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Deformation-based shape control with a multirobot system

Miguel Aranda, Juan Antonio Corrales and Youcef Mezouar

Abstract— We present a novel method to control the relative
positions of the members of a robotic team. The application
scenario we consider is the cooperative manipulation of a
deformable object in 2D space. A typical goal in this kind
of scenario is to minimize the deformation of the object with
respect to a desired state. Our contribution, then, is to usea
global measure of deformation directly in the feedback loop. In
particular, the robot motions are based on the descent alongthe
gradient of a metric that expresses the difference between the
team’s current configuration and its desired shape. Crucially,
the resulting multirobot controller has a simple expression and
is inexpensive to compute, and the approach lends itself to
analysis of both the transient and asymptotic dynamics of the
system. This analysis reveals a number of properties that are
interesting for a manipulation task: fundamental geometric
parameters of the team (size, orientation, centroid, and dis-
tances between robots) can be suitably steered or bounded.
We describe different policies within the proposed deformation-
based control framework that produce useful team behaviors.
We illustrate the methodology with computer simulations.

I. I NTRODUCTION

Compared to a single robot, a multirobot team can manip-
ulate larger and heavier objects and provide more refined and
precise behaviors. The team’s actions when manipulating a
rigid or deformable body must be carefully coordinated, to
avoid damaging it and encountering unpredictable motions
[1]–[3]. In particular, the robots typically need to ensurethat
the object remains close to a desired state. In this paper, we
consider a scenario where a team of robots grasps rigidly a
deformable object in 2D. We assume that the desired state
of the object is encapsulated by a desired shape of the team.
This assumption is reasonable in different practical cases,
e.g.: 1) The polygon joining the grasping points represents
the object’s contour faithfully enough. 2) The object is highly
deformable and thus its shape adapts to the team’s shape. 3)
The task does not require precise object shape control but,
e.g., making the object fit in a given region of space. 4) The
required object deformation is small.

Therefore, we propose a method to control the shape of
the robotic team. The approach minimizes a measure of
the team’s deformation relative to its desired shape. In this
way, the controller aligns with the usual goal of keeping the
manipulated object close to a desired state. Our measure of
deformation is the function that one minimizes when solving
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a certain Procrustes shape alignment problem [4]. In 2D
space, the particular problem where rotation and scaling are
optimized admits a closed-form solution. Our insight and
contribution here is to appropriately formalize this solution
and to define a gradient control strategy based on it. The
controller is simple to compute, and amenable to analysis.
Notably, we identify interesting properties for a manipulation
task: the dynamics of the team’s size, centroid and orientation
can be controlled suitably both in short-term and asymptotic
time scales. The robots’ motions are tightly coordinated –
as is typically desired in manipulation tasks–, balanced and
efficient, and the distances between them can be bounded
(to avoid overstretching, over-squeezing or collisions).We
analyze these points and illustrate them via simulations.

A. Related work

Precise knowledge of object deformation is not a fun-
damental consideration for some multirobot manipulation
approaches which deal with objects that are either essen-
tially rigid [1], [3], [5]–[9] or, on the other hand, highly
deformable. In the latter case, it may be sufficient to simply
respect upper and lower inter-robot distance bounds [10],
[11]. To ensure that the relative states of the robots maintain
desired values, these approaches often exploit distributed
techniques such as consensus or formation control [12],
which are very successful in many scenarios. Typically, they
possess strong asymptotic convergence properties, but short-
term team dynamics are difficult to predict. Contrary to
this literature, our method is based on a concept of global
shape of the team. This creates closely coordinated motions,
which is a singularly relevant property when the robots are
manipulating a deformable object.

The robotic manipulation of deformable objects is a highly
active area of research where a variety of methodologies,
tasks, robotic platforms and object types have been consid-
ered [13]. To keep the object’s geometry under control, ex-
isting works typically exploit a certain degree of knowledge
about how it deforms under the action of the robots. Some
authors have used a prior model of the object’s deformation
[14], [15]. The models depend greatly on the type of object;
linear objects, for instance, admit representations suitable
for shape planning [16], [17]. Other authors favor model-
free approaches [2], [18], in some cases using adeformation
Jacobianestimated online from sensory data [19]–[21]. For
feedback control, methods not reliant on prior models are
considered more generalizable and computationally simpler.
The methods cited in the paragraph have these general
traits: 1) When multiple robots are used, the robots share
a common global goal (e.g., object shape control), but they



do not coordinate their motions with one another. In contrast,
our method emphasizes the coordination/synchronization of
the robots’ actions. This can lead to higher efficiency in
the team’s motions; 2) The target configuration the robots
pursue (e.g., corresponding to a desired object shape) is
anchored, to the workspace or to a reference frame. In
contrast, in our approach the target configuration is the one
that minimizes, for thecurrent configuration of the robots,
the team’s deformation measure. The motions are therefore
not linked to external references and, being based purely
upon deformation, they produce more efficient changes of
shape. In addition, a free-floating target configuration –which
our method provides– is adaptable and flexible for object
transportation tasks. Furthermore, maintaining a minimum
deformation can minimize damages to the object, and to the
robots, because the contact forces will be reduced.

Finally, Procrustes-based deformation metrics similar to
the one we exploit –which appear frequently in shape align-
ment problems [22]– have been used previously to control
mobile robot formations [23], estimate their error [24], or
determine optimal a priori destination formations [25]. To
our knowledge, this is the first work to study the application
of such metrics to cooperative manipulation tasks.

II. GENERAL PROBLEM STATEMENT

Consider a set,N = {1, 2, ..., N}, N > 1, of robots with
the ability to move as kinematic point masses satisfying:

q̇i = ui, ∀i ∈ N (1)

(boldface font is used for multidimensional variables), where
qi ∈ R

2 denotes roboti′s position in a given reference frame
andui ∈ R

2 its control input. We will in general not notate
time dependence.{·} will stand for {· | i ∈ N}. The norm
used in this paper is the Euclidean one. Our focus is on a
scenario where the robots manipulate an object on a plane,
each of them grasping it rigidly at a fixed contact point on
the object’s contour. Similar setups with free-floating rigid-
grasping robotic actuators are assumed in, e.g., [2], [14],
[20]. We use the following notation for the relative position
vectors:qij = qi−qj. We also work with a prescription of a
desired geometry for the robotic team. This desired geometry
is considered to be constant over time. It can be encapsulated
by a layout of pointsci ∈ R

2 in the workspace:{ci}. We
assume thatci 6= cj for at least two distinct robotsi, j ∈ N .
We define the centroid of the current robot positions asqo,
and the centroid of the desired geometry asco.

We assume that the state of the object is defined by
the configuration of the robotic team. Hence, we focus on
controlling the team. We donot control the state of the
object’s full contour. This assumption is justified in the first
paragraph of the paper. Still, one cannot ignore that there
is an object being handled by the robots: this demands the
team’s motions to be closely coordinated and stable, and
to satisfy size and distance bounds. Our deformation-based
control approach allows to conform with these requirements.

We address the problem ofshape control, defined as
making{qi} satisfyqi = sRci+t ∀i ∈ N for some scaling

s ∈ R≥0, rotationR ∈ SO(2), and translationt ∈ R
2. This

condition implies that the team has the same shape as the
desired geometry. Next, we describe the proposed solution.

III. C ONTROL STRATEGY

Let us consider the following function defined from the
two given point sets{qi} and{ci}:

γg =
1

2

∑

i∈N

||qi −Hgci + tg||2, (2)

whereHg ∈ R
2×2 is a Euclidean similarity transformation

–comprising rotation and uniform scaling–, andtg ∈ R
2 is

a translation offset.γg is a measure of the SSD (Sum of
Squared Differences) error between the points in the sets
when the points in{ci} are rotated and scaled byHg, and
translated bytg. Finding the optimalHg and tg (i.e., the
similarity and offset that minimizeγg for two given sets) is
a type of Procrustes shape-fitting problem [4]. One can see
that the optimal offset corresponds with making the centroid
of the two point sets coincide. Therefore, we henceforth use
qio andcio in (2), and choosetg = 0.

Let us define a similarityH ∈ R
2×2 having the form:

H =

[

h1 −h2

h2 h1

]

(3)

h1 =
1

cs

∑

i∈N

qT
iocio

h2 =
1

cs

∑

i∈N

qT
ioc

⊥
io,

where cs =
∑

i∈N ||cio||2, i.e., a strictly positive con-
stant scalar, and the operator⊥ on a 2D vector a
is defined as a counterclockwise rotation ofπ/2 radi-
ans: a⊥ = [(0, 1)T , (−1, 0)T ]a. It can be verified with
simple manipulations that ∂γg

∂Hg(1,1)
⌋Hg(1,1)=h1

= 0 and
∂γg

∂Hg(2,1)
⌋Hg(2,1)=h2

= 0 and, via the second derivative test,
thath1 andh2 are uniqueminimizersof γg. Thus, the optimal
choice in (2) isHg = H.

Taking the above into consideration, our control approach
rests on the following cost function:

γ =
1

2

∑

i∈N

||qio −Hcio||2. (4)

Let us highlight thath1 andh2 satisfy ∂γ
∂h1

= 0 and ∂γ
∂h2

= 0.
A visual interpretation of the cost function in the context of
the shape control problem addressed is given in Fig. 1. We
discuss important aspects about the chosen function next.
1) A crucial fact to notice is thatγ can be interpreted directly
as a measure of the deformation relative to the desired
shape of the robotic team.H is such that{Hcio + qo}
is the closest (in terms of the SSD inγg) possible team
configuration to{qi} having the same shape as{ci}. The
SSD for this optimal configuration isγ, which therefore
quantifies purely how much the shape of{ci} is deformed
in the current configuration{qi}. Then, our controller, based
on the gradient ofγ, directly minimizes the deformationwith



Fig. 1. Illustration of control strategy with four robots. Only the vectors
for one robot (i = 1) are shown. The vectors for the other robots are
analogous. The centroids are marked as squares.a) Desired geometry{ci}.
b) Current robot positions{qi} (hollow circles) and desired geometry in
a) transformed by the optimal similarityH (3). H rotates and uniformly
scales everycio. Therefore, the point set{Hcio} has the same shape as
{cio}. Notice thatγ = (1/2)

∑
i∈N ||di||

2. di is roboti’s motion vector,
opposite to the gradient ofγ with respect toqi, as explained in the text.

respect to the desired shape. This is particularly appropriate
for a task of manipulation of a deformable object.
2) γ is very suitable for our purpose: it is differentiable
and simple computationally –which is important for feedback
control–. It expresses unequivocally the achievement of the
prescribed shape, and its gradients have closed-form expres-
sions. Fundamental parameters (size, rotation and centroid of
the team) can be steered and controlled, and exhibit dynamic
behaviors that are interesting for manipulation tasks.
3) Since we use a similarity (H), the desired physicalsizeof
the team is unprescribed, which may appear suboptimal or
even risky. Various arguments support our choice: having the
size parameter as a degree of freedom provides adaptability
to changing task requirements or environment conditions,
allowing to take advantage of the deformability of soft
objects. Also, the similarity (3) is linear in the relative
position coordinates, and this makes it easier to uncover its
interesting dynamic properties. Finally, as we will show, the
value of the team’s size can still be controlled.

Let us define the scaling,sh, and rotation,Rh, encap-
sulated byH. The control strategy does not use these
parameters, but they provide us with a physical interpretation
of the action of the matrix. We can writeH = shRh, with:

sh =

√

h1
2 + h2

2, (5)

Rh =

[

cos(αh) − sin(αh)
sin(αh) cos(αh)

]

, αh = atan2(h2, h1),

(6)

being by our definitionαh = 0 whenh1 = h2 = 0. Notice
that there is no discontinuity in this alternative representation
of H, because whenh1 = h2 = 0, it holds thatsh = 0.

The size of the team is an essential property to take into
account. We define it as the quadratic mean of the robots’
distances to the centroid. The size of the configuration
towards which the robots move at a given instant (which
can be termeddestination configuration) is thus defined as:

sd =

√

1

N

∑

i∈N

||Hcio||2 = sh

√

cs
N

. (7)

Observe that, ascs and N are constant,sd and sh are
essentially equivalent ways of expressing this size. Similarly,

we define the size of thecurrent configurationas:

sq =

√

1

N

∑

i∈N

||qio||2. (8)

We can already formulate a result that supportsγ as being
an appropriate cost function for our control purposes.

Lemma 1:{qi} is equal to{ci} up to translation, rotation
and scaling if and only ifγ = 0.

One can prove this lemma by considering the form of (3).
We compute next the gradient ofγ with respect to the

position of one of the robotsi ∈ N . Recall that the matrix
H satisfies ∂γ

∂h1

= 0 and ∂γ
∂h2

= 0. Therefore, the gradient
will be given directly by the partial derivative with respect
to qi. In particular, it has the following expression:

∇qi
γ =

∂γ

∂qi

=
∑

j∈N

(qjo −Hcjo)
T ∂qjo

∂qi

=

(1− 1

N
)(qio −Hcio)−

1

N

∑

j∈N
j 6=i

qjo −Hcjo = qio −Hcio,

(9)

where we have separated in two different terms the case
j = i and the casej 6= i, and used the fact that the centroids
satisfy:qo =

∑

i∈N qi/N , co =
∑

i∈N ci/N .

A. Standard control law

For each robot, we define its standard control law in the
direction opposite to the gradient ofγ. The motion vector
for robot i takes, from (9), the form that follows:

di = −∇qi
γ = qoi −Hcoi. (10)

This vector can be directly visually interpreted in Fig. 1. We
propose the following control law for each roboti ∈ N :

ui = kidi, (11)

whereki ≥ kmin (kmin being a positive constant) is a gain,
constant or smoothly time-varying. The information needed
to implement this control law isqoi ∀i ∈ N , which can be
obtained from measurements of the relative positions of the
team’s robots. It can be seen (we omit the details for brevity)
that this controller can be computed in a local reference
frame. Note thatH in (10) is afeedbackmatrix, recomputed
at every instantaccording to (3). The controller has a closed-
form expression and, being based on minimizing a globally
defined metric, it needs knowledge aboutall the robots.

IV. CONTROLLER ANALYSIS

Let us inspect how the multirobot system behaves under
the controller. We first state a necessary assumption.

Assumption 1: sq remains upper-bounded for all time.
We now study the stability with respect to the desired shape.

Theorem 1:Under the action of the control law (11), the
robots converge exponentially to a configuration in which
they form the desired shape and stay static.

Proof: As sq is upper-bounded under the controller (see
Assumption 1), the relative positions of the robots remain



finite (8). We chooseγ as candidate Lyapunov function, and
analyze its dynamics when the controller (11) is in operation:

γ̇ =
∑

i∈N

(∇qi
γ)T q̇i = −

∑

i∈N

ki(t)||di||2

≤ −kmin

∑

i∈N

||di||2 = −2kminγ. (12)

From LaSalle’s invariance principle, one can see that the
system converges exponentially to a configuration in which
γ = 0, i.e., where the robots are in the desired shape (Lemma
1). In addition,γ = 0 impliesdi = 0 and thus,ui = 0 ∀i ∈
N , i.e., the robots’ velocities converge to zero.

Remark 1:The exponential decay ofγ (12) implies that
the robot speeds vanish exponentially. Since these speeds
are thus integrable as time goes to infinity, the inter-robot
distances will remain finite. We support Assumption 1 with
this observation and with the analysis of the dynamics ofsq
provided in the following sections.

A. Properties of team size, rotation and centroid

It is essential to have some insight on how the team size
is expected to evolve. Let us state a relevant result:

Lemma 2:The cost functionγ (4) can be expressed as:

γ =
N

2
(sq

2 − sd
2). (13)

Proof: The proof relies on algebraic manipulations of
(4). We omit the details, for brevity.

There is an interesting fact to notice here:γ expresses –
as highlighted previously– thedifference in shape; but, as
(13) shows, it additionally encapsulates thedifference in size
between the current and destination configurations. By min-
imizing γ, one is controlling size and shape simultaneously.
We can state the following property regarding team sizes:

Proposition 1: It holds thatsd ≤ sq for any current and
desired configurations of the robots.

Proof: As γ ≥ 0, (13) proves the result.
This means that the controller naturally moves the robots
towards a configuration in which the size of the team is never
larger than its current size. This suggests an interesting trend
towards maintaining theenergyof the system and avoiding
divergent behaviors of the team. On a more practically
specific note, this property can also be useful so as to prevent
object overstretching. A result on the dynamics ofH follows.

Proposition 2: If all robots apply the control law (11) with
the same gainkc, thenH remains constant over time.

Proof: We examine the time-derivative ofH:

ḣ1 =
∑

i∈N

∂h1

∂qi

T

q̇i. (14)

We can find that∂h1

∂qi
= cio/cs, and substitute (11) to get:

ḣ1 =
kc
cs

∑

i∈N

cTio(qoi −Hcoi)

= −kc
cs

(
∑

i∈N

qT
iocio −

∑

i∈N

cTioHcio). (15)

Using thatH is a similarity and substituting its expression
(3), the last term of (15) can be readily seen to be:

∑

i∈N

cTioHcio =
∑

i∈N

(
||cio||2
cs

∑

j∈N

qT
jocjo) =

∑

i∈N

qT
iocio.

(16)
Hence,ḣ1 = 0. An analogous analysis can be used to show
that ḣ2 = 0 and, therefore,H remains constant.
Thus, bothsh andRh remain constant. This fact can actually
facilitate the motion of the robots during the task, and
help them attain efficiently the desired shape while avoiding
unnecessary rotations/re-scalings of the object.

When all robots employ the same gain, the team’s centroid
is preserved under the action of the controller. One can verify
this readily from (11) and realizing that by definition the
sums of allN vectorsqoi or coi are zero. Thus:

q̇o =
1

N

∑

i∈N

q̇i =
kc
N

(
∑

i∈N

qoi −H
∑

i∈N

coi) = 0. (17)

This fact is useful for navigation/transportation problems
where we want to steer the centroid of the team: this centroid
motion objective can be decoupled from the motions of the
shape controller. Another important conclusion is that the
changes in the manipulated object’s shape arebalanced,
because they do not displace the center of the contact points.

B. Inter-robot distance bounds

Upper and lower inter-robot distance bounds are of great
importance in practice because they can ensure that over-
stretching and over-squeezing/collisions, respectively, are
avoided. To study this issue, let us first state a useful result.

Lemma 3:The following function:

γp =
1

2

∑

i∈N

∑

j∈N

||qij −Hcij||2 (18)

satisfiesγp = 2Nγ.
Proof: Defining vi = qio − Hcio, we have that

γ = 1
2

∑

i∈N ||vi||2 and γp = 1
2

∑

i∈N

∑

j∈N ||vij||2 =

2Nγ − vij , where vij =
∑

i∈N

∑

j∈N vT
i vj =

∑

i∈N vT
i

∑

j∈N vj. Notice that by definition
∑

i∈N vi = 0.
Thus,vij = 0 and the stated result follows.
Unlike γ, the functionγp is defined in terms of the pairwise
inter-robot vectors. As both functions are equal up to a
constant multiplicative factor, we can useγ to define bounds
for the pairwise distances. Let us define the variablee(t) =
2
√
N
√

γ(t). We can state the property that follows.
Proposition 3: The distance at timet between any two

robotsi ∈ N , j ∈ N is bounded as follows:

sh(t)||cij|| − e(t) ≤ ||qij(t)|| ≤ sh(t)||cij||+ e(t). (19)

Proof: One can substitute (4), (18), and use the triangle
inequality to obtain the result.
Thus, by ensuring thatγ and sh maintain suitable values,
one has a means to keep the inter-robot distances bounded.



V. VARIANTS OF THE CONTROLLER

Modifications of the controller (11) are presented next.
These variants retain the underlying idea of maintaining
the deformation under control, by minimizingγ. At the
same time, they provide different dynamic behaviors, or
allow to fix important geometric parameters, accommodating
constraints that are relevant in practical applications.

A. Team motions in the rotation and scaling nullspaces

We next describe alternative control laws that preserve
either the rotation or the scaling encapsulated inH. They
are found by exploiting the nullspaces of these parameters.

1) Rotation-preserving motions:We define them as those
for which Ṙh = 0. We can provide the following result.

Proposition 4: A motion strategy where the robots imple-
ment the control law that follows:

ui = kc(qoi − wi(t)Hcoi), wi(t) ∈ R>0, ∀i ∈ N , (20)

is rotation-preserving.
Proof: Let us express (20) for each robot asui =

us
i + un

i , whereus
i is the standard control law (11). Then:

un
i = kcw

∗
i (t)Hcoi, ∀i ∈ N , (21)

with w∗
i (t) = 1 − wi(t) a scalar. We will compute next the

dynamics ofh1 andh2. From Proposition 2 we know that
both terms are constant underus

i . Thus, we have, forh1:

ḣ1 =
∑

i∈N

∂h1

∂qi

T

un
i =

kc
cs

∑

i∈N

cTiow
∗
i (t)Hcoi =

kc
cs

w(t)h1,

(22)
with w(t) = −∑

i∈N w∗
i (t)||cio||2. Analogously, forh2:

ḣ2 =
∑

i∈N

∂h2

∂qi

T

un
i =

kc
cs

∑

i∈N

c⊥io
T
w∗

i (t)Hcoi =
kc
cs

w(t)h2.

(23)
We assume the angleαh (6) is always well-defined, which
it will be as long as the scaling satisfiessh > 0. We can
express its dynamics aṡαh = (h1ḣ2 − ḣ1h2)/s

2
h. Hence,

substituting (22) and (23), it is concluded thatα̇h = 0.
This is interesting because if the object does not rotate,

the manipulating robots’ motions are more efficient and
balanced. Also, a robot could use the degree of freedom given
by wi(t) to satisfy other task criteria (i.e., avoid obstacles,
or steer the normal of the object’s contour).

2) Scale-preserving motions:These are team motions for
which ṡh = 0. We find the result that follows.

Proposition 5: The following team motion policy:

ui = kc((qoi −Hcoi) + zi(t)Hc⊥oi), zi(t) ∈ R, ∀i ∈ N ,
(24)

is scale-preserving.
Proof: Let us write (24) for each robot asui = us

i+um
i ,

whereus
i is the standard control law (11). Then:

um
i = kczi(t)Hc⊥oi, ∀i ∈ N . (25)

We find the dynamics ofh1 andh2. The overall contribution
of us

i is zero (Proposition 2), so we can write, forh1:

ḣ1 =
∑

i∈N

∂h1

∂qi

T

um
i =

kc
cs

∑

i∈N

cTiozi(t)Hc⊥oi = −kc
cs

z(t)h2,

(26)
with z(t) = −∑

i∈N zi(t)||cio||2. Analogously, forh2:

ḣ2 =
∑

i∈N

∂h2

∂qi

T

um
i =

kc
cs

∑

i∈N

c⊥io
T
zi(t)Hc⊥oi =

kc
cs

z(t)h1.

(27)
The dynamics ofs2h (5) ared(s2h)/dt = 2(h1ḣ1 + h2ḣ2).
Substituting (26) and (27), one finds thatṡh = 0, i.e., the
scaling parameter remains constant.
These motions result, as one could expect, in behaviors for
which the team and the grasped object gyrate. This can
be interesting if the object needs to be rotated rigidly in
the workspace due to task demands (i.e., for a subsequent
treatment, or to place it in a prescribed absolute orientation).

B. Fixing the team’s size and orientation using a single robot

A single special robotcan steer the matrixH for the full
team. Without loss of generality, let us assume that robot1
is the special robot andc1o 6= 0. Consider the control:

u1 = kcd1, with d1 = qo1 −H1co1, (28)

whereH1 is a similarity. The following result holds:
Proposition 6: If all robots use the same control gainkc,

robotsi = 2, ..., N implement the standard control law (11),
and roboti = 1 uses (28), thenH tracksH1, according to:
Ḣ = −kf1(H−H1), with kf1 = kc · ||c1o||2/cs.

Proof: We look at the time derivative ofH. Let us
defineHdif = H−H1 andu1 = us

1+ud
1 , whereus

1 obeys
(11) andud

1 = kcHdifco1. From Prop. 2, the dynamics of
H is due only toud

1 . Direct manipulations then lead to:

ḣ1 =
kc
cs

cT1oHdifco1, ḣ2 =
kc
cs

c⊥
T

1o Hdifco1. (29)

Note that Hdif is a similarity. Using this constraint on
its structure and developing the equations above, one can
express the components ofH back in matrix form and obtain:

Ḣ = −kf1Hdif = −kf1(H−H1). (30)

Thus, if H1 is constant, thenH converges to it expo-
nentially. If H1 is time-varying, thenH tracks its variation.
The special robot can in this way steer the value ofH. It
can also control the team’s geometric parameters (size and
orientation) individually. Two possible strategies basedon
the controllers in Section V-A are described next.
S1: Drive the team sizesh towards a desired valuesh = s1,
without changingRh: Robots use (20), withw1(t) = s1/sh
(sh > 0 is assumed) andwi(t) = 1 for i = 2, ..., N .
S2: Rotate team towards a desired orientationRh = R(α1),
without changingsh: Robots use (24), withz1(t) = kr1(α1−
αh), kr1 < 0, andzi(t) = 0 for i = 2, ..., N .

Notice thatS1 andS2 are particular instances of the case
studied in Prop. 6: robot 1 is enforcing a similarityH1,
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Fig. 2. Simulation results for linear object. Top: snapshots of object and robots (circles) evolution from initial (left) to final (right) configuration. Bottom,
left to right: desired geometry (robots as circles); time evolution of: team sizes and similarity angle, robot speeds, cost function, and inter-robot distances.
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Fig. 3. Simulation example with five robots. Left to right: initial (robots
joined by dashed lines) and final (solid lines) shapes, with one same robot
marked with a square in both shapes; evolution of similarityangle (thickest
line) and team sizes (thinner lines, withsq > sd); and of cost function.

which may be time-varying, while the other robots’ motions
minimize the deformation metricγ. As H will track H1,
robot 1 can suitably steer the team’s parameters.

The special robot may be a robot with superior percep-
tual/decision making capabilities, e.g., global positioning and
environmental awareness to manipulate/transport the object
avoiding obstacles; or a privileged agent whom we want to
lead the task (e.g., as in human-robot collaboration). The
other robots, meanwhile, can have more modest capabilities
and rely on local reference frames and simpler sensors.

VI. SIMULATION STUDY

We present illustrative results of simulations, performed
using MATLABr. For our first example, we consider an
inextensible elastic rod which rests in a planar workspace and
is grasped rigidly at different points by four robots. Using
gripping points along the rod –i.e., not just at its ends– makes
it easier to steer this type of object around environmental
obstacles and to control its shape precisely. We employ a
quasi-static model of the rod’s state based on minimal-energy
configurations, as in previous works, e.g., [16], [17].

We control the orientation of the grippers/robots with a
simple strategy aimed at avoiding sharp curvatures of the rod.
We use forθi ∈ (−π, π] –the orientation of roboti, equal to
the tangent angle of the rod at that robot’s position–:

θ̇i = kai(θ
d
i − θi), (31)

with kai > 0 a control gain,θdi = ∠(qi,i−1 + qi+1,i) for
i = 2, ..., N − 1, θd1 = ∠(q21), θdN = ∠(qN,N−1). Here,
∠(·) denotes the angular polar coordinate of a vector and·
the normalization to unit. Figure 2 illustrates the test’s results.

Initially, the rod was fairly stretched out. The prescribed
shape we chose was close to that of a square. The controllers
used were those described in Section V-B. Robot 1 (leftmost
at the start of execution) acted as the special robot. Three
control phases were executed. First, robot 1 specified a
team size (strategyS1). Then, it commanded a reduction of
size with no rotation (S1). Finally, it made the team rotate
without changing size (S2). The team parameters evolved as
theoretically expected. The robot motions were efficient and
the changes in the object’s shape were smooth.

Our second simulation example, aimed at testing the
robustness of the controller, included additive Gaussian noise
both in the measurement and the actuation for all robots, and
a systematic error added to the velocity of one robot. Five
robots with a regular pentagonal desired shape were used. No
object was considered in the simulation. Robots followedS1
so as to fix a desired team sizes1 = sd = 1. As is observable
in Fig. 3, the controller was able to keep the team close to
the desired shape despite the perturbations. The deformation
metric γ was maintained in low values. A complementary
video provides further illustration of the simulation results.

VII. C ONCLUSION

We believe that the main appeal of the proposed method is
that it applies multirobot formalisms to the control of metrics
of deformation. This links it with object manipulation tasks
and opens the door to multiple potentially interesting applica-
tions. However, several essential issues were not considered.
We do not address the interaction with the object; for precise
and safe operation, information of force and object state
should be included in the control loop. Also, if the desired
shape is very different from the initial one, it would be
necessary to use additional planning. Finally, robot dynamics
constraints, control in 3D space, and collision avoidance
guarantees can be studied building on the presented results.
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