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Abstract: The added value of combining InSAR and GNSS data, characterized by good spatial
coverage and high temporal resolution, respectively, is evaluated based on a specific event:
the propagation of the magma intrusion leading to the 26 May 2016 eruption at Piton de la Fournaise
volcano (Reunion Island, France). Surface displacement is a non linear function of the geometry
and location of the pressurized source of unrest, so inversions use a random search, based on a
neighborhood algorithm, combined with a boundary element modeling method. We first invert
InSAR and GNSS data spanning the whole event (propagation phase and eruption) to determine the
final geometry of the intrusion. Random search conducted in the inversion results in two best-fit
model families with similar data fits. Adding the same time-period GNSS dataset to the inversions
does not significantly modify the results. Even when weighting data to provide even contributions,
the fit is systematically better for descending than ascending interferograms, which might indicate
an eastward flank motion. Then, we invert the GNSS time series in order to derive information
on the propagation dynamics, validating our approach using a SAR image acquired during the
propagation phase. We show that the GNSS time series can only be used to correctly track the magma
propagation when the final intrusion geometry derived from InSAR and GNSS measurements is
used as an a priori. A new method to extract part of a mesh, based on the representation of meshes
as graphs, better explains the data and better accounts for the opening of the eruptive fissure than
a method based on the projection of a circular pressure sources. Finally, we demonstrate that the
temporal inversion of GNSS data strongly favors one family of models over an other for the final
intrusion, removing the ambiguity inherent in the inversion of InSAR data.

Keywords: InSAR; GNSS; Piton de la Fournaise; dike propagation; inversion; joint inversion

1. Introduction

The advent of Synthetic Aperture Radar Interferometry (InSAR) in the mid-1990s shed a new light
on magma plumbing systems, which connect deep magma reservoirs to the surface at volcanoes [1–3].
Due to its exceptional spatial coverage, this remote sensing geodetic method can be used to produce
ground surface displacements maps, which has led to a significant improvement in the imaging of
magma storage zones. In particular, we now have a better characterization of the specific reservoir
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shapes (e.g., Reference [4]), the possibility to distinguish several active storage zones beneath active
volcanoes (e.g., Reference [5]), as well as statistical studies on magma reservoir depth [2] and relative
location compared to the volcanic edifice [6]. This has also led to better estimates of associated volume
changes. In addition to the characterization of the storage zone geometry, another advance has been
developing imaging of magma transport features. Magma can accumulate for months to years in a
storage zone [7]. However, once the pressure inside this reservoir reaches a critical threshold, rupture
is induced and magma starts to propagate towards the surface. It flows inside planar intrusions
formed by fracturing of crustal rocks, called either dikes or sills depending on their orientation with
respect to pre-existing features. This ascent is usually much quicker than the storage phase and lasts
between a few tens of minutes to a few days [8–10]. Once the eruption has ended, part of the magma
remains trapped and cools at depth leading to ground displacements detectable by InSAR. Co-eruptive
interferograms, calculated by combining images acquired before the transport phase onset and after
the eruption, contribute to our knowledge of magmatic intrusion geometries, revealing complex shapes
which are probably influenced by the local stress field [11,12].

The still relatively poor temporal resolution of Synthetic Aperture Radar (SAR) data remains
a clear limitation for their use in tracking magma propagation. This phase, which is crucial to
understanding the dynamics of magma emplacement, is usually recorded by continuous, ground-based
sensors such as GNSS stations, tiltmeters or seismometers for example, References [9,13–15]. It is not
always possible to place ground-based captors in ideal locations with respect to the intrusion due
to field conditions [16]. Moreover, seismicity does not always permit to track magma propagation,
specifically when microearthquakes are too shallow and have a too small magnitude [17]. However,
SAR temporal resolution has improved appreciably: the usual revisit time was reduced from one
month to 6 days with the launch of the Sentinel–1 satellite constellation. There are a few cases for which
SAR images have been acquired during a propagation phase and they all yield exceptional results.
One early example is the sill emplacement preceding the 1999 Eyjafjallajökull eruption. The SAR
acquisition was favored by a long-lived propagation phase probably linked to limited magma driving
pressure [10]. Similarly, a SAR image acquired during the 2009 eruption at Fernandina volcano,
Galapagos [18] provided insight into the complex transition from circumferential intrusions to radial
eruptive fissures. Also the May 2016 eruption at Piton de la Fournaise volcano was recorded by an
intermediate Sentinel-1 acquisition, which occurred only 2 h before the onset of the eruption.

With the increase in the number of radar imaging satellites, InSAR data are available with
different Lines-of-Sight (LOS) and different precisions depending on the radar wavelength [19].
When crustal processes occur suddenly, it is possible to use all the interferograms that captured
the event. However, for slow processes such as fault creep, viscous relaxation and shallow magma
reservoir inflation [20,21], or when several processes take place successively [22], this approach may
lead to unreliable results or conceal subtle processes. Here, we compare two strategies, one where we
invert interferograms that most closely capture an event and one that uses interferograms covering a
specific time period.

Inverse models are used to analyze displacements, combining forward models and inversions.
Inversion of surface displacements is inherently non unique. For instance, Dieterich and Decker [23]
showed that, when sources are axi-symmetrical, the source shape and depth can not be determined
using vertical displacements alone but that both the vertical and horizontal displacements are needed
to accurately determine these characteristics. Here, the problematic is different because the sources are
non axi-symmetrical and 3D displacements can be computed. Since, this study is of a fissure eruption,
the source of unrest is a fracture, which is a non axi-symmetrical source. Non uniqueness in the
surface response may be caused by material properties [24,25] but for a given material response,
there is a unique surface displacement for each individual fracture. Moreover InSAR provides
displacements along several ascending and descending LOS and GNSS gives 3D displacements,
thus the combined use of these two types of data can be used to describe 3D displacements [26].
Non unique source determination comes from inverse modeling, which inherently accounts for errors
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in data and models. The main sources of error in InSAR and GNSS data derive from atmospheric
conditions (water content of the troposphere and ionosphere) and models are simplifications of a
complex reality: the number of sources is unknown and their shapes are probably more complex
than assumed. A previous study of the 26 May 2016 eruption at Piton de la Fournaise [16] showed
that, despite the very dense network of permanent GNSS stations present on this volcano, magma
propagation could only be successfully tracked when adding a priori information on the intrusion
shape provided by the inversion of co-eruptive interferograms. This conclusion was reached using
the intermediate Sentinel-1 acquisition, which allowed different strategies to invert GNSS data to be
quantitatively evaluated. Here, we extend our previous study on the combined use of InSAR and
GNSS data and we investigate the usefulness of GNSS time series in resolving the non-unique inverse
models obtained from InSAR data.

Time series of displacements, whether provided by continuous GNSS and tilt measurements [27]
or by InSAR [28], are usually analyzed using kinematic inversions, where amplitudes of dislocation
sources [29] are determined from minimizing the sum of the L2 norm of the weighted residual on
displacements and spatially smoothed dislocation amplitudes. This requires as many parameters as
there are dislocations, which leads to statistically less likely solutions [30] and solutions physically
less meaningful than pressure sources [31]. In our previous study [16], we addressed these issues by
determining the pressurized area corresponding to the active intrusion, where the a priori intrusion
was derived from InSAR and a circular pressure source was projected onto the mesh representing
this intrusion. This method had two drawbacks: 4 parameters were needed when the number of
permanent GNSS measurements is 30 and a projection from a plane on the intrusion geometry was
needed, which could exclude part of the intrusion and thus induce errors if the intrusion geometry
was curved.

In this study, we focus on the methodological aspects of jointly inverting InSAR and GNSS
(campaign and time series) data covering the May 2016 Piton de la Fournaise eruption in order to track
magma propagation. Because of the non-unique nature of inversions, data covering the whole eruption
leads to two families of equally well fitting intrusion models. The influence of the data weightings
on the inverted intrusion is also studied. We next use times series of GNSS data to determine the
dynamics of the magma propagation for these families of models and to investigate if time series help
in the determination of the most likely family of models. Finally, three methods are compared to track
magma in the intrusion, one with no a priori and two using the a priori geometry determined from
data covering the whole eruption. One of these methods is a new strategy, which uses a graph-based
representation of meshes to define the pressurized part of the intrusion. Results from this new method
are compared with previous results.

2. The 26 May 2016 Eruption of Piton De La Fournaise Volcano

Piton de la Fournaise is a highly active basaltic volcano located on the eastern part of Reunion
Island (France), in the Indian Ocean (Figure 1). The summit cone, at an elevation of 2631 m, lies in an
uninhabited caldera-shaped depression called the Enclos Fouqué caldera. InSAR revealed a seaward
motion (1.4 m) of the eastern flank [32] of this volcano during the major April 2007 eruption [33,34].
GNSS stations installed in this area after the eruption, combined with InSAR monitoring, indicate
an ongoing eastward motion of about ∼2 cm·year−1 [35]. A new eruption cycle started in June
2014 [36,37]. Since then 16 eruptions have occurred on the flanks of the cone, inside the caldera-shaped
depression including the May 2016 eruption studied here. After 10 days of minor inflation and a low
seismicity rate, a seismic crisis started on May 25 at 19:40 (all times are U.T.C) accompanied by rapid
deformation, which corresponded to magma transfer towards the surface [16]. At 04:05 on May 26,
a fissure opened, 2800 m to the southeast of the summit cone, at an elevation of 1890 m producing lava
fountaining and a 0.5 Mm3 lava flow, which is an unusually small volume for a Piton de la Fournaise
eruption [8]. The eruption stopped after 27 h. InSAR acquisitions and GNSS measurements provide
an extensive dataset which can be used to understand the magma transfer during this eruption [16].
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Seismic data are also available. However, in this case earthquakes being too small and shallow, precise
relocation does not allow to track magma at the depth indicated by InSAR and GNSS data [16,17].

Figure 1. Piton de la Fournaise (PdF) setting. (A) Location of Reunion Island; (B) Shaded topography
of PdF volcano and location of the GNSS monitoring network. Black and grey diamonds represent the
locations of the permanent GNSS stations. The black circled diamonds refer to the 10 GNSS stations
used in this study. The GITg station (black diamond to the northwest) is the reference used here for the
GNSS campaign and for the epoch-by-epoch processing. The May 2016 lava flow is shown in purple.
’Dol’ marks the Dolomieu crater; (C) Zoom corresponding to the area indicated by a black box in B.
Black arrows represent the cumulated horizontal displacement of the 10 GNSS stations between 25 May
at 17:00 and 26 May at 04:05. Standard deviations for horizontal and vertical components are 1–2 cm
and 3-4 cm, respectively. Associated colored circles represent the temporal evolution of the horizontal
displacement for the GNSS stations. Grey arrows represent displacements from the GNSS campaign
network between 31 August 2015 and 27 May 2016, with ellipses for the 95% confidence intervals.
Coordinates are in kilometers (WGS84, UTM 40S). Modified after Reference Smittarello et al. [16]

3. Geodetic Measurement Description

3.1. InSAR Data

Synthetic Aperture Radar (SAR) images are systematically acquired by various satellites
(Sentinel-1 in Strimap Mode, Cosmo Skymed, ALOS2, TerraSar-X) [38] within the framework of
the national monitoring service, OI2. For the 26 May 2016 event, images acquired by both Sentinel-1
and Cosmo-Skymed are available.
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All interferograms were produced using the DIAPASON software [39], removing the orbital
contribution based on the precise orbit state vectors provided by Space Agencies as well as the
topographic contribution using a 5 m Lidar DEM, produced by the French Geographic Institute
(IGN) in 2008–2009. The interferograms were unwrapped using the Snaphu algorithm [40].
They were then detrended and shifted such that a null displacement in the Enclos Fouqué caldera
(see location on Figure 1) was used as a reference. Before being used as inputs for the inversion,
the interferograms were subsampled using a quadtree decomposition algorithm [41,42]. The number
of points in each region was proportional to the displacement amplitude and to the displacement
standard deviation in the region. Thresholds for the amplitude and the standard deviation were
adjusted to keep a balanced number of points of around 500 per interferogram.

Cosmo SkyMed acquisitions on 29 February and 31 May, enabled two interferograms to be
created (CSKA and CSKD, Figures 2 and 3) spanning 3 months which covered the inter-eruptive
period, the unrest, the eruption and 5 days after the eruption. Six Sentinel–1 acquisitions on
19–20 April, 25–26 May and 6–7 June, were used to compute 6 interferograms.

Figure 2. (Top) Temporal evolution of baseline changes recorded between two pairs of permanent GNSS
stations (SNEG and DSRG and BORG and DERG; see Figure 1 for station locations) between 29 February
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2016 (date of the first SAR acquisition used in this study) and 07/06/2016 (date of the last SAR
acquisition used in this study). Distance samples are daily averages. Inset corresponds to a zoom
on the pre-eruptive baseline changes spanned by Sentinel–1 data. The eruption onset is shown by a
red arrow; (Middle) Coloured bars represent the time spanned by each of the 8 interferograms used
in this study. Modified after Smittarello et al. [16]. The vertical red area represents the eruptive crisis;
(Bottom) Zoom. The vertical dashed line at 01:45 marks the time of the intermediate SAR acquisition
by Sentinel–1. CSK = Cosmo-Skymed; S1 D1 = Sentinel–1 descending InSAR data spanning the
beginining of the eruptive crisis; S1 D2 = Sentinel–1 descending InSAR data spanning the end part of
the eruptive crisis; S1 A1 = Sentinel–1 ascending InSAR data spanning the pre-eruptive period; S1 A2 =
Sentinel–1 ascending InSAR data spanning only the eruption.

Figure 3. Wrapped interferograms used in this study. (Left column) Data acquired on ascending orbits;
(Right column) Data acquired on descending orbits; (First row) Cosmo-Skymed data (X-band)
spanning the whole eruptive period; (Second to Fourth rows) Sentinel-1 InSAR ascending and
descending data (C-band); (Second row) Sentinel-1 data spanning the whole eruptive period;
(Third row) Sentinel-1 data spanning the first time period; (Fourth row) Sentinel-1 data spanning
the second time period; For Cosmo-Skymed data, fringes represent 1.5 cm LOS displacement, while
for Sentinel-1 data, fringes represent 2.8 cm LOS displacement. S1 D1 = Sentinel-1 descending
InSAR data spanning the beginining of the eruptive crisis; S1 D2 = Sentinel-1 descending InSAR
data spanning the end part of the eruptive crisis; S1 A1 = Sentinel-1 ascending InSAR data spanning
the pre-eruptive period; S1 A2 = Sentinel-1 ascending InSAR data spanning only the eruption.
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In ascending LOS, the Sentinel-1 May 25 acquisition occurred just before the beginning of the
crisis (Figures 2 and 3), enabling two interferograms to be computed. Interferogram S1 A1 only
records the unrest period while interferogram S1 A2 spans the eruption and a few days after. A third
ascending interferogram, S1 A, spans the whole period between 19 April and 6 June recording the
unrest, the eruption and a few days after. In descending LOS, the Sentinel-1 26 May acquisition
occurred during the crisis (Figures 2 and 3), allowing interferogram S1 D1 to be computed, which
spans the pre-eruptive period and the beginning of the crisis and interferogram S1 D2, which covers
the end of the crisis and the following few days. A third descending interferogram, S1 D, spans the
whole eruptive period.

3.2. GNSS Data

Surface displacements of Piton de la Fournaise volcano are continuously monitored by
a permanent GNSS network consisting of 24 stations, operated by the Piton de la Fournaise
Volcanological Observatory (OVPF). In this study, we used only the 10 stations located in the summit
part of the Enclos Fouqué area, which were close enough to the intrusion to capture the unrest
associated with the eruption (see Figure 1).

Processing was carried out with the GAMIT/GLOBK software package [43] to determine a daily
position for each station. The station REUN, located 17 km away from the volcano was used as a
reference to correct for Earth plate motion. Time evolution of two GNSS baselines located at the
summit is shown on Figure 2. No significant deformation was recorded during the period spanned by
InSAR data prior to and after 25–26 May 2016. Only a very subtle inflation signal (less than 1 cm) can
be inferred during the 10 days preceding the eruption (see top part of Figure 2).

In order to analyze surface displacements due to magma propagation during the crisis,
an epoch-by-epoch processing in differential mode was also performed with the TRACK software.
The station GITg on the upper edge of the Enclos Fouqué caldera was used as a reference. The result
is a time series sampled every 30 s. Because of the limited elevation difference between the stations,
we assumed that there were no differences in the atmospheric delay for the area (6 km × 4 km).
The automatic tropospheric correction was removed during the processing. Then, to correct sidereal
effects, GNSS measurements from the 15 days preceding the crisis were cut into slices spanning 23 h
56 min 4 s (the revolution period for GNSS satellites) and stacked. The average signal resulting from
multipath reflections on the antenna was removed from the time series. At last, a principal component
analysis (PCA) was also conducted to remove correlated noise between stations. Smoothing was
applied using a 30 minutes window filtering. More details can be found in Smittarello et al. [16].

A network of 80 points was also measured after each eruption during field campaigns (Figure 1).
It provides a dense map of the 3D-displacements that occurred between 28 August 2015 and
30 May 2016. This data was included in the inversion to better constrain the north-south component
of the surface displacements which is not always easy to retrieve with InSAR data alone [38,44].

4. Inverse Models

Ground displacements measured by InSAR and GNSS were modeled using a 3-D Mixed Boundary
Element forward method [45,46] which assumes that the medium is linear, elastic and homogeneous.
Fast and precise computations are produced by the combination of a direct method and a displacement
discontinuity method used for the ground surface and fractures, respectively. The model can take
tensile cracks and shear fractures under a realistic topography into account [47–49]. Boundaries were
meshed using triangular elements. To avoid edge effects, the ground surface mesh was five times larger
than the deformed area. To provide the best compromise between computation time and accuracy,
the most deformed boundaries were finely meshed, while away from the deformation zone, coarser
meshes were used. A Young’s Modulus of 5 GPa and a Poisson’s ratio of 0.25 were assumed for the
Piton de la Fournaise edifice, following Cayol and Cornet [46], Fukushima et al. [48].
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To take advantage of the whole data set acquired during this eruption, we developed a strategy
for inversion that consisted of several steps (Figure 4). First, we performed a global inversion that
is, an inversion of the cumulated InSAR and GNSS displacements recorded between two dates: one
before the eruptive crisis onset, that is, before the onset of the magma propagation and one after
the eruption had ended. In this study, we refer to this global inversion as the "static inversion"
as it is intended to reproduce the final geometry of the magma that was trapped at depth after the
eruption had resumed. Second, we performed a temporal inversion, that is, inversions of the cumulated
displacements for 29 time intervals between 20:40 on 25 May and 4:00 on 26 May, from GNSS time series.
This temporal inversion was used to track the dynamics of the magma propagation before it reached
the surface and the eruption began. The last step was a validation of the methods used for the temporal
inversion and of the model family used as an a priori. It compared the misfits and models inverted at
a date for which an intermediate InSAR acquisition was available, allowing the displacement of the
first part of the eruption to be measured.

Figure 4. Use of the different data sets in our modeling strategy.

4.1. Inversion and Data Weighting Through the Covariance Matrix

Inversion of ground displacements to determine the best-fitting deformation model requires
minimization of the difference between the observations and the model results. This difference is
called a misfit and we calculated it in a least square sense (L2-norm) as :

χ2 = (d0 − G(m))T Cd
−1 (d0 − G(m)) (1)

where do represents the vector of observed displacements, G(m) is the vector of modeled
displacements with m the set of model parameters and G represents the model prediction. Cd is
the covariance matrix for the data, which accounts for correlated noise related to the atmospheric
contribution to InSAR data and for the variance of GNSS data.

The atmospheric contribution results in correlated random noise, which can be characterized by
the autocorrelation function or covariance function [48,50], expressed as:

C(r) = σ2
d exp(−r/a) (2)
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where r is the distance between two points, σ2
d is the noise variance and a is the correlation length.

Following the study of Fukushima et al. [51], the data covariance matrix CSAR
d can be computed from

this function using a noise variance σ2
d = 5× 10−4 m2 and a correlation distance a = 850 m. This results

in a diagonal dominant matrix where diagonal terms correspond to σ2
d . In addition to InSAR data,

GNSS measurements were used from both permanent and campaign networks. We assumed there
was no correlation between the GNSS stations, so that the covariance matrix CGNSS

d was diagonal and
was a function of the variance.

CGNSS
d = diag

(
σ2

d

)
(3)

Typical magnitude of the GNSS variance was σ2
d = 2 × 10−4 m2 for horizontal components and

σ2
d = 9 × 10−4 m2 for vertical components.

The data vector do and covariance matrix on data Cd combining InSAR and GNSS data are given,
respectively, as :

do =

(
do

GNSS

do
SAR

)
(4)

Cd =

[
CGNSS

d 0
0 CSAR

d

]
(5)

Inversions consist of two stages : a search and an appraisal stage. In the search stage, the misfit
is minimized using a near-neighborhood inversion algorithm [52]. In the appraisal stage, model
uncertainties are estimated by resampling the population of models obtained in the search stage
following the Bayesian inference [53].

Because the misfit function is a L2-norm, it favors models that explain the largest displacements.
The matrix covariance characterizing the data is used to account for errors and intrinsic noise affecting
the data. A proper definition of the covariance matrix should weight data according to their own errors
in the inversion process. However, InSAR data are projections of a single displacement field along
the LOS direction. Due to this projection, a displacement vector will produce LOS displacement of
different amplitudes on ascending and descending LOS. Since a null LOS displacement can mean either
no displacement or displacement orthogonal to the LOS, there is no reason to give a lower weighting
to datum of lower amplitude. To give equal weighting to each dataset and avoid overweighting one
LOS over the other or the GNSS data when they were added, we chose to conduct inversions in which
misfits of the different datasets were scaled by their reference values. We defined the reference value
as the value computed from a null model χ2

re f as

χ2
re f = do

TCd
−1do (6)

This defined the misfit relative to this reference value χ2(%) as

χ2(%) =
χ2

χ2
re f

× 100 (7)

This value being independent of the total amplitude of displacements, it is useful for comparing
inversion results at different time steps of the temporal inversion.

We conducted inversions according to a weighted misfit scaling each dataset by its own
reference misfit:

χ2
w =

 N

∑
i=1

χ2i

χ2i
re f

+
χ2GNSS

χ2GNSS
re f

×
χ2

re f

N + 1
(8)

where i refers to the ith interferogram and N is the total number of interferograms. This scaling is
equivalent to applying different scaling factors of χ2i

re f /χ2
re f with i = 1, .., N and χ2GNSS

re f /χ2
re f to the
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covariance matrices of the InSAR and the GNSS data, respectively. In terms of Bayesian inference, this
scaling gives the same likelihood to each of the InSAR and GNSS datasets and each of these datasets
has the same contribution to the posterior probability density distribution.

4.2. Static Inversion

Given the location of the eruptive fissure, the geometry of the displacement source can be
described by nine parameters, which define a quadrangle-shaped intrusion, linked to the surface by a
single fissure. This quadrangle can be curved in the along strike and dip directions [16,51].

To determine the static geometry of the magma intrusion which fed the 26 May 2016 eruption, we
used ground deformation data from interferograms along four different LOS, daily solutions of the
permanent GNSS network and the GNSS campaign network. Of the eight available interferograms,
five span the total eruption period (CSKA and CSKD, S1 D, S1 A and S1 A2, on Figure 3). S1 A and S1
A2 are taken along the same LOS but the pre-eruptive period spanned by S1 A is longer. We inverted
S1 D, CSK D and CSK A but had two different options for the fourth interferogram in the ascending
direction: (1) using the data closest to the eruption time (S1 A2) and (2) using the interferogram (S1 A)
most consistent with the acquisition dates of the three other interferograms. We chose to invert the
interferograms directly rather than use the 3D components reconstruction of the displacement field in
order to reduce the errors induced from using several interferograms spanning different time periods.
We decided not to use the whole dataset because the use of different data in the same LOS could have
led to over weighting of one LOS.

In total we run seven inversions (Table 1). With inversions 01, 02a and 02b, we checked whether the
inflation during the 10 days of unrest could be neglected by comparing the influence of interferograms
S1 A and S1 A2 on the inversion results (Table 1). In inversion 04a, 04b and 05, we tested whether
the addition of GNSS data, which adds constraints to the north-south displacement, led to a different,
better constrained source. Inversions 02a and 02b (and 04a and 04b) were conducted with the same
initial conditions in terms of data used, weighting and parametrization, in order to test the variability
of the inversion due to the random search. Lastly, in inversions 03, 04a and 04b, we tested the weighting
method to investigate if different inverted sources were obtained and to gain insight into the origin of
discrepancies between independent datasets.

Table 1. Covariance weigthing (Cd is defined based on Equations (4) and (5), ’No’ means that no
specific additional weighting is applied whereas χ2

re f means that the misfit is scaled by the misfit of the
null model), geometry of the best model (for families definition see Section 5.1.1) and % of Explained
data (see Equation (9)) computed for each interferogram spanning the eruption. Numbers in bold are
for data used in the inversion, values in small italics are computed a posteriori for data not used in
the inversion. Inv01 was computed with InSAR data S1 A2, which does not cover the pre-eruptive
period. Inv. 01 to 03 were computed without including the GNSS data. Inv02a* is the preferred model
presented in Smittarello et al. [16].

Model Covariance Weighting Family GNSS
InSAR

S1D S1 A S1 A2 CSKD CSKA Total

Inv01 No F1 78 97 81 75 97 83 93.5
Inv02a* No F2 73 95 82 72 95 82 92.5
Inv02b No F2 75 96 83 76 95 83 93.0
Inv03 χ2

re f F2 73 96 86 77 96 87 94.1
Inv04a χ2

re f F1 77 95 82 74 95 87 93.5
Inv04b χ2

re f F2 71 96 83 72 96 85 93.5
Inv05 No F1 83 94 67 57 95 75 90.3
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4.3. Temporal Inversion

In order to model the dynamics of the magma intrusion as it propagated to the surface, GNSS data
from the permanent network were inverted with the same boundary element program and the same
inversion algorithm as for the static inversion. We chose to invert the whole time series running 29
independent inversions computing the cumulated displacement for progressively longer time periods
as the displacement rate decreased. The start time was 17:00 and the end time varied from 20:40 on
25 May to 4:00 on 26 May. Because of the limited number of GNSS measurements (30 including the
east, north and vertical directions), the parametrization of the source had to have less parameters than
for the static inversions. Moreover, contrary to the static inversion, the source description could not
rely on the eruptive fissure trace at the surface as the magma had not yet reached the surface. We
tested three different methods to define the source. The Ellipse and the Projected Disk methods have
been presented in greater detail in Smittarello et al. [16] while the Subgraph method is new. The Ellipse
method does not use the a priori gained from the static inversion, while the Projected Disk and the
Subgraph method relies on it.

4.3.1. A Method without Any Geometric a Priori from the Static Inversion: The Ellipse Method

The so-called Ellipse method uses a planar elliptical source shape with eight parameters to define
its geometry: location of the center (x,y,z), orientation (φ, θ, azimuth) and size (2 axes lengths) and one
parameter for the overpressure P. We used this method to check whether models based solely on
GNSS data are reliable, given that the permanent GNSS network on Piton de la Fournaise is one of the
densest in the world for a volcano and that often, continuous GNSS data are inverted omitting the
information that could be brought by available InSAR data [54,55].

4.3.2. A First Method with a Geometric a Priori: The Projected Disk Method

The Projected Disk method relies on the mesh resulting from the static inversion. We assumed
that the displacement recorded by GNSS at each time step could be explained by the pressurization
of a subpart of the final mesh. This a priori assumes that the tail of the dike did not close up after
the magma had intruded, which seems a reasonable assumption considering that magma is viscous,
quickly solidifying and that lateral intrusions were probably emplaced above the level of neutral
buoyancy implying that they remained under pressure [51,56]. An average plane was defined from
this original mesh. We inverted a circular area onto this plane, for a given location (x,y), radius (R)
and overpressure P. The projection of this circle onto the original mesh was chosen to select a subpart
of the original mesh, which defines the new pressure source. This method works well if the static
geometry is simple (i.e., if it is possible to define a mean plane and a projection). However, with a
more complex geometry, in particular if there are strong curvatures of the fracture, the projection may
lead to an absurd geometry.

4.3.3. A Second Method with a Geometric a Priori: The Subgraph Method

In order to address the projection issue related to the Projected Disk method above, we designed
a new method. Here, a mesh is considered as a graph that is, a set of nodes linked by edges (Figure 5).
For instance, for the graph on the left-hand plot which is constituted of 7 nodes, the list of edges is
[(1, 2), (1, 3), (1, 4), (4, 5), (4, 6), (6, 7)]. A matrix representing the distances between nodes in the graph
can then be constructed from this list. The distance is expressed as the minimum number of edges
required to draw a path between two nodes. For the left-hand plot (Figure 5), the matrix of distance
has the following values.
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sym 0 2 3
0 1

0



Figure 5. Distances between connected nodes in the graph-method. Node numbers are represented
in black. (A) Distances from node 1 are shown in blue; (B) Distance from node 9 are shown in blue and
triangles with nodes at a distance of less than two edges from node 9 are colored in cyan.

Distances from node 1 to all the other nodes correspond to the top line of the matrix and are
indicated in blue in Figure 5, distances from node 2 to all other nodes correspond to the second line
and so forth. A mesh of triangular elements like the one represented in Figure 5B is considered as a
graph, from which the matrix distance can easily be computed with Matlab. Using this matrix, it is
straightforward to pick nodes at a given edge distance from any specific node in order to select a
subpart of the original mesh, which would constitute the pressurized source.

This method requires less parameters than the Projected Disk method as that part of the mesh
which is submitted to pressure is fully described by only three parameters: a node number n, a distance
d expressed as a number of edges and an overpressure P. The new mesh is a subpart of the original
mesh centered on the selected node n and containing all the nodes located at a distance of less than d.
For this method to lead to a circular pressurized area (the minimum level of a priori), triangular mesh
elements need to be roughly equilateral.

5. Results

The static inversion results were evaluated based on the percentage of explained data (%Ed),
which were computed per dataset or as an overall. For the ith dataset (either a given interferogram or
the GNSS data), %Edi is evaluated as:

%Edi =

1 −

√√√√(
uobs

i − umod
i
)T (uobs

i − umod
i
)

uobs
iTuobs

i

 ∗ 100 (9)

where ui
obs and ui

mod are the data and model vectors corresponding to all pixels in the masked
interferograms or to all GNSS measurements. This value is independent of the covariance matrix,
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the subsampling and the dataset used to run the inversion. Based on this definition, the closer to 100%,
the better the data fit.

5.1. Static Inversion

5.1.1. Two Model Families Which Explain the Data Equally Well

Geometries of the best-fit model can be described by two families of models, which fit the
data equally well (InSAR, continuous GNSS and campaign GNSS) for the whole eruption (Table 1).
Because of the random search conducted, the best models belonging to one or the other family can
result from inversions conducted with the same inputs as shown by Inv04a (F1) and Inv04b (F2).
Family F1 corresponds to a curved fracture dipping to the east (blue model on Figure 6). Family F2 is a
two-part intrusion consisting of a sill that turns into a dike before reaching the ground surface (red
model on Figure 6). To better characterize these families, we also quantitatively compared geometries
of the best-fit models by computing the average distance D between a node and the closest node
belonging to a second mesh.

Figure 6. Comparison between geometries of typical intrusions of family F1 (Inv04a in blue) and family
F2 (Inv02a in red). The upper plots compare the geometry and fracture opening of intrusions of family
F1 (left) and family F2 (right). Three views are shown for each subfigure, one from the east along the
northern direction on the left-hand side, a map view on the right-hand side and a view from the south
along the eastern direction at the bottom. The lower plot compares the eruptive fracture meshes for the
two families, as seen from the east.
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Considering two meshes A and B with different node numbers, our average distance computation
method (Figure 7) results in average distance from mesh A to B, DAB, being slightly different from the
average distance from mesh B to A, DBA. Table 2 gives a summary of the average distance D between
pairs of meshes. From this table, we conclude that the average distance between meshes of family F1 is
94 ± 32 m, the average distance between meshes of family F2 is 103 ± 45 m and the average distance
between families F1 and F2 is 160 ± 35 m. Meshes from a given family are closer to meshes from this
family than those of the other family, indicating that our classification into families is relevant. The best
model geometries for inversions 02b, 03 and 04b are very close and all belong to family F2. Model
geometry of inversion 04a is close to 01 and 05. The three of them belong to family F1. The greater
average distance between models 01 and 05 could be due to a systematic shift even though the overall
shapes are very close. This shift is compatible with model 04a lying between model 01 and model 05
but closer to model 05. Model 02a also belongs to family F2. The closest model to model 02a is 02b,
which also belongs to family F2 and the furthest from model 02a is 05, which belongs to family F1.
Apparently large distances for models 03 and 04b are artifacts due to the averaging of small parts of the
meshes which did not superpose well, whereas the central part of the mesh is in very good agreement.

Figure 7. Methods for computing the average distance between two meshes, illustrating why DAB is
slightly different from DBA.

Table 2. Average distances (in meters) between pairs of meshes. * is the preferred model presented in
Smittarello et al. [16]. Distances in bold are for models belonging to the same family.

Inversion Inv01 Inv02a Inv02b Inv03 Inv04a Inv04b Inv05

Family F1 F2 F2 F2 F1 F2 F1

Inv01 F1 X 129 124 109 90 139 132
Inv02a * F2 121 X 107 167 150 169 177

Inv2b F2 105 110 X 80 153 78 194
Inv03 F2 104 153 72 X 157 51 202

Inv04a F1 85 141 168 167 X 185 63
Inv04b F2 116 144 61 46 164 X 209
Inv05 F1 132 168 216 209 62 214 X

5.1.2. Importance of Consistency between Time Periods Covered

Inversion 01 was carried out using interferogram S1 A2, which does not cover the pre-eruptive
period. The other inversions all used S1 A, which covers the same period as that spanned by the other
interferograms. We find that S1 A consistently always gives explained data values between 8% and 12%
higher than S1 A2 (Table 1). When inverting S1 A2, a posteriori computation of the explained data on
S1 A, which was not used in the inversion, indicates a better fit than that of S1 A2. This clearly confirms
that the data in S1 A2 are inconsistent with the other InSAR data. Given that S1 A2 does not cover the
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pre-eruptive period, it is likely that the other interferograms, which do cover this pre-eruptive period
(S1 D, S1 A, CSK D and CSK A) integrate a certain degree of pre-eruptive displacement.

5.1.3. Relative Weights of Ascending Versus Descending Interferograms

Without any weighting other than the data uncertainties (inversions 01, 02a, 02b, 03 and 05
in Table 1), the descending LOS always gave a better fit than the ascending LOS. The inversion
algorithm searches for models that minimize the misfit and this minimization in the L2-sense favors
a fit to the greatest displacement. There are two reasons for this (i) because our implementation of
the quadtree subsampling does not account for the surface represented by the data, larger gradients
and larger amplitudes of displacement lead to more points and thus have a higher weighting and
(ii) because of the larger amplitudes at these points. This is demonstrated by the computation of the
reference misfit with a null deformation model (Table 3). Considering only the InSAR data, the sum
of the reference misfit on each interferogram leads to a total reference misfit of χ2i

re f = 3070, while
the reference misfits for all ascending interferograms and all descending interferograms are 970 and
2100, respectively. Thus, although subsampled interferograms have a balanced number of points,
the descending interferograms account for 2/3 of the total misfit. This higher weight simply results
from the displacement pattern and amplitude and from the projection of this displacement along the
LOS (Figure 8).

Figure 8. Projection of surface displacement along the LOS for satellite radar acquisition for ascending
and descending orbits. The left-hand plots indicate expected displacements in the ascending and
descending LOS for an inflation and an eastward flank slip. The right-hand plot shows the expected
sign of the LOS projection (considered as positive when directed toward the satellite ) in the ascending
and descending orbits for vectors joining a ground point to the circle.
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To counteract the influence of the weighting, we normalized the data by their reference misfit χ2
re f .

This weighting is equivalent to a normalization of the covariance matrix. Without this normalization,
each dataset has uncertainties simply estimated from the data [57]. By altering this normalization
factor, we used the values coming from the data uncertainties to evaluate the relative weighting of the
data from a single dataset. However, we artificially considered that each dataset was equally likely.
Results from inversions 03, 04a and 04b processed with this new weighting (Table 1) show an increase
of the misfit on ascending data by a few percent, confirming that this weighting is efficient. Doing so,
the calculated geometry remains the same and the inversion process is not able to improve the fit for
the ascending data, even at the expense of the fit on the descending data.

Table 3. Values of χ2
re f Equation (6) and weight of each dataset in the computation of the misfit. The top

three lines correspond to inversions conducted without the campaign and continous GNSS data, while
the bottom three lines include the GNSS data.

GNSS S1 D S1 A CSKD CSKA Total

χ2ire f X 1100 500 1000 470 3070
χ2ire f /χ2

re f % X 36% 16% 33% 15% 100%
after weighting X 25% 25% 25% 25% 100%

χ2ire f 4800 1100 500 1000 470 7870
χ2ire f /χ2

re f % 61% 14% 6% 13% 6% 100%
after weighting 20% 20% 20% 20% 20% 100%

5.1.4. Relative Weights of InSAR Versus GNSS Data

We also added campaign and continuous GNSS data to certain inversions. In inversion 05,
the GNSS is weighted according to the measurements’ standard deviations. Although GNSS data points
are less numerous than InSAR data points (∼ 80 + 10 GNSS points with 3 displacement components
for each point versus ∼ 2000 InSAR points), they are independent of each other, while InSAR data
are spatially correlated. Their variance on horizontal components was smaller (σ2

d = 2 × 10−4 m2

and σ2
d = 9 × 10−3 m2 on horizontal and vertical displacements, respectively) than that of InSAR

(σ2
d = 5 × 10−4 m2). This results in GNSS data accounting for 61% of the total reference misfit χ2

re f
Equation (6) and Table 3.

In inversions 04a and 04b, the covariance matrix was modified in order to give GNSS data the
same weighting as each interferogram. This decreased the weighting of GNSS data to the total misfit
from 61% in inversion 05 to 20% in inversions 04a and 04b (Table 3). However, the best model geometry
remained the same regardless of the weighting and a similar fit of GNSS data was obtained (Table 1).

Model family F1 (inversion 04a) explains the GNSS data better (Table 1) than family F2
(inversion 04b). However this is done at the expenses of the InSAR fit giving the same total fit.
Overall, all models explain the InSAR and GNSS data equally well and the addition of GNSS data
does not provide any critical new information. With four different LOS, the displacement field is
well characterized and any ambiguity is due to the non-uniqueness of inversions. Thus a criteria
solely based on the misfit minimization is not sufficient to choose between the two equally well fitting
families of models.

5.2. Temporal Inversion

5.2.1. A Need for Geometrical a Priori to Invert for the GNSS Time Series

We developed three methods of source parametrization to invert the whole GNSS time series.
Taking advantage of the SAR acquisition during the eruptive crisis, we compared inversion results
using either continuous GNSS data, InSAR data (S1 D1) or both datasets covering the first part of the
eruption (until 1:45) with each method (Table 4).
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The Ellipse method does not have any a priori on the source location. The inversion of cumulated
displacement from GNSS time series data leads to a very good fit (96%) of these data (Table 4).
However, the fit on the S1 D1 interferogram falls to 22%. The horizontal location of the deformation
source (Figure 9) is comparable to the source determined by the static inversion for the whole eruption.
However, the source depth (Figure 9) and pressure (Table 4) are not accurately estimated because of a
lack of GNSS stations close to the most deformed area. This leads to an overestimate of the pressure
(Table 4) as well as the modeled displacement (Figure 10).

Table 4. Comparison of the inverted source characteristics for different methods for tracking
magma propagation and different data: continuous GNSS data from the permanent network and
an intermediate Sentinel-1 interferogram S1 D1 covering the first part of the eruption (before 01:45).
% explained data (%Ed, see Equation (9)) computed with data used in the inversions are in bold, while
those computed a posteriori using data omitted in the inversion are in small italics.

Method Data Ellipse Projected Disk Subgraph

GNSS InSAR GNSS InSAR GNSS InSAR

Overpressure (MPa) 3.2 7.0 3.5 1.9 3.4 2.5
Average opening (m) 1.3 1.3 1.0 0.6 1.0 0.7

Area (106 m2) 2.8 1.6 3.4 3.9 3.3 3.1
Volume (106 m3) 3.6 2.1 3.5 2.4 3.3 2.2

%
E

d GNSS 96 85 84 83 83 84
InSAR S1 D1 22 95 77 96 83 94

The Projected Disk and Subgraph methods, which rely on the a priori geometry determined
in the static inversion step, give similar pressurized areas (Figure 9) and fit of InSAR data
(Table 4 and Figure 10) when using the F2 model family. The fit for the GNSS data (Table 4)
amounts to a high percentage of explained data of ∼84% and ∼83% for the Projected Disk and
the Subgraph methods, respectively. With both methods, the modeled displacement fields are
compatible with the S1 D1 interferogram but the percentage of explained data is slightly higher
with the Subgraph (83%) than with the Projected Disk method (77%). With respect to the InSAR data,
GNSS data overestimate the overpressure and the intruded volumes, which is related to the GNSS
network configuration and coverage as indicated by the inversion of GNSS data always overestimating
displacements (Figure 10) in the area which is devoid of GNSS stations. However, these overestimations
are not as high with the Subgraph method (36% and 50% on the overpressure and volume, respectively)
as with the Projected Disk method ((84% and 45% on the overpressure and volume, respectively),
probably because the pressurized area is determined in a more precise way, free of any projection,
with the Subgraph method.
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Figure 9. Comparison between the intrusion determined from InSAR data covering the whole eruption
(grey) and the best model intrusion geometry (blue) resulting from the temporal inversion of GNSS
data at 01:45. Results for the three different methods for inverting the pressure source are shown.
(Top) Ellipse; (Middle) Projected Disk and (bottom) Subgraph methods.

Figure 10. Comparison of inversion results for validation test using interferogram S1 D1. Wrapped
interferogram S1 D1 (first column) and modeled interferograms computed with the best models
determined with the Ellipse method (2nd column), Projected Disk method (3rd column) and Subgraph
method (4th column). Inversion is done with continuous GNSS data alone (top) or with SAR S1 D1
data alone (bottom). Black segment markss the location of the eruptive fissure. Diamonds represent
the location of permanent GNSS stations.

5.2.2. Inversion of GNSS Time Series to Improve Discrimination between Families of
Intrusion Geometry

Two best-fit model families (F1 and F2) were determined with the static inversion: F1 characterized
by curved sources dipping eastward and F2 characterized by a sill-to-dike geometry. We conducted the
inversion of the GNSS time series with the Projected Disk method on geometries characteristic of F1
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(inversion 04a) and F2 (inversion 02a). Inversions from F2 give a better fit than those of F1 (Figure 11)
for all time steps with a larger difference at the beginning of the time series at 21:00 the misfits for
F1 and F2 are χ2 ∼30 and χ2 ∼20, respectively and at 4:00 the misfits for F1 and F2 are χ2 ∼30 and
χ2 ∼25, respectively. Pressures and openings determined for F1 are overestimated, reaching 10 MPa,
while areas are underestimated, as indicated by the comparison with the result determined from the
inversion of the intermediate interferogram (compare the blue curves with the open symbols at 1:45
in Figure 11). On the contrary, inversions of GNSS times series from F2 (Projected circle or Subgraph)
show consistent results. Time series inversions also confirm that the Ellipse method leads to unreliable
results in terms of pressure, area and average openings.

For both families, evolution of the source location with time (Figure 12) shows an increase in the
source area and a migration from centrally beneath the Dolomieu crater to the southeast region of this
crater. However, only the magma path determined from inversions with model F2 is consistent with
a feeding system beneath the Dolomieu crater, followed by a lateral transport to the vent. With F1,
magma travels back down, accumulates in the curved part of the source and never reaches the surface.
The Subgraph method used with F2 has the greatest potential to give rise to an opening of the dike
part of the eruptive fissure. The analysis of time series contributes critical information that helps
resolve the non-uniqueness of deformation modeling. The F2 geometry is therefore considered to be
the most realistic.

Figure 11. Results of inversions of the GNSS time series for 29 time steps between 20:40 and 4:00 a.m.
Green line is the Ellipse method. Blue and red dashed lines are the Projected Disk method on a priori
meshes for families F1 and F2, respectively. Solid black circles are the Subgraph method for family F2.
Open symbols are for inversions from the intermediate Sentinel-1 interferogram S1 D1, green star
corresponds to the Ellipse method, red square to the Projected Disk on family F2 and black circle to
the Subgraph method on family F2. Note that for all methods, increase in the misfit between 20:40
and 21:30 is due to the increase in the amplitude of measured displacements as shown by the sharp
decrease of the relative misfit in percent Equation (1).
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Figure 12. Location of the overpressure source determined from the temporal inversion (colors) for
14 time steps out of the 29 time steps inverted between 20:40 on 25 May and 04:00 the next day.
The pressurized area is assumed to be a circular disk projected on the a priori mesh (in gray) of family
F1 (A) and family F2; (B) or a subgraph of the a priori mesh of family F2; (C). Source geometries for
F1 and F2 are non unique solutions determined from the inversion of the four sets of InSAR data that
cover the whole eruption.

6. Discussion

6.1. Discrepancies between Independent Datasets Reveal Hidden Processes

6.1.1. Discrepancies in the Covered Time Periods Reveal Pre-Eruptive Displacement

The recent increase in the frequency of SAR acquisition now makes it necessary to evaluate
the selection of interferograms that span an eruptive event. Because of the difference in time scale
and amplitude between pre-eruptive and co-eruptive deformation, the whole deformation pattern
is generally assumed to reflect co-eruptive processes. An important question is whether it is more
relevant to select interferograms that cover the same time periods or interferograms that are as close as
possible to the eruption onset. In the present study, interferograms (CSK A, CSK D, S1 D and S1 A) that
cover months before the eruption and captured the pre-eruptive period were available along with an
interferogram (S1 A2) that only covered the few hours before the eruption. A systematically better fit
on S1 A than S1 A2 reveals an inconsistency between S1 A2 and the other interferograms. During the
10 days preceding the eruption, a very slight inflation was noticed on the continuous summit GNSS
stations (Figure 2). However, GNSS displacement being less than 1 cm, no fringes in interferogram S1
A1 can be conclusively associated with this inflation. Yet, the less good fit of S1 A2 than S1 A could
come from the best model preferentially fitting the majority of the data, that is, the three interferograms
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that recorded the pre-eruptive deformation and fitting the fourth interferogram, which which started
after this deformation, less well. Therefore, the best model should be considered with caution as it
might in reality represent a compromise between several displacement sources. Here we performed
inversions with data from one time period and others incorporating data that covered a different time
period to the rest of the data, showing that the latter approach can be an asset and may be used to
highlight processes which are otherwise too subtle to appear clearly in the longer time-period data.

6.1.2. Discrepancies in Amplitude Along the Different Los Reveal Flank Displacement

We noticed systematic discrepancies between the fit of data acquired along ascending and
descending LOS, with data acquired in the descending LOS being systematically better fitted than data
acquired along the ascending LOS. Increasing the weighting of the ascending data did not produce
different models or ones with a significantly better fit on the ascending LOS. We propose that this
might be due to the ascending interferograms being more sensitive to a different source than the
descending ones. For instance, a sill injection leads to ground inflation and produces a signal with
similar amplitudes on the ascending and the descending LOS (Figure 8). However, an eastward
movement of the eastern flank creates an eastward and downward directed displacement, which tends
to cancel out on the descending LOS as opposed to cumulating on the ascending LOS. Such flank
displacement could result from slip on a detachment fault [30] or a more complex host rock behavior
for example due to plasticity [25].

6.2. Combining InSAR and GNSS for Complementary Spatial and Temporal Information

6.2.1. InSAR Static Inversion Constrains the Temporal Inversion

The Piton de la Fournaise permanent GNSS network is one of the densest GNSS networks in
operation on a volcano. However, the case study of the May 2016 eruption reveals that using GNSS
time series data to track magma may lead to an unreliable source pressure, area and opening when no
a priori (here an elliptical source) are assumed about the deformation source. Indeed, displacement
associated with this intrusion was only registered by 10 stations and the area where the displacement
was the greatest was not monitored. In these conditions, the trade-off between the depth, pressure
and size of the source cannot be resolved. InSAR is complementary to GNSS as it provides maps of
displacement along the satellite LOS with a high resolution of 5 m. Combining displacement maps
along several LOS allows a more complex magma intrusion geometry to be determined,which can
then be used as a priori in the inversion of GNSS time series. We demonstrated that, with this a priori,
we can better constrain the evolution of pressure, area and opening as shown by the comparison with
the inversion of an interferogram covering the first part of the eruption.

6.2.2. Advantages of the Subgraph Method for Temporal Inversions

The Subgraph method is a new method developed to determine the pressurized part of a mesh
from GNSS time series. In comparison with the Projected Disk method, which requires four parameters,
only three parameters are needed, two for the geometry and one for the overpressure. As for the
Projected Disk method, an a priori on the source geometry is needed, which is determined from the
inversion of InSAR data covering the eruption. Results are very close to those obtained with the
Projected Disk in terms of misfit and volume changes (Figure 11). However, comparing results with
an intermediate Sentinel-1 interferogram, we find that the Subgraph method explains this data better
than the Projected Disk method (Table 4). It also leads to a more realistic evolution of pressure, area
and average opening. In terms of source geometry, the eruptive fissure never opens with the Projected
Disk method (Figure 12). However, with the Subgraph method we are able to follow the propagation
of magma upward to the surface. These results indicate that the Subgraph method, by avoiding
the projection of a planar circle on a curved surface, is a more reliable method than the Projected
Disk method.
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6.2.3. GNSS Temporal Inversion Solves the Conundrum of Non Unique Static Inversion

In this study, we also showed that GNSS time series data help to choose between equally likely
models determined from InSAR. Regardless of whether ascending and descending InSAR data have
equal weighting or weighting coming from the data amplitudes or whether GNSS data were used or
not, two families of equally well fitting models were obtained from the inversion of data covering the
whole eruption (Table 1). These non unique results arise from inherent uncertainties pertaining to the
data and the models. Here, we show that GNSS time series data can resolve the ambiguity between
these families. In fact, the family of sources corresponding to a sill that turns into a dike leads to a
source consistent with the displacement time series from GNSS and to a more meaningful propagation
of the magma: magma starts beneath the summit and moves towards the ground surface in a way that
is compatible with observations at this volcano [58]. The other family of sources corresponding to a
curved eastward dipping intrusion is less consistent with the displacement time series and leads to
magma going downward, accumulating at depth and never reaching the surface.

7. Conclusions

InSAR and GNSS data provide complementary information on the spatial distribution of
displacements and their temporal evolution, respectively. Combining these data, we successfully
inverted the source of observed displacements in order to track magma transport in the volcanic
edifice of Piton de la Fournaise. We showed that four different LOS are sufficient to invert the
static geometry of the emplaced magma intrusion. The addition of campaign and permanent
GNSS displacement covering the same period does not remove the ambiguity pertaining to the
non-uniqueness of inversions. Inversion of InSAR data covering a time period shorter to the other
InSAR data indicates a pre-eruptive phase of deformation which is not detectible in the longer
time period. Systematic discrepancies in data fitting between ascending and descending LOS are
indicative of seaward flank displacement accompanying the magma intrusion. We also show that,
in order to track magma propagation from GNSS time series, the intrusion geometry derived from
InSAR measurements should be used as an a priori. A new graph-based method (the Subgraph method)
is proposed to invert the pressurized part of the final geometry from GNSS time series. It provides a
better fit for intermediate InSAR data than the two other methods: the Ellipse method which has no a
priori and the Projected Disk method which uses the same final geometry as for the Subgraph method.
It also leads to a more physically viable model where magma starts beneath the summit crater and
propagates towards the surface, opening up eruptive fissures. When static inversions of InSAR data
lead to equally well fitting models due to the inherent non-uniqueness of inversions, the GNSS
temporal inversion may favor one family of models over the other. Systematic studies of new
cases of propagating intrusions imaged by InSAR and GNSS times series would help increase our
understanding of magma propagation. The shorter return time (of 6 days) for Sentinel–1 should
make this possible in the coming years. Another possible approach for future studies would be to
integrate the physics of magma propagation into a model before jointly inverting InSAR data and
GNSS time series.
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