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 by Bakry-Emery technique or the recent [9] by dissipation of the Wasserstein distance.

Introduction

Functional inequalities such as Poincaré or logarithmic Sobolev inequalities have nowadays an important impact on various fields of mathematics (probability, PDE, statistics,...) due to their various properties such as convergence to equilibrium (in L 2 or in entropy) or concentration of measure (exponential or gaussian). We refer to the beautiful book [START_REF] Bakry | Analysis and Geometry of Markov Diffusion Operators[END_REF] for an introduction (and more) to the subject as well as bibliographical references. Let us introduce these two inequalities. Let µ be a probability measure on R d , we say that the probability measure µ satisfies a Poincaré (or equivalently spectral gap) inequality with (optimal) constant λ µ if for all smooth functions f we have

(P I) λ 1 (µ) Var µ (f ) ≤ |∇f | 2 dµ, (1) 
where Var µ (f ) := f 2 dµ -f dµ 2 denotes the variance of f wrt µ and a logarithmic Sobolev inequality with (optimal) constant ρ µ if for all smooth functions f we have

(LSI) ρ LS (µ) Ent µ (f 2 ) ≤ 2 |∇f | 2 dµ, (2) 
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where Ent µ (f 2 ) := f 2 log(f 2 / f 2 dµ)dµ denotes the entropy of f 2 with respect to (w.r.t. in short) µ. A famous condition to verify those inequalities is the Bakry-Emery Γ 2 criterion which says that if dµ = e -V dx on R n , Hess V ≥ κId > 0, then λ 1 (µ) ≥ ρ LS (µ) ≥ κ.

One crucial property of these two inequalities is the tensorization (or dimension free), i.e. if µ satisfies a Poincaré or a logarithmic Sobolev inequality then µ ⊗N satisfies the same inequality with the same constant (and thus independent of N ) leading for example to (non asymptotic) gaussian deviation inequalities refining central limit inequalities or convergence to equilibrium independent of the number of particles. However interesting physical systems are far from being independent, so that there exists a huge literature devoted to the obtention of functional inequalities such as Poincaré or logarithmic Sobolev inequalities, in particular to assess convergence to equilibrium, in various dependent settings such as (discrete or continuous) spin systems [START_REF] Stroock | The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition[END_REF][START_REF] Stroock | The logarithmic Sobolev inequality for continuous spin systems on a lattice[END_REF][START_REF] Stroock | The logarithmic Sobolev inequality for discrete spin systems on a lattice[END_REF][START_REF] Zegarliński | Dobrushin uniqueness theorem and logarithmic Sobolev inequalities[END_REF][START_REF] Zegarlinski | The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice[END_REF][START_REF] Bodineau | The log-Sobolev inequality for unbounded spin systems[END_REF][START_REF] Bodineau | Correlations, spectral gap and log-Sobolev inequalities for unbounded spins systems[END_REF][START_REF] Yoshida | Application of log-Sobolov inequality to the stochastic dynamics of unbounded spin systems on the lattice[END_REF][START_REF] Yoshida | The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice[END_REF][START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF][START_REF] Bauerschmidt | A very simple proof of the LSI for high temperature spin systems[END_REF] (see also [START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF] for a survey) or mean field models [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF][START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF][START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF][START_REF] Eberle | Reflection couplings and contraction rates for diffusions[END_REF][START_REF] Eberle | Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes[END_REF] with a particular emphasis on the dependence on the number of spins or particles.

We will focus our attention on mean field particles system. To this end, consider the N (≥ 2) interacting particles system of mean field type :

dX N i (t) = √ 2dB i (t) -∇V (X N i (t))dt - 1 N -1 j =i ∇ x W (X N i (t), X N j (t))dt, i = 1, • • • , N (3) 
where B 1 (t), • • • , B N (t) are N independent Brownian motions taking values in R d , the confinement potential V is a function on R d of class C 2 , and the interaction potential W is a function on R d × R d of class C 2 . Its generator L (N ) is given by

L (N ) f (x 1 , • • • , x N ) = N i=1 L (N ) i f (x 1 , • • • , x N ) L (N ) i f (x 1 , • • • , x N ) := ∆ i f (x 1 , • • • , x N ) -∇ i V (x i ) • ∇ i f (x 1 , • • • , x N ) - 1 N -1 j =i (∇ x W )(x i , x j ) • ∇ i f (x 1 , • • • , x N ) (4) 
for any smooth function f on (R d ) N , where ∇ i denotes the gradient w.r.t. x i , ∆ i the Laplacian w.r.t. x i , and x • y = x, y denotes the Euclidean inner product. The unique invariant probability measure of (3) is

µ (N ) (dx 1 , • • • , dx N ) = 1 Z N exp {-H N (dx 1 , • • • , dx N )} dx 1 • • • dx N (5) 
where

H N (x 1 , • • • , x N ) := N i=1 V (x i ) + 1 N -1 1≤i<j≤N W (x i , x j )
is the Hamiltonian, and Z N is the normalization constant called partition function in statistical mechanics, which is assumed to be finite throughout the paper. Without interaction (i.e. W = 0 or constant), µ (N ) = α ⊗N (i.e. the particles are independent), where

dα(x) = 1 C e -V (x) dx, C = e -V (x) dx.
Our first major goal is to get uniform (in the number of particles N ) Poincaré or logarithmic Sobolev inequalities for the measure µ (N ) under tractable conditions. Malrieu [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF] used Bakry-Emery's Γ 2 technique to establish a logarithmic Sobolev inequality for the mean field case thus requiring uniform convexity assumption for V and W . Recent techniques such as Lyapunov conditions (see [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF][START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] for example) are usually inefficient to get dimension-free results. For each of these inequalities we require a uniform bound for the spectral gap or the logarithmic Sobolev constants of the one particle conditional distribution. To bypass the perturbation techniques, our main assumptions for Poincaré inequality will be of two sorts: for the confinement potential we will need some linear growth at infinity as well as a lipschitzian spectral gap property (see Section 2 for details) which will be sufficient to get a Poincaré inequality for the one particle conditional distribution, and for the interaction potential a lower bound on the "extra diagonal" Hessian of W , leading to new and sharp results. A particular emphasis will be made on Curie-Weiss model and on interaction potential of the form W (x, y) = W 0 (x -y). The proof will repose on some refinement of the ideas of Ledoux [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF]. For the logarithmic Sobolev inequality we will consider a translation of Zegarlinski's condition (see [START_REF] Zegarliński | Dobrushin uniqueness theorem and logarithmic Sobolev inequalities[END_REF]) for mean field model which relies on the smallness of the product of the Lipschitzian spectral gap and of the infinite norm of the Hessian of the interaction potential. One of our interest to consider logarithmic Sobolev inequality for mean field particles system is to get an exponential entropic decay for the limit non-linear McKean-Vlasov equation. Indeed, consider the non-linear McKean-Vlasov equation with an internal potential V : R d → R and an interaction potential W : R d × R d → R (between two particles) so that W (x, y) = W (y, x):

∂ t ν t = ∆ν t + ∇ • (ν t ∇V ) + ∇ • (ν t ∇(W ⊛ ν t )) (6) 
where (ν t ) t≥0 is a flow of probability measures on R d with ν 0 given, ∇ is the gradient, ∇• is the divergence, and

(W ⊛ ν)(x) = R d W (x, y)dν(y). (7) 
It corresponds to the self-interacting diffusion

dX t = √ 2dB t -∇V (X t )dt -∇W ⊛ ν t (X t )dt (8) 
where ν t is the law of X t . It can be seen through the propagation of chaos phenomenon (see [START_REF] Sznitman | Topics in propagation of chaos[END_REF] for example) that the law of X N 1 (t) converges to the one of X t as the number of particles N tends to infinity (for each t > 0). Via the logarithmic Sobolev inequality for the mean field particles system and a quite technical passage to the limit, we will be able to prove entropic convergence to equilibrium for the non-linear McKean-Vlasov SDE generalizing results of [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF][START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF]. Let us finish this introduction by the plan of the paper. In the next section, we will present our set of assumptions and the main results of the paper concerning uniform Poincaré or logarithmic Sobolev inequality of mean field particles system as well as exponential convergence to equilibrium for McKean-Vlasov SDE [START_REF] Bodineau | Correlations, spectral gap and log-Sobolev inequalities for unbounded spins systems[END_REF]. Section 3 presents the Lipschitzian spectral gap for conditional distribution needed in the proof of the uniform Poincaré inequality detailed in Section 4. The translation of Zegarlinski's condition and thus the proof of uniform logarithmic Sobolev inequality are the core of Section 5. The exponential convergence to equilibrium of McKean-Vlasov SDE is finally detailed in the last Section 6.

Main results

2.1.

Framework and main assumptions. Throughout the paper we work in the following framework.

(H1) The confinement potential

V : R d → R is C 2 -smooth, its Hessian Hess(V ) = ∇ 2 V = (∂ x k ∂ x l V ) 1≤k
,l≤d of V is bounded from below and there are two positive constants

c 1 , c 2 such that x • ∇V (x) ≥ c 1 |x| 2 -c 2 , x ∈ R d . ( 9 
) (H2) The pairwise interaction potential W : R d × R d → R is C 2 -smooth such that its
Hessian ∇ 2 W is bounded and exp (-[V (x) + V (y) + λW (x, y)]) dxdy < +∞, ∀λ > 0.

(H3) (Lipschitzian spectral gap condition for one particle) the following Lipschitzian constant (for the marginal conditional distribution of one particle) is finite

c Lip,m := 1 4 ∞ 0 exp 1 4 s 0 b 0 (u)du sds < +∞ ( 10 
)
where b 0 (r) is the dissipativity rate of the drift of one particle in the system (3) at distance r > 0 :

b 0 (r) = sup x,y,z∈R d :|x-y|=r - x -y |x -y| , (∇V (x) -∇V (y)) + (∇ x W (x, z) -∇ x W (y, z)) . (11) 
This last condition, taken from [START_REF] Wu | Gradient estimates of Poisson equations on Riemannian manifolds and applications[END_REF], is of course reminiscent of the work of Eberle [START_REF] Eberle | Reflection couplings and contraction rates for diffusions[END_REF][START_REF] Eberle | Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes[END_REF] without the interaction potential for convergence to equilibrium in L 1 -Wasserstein distance. However in their work the interaction potential is seen only as a perturbation.

2.2. Uniform Poincaré inequality for mean-field µ (N ) . In the sequel we shall use the notation

∇ 2 x i ,x j H for a C 2 -function H on (R d ) N , defined by ∇ 2 x i ,x j H := (∂ 2 x ik x jl H) 1≤k,l≤d where x i = (x i1 , x i2 , • • • , x id ) ∈ R d . Let λ 1,m = inf N ≥2 inf 1≤i≤N λ 1 (µ i ) (12) 
where λ 1 (µ i ) is the spectral gap of the conditional distribution µ i = µ i (dx i |x î) of x i knowing x î = (x j ) j =i , i.e. the best constant such that the following Poincaré inequality

λ 1 (µ i )Var µ i (f ) ≤ R d |∇ i f | 2 dµ i , ∀f ∈ C 1 b (R d ) holds.
Theorem 1. In the framework described above, we have always

λ 1,m ≥ 1 c Lip,m . (13) 
Assume that there is some constant h > -λ 1,m such that for any

(x 1 , • • • , x N ) ∈ (R d ) N , 1 N -1 (1 i =j ∇ 2 x,y W (x i , x j )) 1≤i,j≤N ≥ hI dN ( 14 
)
in the order of definite nonnegativity for symmetric matrices, where I n is the identity matrix of taille n. Then µ (N ) satisfies the following Poincaré inequality

(λ 1,m + h) Var µ (N) (f ) ≤ (R d ) N |∇f | 2 dµ (N ) , f ∈ C 1 b (R dN ) ( 15 
)
or equivalently the spectral gap λ 1 (µ (N ) ) of L (N ) on L 2 (µ (N ) ), defined as the infimum of those spectral points λ > 0 of L (N ) on L 2 (µ (N ) ), verifies

λ 1 (µ (N ) ) ≥ λ 1,m + h ≥ 1 c Lip,m + h. (16) 
Its proof will be given in §3. 

= j Cov µ (N) (f (x i ), g(x j )) ≤ c Lip,m (1 + c Lip,m h)(N -1) f 2 Lip + g 2 Lip ( 17 
)
where Cov µ (N) (•, •) denotes the covariance of two functions under the probability measure µ (N ) . Roughly speaking, two particles x i and x j become asymptotically independent at the rate 1/N .

Proof. The l.h.s of ( 17) does not depend on (i, j). Applying the Poincaré inequality to

F := 1 √ N N i=1 f (x i ), we have Var µ (N) (F ) = Var µ (N) (f (x 1 )) + (N -1)Cov µ (N) (f (x 1 ), f (x 2 )) ≤ 1 λ 1 (µ (N ) ) |∇F | 2 dµ (N ) ≤ 1 λ 1 (µ (N ) ) f 2 Lip ,
and therefore

Cov µ (N) (f (x 1 ), f (x 2 )) ≤ 1 (N -1)λ 1 (µ (N ) ) f 2 Lip .
On the other hand, by the first equality above

Cov µ (N) (f (x 1 ), f (x 2 )) = 1 N -1 Var µ (N) (F ) -Var µ (N) (f (x 1 )) ≥ - 1 N -1 Var µ (N) (f (x 1 )) ≥ - 1 (N -1)λ 1 (µ (N ) ) f 2 Lip .
Hence we get

|Cov µ (N) (f (x 1 ), f (x 2 ))| ≤ 1 (N -1)λ 1 (µ (N ) ) f 2 Lip ≤ c Lip,m (1 + c Lip,m h)(N -1) f 2 Lip , (18) 
where the last inequality follows by [START_REF] Guillin | Transportation-information inequalities for markov processes[END_REF]. Using [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF], we obtain

Cov µ (N) (f (x 1 ), g(x 2 )) = 1 4 Cov µ (N) ((f + g)(x 1 ), (f + g)(x 2 )) -Cov µ (N) ((f -g)(x 1 ), (f -g)(x 2 )) ≤ c Lip,m 4(1 + c Lip,m h)(N -1) f + g 2 Lip + f -g 2 Lip ≤ c Lip,m (1 + c Lip,m h)(N -1) f 2 Lip + g 2 Lip
the desired [START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF].

Remark 3. The Poincaré inequality (15) is sharp. In fact, let d = 1, V (x) = x 2 /2, W (x, y) = βxy. In that case b 0 (r) = -r (such W does not change b 0 ), 1/c Lip,m = 1 = λ 1,m . Note that λ 0 := min 1 + β, 1 - β N -1
is the smallest eigenvalue of the symmetric matrix

1 N -1 (β1 i =j ) + I N = 1 N -1 (β1 i =j ) + λ 1,m I N .
Our condition [START_REF] Eberle | Reflection couplings and contraction rates for diffusions[END_REF] for the Poincaré inequality becomes

λ 0 > 0.
This is necessary even for well defining µ (N ) . And our estimate [START_REF] Guillin | Transportation-information inequalities for markov processes[END_REF] says that λ 1 (µ (N ) ) ≥ λ 0 .

As the matrix of the l.h.s. above is exactly the inverse of the covariance matrix of the centered gaussian distribution µ (N ) , its spectral gap is exactly λ 0 , showing so the sharpness of this theorem.

Remark 4. Here we give an explicit estimate of c Lip,m under the following assumptions. Assume there are some constants c V , c 1 , c W , c 2 ∈ R and R ≥ 0 such that

∇V (x) -∇V (y), x -y ≥ c V |x -y| 2 -c 1 |x -y|1 [|x-y|≤R] (19) 
∇ x W (x, z) -∇ x W (y, z), x -y ≥ c W |x -y| 2 -c 2 |x -y|1 [|x-y|≤R] ; (20) 
for all x, y ∈ R d , and c V + c W > 0, then we have for any r > 0,

b 0 (r) = sup |x-y|=r,z x -y |x -y| , -[(∇V (x) -∇V (y)) + (∇ x W (x, z) -∇ x W (y, z))] ≤ -(c V + c W )r + (c 1 + c 2 )1 [r≤R]
which implies that

c Lip,m ≤ 1 4 ∞ 0 exp 1 4 s 0 [-(c V + c W )u + (c 1 + c 2 )1 [0,R] (u)]du sds ≤ 1 4 ∞ 0 exp - 1 8 (c V + c W )s 2 + 1 4 (c 1 + c 2 )R] sds = 1 c V + c W exp 1 4 (c 1 + c 2 )R . Example 1. (Curie-Weiss model) Let d = 1, V (x) = β(x 4 /4 -x 2 /2), W (x, y) = -βKxy
where β > 0 is the inverse temperature, K ∈ R * . This model is ferromagnetic or antiferromagnetic according to K > 0 or K < 0.

For this example, we find by elementary analysis

b 0 (r) = -2V ′ (r/2) = -2β(r 3 /8 -r/2), r > 0. then c Lip,m = 1 4 ∞ 0 exp β 4 s 0 (r - r 3 4 )dr sds = 1 4 ∞ 0 exp β 4 ( s 2 2 - s 4 16 
) sds

= e β/4 ∞ 0 e -β(1/2-u) 2 du ≤ √ π √ β e β/4 Let λ(β) = 1 c Lip,m . By Theorem 1, if there exists h > -λ(β) such that - βK N -1 (1 i =j ) ≥ hI N then λ 1 (µ (N ) ) ≥ h + λ(β). Note that (1 i =j ) has two eigenvalues, N -1 and -1. Hence - βK N -1 (1 i =j ) ≥ βK N -1 I N , if K < 0, -βKI N , if K > 0.
So taking

h = βK N -1 , if K < 0, -βK, if K > 0
we get by Theorem 1,

λ 1 (µ (N ) ) ≥ √ β √ π e -β/4 + βK N -1 , if K < 0, √ β √ π e -β/4 -βK, if K > 0. (21) 
(It holds automatically if the right hand side above is ≤ 0.) In particular in the anti-ferromagnetic case (i.e. K < 0), for any ε > 0 small enough, λ 1 (µ (N ) ) ≥ π -1/2 β 1/2 e -β/4 -ε > 0 when the number N of particles is big enough: the mean field should have no phase transition.

Corollary 5. Assume that W (x, y) = W 0 (x -y) where W 0 : R d → R is C 2 , even. If (1)
∇V is dissipative at infinity in the sense of [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF], and

(2) The Hessian matrix HessW 0 of W 0 is bounded from below and from above:

c W I d ≤ HessW 0 ≤ C W I d ( 22 
)
and c W + c V > 0.
Then for all N ≥ 2,

λ 1 (µ (N ) ) ≥ λ 1,m - N N -1 c - W -C W ( 23 
)
where c - W stands for the negative part of c W .

Remark 6. Let us see what the Bakry-Emery

Γ 2 -criterion yields. If ∇ 2 W 0 ≥ c W I d and ∇ 2 V ≥ c V I d ,
by following the proof of the corollary above, we have

∇ 2 H ≥ (c V -N N -1 c - W )I dN . Thus by the Bakry-Emery Γ 2 -criterion, λ 1 (µ (N ) ) ≥ ρ LS (µ (N ) ) ≥ c V - N N -1 c - W
where ρ LS (µ (N ) ) is the log-Sobolev constant, given in the next subsection.

Remark 7. We notice that if V is super-convex at infinity (i.e. the minimal eigenvalue of ∇ 2 V (x) tends to +∞ when |x| → ∞), then c V can be taken arbitrarily large, so the condition c W + c V > 0 on the lower bound c W of Hess W 0 is always satisfied. In particular, if W 0 (x) = c W 2 |x| 2 with c W < 0 (then concave and C W = c W ), the uniform Poincaré inequality will hold for all big N by ( 23) since, in this case,

λ 1,m - N N -1 c - W -C W = λ 1,m + 1 N -1 c W .
This phenomenon, apparently strange, can be intuitively explained as follows. The confinement potential, being super-convex, pushes strongly all particles towards some bounded domain; and the interaction potential W 0 , being concave, pushes every particle far away from others. This creates an equilibrium: the meaning of our spectral gap estimate [START_REF] Stroock | The logarithmic Sobolev inequality for continuous spin systems on a lattice[END_REF] for the concave potential W 0 . We now present an example for which some much better estimates (than those in Corollary 5) can be obtained.

Example 2. Let W (x, y) = W 0 (x -y) where

W 0 (x) = R d e - √ -1 x,y dν(y) + c 2 |x| 2
where ν is some bounded symmetric (i.e. ν(-A) = ν(A) for any Borel subset A of R d ) positive measure on R d with finite second moment. Let Γ ν = ( y k y l dν(y)) 1≤k,l≤d be the covariance matrix of ν, and λ max (Γ ν ) (resp. λ min (Γ ν )) its maximal (resp. minimal) eigenvalue.

In §4, we will show the following better result :

λ 1 (µ (N ) ) ≥ λ 1,m + 1 N -1 (min{c, -c(N -1)} -λ max (Γ ν )) . (24) 
If c ≤ 0 (then the interaction potential is concave), this implies that the spectral gap of µ (N ) is always uniformly lower bounded.

2.3.

Uniform log-Sobolev inequality for the mean field µ (N ) . Recall that some nonnegative function f ∈ L log L(µ), its entropy w.r.t. the probability measure µ is defined by

Ent µ (f ) := f log f dµ -µ(f ) log µ(f ), µ(f ) := f dµ.
Theorem 8. Assume that

(1) for some best constant ρ LS,m > 0, the conditional marginal distributions µ i := µ i (dx i |x î) on R d satisfy the log-Sobolev inequality :

ρ LS,m Ent µ i (f 2 ) ≤ 2 |∇f | 2 dµ i , f ∈ C 1 b (R d ) ( 25 
)
for all i and x î ; (2) (a translation of Zegarlinski's condition)

γ 0 = c Lip,m sup x,y∈R d ,|z|=1 |∇ 2 x,y W (x, y)z| < 1. ( 26 
)
then µ (N ) satisfies ρ LS,m (1 -γ 0 ) 2 Ent µ (N) (f 2 ) ≤ 2 (R d ) N |∇f | 2 dµ (N ) , f ∈ C 1 b ((R d ) N ) i.e. the log-Sobolev constant of µ (N ) verifies ρ LS (µ (N ) ) ≥ ρ LS,m (1 -γ 0 ) 2 . ( 27 
)
Remark 9. In this remark we present one approach to establish the first assumption in Theorem 8. Suppose that ∇ 2 x W ≥ -K 0 I d and V is super-convex in the sense that for any K > 0 there exists R > 0 such that

∇ 2 V (x) ≥ KI d , for |x| ≥ R then V can be decomposed as the sum of a uniform convex function V c and a bounded function V b such that ∇ 2 V c ≥ (K 1 + K 0 )I d ,
therefore, thanks to Bakry-Emery criterion, the probability measure

1 Z exp   -V c (x i ) - 1 N -1 j:j =i W (x i , x j )   dx i
satisfies a log-Sobolev inequality with constant K 1 . By the bounded perturbation theorem, the conditional measures 

µ i = µ i (•|x î), i = 1, • • • , N satisfy a log-Sobolev inequality with a uniform constant ρ LS,m ≥ K 1 exp(-(sup V b -inf V b ))

So that

γ 0 ≤ c Lip,m ∇ 2
x,y W ∞ ≤ πβe β/4 |K| which will be smaller than 1 if β or K is sufficiently small. 

H(ν|µ) := f log f dµ = Ent µ (f ), if ν ≪ µ, f := dν dµ +∞, otherwise. (28) 
The L p -Wasserstein distance W p (ν, µ) is defined by

W p (µ, ν) = inf (X,Y ) (E|X -Y | p ) 1/p
where the infimum is taken over all couples (X, Y ) of random variables defined on some probability space, such that the laws of X, Y are respectively µ, ν (a such couple as well as their joint law is called a coupling of (µ, ν)). Recall that the space M p 1 (R d ) of probability measures with finite p-moment, equipped with L p -Wasserstein distance W p , is complete and separable (Villani [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]). The Fisher-Donsker-Varadhan's information of ν w.r.t. µ is defined by

I(ν|µ) := |∇ √ f | 2 dµ, if ν ≪ µ, √ f := dν dµ ∈ H 1 µ +∞, otherwise. ( 29 
)
where H 1 µ is the domain of the Dirichlet form E µ [g] = |∇g| 2 dµ (well defined if µ has C 1density w.r.t. dx). Recall that the log-Sobolev inequality for µ (N ) can be rewritten in

ρ LS (µ (N ) )H(ν|µ (N ) ) ≤ 2I(ν|µ (N ) ), ν ∈ M 1 ((R d ) N ). ( 30 
)
What replaces the role of the relative entropy in interacting particle system for the nonlinear McKean-Vlasov equation is the free energy of a probability measure ν on R d :

E f (ν) :=    H(ν|α) + 1 2 W (x, y)dν(x)dν(y), if H(ν|α) < +∞ +∞ otherwise (31) 
or more precisely the corresponding mean field entropy

H W (ν) := E f (ν) - inf ν∈M 1 (R d ) E f (ν). ( 32 
)
And the substituter of the Fisher-Donsker-Varadhan's information is: if ν = f (x)dx, |x| 2 dν(x) < +∞ and ∇f ∈ L 1 loc (R d ) in the distribution sense,

I W (ν) := 1 4 | ∇f (x) f (x) + ∇V (x) + (∇ x W ⊛ ν)(x)| 2 dν(x), (33) 
and +∞ otherwise. Those two objects appeared both in Carrillo-McCann-Villani [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF]. The following result generalizes the main result of [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF] from the convex framework to the more general non-convex case.

Theorem 10. Assume the uniform marginal log-Sobolev inequality, i.e. [START_REF] Sznitman | Topics in propagation of chaos[END_REF] with ρ LS,m > 0, and the uniqueness condition of Zegarlinski [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. Then

(1) There exists a unique minimizer ν ∞ of H W over M 1 (R d );

(2) The following (nonlinear) log-Sobolev inequality

ρ LS H W (ν) ≤ 2I W (ν), ν ∈ M 1 (R d ) (34)
holds, where ρ LS := lim sup

N →∞ ρ LS (µ (N ) ) ≥ ρ LS,m (1 -γ 0 ) 2 .
(3) The following Talagrand's transportation inequality holds

ρ LS W 2 2 (ν, ν ∞ ) ≤ 2H W (ν), ν ∈ M 1 (R d ) (35) 
(4) For the solution ν t of the McKean-Vlasov equation with the given initial distribution ν 0 of finite second moment,

H W (ν t ) ≤ e -t•ρ LS /2 H W (ν 0 ), t ≥ 0 (36)
and in particular

W 2 2 (ν t , ν ∞ ) ≤ 2 ρ LS e -t•ρ LS /2 H W (ν 0 ), t ≥ 0 ( 37 
)
Remark 11. In the work by Carrillo-McCann-Villani [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF], presuming the presence of confining potential, such results were obtained in the case where W (x, y) = W 0 (x -y) and

(1) either

∇ 2 V > ||(∇ 2 W ) -|| L ∞ (in particular, V is uniformly strictly convex);
(2) or W is strictly convex at infinity, and both V and W are strictly convex (possibly degenerate at the origin).

In particular, V was required to be convex in both situations. If we consider the case in dimension one, V (x) = β(x 4 /4 -x 2 /2) and W 0 (x) = -βKx 2 /2 with K ≥ 0. Then by analogous calculations than for the Curie-Weiss model, we have c Lip,m ≤ π/βe β(1+K) 2 /4 so that γ 0 ≤ √ πβKe β(1+K) 2 /4 and thus the conditions ( 25), ( 26) are verified for β or K small enough for example, cases not covered in [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF]. Our conditions are quite comparable with the results obtained in [START_REF] Eberle | Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes[END_REF] but they only consider convergence in L 1 -Wasserstein distance.

Remark also that the conditions are comparable to the assumptions made in [START_REF] Durmus | An elementary approach for uniform in time propagation of chaos[END_REF] to get an uniform in time propagation of chaos (but in L 1 -Wasserstein distance) which explains why we may pass to the limit in the number of particles.

Lipschitzian spectral gap for conditional distribution

Notice that the conditional distribution µ i (dx i ) := µ i (dx i |x j , j = i) of x i knowing x î := (x j ) j =i of our mean field measure µ (N ) defined in (5) is given by

dµ i (x i ) = 1 Z i exp    -V (x i ) - 1 N -1 j: j =i W (x i , x j )    dx i where Z i = Z i (x î) is the normalization factor. Let H i (x i ) := V (x i ) + 1 N -1 j: j =i W (x i , x j )
be the potential associated with µ i . The generator

L (N ) i = ∆ i -∇ i H i • ∇ i given in (4), with (x j ) j =i fixed, is symmetric w.r.t. µ i . By the definition (11) of b 0 (r), for all x, y ∈ (R d ) N , x i -y i |x i -y i | , -[∇ i H(x) -∇ i H(x î,y i )] = 1 N -1 j =i x i -y i |x i -y i | , -[(∇V (x i ) + ∇ x W (x i , x j )) -(∇V (y i ) + ∇ x W (y i , x j )] ≤ b 0 (|x i -y i |)
where x î,y i ∈ (R d ) N is given by (x î,y i ) j = x j , j = i, (x î,y i ) i = y i . So we have the following result (due to the third named author [START_REF] Wu | Gradient estimates of Poisson equations on Riemannian manifolds and applications[END_REF]), which is the starting point of our investigation.

Lemma 12. Assume [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF]. Then the Poisson operator (-L i ) -1 on the Banach space C Lip,0 (R d ) of Lipschitzian continuous functions f on R d with µ i (f ) = 0, equipped with the norm f Lip , is bounded and its norm

||(-L i ) -1 || Lip ≤ c Lip,m (38) 
where c Lip,m is given in [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF]. In particular the spectral gap λ 1 (µ i ) of L i on L 2 (µ i ) satisfies

λ 1 (µ i ) ≥ 1 c Lip,m . (39) 
4. Uniform Poincaré inequality : proof of Theorem 1

Let V ∈ C 2 (R d ) be the confinement potential, U a C 2 -potential of interaction on (R d ) N and H(x 1 , • • • , x N ) = N i=1 V (x i )+U (x 1 , • • • , x N )
the Hamiltonian. Now consider the probability measure x) dx is the normalization constant (called often partition function), assumed to be finite. We denote by µ i = µ(dx i |x î) the conditional distribution of x i given

dµ := 1 Z e -H dx 1 • • • dx N where Z = (R d ) N e -H(
x î := (x 1 , • • • , x i-1 , x i+1 , • • • , x N ) under µ. It is given by µ i (dx i ) = 1 Z i e -U (x)-V (x i ) dx i , Z i = Z i (x î) := e -U (x)-V (x i ) dx i < +∞ (assumed).
We shall describe below conditions on the Hamiltonian H such that µ satisfies a Poincaré inequality, namely for some positive constant ρ,

ρ f 2 dµ ≤ |∇f | 2 dµ for every smooth function f ∈ C 1 b ((R d ) N
). The largest ρ is called the spectral gap of µ, denoted as λ 1 (µ).

Proposition 13. Assume that Z = (R d ) N e -H(x) dx < +∞, Z i (x î) < +∞ for all i, x î. If
(1) the marginal conditional distributions µ i satisfy the uniform Poincaré inequality, i.e.

λ 1,m := inf 1≤i≤N,x î∈(R d ) N-1 λ 1 (µ i ) > 0, (40) 
(2) for some constant h ∈ R,

(1 i =j ∇ 2 x i ,x j U ) ≥ hI dN , ( 41 
)
in the sense of nonnegative definiteness of symmetric matrices;

then λ 1 (µ) ≥ h + λ 1,m .
This result is essentially due to Ledoux [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF]. Indeed, in the case of d = 1, if Hess (U ) ≥ λI N and ∂ ii U (x) ≤ λ for all i and x î, then for every

v = (v 1 , v 2 , • • • , v N ) ∈ R N , i =j v i ∂ 2 ij U v j = Hess (U )v, v - i v 2 i ∂ 2 ii U ≥ (h -h)|v| 2
i.e. the assumption (41) holds with h = λ -λ. This proposition gives λ 1 (µ) ≥ λ 1,m + λ -λ, which is the original result of Ledoux [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF]. For the convenience of the reader, we reproduce the beautiful proof of Ledoux [18,Prop. 3.1].

Proof. Of course we may and will assume that λ 1,m + h > 0. Let L = ∆ -∇H • ∇ be the symmetric generator associated with the probability measure µ. By the dual description of Poincaré inequality [START_REF] Bakry | Analysis and Geometry of Markov Diffusion Operators[END_REF]Prop. 4.8.3], the conclusion above is equivalent to

(Lf ) 2 dµ ≥ (λ 1,m + h) |∇f | 2 dµ.
Thanks to the Bakry-Emery's formula Γ 2 (f )dµ = (Lf ) 2 dµ and

Γ 2 (f ) = ∇ 2 f 2 HS + ∇ 2 H∇f, ∇f where ||A|| HS := ( i,j |a ij | 2 ) 1/2 is the Hilbert-Schmidt norm of a matrix A = (a ij ), we have (Lf ) 2 dµ = ||∇ 2 f || 2 HS + ∇ 2 H∇f, ∇f dµ = ||∇ 2 f || 2 HS + n i=1 Hess (V )(x i )∇ x i f, ∇ x i f + Hess (U )∇f, ∇f dµ ≥ 1≤i≤N R d ||∇ 2 x i f || 2 HS + (Hess (V )(x i ) + ∇ 2 x i ,x i U )∇ x i f, ∇ x i f dµ i dµ + i =j ∇ 2 x i ,x j U ∇ x i f, ∇ x j f dµ
Applying the above characterization of the Poincaré inequality but to the conditional measures µ i , we have

||∇ 2 x i f || 2 HS + (Hess (V )(x i ) + ∇ 2 x i ,x i U )∇ x i f, ∇ x i f dµ i ≥ λ 1,m |∇ x i f | 2 dµ i
for any i and any given x î. Moreover by the assumption (41),

i =j ∇ 2 x i x j U ∇ x i f, ∇ x j f dµ ≥ h |∇f | 2 dµ.
This, combined with the previous inequality, yields the desired inequality.

We come back to the mean field setting.

Proof of Theorem 1. We shall apply Proposition 13 to µ = µ (N ) . With the notations above, the interaction potential U is then given by

U (x) = 1 N -1 1≤i<j≤N W (x i , x j ) = 1 2 N i=1 U i (x) ( 42 
)
where

U i (x) = 1 N -1 j:j =i W (x i , x j ). For i = j, ∇ 2 x i ,x j U = 1 N -1 (∇ 2 x,y W )(x i , x j )
therefore the assumption ( 14) implies the condition (41) with constant h in Proposition 13.

On the other hand, since µ i (dx i |x î) = e -[V (x i )+U i (x)] dx i /Z i (x î) and

- x i -y i |x i -y i | , ∇ x i [V (x i ) + U i (x)] -∇ x i [V (y i ) + U i (x î,y i )] ≤ b 0 (|x i -y i |)
as noted in §3, thanks to the assumption [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF], Lemma 12 yields λ 1 (µ i ) ≥ 1/c Lip,m . Hence we can apply Proposition 13 to the invariant measure µ (N ) , and obtain [START_REF] Guillin | Transportation-information inequalities for markov processes[END_REF].

Proof of Corollary 5. In this particular context W (x, y) = W 0 (x -y), for U (x) given by (42),

∇ 2 x i ,x i U (x) = 1 N -1 j =i (∇ 2 W 0 )(x i -x j ); ∇ 2 x i ,x j U = - 1 N -1 (∇ 2 W 0 )(x i -x j ) for i = j i.e. ∇ 2 U = -1 N -1 (A ij ) where A ij = (∇ 2 W 0 )(x i -x j ) for i = j and A ii = -j:j =i A ij . As A ij is symmetric and A ij = A ji , we have for any u = (u 1 , • • • , u N ) in (R d ) N , - i,j u i , A ij u j = i =j -u i , A ij (u j -u i ) = i =j u j , A ij (u j -u i ) = 1 2 i =j (u j -u i ), A ij (u j -u i ) ≥ c W 2 i =j |u j -u i | 2 = c W i,j
u j , u j -u i (by the previous equality with

A ij = I) = c W N |u| 2 -N |ū| 2 = c W N |u -ū| 2 ≥ c W N |u| 2 , if c W ≤ 0. 0 if c W > 0 Therefore ∇ 2 U ≥ -c - W N N -1 I dN . Obviously ∇ 2 x i ,x i U ≤ C W I d . Then (1 i =j ∇ 2 x i ,x j U ) = ∇ 2 U -(1 i=j ∇ 2 x i ,x i U ) ≥ -c - W N N -1 + C W I dN
It remains to apply Proposition 13 to get the desired spectral gap estimate [START_REF] Stroock | The logarithmic Sobolev inequality for continuous spin systems on a lattice[END_REF].

Proof of ( 24) in Example 2. Notice that

(1 i =j ∇ 2 x i ,x j W (x i , x j )) = 1 i =j [-cI d + e - √ -1(x i -x j )•y yy T dν(y)] = -c(1 i =j I d ) + e - √ -1(x i -x j )•y yy T dν(y) -(1 i=j yy T dν(y)) ≥ cP H -c(N -1)P H ⊥ -λ max (Γ ν )I dN
where the second expression in the second line is a positive-definite matrix, and P H , P H ⊥ are respectively the orthogonal projection from (R d ) N to H and to its orthogonal complement

H ⊥ , H = {x = (x 1 , • • • , x N ); x := 1 N N i=1
x i = 0},

H ⊥ = {x = (x 1 , • • • , x N ) ∈ (R d ) N ; x 1 = x 2 = • • • = x N }.
Thus we obtain from Theorem 1

λ 1 (µ (N ) ) ≥ λ 1,m + 1 N -1 (min{c, -c(N -1)} -λ max (Γ ν ))
which is the desired inequality (24).

Uniform log-Sobolev inequality

Inspired by Dobrushin's uniqueness condition for the Gibbs measures, Zegarlinski [31, Theorem 0.1] proved a criterion about the logarithmic Sobolev inequality for the Gibbs measure µ = e -H dx/Z on (R d ) N in terms of the conditional marginal distributions

µ i = µ(dx i |x î).
Let us introduce at first Zegarlinski's dependence coefficient c Z ij of µ j upon x i : this is the best nonnegative constant such that

|∇ i (µ j (f 2 )) 1/2 | ≤ (µ j (|∇ i f | 2 )) 1/2 + c Z ij (µ j (|∇ j f | 2 )) 1/2 (43) 
for all smooth strictly positive functions (1) µ i satisfies a uniform log-Sobolev inequality (LSI in short), i.e.

f (x 1 , • • • , x N ). Obviously c Z ii = 0. The matrix c Z := (c Z ij ) 1≤i,
ρ LS,m := inf 1≤i≤N,x î∈(R d ) N-1 ρ LS (µ i ) > 0.
(2) The following Zegarlinski's condition is verified

γ := sup 1≤i≤N max{ 1≤j≤N c Z ji , 1≤j≤N c Z ij } < 1. (44) 
Then the Gibbs measure µ satisfies the logarithmic Sobolev inequality

ρ LS,m (1 -γ) 2 Ent µ (f 2 ) ≤ 2µ(|∇f | 2 ) ( 45 
)
for all smooth bounded functions f on (R d ) N , i.e.

ρ LS (µ) ≥ ρ LS,m (1 -γ) 2 .
Our objective is to estimate c Z ij . We begin with a simple observation :

Lemma 15. If for any function g = g(x j ) ∈ C 1 b (R d ) on the single particle x j , |∇ i µ j (g)| ≤ c ij µ j (|∇g|), ( 46 
)
then c Z ij ≤ c ij .
Proof. For any 0 < g ∈ C 1 b ((R d ) N ), by the condition (46), we have for all i = j,

|∇ i µ j (g)| = 1 2 µ j (g) [|µ j (∇ i g) + (∇ x i g(x j , y ĵ )dµ j (x j |x ĵ ))| y ĵ =x ĵ |] ≤ 1 2 µ j (g) [µ j (|∇ i g|) + c ij µ j (|∇ j g|)] .
When g = f 2 with f > 0, we have by the Cauchy-Schwarz inequality for all i, j,

µ j (|∇ i g|) = 2µ j (f |∇ i f |) ≤ 2 µ j (f 2 )µ j (|∇ i f | 2 ).
Substituting it into the previous inequality we get

|∇ i µ j (f 2 )| ≤ µ j (|∇ i f | 2 ) + c ij µ j (|∇ j f | 2 ) so it follows c Z ij ≤ c ij .
Lemma 16. For the mean field Gibbs measure µ = µ (N ) , the interdependence coefficient c

Z ji satisfies c Z ji ≤ 1 N -1 c Lip,m ∇ 2 x,y W ∞ , i = j
where c Lip,m is given by (10),

∇ 2 x,y W ∞ := sup x,y∈R d sup z∈R d ,|z|=1
|∇ 2

x,y W (x, y)z|.

Proof. For any z ∈ R d with |z| = 1 and g = g(x i ) ∈ C 2 0 (R d ),

∇ x j µ i (g) = ∇ x j g(x i )e -H(x 1 ,x 2 ,••• ,x N ) dx i / e -H(x 1 ,x 2 ,••• ,x N ) dx i = g(x i )(-∇ x j H)e -H dx i e -H dx i + g(x i )e -H dx i ∇ x j He -H dx i ( e -H dx i ) 2 = -g(x i )∇ x j Hdµ i + g(x i )dµ i ∇ x j Hdµ i = Cov µ i (g, -∇ x j H) = Cov µ i (g, - 1 N -1 (∇ y W )(x i , x j ))
and so

z • ∇ x j µ i (g) = Cov µ i (g, - 1 N -1 (∇ y W )(x i , x j ) • z) = - 1 N -1 (-L i )g, (-L i ) -1 ((∇ y W )(•, x j ) • z -µ i ((∇ y W )(•, x j ) • z) µ i = - 1 N -1 ∇ i g • ∇ i (-L i ) -1 [(∇ y W )(•, x j ) • z -µ i ((∇ y W )(•, x j ) • z)]dµ i . By Lemma 12, ∇ i (-L i ) -1 ((∇ y W )(•, x j ) • z -µ i ((∇ y W )(•, x j ) • z)) L ∞ (µ i ) ≤ c Lip,m sup x i ,x j |∇ x i ((∇ y W )(x i , x j ) • z)| = c Lip,m sup x,y∈R d |∇ 2 x,y W (x, y)z| ≤ c Lip,m ∇ 2 x,y W ∞ .
Plugging it into the previous inequality, we obtain

|∇ x j µ i (g)| = sup |z|=1 |z • ∇ x j µ i (g)| ≤ 1 N -1 c Lip,m ∇ 2 x,y W ∞ |µ i (∇ x i g)|
which, by Lemma 15, completes the proof.

Proof of Theorem 8. By Lemma 16,

γ = sup 1≤i≤N max 1≤j≤N c Z ji , 1≤j≤N c Z ij ≤ c Lip,m ∇ 2 x,y W ∞ = γ 0 < 1.
Then Theorem 8 follows directly from Theorem 14.

Exponential convergence of McKean-Vlasov equation

Assume that µ (N ) satisfies a uniform log-Sobolev inequality with constant 

ρ LS = lim sup N →∞ ρ LS (µ (N ) ) > 0.
(ν|α) < +∞, 1 N H(ν ⊗N |µ (N ) ) → H W (ν). ( 47 
)
Proof. Recall that α = 1 C e -V dx. By the assumption (H1), it is known that ( [START_REF] Cattiaux | A note on Talagrand's transportation inequality and logarithmic Sobolev inequality[END_REF])

e λ 0 |x| 2 dα(x) < +∞ for some λ 0 > 0. ( 48 
) Let ZN := exp   - 1 2(N -1) i =j W (x i , x j )   dα ⊗N so that dµ (N ) = 1 ZN exp   - 1 2(N -1) i =j W (x i , x j )   dα ⊗N .
Let ν ∈ M 1 (R d ) such that H(ν|α) < +∞. Since H(ν ⊗2 |α ⊗2 ) = 2H(ν|α) < +∞, by Donsker-Varadhan's variational formula of entropy, (48) and the fact that |W (x, y)| ≤ C(1+|x| 2 +|y| 2 ) (for ∇ 2 W is bounded), we have W ∈ L 1 (ν ⊗2 ). Therefore

1 N H(ν ⊗N |µ (N ) ) = 1 N log dν ⊗N dµ (N ) dν ⊗N = 1 N N i=1 log dν dα (x i )dν ⊗N + 1 2N (N -1) i =j W (x i , x j )dν ⊗N + 1 N log ZN = H(ν|α) + 1 2 W (x, y)dν(x)dν(y) + 1 N log ZN
By [28, (3.30)],

lim

N →∞ 1 N log ZN = -inf ν E f (ν).
Combining those two equalities we obtain (47).

The following super-additivity of the relative entropy w.r.t. a product probability measure should be known.

Lemma 18. Let N i=1 α i , Q be respectively a product probability measure and a probability measure on E 1 × • • • × E N where E i 's are Polish spaces, and Q i the marginal distribution of x i under Q. Then

H(Q| N i=1 α i ) ≥ N i=1 H(Q i |α i ). Proof. Let Q i (•|x [1,i-1] ) be the conditional distribution of x i knowing x [1,i-1] = (x 1 , • • • , i-1) (knowing nothing if i = 1). We have H(Q| N i=1 α i ) = E Q log dQ d N i=1 α i = E Q N i=1 log Q i (dx i |x [1,i-1] ) α i (dx i ) = E Q n i=1 H(Q i (•|x [1,i-1] )|α i ). Since E Q Q i (•|x [1,i-1] ) = Q i (•)
, we obtain by the convexity of the relative entropy

E Q H(Q i (•|x [1,i-1] )|α i ) ≥ H(Q i |α i )
where the desired super-additivity follows.

Lemma 19. Let µ be a probability measure on some Polish space S and U : S → (-∞, +∞] a measurable potential satisfying e -pU dµ < +∞ (as in §3), the associated generator L ν = ∆ -∇H ν • ∇ satisfies the Lipschitzian spectral gap estimate (38) by Lemma 12. That implies the spectral gap of ν ′ = Φ(ν), in particular e δ|x| dν ′ < +∞ for some δ > 0 ( [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF]). Then if ν ∈ M 2 1 (R d ), Φ(ν) ∈ M 2 1 (R d ). Now for the uniqueness of the minimizer of E f , it remains to show that Φ is contractive on (M 2 1 (R d ), W 1 ). Let µ k = Φ(ν k ), k = 0, 1, and

ν t := (1 -t)ν 0 + tν 1 , µ t = Φ(ν t ).
For any 1-Lipschitzian function f , we have

d dt µ t (f ) = Cov µt (f, -∂ t (W ⊛ ν t )) = Cov µt (f, -W ⊛ (ν 1 -ν 0 )) and |∇ x [W ⊛ (ν 1 -ν 0 )]| = |(∇ x W ) ⊛ (ν 1 -ν 0 )| ≤ ∇ 2 yx W ∞ W 1 (ν 0 , ν 1 
). Therefore using the Lipschitzian spectral gap estimate (38) in Lemma 12 for the generator

L νt , Cov µt (f, -W ⊛ (ν 1 -ν 0 )) = (-L νt ) -1 f, L νt W ⊛ (ν 1 -ν 0 ) µt = ∇(-L νt ) -1 f, ∇W ⊛ (ν 1 -ν 0 ) dµ t ≤ c Lip,m ∇ 2 xy W ∞ W 1 (ν 0 , ν 1 ) Thus we have µ 1 (f ) -µ 0 (f ) = 1 0 d dt µ t (f )dt ≤ c Lip,m ∇ 2 xy W ∞ W 1 (ν 0 , ν 1 ).
This means that W 1 (Φ(ν 0 ), Φ(ν 1 )) ≤ c Lip,m ∇ 2 xy W ∞ W 1 (ν 0 , ν 1 ) by Kantorovitch-Rubinstein's duality relation. The proof is so completed. Remark 22. Though (M 2 1 (R d ), W 1 ) is not complete, the Banach's fixed point theorem works for the essential: let ν ∞ be the unique minimizer of E f , then for any ν

∈ M 2 1 (R d ), W 1 (Φ n (ν), ν ∞ ) ≤ [c Lip,m ∇ xy W ∞ ] n • W 1 (ν, ν ∞ ), n ≥ 0.
As for the mean field relative entropy, the Fisher-Donsker-Varadhan's information I W (ν) can be also interpreted as the mean Fisher-Donsker-Varadhan's information per particle. As W has bounded second order derivatives, ∇ x W is of linear growth. Then ∇ x W ∈ L 2 (ν ⊗2 ). By the law of large number for i.i.d. sequence, we have (2). We may assume that I(ν|α) < +∞, otherwise (34) is trivial for I W (ν) = +∞. Since the Hessian ∇ 2 V is lower bounded, and V satisfies the Lyapunov function condition [START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF], by Cattiaux-Guillin-Wu [START_REF] Cattiaux | A note on Talagrand's transportation inequality and logarithmic Sobolev inequality[END_REF], α satisfies a log-Sobolev inequality. Then H(ν|α) < +∞. By the log-Sobolev inequality of µ (N ) in Theorem 8, (3). By Otto-Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] or Bobkov-Gentil-Ledoux [START_REF] Sergey | Hypercontractivity of Hamilton-Jacobi equations[END_REF], the log-Sobolev inequality implies the Talagrand's T 2 transportation inequality, i.e.

1 N I(ν ⊗N |µ (N ) ) = 1 4N |∇ log dν ⊗N dµ (N ) | 2 dν ⊗N = 1 4N N i=1 |∇ x i log dν ⊗N dα ⊗N + 1 N -1 j =i ∇ x W (x i , x j )| 2 dν ⊗N = 1 4 |∇ log dν dα (x 1 ) + 1 N -1 N j=2 ∇ x W (x 1 , x j )| 2 dν ⊗N → 1 4 |∇ log dν dα (x 1 ) + ∇ x W (x 1 , y)dν(y)| 2 dν(x 1 ) = I W (ν).
ρ LS (µ (N ) )W 2 2 (Q, µ (N ) ) ≤ 2H(Q|µ (N ) ), Q ∈ M 1 ((R d ) N ). Applying it to Q = ν ⊗N with H(ν|α) < +∞, we obtain

ρ LS (µ (N ) ) 1 N W 2 2 (ν ⊗N , µ (N ) ) ≤ 1 N H(ν ⊗N |µ (N ) ).
Notice that

W 2 2 (ν ⊗N , µ (N ) ) ≥ N i=1
W 2 2 (ν, µ (N,i) ) = N W 2 2 (ν, µ (N,1) ) where µ (N,i) is the marginal distribution of x i under µ (N ) , which are all the same by the symmetry of µ (N ) . Moreover by the uniqueness of ν ∞ and the large deviation principle of For the exponential convergence (36), we may and will assume that H W (ν 0 ) < +∞ and we fix the time t > 0. By Lemma 17, lim

N →∞ 1 N H(ν ⊗N 0 |µ (N ) ) = H W (ν 0 ).
Moreover by the equivalence between the log-Sobolev inequality for µ (N ) and the exponential convergence in entropy of the law µ N t of X N t = (X N,i t ) 1≤i≤N to µ (N ) , 1 N H(µ N t |µ (N ) ) ≤ e -ρ LS (µ (N) )t/2 1 N H(µ N 0 |µ (N ) ) = e -ρ LS (µ (N) )t/2 
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 3 which does not depend on i, x, N . Let us go back to the Curie-Weiss example in dimension 1: d = 1, V (x) = β(x 4 /4 -x 2 /2), W (x, y) = -βKxy where β > 0. As given before we have c Lip,m ≤ π β e β/4 .

2. 4 .

 4 Exponential convergence of McKean-Vlasov equation in entropy and in the Wasserstein metric W 2 . We present now an application of the uniform log-Sobolev inequality in Theorem 8 to the non-linear McKean-Vlasov equation. Recall at first the relative entropy of a probability measure ν w.r.t. the given probability measure µ on R d :

  j≤N will be called Zegarlinski's matrix of interdependence in the sequel. Theorem 14. (Zegarlinski [31, Theorem 0.1]) If

Lemma 23 .

 23 (convergence of the Fisher information) If I(ν|α) < +∞,1 N I(ν ⊗N |µ (N ) ) → I W (ν). (49)Proof. For every probability measure ν on R d such that I(ν|α) < +∞, by the Lyapunov function condition (H1) on V ([START_REF] Guillin | Transportation-information inequalities for markov processes[END_REF]), c 1 |x| 2 dν ≤ c 2 + I(ν|α) < +∞.

6. 2 .

 2 Proof of Theorem 10. (1). At first the minimizer ν ∞ of H W is unique by Lemma 21.

ρ

  LS (µ (N ) )H(ν ⊗N |µ (N ) ) ≤ 2I(ν ⊗N |µ (N ) )and ρ LS (µ (N ) ) ≥ ρ LS,m /(1 -γ 0 ) 2 > 0. Dividing the two sides by N and letting N go to infinity, we get by Lemma 17 and Lemma 23, ρ LS H W (ν) ≤ 2I W (ν).

  i under µ (N ) ([START_REF] Wu | Large deviations for empirical measures of mean-field gibbs measures[END_REF]), for anyf ∈ C b (R d ), µ (N,1) (f ) = 1 N N i=1 f (x i )dµ (N ) → ν ∞ (f ),i.e. µ (N,1) converges weakly to ν ∞ . We obtain by Lemma 17 and the lower semi-continuity of W 2 ,ρ LS W 2 2 (ν, ν ∞ ) ≤ ρ LS lim inf N →∞ W 2 2 (ν, µ (N,1) ) ≤ 2H W (ν) the desired Talagrand's type T 2 -inequality for McKean-Vlasov equation.

( 4 )

 4 . The exponential convergence in entropy (36) should be equivalent to the mean field log-Sobolev inequality (34) in part (2), basing ond dt H W (ν t ) = 4I W (ν t )(50)noted by Carrillo-McCann-Villani[START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF] in their convex framework. The proof of (50) demands the regularity of ν t which requires the PDE theory of the McKean-Vlasov equation. That is why we prefer to give a rigorous probabilistic proof based directly on the log-Sobolev inequality of µ (N ) in Theorem 8.

  The uniform Poincaré inequality in Theorem 1 gives us the following explicit correlation inequality. For any C 1 -function f on R d , denote f 2 Lip by its Lipschitzian norm w.r.t. the Euclidean metric on R d . Under the conditions of Theorem 1, for any two bounded Lipschitzian functions f, g on R d and i

	Corollary 2.

  That is the case if c Lip,m ∇ 2x,y W ∞ < 1 by Theorem 8, more preciselyρ LS ≥ ρ LS,m (1 -c Lip,m ∇ 2 x,y W ∞ ) 2 .6.1. Free energy, entropy related to the McKean-Vlasov equation. The entropy H W (ν) can be identified as the mean relative entropy per particle of ν ⊗N w.r.t. the mean field Gibbs measure µ (N ) :Lemma 17. For any probability measure ν on R d such that H

  N t |α ⊗N ) < +∞ by Lemma 19. Since µ N t has finite second moment (easy from the SDE theory), and W has at most quadratic growth,W (x i , x j ) ∈ L 1 (µ N t ).And by the propagation of chaos (Lemma 20) and the lower semi-continuity of the relative entropy ν → H(ν|α), lim inf N →∞ H(µ N,1 t |α) ≥ H(ν t |α). W (ν t ) by the W 2 -propagation of chaos in Lemma 20. Plugging it into (51), we obtain the exponential convergence in entropy (36). That implies the W 2 -exponential convergence (37) by Talagrand's type T 2 -inequality (35).

								N 1	H(ν ⊗N 0 |µ (N ) ) < +∞.	(51)
	Therefore H(µ From Lemma 18, we have								
				1 N	H(µ N t |α ⊗N ) ≥ H(µ N,1 t |α).		
	So we get								
												
	lim inf N →∞	1 N	H(µ N t |µ (N ) ) = lim inf N →∞	 1 N	H(µ N t |α ⊗N ) +	1 N (N -1)	1≤i<j≤N	W (x i , x j )dµ N t +	1 N	log ZN	
			≥ H(ν t |α) + lim inf N →∞	1 2	W (x 1 , x 2 )dµ N t -inf ν∈M 1 (R d )	E f (ν)

= H(ν t |α) + 1 2 W (x 1 , x 2 )dν t (x 1 )dν t (x 2 ) -inf ν∈M 1 (R d ) E f (ν) = H
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for some p > 1. Consider the Boltzmann probability measure µ U = e -U dµ/C. If H(ν|µ U ) < +∞, then H(ν|µ) < +∞ and U ∈ L 1 (ν), and H(ν|µ U ) = H(ν|µ) + U dν -log e -U dµ.

Proof. For any measurable function f on S, let Λ µ (f ) := log e f dµ ∈ (-∞, +∞] be the log-Laplace transform w.r.t. µ, which is convex in f (by Hölder's inequality). Then

where q = p/(p -1). By Donsker-Varadhan's variational formula,

Hence if H(ν|µ U ) < +∞, H(ν|µ) < +∞ or equivalently log dν dµ ∈ L 1 (ν), and log This is well known, see [START_REF] Sznitman | Topics in propagation of chaos[END_REF] or [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF]. 

Lemma 21. (uniqueness of the minimizer of H