65–35.57%) that

corresponded to NASPSIM3 (AT4G37210) and which were

not detected in the EYFP control samples (Figures 1a

and S1a). Altogether 52 peptides matching NASPSIM3 with a

combined coverage of 41.06% were detected, strongly sug-

gesting that NASPSIM3 can be found in a complex with

CenH3 in vivo. In an independent approach to identify

CenH3 binding proteins, tandem affinity purification (TAP)

experiments coupled to mass spectrometry analysis were

performed using GSRhino�CenH3 and GSRhino�H3.1 pro-

teins expressed under control of the 35S promoter in

actively dividing Arabidopsis cell culture suspensions (Fig-

ure 1a and Supporting Information Figure S1a). In four

independent pull down samples of both CenH3 and H3.1

eight to 10 peptides (coverage 20.9–26.6%) and nine or 10

peptides (coverage 20.1–30.1%), respectively, correspond-

ing to NASPSIM3 have been identified (Figure S1b), while

none was identified in the TAP assays with the GSRhino tag

alone as bait. These results consolidate that CenH3 interacts

in vivowith NASPSIM3.

To determine whether NASPSIM3 interacts directly with

CenH3 or is part of a complex including CenH3, we ana-

lyzed interactions of NASPSIM3 with different histone pro-

teins using yeast-two-hybrid (Y2H) assay. Yeast strains

expressing NASPSIM3 as bait, and H3.1, H3.3 or CenH3 as

prey grew on selective medium, indicating that NASPSIM3

binds CenH3 (Figure 1b). CenH3 binding is specific to

NASPSIM3 as the histone chaperone ASF1A, known in

mammals to bind H3–H4 dimers (Natsume et al., 2007),

interacts with H3.1 and H3.3, but not with CenH3 (Fig-

ure 1a). Neither NASPSIM3 nor ASF1A-expressing strains

grew on selective medium when co-expressed with an

empty prey vector or with a vector expressing the H2A his-

tone variant H2A.W.6 or the H1 variant H1.3 corroborating

their specificity for H3 variants. A drop dilution test

© 2019 Leibniz Institute of Plant genetics and Crop Plant Research (IPK).
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revealed a strong interaction of NASPSIM3 with H3.3, fol-

lowed by CenH3 and H3.1 (Figure 1c).

NASPSIM3 interacts with both C- and N-terminal parts of

CenH3 in planta

To confirm the direct interaction between NASPSIM3 and

CenH3 in planta, bimolecular fluorescence complementa-

tion (BiFC) assays were performed on young Agrobac-

terium-infiltrated tobacco (Nicotiana benthamiana) leaves

(Walter et al., 2004) containing mitotic cells. We first ana-

lyzed the nuclear distribution of NASPSIM3 and CenH3 pro-

teins when transiently expressed in tobacco. Arabidopsis

NASPSIM3 fused to EYFP localized to the nucleus, showing

a uniform distribution excluding nucleoli (Figure 2a). When

CenH3 was expressed with an N-terminal EYFP tag, two

types of nuclei could be detected: either with an exclusive

localization of the EYFP�CenH3 fusion protein in restricted

spots corresponding to centromeres (Figure 2b) or both in

the nucleoplasm and at centromeres (Figure 2c) showing

that Arabidopsis CenH3 could be incorporated at

N. benthamiana centromeres under these conditions.

When NASPSIM3 fused to the C- and CenH3 to the N-termi-

nal YFP fragments, and vice versa were co-expressed in

tobacco leaves, EYFP was successfully reconstituted in

nuclei of the transformed cells with both combinations

demonstrating interaction between NASPSIM3 and CenH3

in planta (Figure 2d,e). BiFC signals were diffuse through-

out the nucleoplasm, and no specific enrichment was

observed in defined spots.

We have shown previously that CenH3DN, lacking the N-

terminal domain, localizes to centromeres (Lermontova

et al., 2006), indicating that the CenH3 histone fold domain

is sufficient for its targeting to centromeres. Therefore, we

tested which part of the CenH3 protein interacts with

NASPSIM3. To this end, the N-terminal tail (amino acids 1–
70) or the histone fold domain (amino acids 71–178) of

CenH3 were fused to the N- and C-terminal parts of YFP

respectively, and co-expressed with full-length NASPSIM3.

BiFC signals could be detected in both cases (Figure 2f,g),

showing that NASPSIM3 can interact both with the

Figure 1. Identification of NASPSIM3 as a CenH3

binding partner.

(a) Scheme illustrating the GFP-trap experiment

using EYFP tagged CenH3 protein as bait and TAP

experiments using GSRhino�CenH3 and

GSRhino�H3.1. EYFP and GSRhino proteins were

used as negative controls.

(b) Interaction between NASPSIM3 or ASF1A and the

histone H3 variants H3.1, H3.3 and CenH3 or the

histone variants H2A.W.6 and H1.3 as probed in a

yeast-2-hybrid assay. Zygotes expressing both prey

and bait are selected on PM (Permissive Medium:

YNB without Leu and Trp). Protein–protein interac-

tions are assessed on LSM (Low Stringency Med-

ium: YNB without Leu, Trp and His) or HSM (High

Stringency Medium: YNB without Leu, Trp, His and

Ade).

(c) Strength of the protein–protein interactions

between NASPSIM3 and H3.1, H3.3 or CenH3 was

evaluated by drop dilution test.
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N-terminal tail as well as independently with the histone

fold domain of CenH3.

Control experiments, in which NASPSIM3-nYFP was co-

expressed with free cYFP or CenH3-cYFP with free nYFP as

well as combinations of N- and C-terminal parts of CenH3

fused with N- or C-terminal parts of EYFP, respectively, did

not show any fluorescence excluding non-specific interac-

tions of NASPSIM3 or CenH3 with YFP (Figure 2h).

Arabidopsis NASPSIM3 expressed in actively dividing

tissues

Expression of Arabidopsis CenH3 is regulated by E2F, a

transcription factor active in dividing tissues (Heckmann

et al., 2011). As the promoter of NASPSIM3 contains a puta-

tive E2F binding site (Figure 3a) (Lermontova et al., 2015),

we speculated that it is expressed in dividing cells similar

to CenH3.

To test whether Arabidopsis NASPSIM3 is preferentially

expressed and the corresponding protein is accumulated

in dividing tissues, we generated transgenic lines express-

ing a pNASP:NASPSIM3�EGFP�GUS (for b-glucuronidase)
reporter gene construct (Figure 3a), and analyzed the GUS

staining pattern in these plants as a readout for NASPSIM3

gene expression and protein accumulation. Although GUS

staining intensity varied between independent transgenic

lines, all positive lines showed a similar staining pattern.

Five representative lines were chosen for detailed analysis.

In 4-day-old seedlings, GUS staining intensity was highest

in root tips, shoot apical meristems and cotyledons (Fig-

ure 3b). In older plantlets (7-day-old, Figure 3c; 14-day-old,

Figure 3d), NASPSIM3 expression was also detected in

young leaves containing actively dividing cells as previ-

ously reported (Maksimov et al., 2016). In 4-week-old

plants only young, but not old fully developed leaves

showed GUS staining (Figure 3e–g). In inflorescence

meristems, young inflorescences and developing flower

buds GUS activity was almost absent (Figure 3h, upper

part) or very weak (Figure 3h, lower part) but GFP signal

from the NASPSIM3�EGFP�GUS fusion protein could be

detected in petals of flower buds and in the developing

male gametophyte (Figure S2a–d). However, older inflores-

cences displayed GUS activity of variable intensity in

anthers and anther filaments (Figure 3h,i). Further data

mining of some available RNA-seq datasets from different

tissues and the eFP genome browser confirmed high

NASPSIM3 expression in tissues comprising dividing cells

such as the root meristem and the shoot apex, but also

found NASPSIM3 transcripts to be abundant in flower buds

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. NASPSIM3 binds both the N-terminal tail and the histone fold domain of CenH3 in planta.

(a–c) Localization of NASPSIM3-EYFP (a, green) and EYFP-CenH3 protein (b, c, green) in nuclei of Nicotiana benthamiana leaves.

(d, e) BiFC signals (green) revealing interaction of NASPSIM3 with CenH3.

(f, g) BiFC signals revealing interaction of NASPSIM3 with N- and C-terminal parts of CenH3, respectively.

(h) A representative example of negative control showing absence of BiFC signals. For the negative control experiments NASPSIM3-nYFP was co-injected with

free cYFP and CenH3�cYFP with free nYFP.
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(Figure S2e,f), despite weak GUS staining. Similar to

NASPSIM3, CenH3 shows highest expression in root and

shoot meristems (Figure S2e,f).

Taken together, NASPSIM3 was preferentially expressed

in dividing tissues similar to CenH3.

The predominant NASP isoform NASP.1SIM3.1 localizes to

the nucleoplasm in the interphase

In different Arabidopsis databases, two different splice vari-

ants for the gene At4g37210 are proposed; which differ in

predicted amino acid sequence (Figures 4a left and S3a).

Isoform At4g37210.1 (NASP.1SIM3.1) encodes for 492 amino

acids and At4g37210.2 for 378 amino acids (NASP.2SIM3.2)

lacking part of the C-terminal coiled-coil domain (Figure 4a,

right) due to four nucleotides difference in length of exon 5,

resulting in a frame shift generating a premature stop

codon in exon 6. The corresponding cDNAs: CP002687.1 �

At4g37210.1 and NM_202970.1 � At4g37210.2 were found

in the Arabidopsis sequence database (https://www.ncbi.

nlm.nih.gov/). To confirm the presence of both NASPSIM3

transcripts of Arabidopsis, we performed RT-PCR on RNA

extracted from seedlings and flower buds with an isoform-

specific reverse primer (Figure S3a,b). At4g37210.1 tran-

scripts could be detected in both seedlings and flower buds,

while At4g37210.2 transcripts were detected only in floral

tissues (Figure S3b) confirming the existence of the short

splice variant and suggesting tissue-specific expression.

To study the subcellular localization of the two predicted

NASPSIM3 proteins we generated constructs expressing

NASP.1SIM3.1 and NASP.2SIM3.2 cDNA fragments fused to

EYFP under control of the CaMV 35S promoter. The two

constructs were transiently expressed in leaves of N. ben-

thamiana and for both NASPSIM3 isoforms EYFP fluores-

cence was observed in the nucleoplasm of epidermal

(a)

(b)

(d) (h) (i)

(c) (e) (f) (g)

Figure 3. NASPSIM3 expression during development.

(a) Scheme of the NASPSIM3�EGFP�GUS construct expressing NASPSIM3 as a translational fusion with EGFP and GUS under control of the endogenous pro-

moter. The E2F binding site in the promoter is indicated.

(b–i) Histochemical localization of GUS activity in Arabidopsis plants transgenic for NASPSIM3�EGFP�GUS: 4-day-old (a), 7-day-old (b) and 14-day-old (c) seed-

lings, rosette leaves of 4-week-old plants at different developmental stages (e–g), inflorescence (h), mature flower (i). Bars = 1 mm.

© 2019 Leibniz Institute of Plant genetics and Crop Plant Research (IPK).
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nuclei, whereas EYFP alone was localized in the nucleus

and cytoplasm (Figure S3c). Both constructs were used to

transform A. thaliana and the NASP.1SIM3.1�EYFP fusion

protein was localized in the nucleoplasm of root tip nuclei

(Figure S3d), in agreement with previous reports (Maksi-

mov et al., 2016). In contrast, no transgenic plants could be

recovered on selective media for the second, shorter iso-

form, in three independent transformation experiments. As

expression of the NASP.2SIM3.2 isoform under the 35S pro-

moter might result in overexpression and affect growth,

genomic NASP.2SIM3.2 fragments including endogenous

promoters were cloned to generate a translational fusion

with GFP and GUS reporter genes as it was described

above for the NASP.1SIM3.1 variant (Figure 3a). We showed

that the longer isoform localizes to the nucleoplasm of root

tip nuclei (Figure 4b,e) as previously reported (Maksimov

et al., 2016). For the shorter isoform, only a few transgenic

lines showing GFP signals were obtained. Despite lacking

part of the coiled-coil domain, the shorter isoform showed

a similar nuclear localization to that of the longer isoform

(Figure 4c). The weak expression of NASP.2SIM3.2 in our

transgenic lines is in agreement with the mass

spectrometry experiments, in which no peptide was identi-

fied that could be specifically assigned to the NASP.2SIM3.2

isoform.

De novo incorporation of the CenH3 histone variant

takes place during G2 phase of the mitotic cell cycle (Ler-

montova et al., 2006, 2007). We therefore wanted to inves-

tigate whether the subcellular localization of the

predominant, longer isoform NASP.1SIM3.1 would change

during the mitotic cell cycle. The NASP.1SIM3.1-GFP fusion

is present as the same diffused nuclear stain in root tip

meristems throughout G1, S and even in G2, when newly

synthesized CenH3 is loaded (Figure 4e and Video S1). As

during transient expression in N. benthamiana (Figure 2),

we never observed a pronounced accumulation of

NASP.1SIM3.1 next to chromocenters that could indicate a

direct role of NASP.1SIM3.1 in CenH3 loading.

NASPSIM3 is highly mobile

To study the nuclear localization of Arabidopsis

NASP.1SIM3.1 in relation to chromatin, we performed

immunostaining with anti-GFP antibodies on nuclei of

pNASP:NASP.1SIM3.1-EGFP-GUS transformants and

Figure 4. NASPSIM3 localizes to the nucleoplasm of Arabidopsis root tip nuclei.

(a) Schematic view of the gene structure of NASPSIM3 splice variants and corresponding protein isoforms. The shorter transcript variant is formed due to alterna-

tive splicing (four nucleotide longer exon 5) resulting in a frame shift and premature stop codon in exon 6. The resulting protein isoform lacks part of the coiled-

coil domain. Graphical scheme of domains was prepared in DOG 1.0 (Domain Graph; Ren et al., 2009).

(b–d) Root tip of Arabidopsis thaliana expressing the NASP:NASP.1SIM3.1�EGFP�GUS (b) NASP:NASP.2SIM3.2�EGFP�GUS (c) and 35S:EYFP (d) constructs. Both

NASP.1SIM3.1�EGFP�GUS (b) and NASP.2SIM3.2�EGFP�GUS (c) fusion proteins showed nuclear localization, while EYFP alone (d) was detected in nuclei and cytoplasm.

(e) Live imaging of root tip cells of Arabidopsis transformed with the NASP:NASP.1SIM3.1�EGFP�GUS fusion construct. The arrow indicates a cell undergoing

mitosis.
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applied structured illumination microscopy. At this

higher resolution, NASP.1SIM3.1 partly co-localizes with

chromatin fibers, but is excluded from chromocenters

and the nucleolus (Figure 5a). However, it does not com-

pletely follow the chromatin pattern and also occurs in

between chromatin fibers. Super-resolution microscopy

indicates that the NASP.1SIM3.1-EGFP-GUS fusion protein

is not associated with mitotic chromosomes (Figure 5b).

To further test whether Arabidopsis NASP.1SIM3.1 was

associated with chromatin, we used BY-2 cells expressing

CenH3�EGFP and NASP.1SIM3.1�mCherry. In these highly

dividing cells, CenH3�EGFP localized to centromeres and

NASP.1SIM3.1�mCherry showed a diffuse nuclear staining

coherent with our previous observations (Figure S4). When

we permeabilized these cells using detergent to release

non-chromatin bound proteins from the nucleus, Cen-

H3�EGFP signal was still distinctly detectable in the

nucleus and mostly at centromeres (Figure S4), while the

NASP.1SIM3.1�mCherry signal was visibly reduced com-

pared to the non-treated condition. This indicates that

most of the NASPSIM3 proteins were part of the soluble

nuclear protein pool and did not stably associate with

chromatin. To confirm this observation with a different

assay, we probed the dynamics of NASP.1SIM3.1 by fluores-

cence recovery after photobleaching (FRAP) and fluores-

cence loss in photobleaching (FLIP) (Figure 5c–f). The

unique bleaching of a distinct nuclear area in roots of

plants expressing genomic NASP.1SIM3.1 fragments in

fusion with EGFP showed almost complete signal recovery

within 35 sec (Figure 5c,f). In an experiment with repeated

bleaching (every 5 sec) of a selected area (Figure 5d,f) the

fluorescence was partially recovered in about 2 sec after

each bleaching step. In FLIP experiments, based on the

constant bleaching of a distinct area of the nucleoplasm,

the NASP.1SIM3.1�EGFP�GUS fluorescence was com-

pletely bleached within 30 sec (Figure 5e,f). In short, FRAP

and FLIP experiments revealed a high turnover and mobility

of the NASP.1SIM3.1 protein and confirmed that NASP.1SIM3.1

was not tightly associated with chromatin.

NASPSIM3 interaction network

To identify other binding factors of Arabidopsis NASPSIM3

that may reinforce its role as CenH3 chaperone, we carried

out a Y2H screen using the long NASP.1SIM3.1 isoform as

bait. Among the putative binding partners of NASP.1SIM3.1

we identified three candidates with a clear link to chro-

matin: the histone variant H3.3, the WD40 repeat-contain-

ing protein MSI3 as well as the H2A�H2B histone

chaperone NAP1;2 (NUCLEOSOME ASSEMBLY PROTEIN

1) (Liu et al., 2009). MSI3 is a homolog of MSI1, which is a

subunit of the CHROMATIN ASSEMBLY FACTOR 1 (CAF-1)

complex and which has previously been identified by

immunoaffinity purification of YFP-tagged NASPSIM3 (Mak-

simov et al., 2016) (Figure 6a). We further identified TSK-

ASSOCIATING PROTEIN (TSA1) (Suzuki et al., 2005) that

had been previously shown to bind to Gamma-tubulin

Complex Protein 3- interacting proteins (GIPs) that in turn

also interacted with CenH3 (Janski et al., 2012; Batzen-

schlager et al., 2013). This therefore suggests an additional

link with the centromere. To validate the interaction of

NASPSIM3 with NAP1;2 and TSA1, we cloned the corre-

sponding full-length cDNAs and confirmed that NASPSIM3,

but not ASF1, interacted both with NAP1;2 and TSA1, while

the interaction was stronger with NAP1;2 (Figure 6b,c).

NASPSIM3 knockdown impairs CenH3 deposition

To test whether NASPSIM3 is important to maintain CenH3

levels or its deposition, we aimed to analyze NASPSIM3 loss

of function phenotypes. As T-DNA insertion lines are not

available we turned to existing RNAi lines (Maksimov

et al., 2016) and generated transgenic lines expressing an

artificial miRNA construct directed against NASPSIM3. We

identified few lines with reduced NASPSIM3 mRNA levels,

out of which we selected two lines (RNAi line 4 and

amiRNA line 22) for further analysis (Figure 7a). These

plants did not show any obvious phenotypic abnormalities

during vegetative growth, but demonstrated slightly

reduced seed setting and an increased number of aborted

seeds (Figure S5).

To investigate whether reduced NASPSIM3 expression

would affect nuclear CenH3 levels and its deposition, we

determined CenH3 levels relative to H4 in nuclear extracts

of 10-day-old plantlets from two independent wild-type

seed batches and the two transgenic lines with reduced

NASPSIM3 expression. We reproducibly found a moderate

but significant reduction of nuclear CenH3 levels in these

two lines compared to the wild-type (WT) (Figure 7b,c). To

investigate whether this reflected global CenH3 levels or

might also impact nucleosomal CenH3 at centromeres, we

sorted 4C nuclei isolated from 3-day-old seedlings of the

RNAi line 4 and wild-type plants and carried out immuno-

staining with anti-CenH3 antibodies. Fluorescence image

stacks of each genotype were acquired using structured

illumination microscopy and the sum of the fluorescence

intensities from the centromere (CenH3) signals was

calculated. The level of CenH3 at the centromeres of the

NASPSIM3 RNAi line was reduced ~30% compared with the

wild-type (Figure 7d,e).

Taken together, these results indicated that reduced

NASPSIM3 expression negatively affects CenH3 levels. We

assumed that reduced loading of CenH3 in plant lines with

lower NASPSIM3 levels might result in generation of hap-

loids in crosses with wild-type plants as it was described

for plants with altered expression of CenH3 (Ravi and

Chan, 2010). To test this hypothesis, the RNAi line 4 was

crossed with wild-type. The ploidy level of nuclei from 105

F1 seeds was analyzed by flow cytometry, however, all

nuclei were found to be diploid (Figure S6).

© 2019 Leibniz Institute of Plant genetics and Crop Plant Research (IPK).
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2019), doi: 10.1111/tpj.14518

NASPSIM3 escorts CenH3 in Arabidopsis 7



Figure 5. NASP.1SIM3.1 protein is highly dynamic and does not stably associate with chromatin.

(a) Upper panel: Nucleus of a NASP:NASP.1SIM3.1�EGFP�GUS transformed Arabidopsis plant immunostained with anti-GFP antibodies (red) imaged with struc-

tural illumination microscopy. NASP.1SIM3.1�EGFP immunosignals are localized to the nucleoplasm and absent from DAPI-bright chromocenters (blue). Lower

panel: The images show enlarged regions delimited by dashed boxes in the upper panel.

(b) Cell of an NASP:NASP.1SIM3.1�EGFP�GUS transformed Arabidopsis plant immunostained with anti-GFP antibodies (red) revealing absence of NASP.1SIM3.1

immunosignals from mitotic chromosomes.

(c) Single FRAP in a differentiated root nucleus. A small circular area (1.5 lm in diameter) in the root periphery (red circle) was bleached for 350 lsec and let

recover for 35 sec. The yellow circle indicated the non-bleached area of the nucleus imaged for comparison. C = control pre-bleach fluorescence.

(d) Repeated FRAP in a differentiated root nucleus. A small area (1.5 lm in diameter) in the root periphery (red circle) was repeatedly bleached (B1–B5) for

250 lsec followed by 5 sec recovery (R1–R5). Fluorescence in the non-bleached area of the nucleus (yellow circle) declines as unbleached molecules diffuse into

the bleached area. C = control pre-bleach fluorescence.

(e) Fluorescence loss in photobleaching (FLIP) measurements in a root nucleus in the meristematic zone. Small central area (1.5 lm in diameter) of a root tip

nucleus was repetitively bleached for 50 lsec with 300 lsec interval. Fluorescence in the bleached area (red circle) and the non-bleached control area (yellow cir-

cle) were followed for 30 sec. In all images: Bar = 2 lm.

(f) Graphs show average values of relative fluorescence intensity from five independent experiments. Upper graph: corresponds to the single FRAP (c), middle

graph: corresponds to the repeated FRAP (d) and lower graph: corresponds to FLIP (e). R1 – unbleached area (yellow circle), R2 – bleached area (red circle).

© 2019 Leibniz Institute of Plant genetics and Crop Plant Research (IPK).
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), doi: 10.1111/tpj.14518

8 Samuel Le Goff et al.



DISCUSSION

The chromosomal location where kinetochores assemble

during mitosis and meiosis is in most organisms not

defined by DNA sequence but by a specific chromatin orga-

nization demarcated by incorporation of the histone variant

CenH3. Controlled storage and transport of CenH3 histones,

as well as its deposition only at specific genomic locations,

are therefore critically important for the balanced segrega-

tion of the chromosomes to daughter cells (Lacoste et al.,

2014; M€uller and Almouzni, 2017). Despite its conserved

function in eukaryotes, CenH3 molecules are highly diver-

gent between species. In particular the N-terminus of

CenH3, longer than that of H3.1 or H3.3, shows variability in

length and sequence composition between different phylo-

genetic groups and even within a genus such as Drosophila

(Rosin and Mellone, 2017). In Arabidopsis the N-terminus of

CenH3 is required for CenH3 loading to centromeres of mei-

otic, but not of mitotic chromosomes (Lermontova et al.,

2011; Ravi et al., 2011). It was suggested that in the absence

of the N-terminus, which may be involved in protein–pro-
tein interaction like its homolog in yeast (Chen et al., 2000),

CenH3 cannot be recognized by meiosis-specific chaper-

ones, and therefore cannot be loaded onto centromeres. At

present, the existence of mitosis and meiosis-specific mech-

anisms of CenH3 loading to centromeres remains unan-

swered. In metazoans structurally different protein

complexes are involved in CenH3 deposition such as HJURP

in humans and CAL1 in Drosophila, but no CenH3 transport

or deposition factor had so far been identified in plants.

NASP SIM3 – histone interaction

By searching for Arabidopsis CenH3 interactors in two

independent experimental setups, we identified NASPSIM3

as an in vivo CenH3 binding partner and confirmed interac-

tion between NASPSIM3 and CenH3 using two independent

approaches such as Y2H assays and BiFC. NASPSIM3 is an

evolutionary highly conserved protein that was likely to be

already present in the first eukaryotic ancestor (Nabeel-

Shah et al., 2014). NASPSIM3 comprises three canonical

tetratricopeptide repeat (TPR) motifs and a putative TPR

motif interrupted by a large acidic region in its N-terminus

and a predicted coiled-coil domain in its C-terminus. Ara-

bidopsis NASPSIM3 has previously been shown to bind

with similar affinity to both H3.1 and H3.3 (Maksimov et al.,

2016) likely through a conserved heptapeptide motif LA–
IRG in the C-terminal region of histone H3 that is sufficient

for the interaction with the TPR motifs of human and Ara-

bidopsis NASPSIM3 (Bowman et al., 2016). This heptapep-

tide is highly conserved in different H3 variants including

human CenH3CENP-A, therefore suggesting that the interac-

tion between Arabidopsis NASPSIM3 and CenH3 would take

place via the CenH3 HFD domain. However, while the LA–
IRG motif is conserved in Arabidopsis H3.1 and H3.3, this

motif differs in Arabidopsis CenH3 (namely LA–LGG). This

Figure 6. NASPSIM3 interaction network.

(a) Preys identified in a yeast-two-hybrid screen

using NASP.1SIM3.1 as bait.

(b) Interaction between NASP.1SIM3.1 or ASF1A and

TSA1 and NAP1;2. Zygotes expressing both bait

and prey are selected on PM (Permissive Medium:

YNB without Leu and Trp). Interactions are

assessed on LSM (Low Stringency Medium: YNB

without Leu, Trp and His).

(c) The strength of the protein–protein interaction

between NASPSIM3 and TSA1 or NAP1;2 was evalu-

ated by drop dilution test.
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therefore suggests the existence of additional contacts

between CenH3 and NASPSIM3. Indeed, while interaction of

NASP with the H3 C-terminus was lost in a human sNASP

binding mutant, this did not completely abolish binding to

full-length H3 (Bowman et al., 2016) and in our BiFC assays

NASPSIM3 interacts both with the HFD of CenH3 and its N-

terminus. A possible supplementary interaction motif

could be the proline-rich GRANT motif recently defined in

the fission yeast CenH3 N-terminus that is required for

interaction with Sim3 (Tan et al., 2018). However, our anal-

ysis of the N-termini of different plant CenH3 proteins did

not reveal a conserved GRANT motif in plants, suggesting

yet another mode and domain of interaction between Ara-

bidopsis CenH3 and NASPSIM3. Such multivalent protein–
protein interactions between histones and chaperone pro-

teins as observed for NASPSIM3 and CenH3 might allow

handing over CenH3 to other transport or assembly factors

or histone modifiers. Alternatively, it may reflect different

binding modes of CenH3 to either monomeric CenH3 or

CenH3–H4 dimers. Despite the fact that it was reported that

the mammalian NASP forms also complexes with H1 linker

histones through the acidic patch present in TPR2, which is

conserved in Arabidopsis NASPSIM3 (Richardson et al.,

2000; Cook et al., 2011; Wang et al., 2012), we did not find

evidence that Arabidopsis NASPSIM3 binds H1 or H2A his-

tones implying specificity for H3 histones.

CenH3 is predominantly expressed in cells that are

actively dividing, an expression pattern that can be

explained by specific binding sites for the E2F transcrip-

tion factor in its promoter (Heckmann et al., 2011). We

find that the NASPSIM3 promoter also contains an E2F

binding site. Accordingly, NASPSIM3 shows elevated

Figure 7. Reduced NASPSIM3 levels affect CenH3

deposition.

(a) NASPSIM3 transcript levels in seedling from two

independent wild-type (WT) (Col 0) seed batches, a

line expressing an RNAi construct (RNAi-4) or an

artificial miRNA (amiRNA-22) directed against

NASPSIM3 transcripts. Relative NASPSIM3 transcript

levels normalized to MON1 are shown, one sample

of the three biological replicates of Col0 seed batch

2 was set to 1.

(b) CenH3 protein levels in nuclear extracts from

seedlings revealed by western blotting using an

anti-CenH3 antibody. CenH3 levels were normalized

to H4 levels.

(c) Quantification of CenH3 band intensities relative

to H4 from at least three independent biological

replicates. Relative CenH3 levels in seedling from

the Col0 seed batch 2 were set to one in each inde-

pendent experiment. Error bars correspond to SEM.

Student’s t-test, **P < 0.01; *P < 0.05; •P < 0.07.

(d) Representative nuclei isolated from 3-day-old

WT nuclei and the NASPSIM3 RNAi line 4 (RNAi-4).

Endogenous CenH3 was revealed by immunostain-

ing with anti-CenH3 antibodies.

(e) Quantification of relative intensity of CenH3

immunosignals at centromeres of wild-type and

NASPSIM3 RNAi-4. n (WT) = 10; n (RNAi-4) = 14.

Error bars correspond to SEM. Mann–Whitney Rank

Sum Test: *P < 0.05.
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promoter activity and transcript levels in dividing cells

such as shoot and root meristems, similar to mammalian

NASP that parallels histone expression (Richardson et al.,

2000). For most tissues, NASPSIM3 transcript levels were

also reflected at the level of the NASPSIM3-EGFP-GUS

fusion protein except for young flower buds, which

showed weak GUS staining (Figure 3h) and revealed low

GFP fluorescence in petals and the developing male

gametophyte (Figure S2a–d). This observation is poten-

tially echoing the weak correlation between transcript and

protein levels as frequently observed (Jiang et al., 2007;

Nakaminami et al., 2014).

Nevertheless, the high expression in root meristems

for example, points to a role in escorting CenH3, while

not excluding a role for NASPSIM3 in chaperoning H3

variants during DNA replication when histone pools are

particularly dynamic. Indeed, a recent study indicated

that the inheritance of pre-existing CenH3CENP-A nucleo-

somes at the replication fork requires dedicated machin-

ery that differs from H3.1 and H3.3 maintenance

and involves HJURP recruitment (Zasadzi�nska et al.,

2018).

NASPSIM3 splice variants

In most vertebrate species, functional diversity of NASP

proteins is generated through different splice variants. In

mammals, alternative splicing generates two different iso-

forms, tNASP, highly expressed in testis, and sNASP that

is rather ubiquitously expressed (Richardson et al., 2000).

In Arabidopsis, there is evidence for expression of a

shorter NASP.2SIM3.2 isoform with a truncated coiled-coil

domain. While absent from most RNA-seq datasets, sug-

gesting low abundance, we confirmed the presence of this

alternative transcript in flower buds and showed that the

corresponding protein as a GFP fusion was weakly

expressed with similar nuclear localization than the longer

isoform. BLAST search against NASP.1SIM3.1 cDNA of Ara-

bidopsis revealed two splicing variants in cotton Gossyp-

ium raimondii: XP 012491717.1, corresponding to the

longer isoform, and XP 012491718.1, corresponding the

shorter isoform, while in other plant species only the

NASP.1SIM3.1 variant could be identified. It is very likely

that the NASP.2SIM3.2 isoform is not represented in tran-

scriptomes of most species due to its low abundance and

limitations of the transcriptome assembly algorithms.

If a NASPSIM3 knock-out were available, it would be

interesting to investigate whether the short isoform com-

plements the mutant phenotypes or whether a functional

coiled-coil domain is essential for NASPSIM3 function, e.g.

by mediating critically important protein–protein interac-

tions essential for H3 or CenH3 handling. The fact that we

never recovered plant lines with the 35S::NASP.2SIM3.2 -

GFP construct that might function as a dominant negative

may point in this direction.

Impact of reduced NASPSIM3 expression

In contrast with mammals or Drosophila, in which loss of

histone chaperones such as CAF-1, HIRA, ASF-1 and NASP

causes early embryonic lethality, Arabidopsis plants lack-

ing CAF-1, HIRA and both ASF-1 orthologues are viable

(Kaya et al., 2001; Zhu et al., 2011; Duc et al., 2015) indicat-

ing an important plasticity in histone handling in plants.

Because we did not find lines with strongly reduced

NASPSIM3 expression and several attempts to generate

nasp mutant plants with CRISPR-Cas9 technology have

been unsuccessful, NASPSIM3 is likely to play an essential

role in histone H3 handling in plants. Whether CenH3

could be bound by other factors such as the FACT com-

plex (Okada et al., 2006) remains to be determined.

NASPSIM3 interaction network

Previous studies have shown that NASPSIM3 interacts with

the heat shock 70 kDa protein HSC70-1 and the WD-40

repeat-containing protein MSI1 (Maksimov et al., 2016),

the latter being one of the three subunits of the CAF-1

complex as well as of various remodeling complexes (Kaya

et al., 2001; Hennig et al., 2005). By screening an Y2H

library we have identified here MSI3 as an additional

NASPSIM3 binding partner. MSI proteins are conserved his-

tone binding proteins that bind non-nucleosomal histones

H4. Interaction with NASPSIM3 could therefore be direct or

occur via histones. Our screen further revealed interaction

with histones as expected and with one of the four NAP

homologs NAP1;2, a H2A-H2B chaperone. While predomi-

nantly cytoplasmic, a small fraction of NAP1;2 was found

as well in the nucleus and shown to bind chromatin (Liu

et al., 2009). Finally, we detected interaction with TSK-as-

sociating protein 1 (TSA1) that is preferentially expressed

in shoot apexes similar to NASPSIM3 (Suzuki et al., 2005)

and localizes in ER body-like structures and at the nuclear

envelope (Batzenschlager et al., 2013) where centromeres

are preferentially localized (Fang and Spector, 2005). TSA1

interacts with the small GIP proteins, which also bind

CenH3. Similar to NASPSIM3, loss of GIP proteins results in

reduced CenH3 loading (Batzenschlager et al., 2015),

establishing an additional indirect link of NASPSIM3 in cen-

tromere function. While NASPSIM3 is detected predomi-

nantly in the nucleus in interphase, the interaction with

two proteins (NAP1;2 and TSA1), which are reported to be

predominantly cytoplasmic, could also indicate existence

of a small cytoplasmic fraction of NASPSIM3 in plant cells.

Role of NASPSIM3 in CenH3 escort

Reduced NASPSIM3 expression affected CenH3 levels and

deposition that, however, had no effect on chromosome

segregation and did not lead to the generation of haploids

in crosses with wild-type (Figure S6) as it was described

for the cenh3 mutant complemented by a GFP tagged
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version of CenH3, in which the N-terminal tail was replaced

by the one from histone H3.3 (Ravi and Chan, 2010). This

could be explained by the fact that only plants with weakly

affected NASPSIM3 expression and in consequence only

~30% reduced CenH3 levels were obtained. While we can-

not exclude a more direct role for NASPSIM3 in CenH3

deposition or inheritance at the replication fork, most of

our evidence points to a role in CenH3 escort like its yeast

homolog (Dunleavy et al., 2007). Confocal or high-resolution

imaging of independent NASPSIM3�GFP, NASPSIM3

�EGFP�GUS and NASPSIM3�mCherry fusions showed a

diffuse nuclear staining excluding nucleoli, coherent with

previous observations (Maksimov et al., 2016) and in

agreement with a role for NASPSIM3 in chaperoning not

only CenH3 but also H3.1 and H3.3. FRAP analysis together

with the loss of nuclear NASPSIM3 by detergent extraction

further revealed that the majority of Arabidopsis NASPSIM3

is not tightly associated with chromatin. In addition, no

enrichment of BiFC signals was observed at centromeres,

which may have indicated NASPSIM3-CenH3 interaction

during CenH3 deposition, despite the correct loading of

CenH3 in these actively dividing cells. It is therefore likely

that NASPSIM3 is not directly involved in CenH3 deposition,

but rather binds CenH3 in its soluble, not chromatin

bound, state. This is in agreement with the fact that in

mammalian cells NASP depletion mostly affects the sol-

uble H3–H4 pool and the observations that Arabidopsis

NASPSIM3 preferentially binds to monomeric H3.1 and H3.3

in vivo (Maksimov et al., 2016). NASPSIM3 may thereby

ensure CenH3 supply by maintaining the nuclear CenH3

pool and escort CenH3 to the corresponding assembly fac-

tor as suggested for Sim3 (Dunleavy et al., 2007). Further

identification of additional NASPSIM3 binding partners,

may allow us to determine the factors or complexes to

which NASPSIM3 hands over CenH3 histones for chromatin

assembly.

EXPERIMENTAL PROCEDURES

Plasmid construction and plant transformation

In detail, to generate CenH3�EYFP expressing plants, EYFP CDS
(without START/STOP codon; flanked 50 and 30 with short neutral
linker sequences) was amplified using primer TAG_cloning_for
and TAG_cloning_rev (Table S1), cloned in vector pCRTM-Blunt
(Invitrogen, http://www.thermofisher.com/invitrogen) generating
pBlunt�EYFP�TAG, and confirmed by sequencing. EYFP CDS was
then amplified from pBlunt�EYFP�TAG using primer
GFPs_CDScloning_for and GFPs_CDScloning_rev (Table S1) and
cloned via SpeI/SalI in the p35S-Nos-BM vector (http://www.
dna-cloning.com). The resulting expression cassette (35S pro-
moter, EYFP CDS, Nos terminator) was subcloned via SfiI into the
binary vector pLH7000 (http://www.dna-cloning.com).

To generate gCenH3�EYFP expressing plants, the CenH3 geno-
mic locus was amplified using primer P1_CenH3 and P2_CenH3 as
well as P3_CenH3 and P4_CenH3 (Table S1). Using primer TAG_
for and TAG_rev (Table S1), EYFP CDS was amplified from

pBlunt�EYFP�TAG. The three resulting amplicons were merged
into one product in a subsequent PCR reaction using primer
P1_universal_TT and P2_universal_TT (Table S1), inserted via SfiI
in vector p35S-Nos-BM (dna-cloning-service.com), and confirmed
by sequencing. Resulting expression cassette (CenH3 genomic
locus expressing CenH3 internally in frame fused via linker
sequences with EYFP) was subcloned via SfiI into pLH7000 (http://
www.dna-cloning.com).

To study the localization of NASP.1SIM3.1 and NASP.2SIM3.2

in vivo, entire open reading frames were amplified by RT-PCR
from RNA isolated from flower buds of A. thaliana Col-0 plants
using NASPSIM3cDNA_f and NASP.1SIM3.1cDNA_r or NASPSIM3cD-
NA_f and NASP.2SIM3.2cDNA_r primers (Table S1), respectively
and cloned into the pDONR221 vector (Invitrogen, https://www.the
rmofisher.com/invitrogen) via the Gateway BP reaction. From
pDONR221 clones, cDNA fragments were recombined via Gate-
way LR reaction (Invitrogen, https://www.thermofisher.com/invitro
gen) into the two attR recombination sites of the Gateway-
compatible vectors pGWB41 and pGWB42 (http://shimane-u.org/
nakagawa/gbv.htm), respectively.

To study the activity of the NASPSIM3 promoter in different
A. thaliana tissues, and to identify the localization pattern of
NASPSIM3 proteins expressed under the native promoter, genomic
NASP.1SIM3.1 (�995 up to +2043 relative to the transcriptional
NASPSIM3 start site) and NASP.2SIM3.2 (�995 up to +1694 relative
to the transcriptional NASPSIM3 start site) fragments were ampli-
fied by PCR from Col-0 genomic DNA using NASPSIM3promoter_f
and NAS.1PSIM3.1genomic_r or NASPSIM3promoter_f and
NASP.2SIM3.2genomic_r primers (Table S1), respectively and
cloned into the pDONR221 vector. These constructs were used to
generate NASPSim3gen:EGFP�GUS reporter constructs using the
pKGWFS7.0 vector (http://gateway.psb.ugent.be/information).

To generate plants with reduced NASPSIM3 levels, artificial miR-
NAs were designed with the web microRNA designer WMD3 tool
(Ossowski Stephan, Fitz Joffrey, Schwab Rebecca, Riester Markus
and Weigel Detlef, personal communication) and cloned into
pRS300 (Schwab et al., 2006) with subsequent adaptation for
Gateway cloning in the pMDC32 expression vector, harboring a
dual 35S promoter.

Arabidopsis thaliana plants were transformed according to the
flower dip method (Clough and Bent, 1998). T1 transformants
were selected on Murashige and Skoog medium containing
50 mg L�1 kanamycin and 50 mg L�1 hygromycin, by kanamycin
only for the transformants expressing the pKGWFS7.0 vector
based constructs or hygromycin only for pMDC32-based con-
structs. The plants were propagated under short- or long-day con-
ditions in a cultivation room at 8 h light/20°C:16 h dark/18°C and
16 h light/20°C:8 h dark/18°C, respectively.

Yeast-two-hybrid assays

The full-length cDNAs encoding Arabidopsis NASP.1SIM3.1 and
ASF1A were cloned into the pGBKT7 vector as baits and the
sequences encoding full-length histones H3.1, H3.3, CenH3,
H2A.W.6 and H1.3 were cloned into the pGADT7 vector as prey.
Vectors pGBKT7 and pGADT7 were respectively transformed into
Saccharomyces cerevisiae Y187 and AH109 strains based on the
manufacturer’s instructions of the MatchMaker III GAL4 two-hy-
brid system (Clontech; TaKaRa, https://www.takarabio.com).
Screening and interaction studies between preys and baits were
performed by mating compatible yeast strains following Clon-
tech’s instructions. Interactions between NASPSIM3, ASF1A and
different histones were determined by growing transformants on
medium YNB without Leu and Trp (PM: permissive medium),
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without Leu, Trp and His (LSM: low stringency medium) and with-
out Leu, Trp, His and Ade (HSM: high stringency medium). Inter-
action efficiencies were recorded using drop tests on PM, LSM or
HSM medium, with serial dilutions of a given strain grown in
medium and incubated at 30°C.

To identify yet unknown interaction partners of NASP.1SIM3.1,
the Walker two-hybrid cDNA library CD4–10 was screened using
the pGBKT7- NASP.1SIM3.1 vector as bait. Positive clones were
identified by growth on high stringency medium. Among about
3 9 105 transformants, 10 positive clones were identified and
sequenced. Among the potential candidates, only two proteins
(NAP1;2: AT2G19480 and TSA1: AT1G52410) were subsequently
analyzed, after cloning full-length CDS in the pGADT7 vector, to
produce NAP1;2 and TSA1 prey constructs.

Bimolecular fluorescence complementation

The binary BiFC plant transformation vectors pSPYNE-35SGW and
pSPYCE-35SGW, containing the N- or C-terminus of YFP, respec-
tively, were kindly provided by Klaus Harter (University of T€ubin-
gen, Germany). The entire coding regions of NASP.1SIM3.1 and
CenH3 or regions coding for the N- or C-terminal parts of CenH3
(Lermontova et al., 2006), respectively were subcloned from the
corresponding pDONR221 vector into the BiFC vectors in frame
with the split YFP. BiFC was performed in N. benthamiana plants
(4 weeks after sowing) after Agrobacterium-mediated transient
transformation of very young leaves containing mitotic cells
according to Walter et al. (2004).

Proteomic analysis of Arabidopsis inflorescences

expressing gCenH3�EYFP or EYFP only

Co-IP experiments were conducted on four independent inflores-
cent protein extracts each from gCenH3�EYFP and EYFP only
expressing plants using GFP-Trap_MA Kit (Chromotek, https://
www.chromotek.com) according manufacturer’s instructions with
minor modifications. Here, 150–200 inflorescences per sample
were ground to a fine powder in liquid nitrogen and resuspended
in ice-cold lysis or RIPA buffer (supplemented with DNase I,
MgCl2, Halt

TM protease and phosphatase inhibitor cocktail; Thermo
Fisher Scientific #78440). Extracts were mixed with ice-cold dilu-
tion buffer (supplemented with HaltTM Protease and phosphatase
inhibitor cocktail) and pre-cleared for 450 at 4°C with equilibrated
blocked magnetic-agarose beads (Chromotek). Co-IPs were per-
formed by incubating pre-cleared extracts for 90 min to 2 h with
equilibrated GFP-trap beads (Chromotek) at 4°C followed by
washes to remove non-specific proteins (twice in ice-cold dilution
buffer, once in ice-cold wash buffer ‘175 mM’) (10 mM Tris/HCl pH
7.5, 0.5 mM EDTA, 175 mM NaCl) and ‘150 mM’ (10 mM Tris/HCl pH
7.5, 0.5 mM EDTA, 150 mM NaCl) and six times in ice-cold wash
buffer ‘100 mM’ (10 mM Tris/HCl pH 7.5, 0.5 mM EDTA, 100 mM

NaCl). Mass spectrometry (MS) analysis was performed as
described in Data S1.

TAP and mass spectrometry experiments

Tandem affinity purifications with Arabidopsis cell cultures over-
expressing CenH3 or H3.1 fused with GSRhino were performed as
described earlier (Van Leene et al., 2011). To prepare the construct
used for expression of H3.1 and CenH3 in cell culture, genomic
sequences of CENH3 and H3.1 (At1g09200) were cloned in
pDONRP2R_P3 vectors via Gateway BP reaction (Invitrogen,
http://www.thermofisher.com/invitrogen). pDONRP2R_P3 carrying
CenH3 or H3.1 vectors were recombined with pDONRP4_P1R car-
rying 35s promoter and pDONR221 carrying GSRhino coding

sequences via Gateway LR reaction (Invitrogen) into destination
vector pK7m34GW.

Nuclear protein extraction and western blot analysis

For extracts containing nuclear histones, nuclei were prepared
from 2 g of 10-day-old plantlets of wild-type, NASP.1SIM3.1 RNAi
line 4 and the amiRNA line 22 using HONDA buffer (20 mM

Tris�HCl pH 7.4, 10 mM MgCl2, 0.4 M sucrose, 2.5% Ficoll, 5%
Dextran 40, 0.5% Triton X-100, 10 mM BSA, 0.5 mM phenylmethyl-
sulfonyl fluoride (PMSF) and protease inhibitors (Complete Mini;
Roche, https://www.roche.com). Nuclei were resuspended in
Laemmli buffer. SDS–PAGE and western blots were performed
according to standard procedures. CenH3 proteins were revealed
with anti-CenH3 antibody (1/3000; Novus Biologicals, NBP1-18694,
Batch 15B6, https://www.novusbio.com) and normalized to total
H4 histones detected with an anti-H4 antibody (1/1000; Abcam,
ab10158, batch GR322705-1, https://www.abcam.com). Primary
antibodies were revealed by incubation with a horseradish peroxi-
dase-coupled anti-rabbit secondary antibody (1/5000; Abliance,
Compi�egne, France, BI 2407, batch 14052, https://www.abliance.
com). Band intensities were quantified using Multi Gauge soft-
ware (Fujifilm, Tokyo, Japan, www.fujifilm.com).

Histochemical GUS enzyme activity assay

GUS activity was detected using 5-bromo-4-chloro-3-indolyl-b-D-
glucuronide (Jefferson et al., 1987) as described in Heckmann
et al. (2011). A Nikon SMZ1500 stereomicroscope, equipped with
a Nikon Digital Sight DS-SMc camera was used to acquire GUS
images via the Nikon NIS-Elements AR 3.2x software (Nikon,
https://www.nikon.com).

Immunostaining

4C leaf interphase nuclei were flow sorted according to Weisshart
et al. (2016). Immunostaining of nuclei and chromosomes was per-
formed as described (Jasencakova et al., 2000). CenH3 protein was
detected with rabbit (1:2000; LifeTein, https://www.lifetein.com)
polyclonal antisera against N-terminal peptide of CenH3 (Talbert
et al., 2002) and with goat anti-rabbit rhodamine (1:200; Jackson
ImmunoResearch Laboratories, https://www.jacksonimmuno.com).

RNA isolation and RT-qPCR analysis

Total RNAs were extracted from shock-frozen 10-day-old wild-type
seedlings as well as NASP.1SIM3.1 RNAi and amiRNA lines using
RNAzol (MRC, https://www.mrcgene.com). Reverse transcription
was primed with oligo(dT)15 using M- MLV reverse transcriptase
(Promega, https://france.promega.com). Transcript levels were
determined by quantitative polymerase chain reaction (qPCR) with
the LightCycler� 480 SYBR Green I Master kit (Roche, https://lifesc
ience.roche.com) on the Roche LightCycler� 480 and normalized
to MON1 (At2g28390) transcript levels, using the comparative
threshold cycle method.

Microscopy

For time-lapse microscopy, seedlings were grown in coverslip
chambers (Nalge Nunc International, https://www.thermofisher.
com/nalgene) for 7–10 days and analyzed with a LSM 510 META
confocal laser-scanning microscope (Carl Zeiss GmbH). EYFP was
excited with a 488nm laser line and the specific fluorescence
recorded with a 505–550 nm band-pass filter.

Bleaching experiments were performed with the same micro-
scope. Nuclei were observed using a 63x/1.4 Oil Plan-Apochromat
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objective (4x zoom, image size 512 9 186–232 pixels). For imaging
(pre- and post-bleaching) 1.1–1.8% of a 488nm line from a 100 W
argon ion laser running at 50% power was used. The emission
was registered with a 505–550 band-pass filter with a maximal
opened detector pinhole. Three data points were acquired to mea-
sure the pre-bleaching intensity. A small 2 9 2 lm area was pho-
tobleached using 100% of a 488nm line with five to seven
iterations. The bleaching scans lasted from 50 msec (reiterated
bleaching), to 250–350 msec for single and repeated FRAP experi-
ments. Imaging scans were performed with 350 msec intervals.

To analyze the ultrastructure of immunosignals and chromatin
beyond the classical Abbe/Raleigh limit at a lateral resolution of
~120 nm (super-resolution, achieved with a 488 nm laser) spatial
structured illumination microscopy (3D-SIM) was applied using a
63x/1.4 Oil Plan-Apochromat objective of an Elyra PS.1 micro-
scope system and the software ZENblack (Carl Zeiss
GmbH, https://www.zeiss.com). Images were captured separately
for each fluorochrome using the 561, 488 and 405 nm laser lines
for excitation and appropriate emission filters (Weisshart et al.,
2016). Maximum intensity projections of whole nuclei were calcu-
lated via the ZEN software. Enlarged image sections were pre-
sented as single slices to indicate the subnuclear chromatin and
protein structures at the super-resolution level. Imaris 8.0 (Bit-
plane, http://www.bitplane.com) was applied to measure the
amount of CenH3 in wild-type and NASP.1SIM3.1 RNAi interphase
nuclei via the sum of voxel intensities.
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