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M
odern subduction-zone lavas are derived primarily from 
melting of the mantle wedge that is fluxed with fluids from 
the subducting plate. Except for rare rock occurrences 

known as adakites that are found at some subduction zones with a 
high thermal gradient of ~40 °C kbar−1 (ref. 1; Fig. 1), modern sub-
ducting oceanic crust experiences only dehydration rather than melt-
ing because thermal gradients along the Benioff zone are too low on 
average2 (~25 °C kbar−1). A remarkable feature of Archaean cratons 
is the prevalence of the tonalite–trondhjemite–granodiorite (TTG) 
suite (granitoids with high Na2O/K2O ratios), which are thought to 
have been formed by partial melting of hydrated mafic crust at great 
depths3 (>50 km). However, the exact tectonic setting of this melt-
ing regime and whether it is indicative of subduction-driven mag-
matism in the Archaean are hotly debated4–10. Several authors have 
proposed a subduction-like setting, with thermal gradients between 
~40 and 100 °C kbar−1 (refs. 1,3,8,9) (Fig. 1), whereas others have sug-
gested a stagnant-lid environment, such as partial melting at the base 
of thickened oceanic plateaus6,7,10. A telltale signature of Archaean  
oceanic crust would be its extensive interaction with seawater, 
which, if TTGs have been produced by melting of subducted  
oceanic crust, could have left an imprint on their chemical and Si 
and/or O isotopic compositions. A recent study11 suggested that 
combined analyses of O and Si isotopes could help unravel the con-
tributions of different sedimentary components, such as hydrother-
mal silica, pelites and cherts, to the magmas from which Hadean and 
Archaean zircons crystallized. In this study, we show that Si isotope 
data can be used to directly trace the origin of Archaean TTGs.

Elevated Si isotopic ratios in TTGs
We report the Si isotopic compositions as δ30Si values (that is,  
the per mil deviation of the 30Si/28Si ratio in a sample from that of 

the NBS28 standard) of 3.50–2.70-Gyr-old komatiites (bulk rock 
samples), 3.98–2.79-Gyr-old TTGs (quartz separates and bulk-
rock samples) and a set of quartz separate samples from Palaeozoic 
granites previously studied for their bulk-rock Si isotopic composi-
tions12 (Supplementary Dataset 1). The komatiites (that are, ultra-
mafic volcanic rocks interpreted as mantle-derived high-degree 
melts13) have an average δ30Si value of −0.29 ± 0.02‰ (95% confi-
dence interval (95% CI hereafter unless stated otherwise); n = 11), 
which is identical to the modern bulk silicate Earth value estimated 
from modern mantle-derived rocks (δ30Si = −0.29 ± 0.01‰; n = 64) 
(Fig. 1 and Supplementary Dataset 2). Bulk-rock TTG samples 
have an average δ30Si value of −0.01 ± 0.02‰, n = 14, which is sig-
nificantly higher than an average for bulk rock I- and A-type gran-
ites12 (δ30Si = −0.18 ± 0.02‰, n = 19), but only slightly higher than 
that for modern adakites (δ30Si = −0.06 ± 0.02‰, n = 4; Fig. 1 and 
Supplementary Dataset 2). The δ30Si values of bulk-rock TTGs are 
consistent with other reported data for TTGs from the Kaapvaal 
Craton that have δ30Si = −0.02 ± 0.02‰ (n = 37; ref. 14). The differ-
ence in δ30Si value between the quartz and bulk-rock samples of TTGs 
is similar to that measured between the quartz and bulk rock samples 
in I- and A-type granites (Supplementary Fig. 1 and Supplementary 
Text). This observation provides evidence that quartz from TTGs is 
at Si isotopic equilibrium with other coexisting minerals, and that the 
elevated δ30Si values in bulk TTGs reflect the composition of their 
parental magmas, rather than late contamination of the silicate melts 
by sedimentary components isotopically heavy in Si. In the follow-
ing section, we show that some of the variations in the δ30Si values 
of granites, TTGs and adakites can be accounted for by isotopic 
fractionation during partial melting, but that for the same pressure–
temperature conditions of partial melting, TTGs have systematically 
higher δ30Si values than Phanerozoic granites and adakites (Fig. 2).
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Quantifying the effects of melt-crystal segregation
Silicon isotopic variations in igneous rocks are controlled by crys-
tal-melt equilibrium fractionation during either partial melting or 
fractional crystallization processes12 (see details in Supplementary 
Text). First-principles calculations show that, at equilibrium, tecto-
silicates (for example, quartz and feldspar) have higher δ30Si values 
compared with nesosilicates (for example, olivine) and inosilicates 
(for example, pyroxene)15,16. The situation is not as clear for melts, 
but one can reasonably estimate the Si isotopic fractionation fac-
tors between minerals and silicate melts by considering the melt 
normative mineral compositions16,17 (for example, predominance 
of neso- and inosilicates in basaltic melts, and predominance 
of tectosilicates in felsic melts; Supplementary Dataset 5 and 
Supplementary Information), which has been shown to be a good 
approximation for O isotopes18. Future experimental and theoreti-
cal work will be needed to assess the validity of this approach for Si 
isotopic fractionation involving silicate melts, which is beyond the 
scope of the present study. Under the temperatures relevant to man-
tle partial melting (≥1,400 °C), Si isotopic fractionation between 
olivine/pyroxene and basaltic melt is limited, and, at equilibrium, 
basaltic melts should have δ30Si values shifted by less than 0.04‰ 
relative to their mantle sources, as corroborated by the isotopic sim-
ilarity between peridotites and mid-ocean ridge basalts19–21, as well 
as most oceanic island basalts22. During crustal magma differen-
tiation, however, Si isotopic fractionation between melt and clino-
pyroxene/orthopyroxene/hornblende/garnet can be significantly 
enhanced due to the lower temperatures involved and stronger  

contrast in Si polymerization between the melt and the residual 
minerals17,23. At 850–900 °C (typical liquidus temperatures for 
TTGs, I- and A-type granites, and SiO2-rich adakites), Si isotopic 
fractionation between felsic melt on the one hand, and pyroxene,  
garnet, and hornblende on the other hand, is Δ30Simelt–cpx/opx/hbl/grt ≈  
+0.30‰, while the isotopic fractionation between granodio-
ritic melt and plagioclase is only Δ30Simelt–plg ≈ +0.03‰ (ref. 16;  
Supplementary Dataset 5). During crustal anatexis, the stabil-
ity of plagioclase in the source is sensitive to the partial melting 
pressure1,10,24 (Fig. 1). Therefore, melting of the crust under vari-
ous thermal gradients should produce melts of varying Si isotopic 
compositions (Fig. 2).

Mineral assemblages in magma sources, including major (pla-
gioclase, clinopyroxene, orthopyroxene, hornblende and garnet) 
and accessory (for example, ilmenite, titanite and rutile) phases, 
during partial melting of a basaltic protolith are intimately related 
to the pressure–temperature–H2O conditions of melting7,24 (see 
details in Supplementary Information). In the discussion below, we 
assume water saturation, but our conclusions do not rely heavily 
on this assumption, as Si isotopic fractionation during melting of 
the crust is mostly sensitive to the presence of plagioclase in the 
source, which we trace directly using the Sr/Sr* anomaly, that is, 
Sr=Sr* ¼ SrN=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CeN ´NdN

p

I

 (subscript ‘N’ represents a normaliza-
tion to the bulk-silicate Earth values25; Fig. 2).

 (1) Under a thermal gradient of 40 °C kbar−1 (~13 °C km−1), partial 
melting of tholeiitic basalt takes place at pressures >20 kbar in 
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Fig. 1 | Pressure–temperature diagram and Si isotopic results. Phase equilibria relations for partial melting of a hydrous tholeiitic basalt under the thermal 

gradients of various geological settings1,2,7,10, taken from ref. 1. The stability curve for plagioclase (black dashed curve) was not quantitatively constrained 

in ref. 1, so the one calculated from the H2O-saturated solidus at 12 kbar from ref. 10 is shown instead. Si isotopic data for Archaean TTGs and komatiites, 

Phanerozoic I- and A-type granites, and modern basalts, peridotites and adakites are shown as insets (from this study (Supplementary Dataset 1) and the 

literature (as compiled in Supplementary Dataset 2)). In the bottom-right inset, Si isotopic data for mantle-derived rocks, including the modern (black 

dashed curve) and Archaean (black solid curve) ones, are compared with those of Phanerozoic granites. Note that the decomposition of hornblende would 

release water and leave behind a dry refractory residue. Plg, plagioclase; Hbl, hornblende; Grt, garnet.
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the presence of residual garnet, clinopyroxene, hornblende and 
rutile24. The absence of plagioclase means that Sr and Eu are 
incompatible, while garnet preferentially incorporates Y and 
Yb, and rutile sequesters Nb and Ta. The felsic melts gener-
ated under such conditions have low concentrations of Y, Yb, 
Nb and Ta, and positive Sr anomalies, as typically observed in 
modern adakites that are considered to be partial melts from 
young and hot subducted oceanic crust26,27 (Fig. 2, Supplemen-
tary Fig. 2 and Supplementary Dataset 3). Th s plagioclase-free 
residue has a Δ30Simelt–residue ≈ +0.30‰ at 850–900 °C, and, there-
fore, a basaltic source with SiO2 = 50 wt% and δ30Si = −0.30‰ 
would produce 5–30% partial melts with δ30Si = −0.02 to 
−0.12‰ (Fig. 2, Supplementary Dataset 6 and Supplementary  
Text), consistent with the δ30Si values of modern adakites 
(δ30Si = −0.06 ± 0.02‰).

 (2) Under a thermal gradient of 100 °C kbar−1 (~33 °C km−1), partial 
melting occurs at pressures <8–10 kbar, in the presence of re-
sidual clinopyroxene, plagioclase and hornblende7,24 (Fig. 1). In 
contrast to adakites, felsic melts produced at these, relatively low, 
pressures would have higher concentrations of Y, Yb, Nb and 
Ta, and negative Sr anomalies, as documented for Phanerozoic  
granites (Fig. 2, Supplementary Fig. 2 and Supplementary 
Dataset 3). The plagioclase-rich nature of the melting residues 

under this thermal gradient decreases Δ30Simelt–residue to ~+0.17–
0.21‰. Using the same basaltic source with SiO2 = 50 wt% and 
δ30Si = −0.30‰, felsic melts derived from 5–30% partial melt-
ing at 850–900 °C would have δ30Si = −0.20 to −0.10‰ (Fig. 2,  
Supplementary Dataset 6 and Supplementary Text), which 
is consistent with the δ30Si values of Palaeozoic I- and A-type 
granites (δ30Si = −0.18 ± 0.02‰; Fig. 1).

Presence of sedimentary cherts in the sources of TTGs
Depending on the modal fractions of plagioclase in the source,  
felsic rocks produced by melting under thermal gradients between 
40 and 100 °C kbar−1 (that is, between 13 and 33 °C km−1) should 
have δ30Si and Sr/Sr* values between those of adakites and granites  
(Fig. 2). Although Archaean TTGs have a range of chemical com-
positions encompassing those of adakites and granites, at identical 
Sr/Sr* values, TTGs have Si isotopic compositions shifted towards 
higher δ30Si values by +0.1 to +0.2‰ (except for one TTG sample, 
KV2.1/08; Fig. 2). The similarity of δ30Si values between Archaean 
komatiites and modern peridotites demonstrates the absence of a 
secular change in the Si isotopic composition of the Earth’s mantle 
since ~3.5 billion years ago (Fig. 1). Therefore, the higher δ30Si val-
ues of Archaean TTGs relative to the Phanerozoic rocks generated 
at equivalent pressures require the presence of a component with a 
heavy Si in the source of TTGs. TTGs also have δ18O values that are 
~1‰ higher than those of eclogite-derived felsic melts28–30, and the 
most likely explanation for these heavy-isotope enrichments for O 
and Si is the presence of a marine sedimentary chert component in 
the source of TTGs (Fig. 3). A similar interpretation has been previ-
ously proposed for the increased δ30Si values in some Phanerozoic 
andesites17, which, based on this study, can also be related to the 
addition of adakite-like slab melts.

Significance for Si cycle and geodynamics of the Archaean
Archaean marine sedimentary cherts have variable, but high δ30Si 
values between 0 and +4‰ (refs. 31,32). They are derived from  
(1) precipitation of amorphous silica in oceans saturated with silica 
due to the lack of marine organisms that fix Si in their skeleton33, 
and (2) subsequent diagenetic reactions that form microquartz34. 
During the Archaean, silicic acid in the oceans acquired a high δ30Si 
value31 due to the isotopic fractionations at depth in the oceanic 
crust between hydrothermal fluids (heavy Si isotope enrichment) 
and silicified basalts and gabbros (light Si isotope enrichment) 
(Δ30Siprecipitated silica−dissolved silicon ≈ −1‰ (ref. 35)). Marine cherts are 
also enriched in 18O, due to the temperature-dependent oxygen 
isotopic fractionation between quartz and seawater (for example,  
Δ18Oquartz–seawater = +6‰ at 300 °C to = +31‰ at 25 °C (ref. 36;  
Fig. 3). Addition of 2.5–5.0% of sedimentary chert with δ30Si = +2‰ 
and δ18O = +25‰ to a basaltic source with δ30Si = −0.30‰ and 
δ18O = +5.5‰ can account for the O and Si isotopic compositions 
of TTGs (Fig. 3 and Supplementary Fig. 4). Sedimentary chert is the 
most probable contaminant that can account for both the O and Si 
heavy-isotope enrichment of Archaean TTGs.

The evidence for contamination by sedimentary cherts implies 
that the basaltic source of TTGs had ample time for interacting with 
seawater, which precludes TTG formation by melting at the base 
of an oceanic plateau in a stagnant-lid regime. Oceanic subduc-
tion under moderate to high thermal gradients of 40–100 °C kbar−1, 
therefore, appears to be the most likely mechanism to bring this 
basaltic source in the appropriate pressure–temperature conditions 
for melting. Our data further suggest that only the top part (for 
example, the first few kilometres) of the subducted oceanic crust 
is likely to be melted. This is because the deeper parts of the oce-
anic crust are probably enriched in silica with low δ30Si values, since 
it precipitated from hydrothermal fluids with a δ30Si value around 
−0.3‰ (ref. 31), which is opposite to what is observed in TTGs 
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(Fig. 3). In the modern oceanic crust, the deeper plutonic rocks are 
indeed slightly lower in δ30Si compared with shallow lava flows37, 
and Archaean sedimentary cherts are 0 to +4‰ higher in δ30Si than 
other Archaean uncontaminated ultramafic and mafic rocks12,17,31,32. 
The same conclusion holds for oxygen isotopes, since the bulk δ18O 
value of altered oceanic crust is close to that of fresh oceanic crust38 
(+5.5‰), as observed in the Oman ophiolite39. For oxygen, this is 
due to the fact that the isotopic fractionation factor between water 
and carbonate (or silica) changes from being positive to being nega-
tive below the ~300 °C isotherm39. Partial melting of the top basal-
tic and chert layers of the subducted crust seems to be in line with 
the expectations from petrological considerations, as evidenced by 
experimentally determined phase relations40 in the nepheline–diop-
side–silica ternary diagram. Although silica itself is refractory, add-
ing silica to basalts (5–20 wt%, depending on basalt type) can reduce 
the solidus temperatures by 65–120 °C (ref. 40; Supplementary Fig. 5, 
Supplementary Dataset 4 and Supplementary Information). Thus, in 
addition to the presence of high thermal gradients in the Archaean, 
the fact that the subducted basaltic crust could contain significant 
amounts of cherts would also have promoted its partial melting. It is 
noteworthy that a higher contribution of the upper high-δ18O layers 
of the subducted slab compared with the deeper low-δ18O layers has 
also been proposed for the origin of modern adakites28. The exact 
mechanism to melt refractory cherts and underlying mafic crust 
remains to be elucidated, but we speculate that melting could start at 
the interface between chert and basalt. Future experimental studies 
are necessary to further investigate this aspect. Overall, the evidence 
for incorporation of sedimentary cherts within magma sources 
of Archaean TTGs indicates that lateral motion of lithosphere  
(horizontal tectonics) and downward transport of sediments must 
have been operating, at least locally, since as early as ~4.0 billion 

years ago. We argue that oceanic subduction settings involving high 
thermal gradients were most likely responsible for the build-up of 
felsic continents in the Archaean.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41561-019-0407-6.
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Methods
The TTG and granite samples were crushed and the quartz grains were handpicked 
under a microscope. Aliquots of the coarse-grained powders of the TTG samples 
(~1 g for each sample) were sieved in alcohol and crushed into fine powders 
using agate mortar and pestle. The selected quartz grains, as well as fine powders 
of TTGs, komatiites, adakites, NBS28 quartz and USGS GRM BHVO-2, were 
processed following the protocols described previously43. The sample powders 
(11–22 mg for quartz grains of granites and TTGs, 12–37 mg for bulk komatities 
and adakites, and 44–86 mg for bulk TTGs) were fused using NaOH as flux (10–15 
times of the mass of the samples) in Ag crucibles at 720 °C for 12 min. The fusion 
cake was dissolved in MQ-e H2O (18.2 Ω) and acidified with 1% HNO3. Small 
aliquots of sample solutions were further diluted and measured on an Agilent 
quadrupole inductively coupled plasma mass spectrometer for Si concentrations 
and Al/Si ratios, which were used to quantify the purity of the quartz grains from 
the TTG and granite samples. Solution aliquots containing ~20 μg Si from the 
samples were processed through BioRad Poly-Prep chromatography columns 
filled with 1.8 ml AG50X-12 (200–400 mesh) cation exchange resin to separate Si 
from the matrix. At low to neutral pHs, dissolved Si is present as neutral or anionic 
species, which can be efficiently eluted by H2O, while the cationic species are 
retained on the resin44. Sample solutions of 2 ppm Si in 0.2 M HNO3 were measured 
for their Si isotopic compositions on a Thermo-Fisher Neptune Plus multi-collector 
inductively coupled plasma mass spectrometer housed at the Institut de Physique 
de Globe de Paris using a quartz-made spray chamber. A medium resolution  
(M/ΔM ≈ 5,000, with M the mass of the peak, and ΔM the mass difference 
between 5% and 95% relative peak heights) mode was used to avoid an isobaric 
interference from 14N16O+ on mass 30Si+. The alkali fusion solutions of NBS28 
were processed through the same chemistry, and the purified solutions were run 
between samples to correct for instrumental mass bias. In every analytical session, 
the basalt reference material BHVO-2 was processed following the same procedure 

to monitor the accuracy of the analysis. Each measurement consisted of 25 cycles 
with an integration time of 8.389 s. A two-step wash-out was performed after 
each measurement by rinsing with 0.5 M HNO3 and 0.2 M HNO3. The Si isotopic 
compositions of the samples are reported in Supplementary Dataset 1 using a per 
mil delta notation for 30Si/28Si or 29Si/28Si ratio relative to the NBS28 standard, that 
is, δ30Si or δ29Si.

Two granites, four TTGs and four adakites measured for Si isotopes  
were also measured for whole-rock O isotopic composition by Activation 
Laboratories (Actlabs) following the procedures described in ref. 45. The O  
isotopic results are reported in Supplmentary Dataset 8 using a per mil  
notation for the 18O/16O ratio relative to that of the Vienna standard mean  
ocean water (V-SMOW).
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The authors declare that the data supporting the findings of this study are 
available within the article and its supplementary information files (that is, the 
Supplementary Information and additional datasets).
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