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Ising distribution as a latent variable model

Adrien Wohrer∗

Université Clermont Auvergne, CNRS, SIGMA Clermont,
Institut Pascal, F-63000 Clermont-Ferrand, France.

During the past decades, the Ising distribution has attracted interest in many applied disciplines,
as the maximum entropy distribution associated to any set of correlated binary (‘spin’) variables
with observed means and covariances. However, numerically speaking, the Ising distribution is un-
practical, so alternative models are often preferred to handle correlated binary data. One popular
alternative, especially in life sciences, is the Cox distribution (or the closely related dichotomized
Gaussian distribution and log-normal Cox point process), where the spins are generated indepen-
dently conditioned on the drawing of a latent variable with a multivariate normal distribution. This
article explores the conditions for a principled replacement of the Ising distribution by a Cox dis-
tribution. It shows that the Ising distribution itself can be treated as a latent variable model, and
it explores when this latent variable has a quasi-normal distribution. A variational approach to
this question reveals a formal link with classic mean field methods, especially Opper and Winther’s
adaptive TAP approximation. This link is confirmed by weak coupling (Plefka) expansions of the
different approximations, and then by numerical tests. Overall, this study suggests that an Ising
distribution can be replaced by a Cox distribution in practical applications, precisely when its pa-
rameters lie in the ‘mean field domain’.

I. INTRODUCTION

During the last decades, the Ising distribution has
been used in several disciplines such as statistics (under
the name quadratic exponential model) [1, 2], machine
learning (under the name Boltzmann machine) [3], infor-
mation processing [4–6], biology [7] and neurosciences,
where it has been proposed as a natural model for the
spike-based activities of interconnected neural popula-
tions [8, 9]. In most of these applications, classic as-
sumptions from statistical physics do not hold (e.g., ar-
rangement on a rectangular lattice, uniform couplings,
independently distributed couplings, zero external fields,
etc.), and even old problems have to be revisited, such
as efficiently simulating the Ising distribution [10, 11] or
inferring its parameters from data [12–15].

In this article I will consider the Ising probability dis-
tribution over a set of spins s = (s1, . . . , sN ) ∈ {−1, 1}N
defined as

P (s|h,J) =
1

ZI
exp

( N∑
i=1

hisi +
1

2

N∑
i,j=1

Jijsisj

)
, (1)

with parameters h ∈ RN (external fields) and J an N×N
symmetric matrix (coupling weights), ZI(h,J) being the
corresponding partition function. In this formulation,
diagonal elements Jii can be nonzero without influencing
the distribution, simply adding a constant term

∑
i Jii/2

to both the exponent and log(ZI).
I will note (m,C) the two first centered moments of

the distribution, that is, for all indices i, j,

mi = E(si) , Cij = E(sisj)− E(si)E(sj).
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The essential interest of the Ising distribution, in all dis-
ciplines mentioned above, is its maximum entropy prop-
erty : whenever a dataset of N binary variables has mea-
sured moments (m,C), a single distribution of the form
(1) is guaranteed to exist which matches these moments,
and furthermore it has maximal entropy under this con-
straint.

Unfortunately, the Ising distribution is numerically un-
wieldy. The simple act of drawing samples from the
distribution already requires to set up lengthy Markov
Chain Monte Carlo (MCMC) schemes. Besides, there
is no simple analytical link between parameters (h,J)
and resulting moments (m,C). Given natural parame-
ters (h,J), the direct Ising problem of estimating (m,C)
can only be solved by numerical sampling from MCMC
chains. Given (m,C), the inverse Ising problem of re-
trieving (h,J) can only be solved by gradient descent
based on numerous iterations of the direct problem, a
procedure known as Boltzmann learning. In practice, this
means that the Ising distribution cannot be parametrized
easily from observed data.

For this reason, in spite of the Ising model’s theoretical
attractiveness when dealing with binary variables, alter-
native models are generally preferred, which are numeri-
cally more convenient. In one such family of alternative
models, N latent variables r = (r1, . . . , rN ) ∈ RN are
drawn from a multivariate normal distribution

N (r|µ,Σ) = |2πΣ|−1/2 exp
(
− 1

2
(r− µ)>Σ−1(r− µ)

)
and then used to generate N spins independently. The
simplest option, setting si = sign(ri) deterministically,
yields the dichotomized Gaussian distribution [16, 17],
which has enjoyed recent popularity as a replacement for
the Ising distribution when modeling neural spike trains,
as it is easy to sample and to parametrize from data
[18, 19].

Slightly more generally, each variable ri can serve as
an intensity to draw the corresponding spin si following
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a Bernoulli distribution :

B(s|r) =
1

ZB
exp

( N∑
i=1

risi

)
with partition function

ZB(r) =
∏
i

(
eri + e−ri

)
.

In statistics, this is the model underlying logistic regres-
sion, as introduced by Cox [20], so I will refer to it as the
Cox distribution :

Q(r|µ,Σ) = N (r|µ,Σ), (2)

Q(s|r) = B(s|r), (3)

with µ any vector in RN and Σ any N × N symmet-
ric definite positive matrix. Note that the dichotomized
Gaussian corresponds to a limiting case of the Cox dis-
tribution, when the scaling of variables ri tends to +∞
1.

Both the Ising (eq. (1)) and Cox (eq. (2)-(3)) distri-
butions can be generalized to point processes, by taking
a suitable limit when the N indexed variables tend to
a continuum [21]. These are respectively known as the
Gibbs process [21] and log Gaussian Cox process [22, 23].
The latter, much simpler to handle in practice, is used
in various applied fields such as epidemiology, geostatis-
tics [24] and neurosciences, to model neural spike trains
[25, 26].

To summarize, in practical application, Cox models
(including the dichotomized Gaussian, and Cox point
processes) are often preferred to the corresponding max-
imum entropy distributions (Ising distribution, Gibbs
point process) because they are easier to sample, and
to parametrize from a set of observed data. However,
to date, we have little analytical insights into the link
between the two families of distributions. For example,
given some dataset, we cannot tell in advance how simi-
lar the Cox and Ising models fitting this data would be.
The goal of this article is to investigate this link.

I first show that the Ising distribution itself can be
viewed as a latent variable model, which differs from a
Cox distribution only because of the non-Gaussian distri-
bution of its latent variable (Section II). This allows to
derive simple relations between an Ising distribution and
its ‘best-fitting’ Cox distributions, in two possible senses
(Section III). In particular, the variational approach for
targeting a best-fitting Cox distribution displays formal

1 The dichotomized Gaussian of parameters (µ,Σ) is the limit of
the Cox distribution of parameters (λµ, λ2Σ) when λ → +∞.
Conversely, note that a Bernoulli variable S ∼ B(r) can be gener-
ated as S = sign(r+X) where X follows the logistic distribution
of density function f(x) = 1

2
cosh−2(x), which resembles closely

the normal distribution N (x|0, κ2) with κ ' 0.85. As a result,
any Cox distribution of parameters (µ,Σ) is decently approxi-
mated by a dichotomized Gaussian of parameters (µ,Σ + κ2I).

similarities with classic mean-field methods which aim at
approximating the Ising moments (m,C) (Section IV).
Numerical simulations reveal that both types of approx-
imations, despite their seemingly different goals, are effi-
cient in roughly the same domain of parameters (Section
V). Thus, an Ising distribution can be replaced in prac-
tical applications by a Cox distribution, precisely if its
parameters lie in the ‘mean field domain’.

II. THE ISING LATENT FIELD

Given any vector h ∈ RN and N ×N symmetric, def-
inite positive matrix J, we will consider the following
probability distribution over r ∈ RN and s ∈ {−1, 1}N :

P (s, r) =
1

Z
exp

(
− 1

2
(r− h)>J−1(r− h) + r>s

)
, (4)

with Z ensuring proper normalization.
Marginalizing out variable s yields

P (r) =
ZB(r)

Z
exp

(
− 1

2
(r− h)>J−1(r− h)

)
, (5)

P (s|r) = B(s|r). (6)

Conversely, completing the square in eq. (4) and
marginalizing out variable r yields

P (s) =
|2πJ|1/2

Z
exp

(
h>s +

1

2
s>Js

)
, (7)

P (r|s) = N (r|h + Js,J). (8)

From eq. (7), the resulting spins s are distributed accord-
ing to the Ising distribution of parameters (h,J).

The introduction of field variables ri has long been
known in statistical physics, as a mathematical construct
to express the Ising partition function ZI in an integral
form [5]. Indeed, equating the respective expressions for
Z imposed by eq. (5) and (7), we obtain the elegant for-
mula

ZI(h,J) =

∫
r∈RN

ZB(r)N (r|h,J)dr (9)

expressing ZI as the convolution of ZB with a Gaussian
kernel of covariance J. This formula can be used as a
justification of classic mean field equations [5], and more
generally to derive the diagrammatic (i.e., Taylor) expan-
sion of ZI as a function of J [27].

In this work instead, I view the ri as a set of probabilis-
tic variables in their own right, coupled to the Ising spin
variables, through eq. (5)-(8). Given a spin configuration
s, variable r is normally distributed (eq. (8)). Thus, the
overall distribution P (r) is a mixture of Gaussians with
2N components, where the component associated to spin
configuration s has weight P (s). More compactly, P (r)
can be expressed with eq. (5).

Given some configuration r, the spins s can simply
be drawn independently following a Bernoulli distribu-
tion (eq. (6)), so the Ising distribution P (s) itself can be
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viewed as a latent variable model, based on hidden vari-
ables ri. It departs from a Cox distribution (eq. (2)-(3))
only through the fact that the fields’ distribution P (r) is
not normal, in general.

III. COX APPROXIMATIONS TO THE ISING
DISTRIBUTION

This article investigates the possible replacement of the
Ising distribution by a Cox distribution. With the above
reformulation, this amounts to approximating the Ising
latent field distribution P (r) by a well-chosen multivari-
ate normal Q(r) = N (r|µ,Σ). I will now discuss two
possible choices in this regard.

From here on, I will note (m,C) for (any approxima-
tion of) the first moments of a spin variable s, and (µ,Σ)
for (any approximation of) the first moments of a field
variable r. I will distinguish the true moments of the
Ising distribution P (s) with a star : (m?,C?). Likewise,
the true moments of the corresponding Ising latent field
P (r) follow, from eq. (8) :

µ? = h + Jm?, (10)

Σ? = J + JC?J. (11)

Optimal Cox distribution

Arguably, the optimal approximation of P (r) by a nor-
mal distribution Q(r) = N (µ,Σ) is achieved by equating
their moments, i.e., setting (µ,Σ) = (µ?,Σ?). I will refer
to this choice as the optimal Cox distribution. Its quali-
fication as ‘optimal’ stems from the observation that the
following KL divergence

KLr(P ||Q) =

∫
r∈RN

P (r) ln
P (r)

Q(r|µ,Σ)
dr (12)

is minimized when (µ,Σ) = (µ?,Σ?). Thus, in
terms of information geometry, the resulting distribution
Q(r|µ?,Σ?) is the nearest neighbor of the latent Ising
distribution P (r) in the family of normal distributions.

Unfortunately, the optimal Cox distribution is unprac-
tical to characterize, as (m?,C?) can only be estimated
by lengthy Monte-Carlo simulation. In the scope of this
article, its study will only be of theoretical interest : it
allows to quantify the intrinsic effect of assuming a Gaus-
sian shape for P (r).

Variational Cox approximation

More practically, one may require to approximate an
Ising distribution P (s) by a Cox distribution, assuming
only knowledge of its natural parameters (h,J). The
variational approach to this problem consists in choos-
ing (µ,Σ) that minimize the reversed Kullback-Leibler

divergence

KLr(Q||P ) =

∫
r∈RN

Q(r|µ,Σ) ln
Q(r|µ,Σ)

P (r)
dr. (13)

With some straightforward algebra, one can establish the
derivatives of KLr(Q||P ) with respect to µ and Σ, and
thus its stationary points (µ,Σ).

Given the fundamental relation (10)-(11) between spin
and field moments in the Ising distribution, it is natural
to reparametrize the Cox parameters (µ,Σ) by the ‘spin
moment’ parameters (m,C) such that

µ = h + Jm, (14)

Σ = J + JCJ. (15)

Then, the values of (m,C) at the stationary points of
KLr(Q||P ) are characterized by the following, fixed point
equation :

mi =

∫
x∈R

tanh
(
µi + x

√
Σii

)
φ(x)dx, (16)

di =

∫
x∈R

(
1− tanh2

(
µi + x

√
Σii

))
φ(x)dx,

(17)

(C−1)ij = d−1i δij − Jij , (18)

with φ(x) = N (x|0, 1) the standard one-dimensional nor-
mal distribution.

Equations (14)-(18) can be solved by an iterative fixed
point method on variables {mi, di}i=1...N (see Appendix
A). At the solution, the Cox distribution Q(µ,Σ) pro-
vides an approximation to the Ising distribution P (h,J).

The formulas (16)-(17) are conceptually simple : mi

(resp. di) is obtained as the average of tanh(r) (resp. 1−
tanh2(r)) using a Gaussian kernel, centered around r =
µi with variance Σii. Their estimation at any required
precision is straightforward, using numerical integration.
However, when repeated computations are required, it is
faster to use approximate formulas, given in Appendix
E.

Figure 1 illustrates the nature of the latent field P (r),
and of its Cox approximations, on a 2-spin toy model.
The optimal Cox distribution is unique by construction,
but the variational Cox approximation can have multiple
solutions (panel b), a classic feature of variational meth-
ods based on minimizing reversed KL divergence [28].

Choice of diag(J)

The framework developed above requires strictly posi-
tive diagonal coupling values Jii, large enough to ensure
that matrix J is definite positive. While these diagonal
values do not influence the Ising distribution P (s) over
spins, a different choice of diag(J) leads to a different la-
tent field distribution P (r), and thus to a different Cox
approximation (see Figure 1). This naturally raises the
question of what self-couplings Jii represent in the la-
tent field formalism, and how they should be chosen in
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FIG. 1. Ising latent field and its normal approximations on
a toy model with N = 2. Normal distributions are ma-
terialized by their 2-σ level line. Classic Ising parameters
(h1, h2, J12) = (0.2, 0, 0.9). In (a), diagonal couplings are
fixed at J11 = J22 = 1, whereas in (b) they are fixed at
J11 = J22 = 5. The Ising spin distribution P (s) is the same in
both cases, but not the field distribution P (r) and subsequent
Cox approximations. In (b), the variational Cox equation has
multiple solutions – two of which are displayed.

practice. Here, I only detail one concrete proposal for
this choice, and defer more general considerations to the
Discussion.

In the perspective of this work, the choice should be
made to optimize the resemblance of P (r) with a normal
distribution. From eq. (8), larger values of J increase
the overall separation of the 2N components in P (r) and
thus, its divergence from a normal distribution. In the
extreme case where diag(J) is very large, the 2N com-
ponents of P (r) display no overlap at all : see Figure
1(b).

Consequently, the general prescription is that diag(J)
should be kept as small as possible. Given a fixed set of
off-diagonal weights {Jij}i<j , a principled approach is to
choose diag(J) with the following procedure :

minimize
{Jii}

∑
i

Jii subject to J � 0. (19)

This is a well known convex problem, which can be solved

efficiently [29]. Afterwards, a small ridge term λI can be
added to J to make it strictly definite positive.

Moments of the Cox distribution

A note of caution is also required on the interpretation
of variables (m,C) in the variational Cox approximation,
eq. (14)-(18). By eq. (2)-(3), the first spin moment of Cox
distribution Q(s|µ,Σ) is

EQ(si) =

∫
r∈R

tanh(r)N (r|µi,Σii)dr, (20)

and we recognize eq. (16). Thus, at the fixed point of
eq. (14)-(18), mi corresponds to the first moment of the
approximating Cox distribution.

In contrast, at the fixed point of eq. (14)-(18), C is not
the spin covariance of the Cox distribution Q(s|µ,Σ).
That would be computed (for i 6= j) as

CovQ(si, sj) =

∫∫
(r,t)∈R2

tanh(r) tanh(t)N (r, t|µ(ij),Σ(ij))drdt

− EQ(si)EQ(sj), (21)

with µ(ij),Σ(ij) the two-dimensional restrictions of µ,Σ
at indices (i, j).

Thus, for given Cox parameters (µ,Σ), there are two
possible predictions for the Ising covariance matrix C :
the ‘forward’ prediction of eq. (21) (spin covariance ma-
trix in the Cox distribution) and the ‘backward’ pre-
diction of eq. (15) (spin covariance in the Ising model
which would give rise to field covariance matrix Σ). If
Q(r|µ,Σ) is a good approximation of P (r), we expect
both predictions to be very close. And indeed, the dis-
crepancy between the two predictions of C is a good in-
dicator of whether the approximation was successful (see
Supplementary Material).

IV. COMPARISON WITH MEAN FIELD
APPROXIMATIONS

In the variational Cox approximation, eq. (14)-(18),
variables (m,C) constitute an approximation for the mo-
ments of the Ising distribution P (h,J). The goodness of
fit wrt. exact Ising moments (m?,C?) constitutes a sim-
ple measure of how well distribution P is approximated
by the Cox distribution Q(µ,Σ).

Deriving an approximation for (m,C) is also the goal
of classic mean field methods. In these methods, the
magnetizations m are approximated first, as the solution
of some fixed point equation m = F (m|h,J). Then, this
equation is differentiated wrt. h, yielding a predicted
covariance matrix as

Cij = ∂himj . (22)

Indeed, this so-called linear response formula holds true
in the exact Ising model ; so it provides a concrete way
of estimating C from the approximation of m.
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Informally, we may say that a given set of Ising param-
eters (h,J) lies in the ‘mean field domain’ when some
mean field method can provide a good estimate of the
corresponding moments (m?,C?). In the rest of this ar-
ticle, I will argue that the variational approximation of
P by a Cox distribution Q is valid precisely in this ‘mean
field domain’.

In this section, I briefly remind the nature of different
mean field approximations, and compare their respective
Plefka expansions in the case of weak couplings, up to
order 3 (resp. 4 in the Appendices). In section V, I will
proceed to numerical comparisons.

Classic mean field approximations

I considered two classic mean field methods, the TAP
and Bethe approximations, and a more recent general-
ization called the adaptive TAP approximation. For the
sake of self-completeness, these approximations are re-
minded in some detail in Appendices B and C. Here, I
only provide essential formulas.

The archetypal mean field method in the Ising model is
the TAP approximation, where the approximating vector
of magnetizations m is sought as a fixed point of the
following Thouless-Anderson-Palmer equation [4, 5, 30] :

mi = tanh
(
hi +

∑
j 6=i

Jijmj −mi

∑
j 6=i

J2
ij(1−m2

j )
)
. (23)

This equation can arise in different contexts, one of which
is the Plefka expansion of the exact Ising model (eq. 29),
stopped at order 2. Covariances C are derived in turn
based on the linear response formula (eq. (22)) :

(C−1TAP)ij =

(
1 +

∑
k

J2
ik(1−m2

i )(1−m2
k)

)
δij

1−m2
i

− Jij − 2J2
ijmimj . (24)

The Bethe approximation is a related mean field
method, where the approximating vector of magnetiza-
tions m is sought as a fixed point of the following equa-
tion [31, 32] :

θ
(j)
i = hi +

∑
k 6=j,i

tanh−1
(

tanh(Jik) tanh(θ
(i)
k )
)
. (25)

Here, the so-called cavity fields θ
(j)
i are tractable func-

tions of m, namely, the only numbers such that
each 2-spin Ising distribution of natural parameters

(θ
(j)
i , θ

(i)
j , Jij) have first moments (mi,mj). This equa-

tion can be justified as the exact solution for m when the
couplings Jij define a tree-like lattice, and its iterative
resolution is known as the belief propagation algorithm.
Covariances C can be derived in turn based on the linear

response formula (Appendix B, eq. (B10), derived here
with an original approach).

Finally, the adaptive TAP approximation of Opper and
Winther [33] is a generalized mean field approximation,
based on the cavity method [4]. The magnetization vari-
ables {mi} are joined with a second set of variables {Vi},
which represent the variance of the cavity field distribu-
tion at each spin site, and obey the following fixed point
equations :

mi = tanh
(
hi +

∑
j

Jijmj −miVi
)
, (26)

(C−1A )ij =
(
1 + (1−m2

i )Vi
) δij

1−m2
i

− Jij , (27)

1−m2
i = (CA)ii. (28)

This derivation is detailed in Appendix C. Briefly,
eq. (26) is a generalization of the TAP equation (23)
where the variance Vi of the cavity field is left as a free
variable, and eq. (27) is the corresponding linear response
prediction. Equation (28) imposes coherent predictions
for individual variances Var(si), thereby closing the fixed
point equation on variables {mi, Vi}.

The adaptive TAP approximation is a ‘universal’ mean
field method : by letting the variances Vi adapt freely,
it can account for any statistical structure of matrix J,
whereas the classic TAP equation (eq. (23)) is only true
when the individual coupling weights Jij are decorrelated
[34]. This is especially welcome in machine learning and
neurosciences, where coupling strengths Jij are generally
structured (because they represent learned regularities of
the outside world).

Equations (26)-(28) bear a striking similarity with the
variational Cox equations, eq. (14)-(18). Both can be
seen as modifications of the naive mean field equations
through N additional variables (the di, resp. Vi) associ-
ated to the variance of the field acting on each spin. This
similarity will be confirmed in the subsequent analytical
and numerical results.

Weak coupling expansions

In the Ising model, the link between natural parame-
ters (h,J) and magnetizations m can be abstractly de-
scribed as h = f(m,J), for an intractable function f .
Only when J = 0 does the link become tractable : the
Ising model boils down to a Bernoulli distribution, with
the obvious hi = tanh−1(mi).

One step further, when couplings are weak but
nonzero, one can derive the Taylor expansion of f around
J = 0. In practice, the coupling matrix is written αJ,
α being the small parameter of the expansion, and the
result is known as the Plefka expansion [35] – although
the approach can be traced back to anterior work [27].

The expansion up to order 4 is a classic computation,
outlined in Appendix B. Stopping at order 3 for brevity,
it reads :
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hi = tanh−1(mi)− α
∑
j 6=i

Jijmj + α2mi

∑
j 6=i

J2
ij(1−m2

j )

+ α3

2mi

∑
(jk|i)

JijJjkJki(1−m2
j )(1−m2

k) + 2(m2
i − 1

3 )
∑
j 6=i

J3
ijmj(1−m2

j )

+ o(α3), (29)

where (jk|i) denotes all unordered triplets of the form {i, j, k} with j and k distinct, and distinct from i.

This expansion can serve as a first test on the various
approximations (TAP, Bethe, adaptive TAP, variational
Cox) introduced above. Indeed, these approximations
can also be described as h = f(m,J) for a different func-
tion f , and we can compare its Taylor expansion to that
of the true Ising model.

The expansion for the TAP approximation is, by defi-

nition, the exact Ising expansion (eq. (29)) stopped at
order 2. The expansion for the Bethe approximation
is obtained from the exact Ising expansion by retaining
only the sums over spin pairs [36] (see Appendix B). In
eq. (29), this means suppressing the sum over (jk|i) in
the order 3 term, but keeping the sum over j 6= i.

The expansion for the adaptive TAP approximation,
derived in Appendix C, writes

hi = tanh−1(mi)− α
∑
j 6=i

Jijmj + α2mi

∑
j 6=i

J2
ij(1−m2

j )

+ α3
[
2mi

∑
(jk|i)

JijJjkJki(1−m2
j )(1−m2

k)
]

+ o(α3). (30)

The expansion for the variational Cox approximation, derived in Appendix D, writes

hi = tanh−1(mi)− α
∑
j 6=i

Jijmj + α2mi

∑
j 6=i

J2
ij(1−m2

j )

+ α3
[
2mi

∑
(jk|i)

JijJjkJki(1−m2
j )(1−m2

k)− 2(m2
i − 1

3 )J3
iimi(1−m2

i )
]

+ o(α3). (31)

At order 2, all approximations considered have the
same expansion as the exact Ising solution, meaning that
they will perform well in case of weak couplings.

At order 3, discrepancies appear between the exact
Ising solution and its various approximations. The first
contribution to the order 3 term in eq. (29), the sum
over (jk|i), is correctly accounted for by the adaptive
TAP and variational Cox approximations. The second
contribution to the order 3 term in eq. (29), the sum
over j 6= i, is correctly accounted for by the Bethe ap-
proximation. Of these two sums, that over (jk|i) involves
many more terms, so we expect it will generally be the
dominant contribution, except for very specific coupling
matrices J.

At order 4, the same qualitative features are observed.
The ‘generally dominant’ contribution at order 4 in the
true Ising solution writes

2mi

∑
(jkl|i)

JijJjkJklJli(1−m2
j )(1−m2

k)(1−m2
l )

(Appendices, eq. (B3)), and this is also the dominant

contribution to the adaptive TAP (eq. (C7)) and varia-
tional Cox (eq. (D12)) approximations. Hence, we may
expect these two approximations to provide a better fit
than the others in case of generic coupling matrices J –
and this will indeed be our observation in numerical tests
(Figure 6).

The similar structures of eq. (18) and (27) suggest a
proximity between the adaptive TAP and variational Cox
approximations, and this is confirmed by their weak cou-
pling expansions : up to order 4, their respective expan-
sions differ only through additional terms involving the
diagonal weights Jii, so they would be identical for a
classic coupling matrix such that diag(J) = 0.

V. NUMERICAL TESTS

To gain more insights on the behavior of all approxima-
tions above, I turned to numerical exploration : I picked a
large number of possible configurations (h,J), estimated
the true Ising moments (m?,C?) in each configuration
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with lengthy MCMC sampling, and compared all ap-
proximations against this ground truth. The numerical
details for computing the approximations are given in
Appendix A.

I should stress from the start that the role of these tests
is not to target the most accurate mean field method for
approximating (m,C) – which turns out to be the adap-
tive TAP method, in most configurations tested here.
Instead, the goal of these tests is to support one main
claim of this article : that the Ising distribution is well
approximated by a Cox distribution in the same domain
of parameters where mean field methods are efficient.

To focus on the most important aspect of the Ising
model, I only tested configurations where h = 0, so that
magnetizations verify m = 0 – both in the exact Ising
solution and in the various approximations. Hence, the
efficiency of a given approximation is assessed by its abil-
ity to correctly predict the covariance matrix C. For each
tested configuration and approximation, the fit perfor-
mance is summarized by number

z =
1

N2

∑
i,j

∣∣Cij − C?ij∣∣,
where C?ij is the true covariance of spins i and j, and Cij
its approximation.

Generative model for couplings J

In this approach, the choice of a generative model for
coupling matrix J is a delicate matter, as the Ising model
can exhibit very different behaviors depending on its pa-
rameters. To test different regimes with a single formula,
I used the following generative model :

J =

[
J0
pN

1 +
J

√
κpN

XκX
>
κ

]
.∗ Mp (32)

with 1 the N ×N matrix with uniform unit entries and
Xκ an N × κN matrix of independent standard normal
entries. Afterwards, element-wise multiplication by a
symmetric masking matrix Mp can randomly set each
edge (ij) at 0 with probability 1− p.

This model has 4 parameters. The positive num-
bers (J0, J) correspond to the standard Sherrington-
Kirkpatrick (SK) parameters for spin glasses [37], mean-
ing that the probabilistic distribution of each nonzero
off-diagonal term Jij follows

Jij ∼ N
(
J0
pN

,
J2

pN

)
(33)

to a very good approximation, owing to the central limit
theorem applied to the κN samples in matrix Xκ.

Parameter κ > 0 fixes the amount of global correla-
tion between individual couplings Jij . When κ → +∞,
all off-diagonal entries Jij constitute independent ran-
dom variables, and the classic SK model is recovered
(see Supplementary Material). When κ is smaller, the

FIG. 2. TAP, Bethe, adaptive TAP and variational Cox ap-
proximations on a typical paramagnetic configuration with
N = 100 spins, and reference parameter values (J0, J, κ, p) =
(0.5, 0.5,∞, 1). The corresponding fit values z are indicated
as insets. In each of Figures 3-6, one parameter will be mod-
ified, while the three others keep their reference value.

random matrix XκX
>
κ follows a Wishart distribution, as

in the Hopfield model of associative memory [4, 38]. The
random variables Jij become dependent, and the spec-
trum of J differs markedly from the SK case (Wigner vs.
Marčenko-Pastur laws). Note that the probabilistic dis-
tribution of each element Jij remains virtually unchanged
in the process, given by eq. (33) except at very low values
of κ.

Finally, parameter p ∈ [0, 1] allows to dilute the overall
connectivity, so that only a proportion p of the couplings
are nonzero. Coherently, J0 and J2 in eq. (33) are scaled
by pN , the effective number of neighbors in the (possibly
diluted) model.

Results for the approximations

As the 4 parameters in model (32) prevent from an
exhaustive search, I performed a restricted exploration of
parameter space, based on a set of reference parameter
values :

(J, J0, κ, p) = (0.5, 0.5,∞, 1). (34)

Since (κ, p) = (∞, 1), the individual coupling weights Jij
are drawn independently and the connectivity matrix is
dense. Hence, this is a classic SK model in its paramag-
netic phase, because J and J0 are smaller than 1 [37].

Figure 2 shows the fit performances of the various ap-
proximation methods on a typical configuration (h,J)
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with these generative parameters. All approximations
perform well, as expected, since the TAP equations are
exact when N →∞ in the paramagnetic phase of the SK
model [4]. However, the variational Cox approximation
(fourth panel) displays a bias : the overall magnitude
of its predictions Cij is somewhat underestimated, lead-
ing to a slant in the graph of (C?ij , Cij), and a larger fit
value z. This bias is a systematic property of the Cox
approximation, which is mainly caused by the presence
of nonzero self-coupling terms Jii > 0 (see Discussion).

I then explored the approximations’ behavior in differ-
ent departures from the SK paramagnetic situation. In
each of Figures 3-6, one parameter in eq. (34) is varied
while the three others keep their reference value. Panel
(a) shows the various approximations on a typical con-
figuration at the transition out of the ‘paramagnetic SK’
phase. Panel (b) shows the mean fit performance of
each approximation as the concerned parameter is var-
ied. Panel (c) shows when multiple solutions have been
detected to each approximation’s constitutive fixed point
equation.

I first tested the approximations’ behavior when tran-
siting into the ferromagnetic (Figure 3) and spin-glass
(Figure 4) phases of the SK model. The ferromagnetic
phase, corresponding to J0 > max(1, J), is character-
ized by a symmetry breaking into two ‘magnetized’ states
with si = 1 (resp. −1) for all spins, constituting the sta-
ble solutions of the TAP equation [4, 6]. The spin glass
phase, corresponding to J > max(1, J0), is characterized
by the apparition of multiple ‘metastable’ local minima
of the TAP free energy, with limited basins of attraction
[4]. All approximations considered have roughly the same
behavior at the phase transitions (Figure 3, J0 ≥ 1, Fig-
ure 4, J ≥ 1), losing precise fit (panels (b)) concurrently
with the apparition of multiple solutions to their respec-
tive equations (panels (c)). This confirms the existence
of a universal ‘mean field’ domain for the SK model, cor-
responding to its paramagnetic phase. 2

When couplings are made sparser, all approximations
again display the same qualitative behavior (Figure 5),
maintaining a reasonable precision down to very diluted
models. The Bethe approximation is the most efficient
in this case, because the rarefaction of loops creates a
‘tree-like’ structure of connectivity.

The main difference between the approximations is
their handling of structured coupling matrices J (Figure
6). When parameter κ decreases and couplings weights
Jij become correlated, the TAP and Bethe approxima-
tions deteriorate much faster than the variational Cox

2 Looking in more detail, a notable qualitative difference exists be-
tween the different approximations, at least in the ferromagnetic
phase. In the TAP and Bethe approximations, the symmetric
solution with m = 0 becomes unstable [4, 6], and the linear
response prediction for C at this point diverges – as visible in
Figure 3(a). In the adaptive TAP and variational Cox approx-
imations, this symmetric solution remains stable and coexists
with the magnetized solutions (as in Figure 1(b)), and the pre-
diction for C is progressively degraded, rather than totally lost
– see Figure 3(a).

FIG. 3. Transition from paramagnetic to ferromagnetic phase,
when parameter J0 is increased. Other parameters keep their
reference value (J, κ, p) = (0.5,∞, 1). (a) TAP, Bethe, adap-
tive TAP and variational Cox approximations on a typical
configuration with J0 = 1. (b) Average fit value z for each of
the approximations, assessed over 30 configurations of matrix
J picked according to eq. (32), for each tested value of J0.
Fit measure is also provided for the optimal Cox distribution
(see text). The vertical dashed line corresponds to the refer-
ence values of Figure 2. (c) Apparition of multiple solutions
to the respective fixed point equations. For each value of J0
and approximation considered, I plot the percentage of the
30 configurations in which multiple solutions were found (see
Appendix A, Numerical procedures).
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FIG. 4. Transition from paramagnetic to spin glass phase,
when parameter J is increased. Other parameters keep their
reference value (J0, κ, p) = (0.5,∞, 1). (a) TAP, Bethe, adap-
tive TAP and variational Cox approximations on a typical
configuration with J = 1. (b), (c) : same as Figure 3.

and adaptive TAP approximation – which was designed
precisely for this purpose [33].

This numerical study confirms the adaptive TAP’s in-
terest as a ‘universal’ mean-field method, the most effi-
cient in all tested regimes with dense couplings, and sec-
ond most efficient in case of sparse couplings (the Bethe
approximation performing marginally better). It also re-
veals similar domains of validity for the adaptive TAP
and variational Cox approximations – notwithstanding

FIG. 5. Introduction of sparseness in the coupling weights,
when parameter p is decreased. Other parameters keep their
reference value (J, J0, κ) = (0.5, 0.5,∞). (a) TAP, Bethe,
adaptive TAP and variational Cox approximations on a typ-
ical configuration with p = 0.01. (b), (c) : same as Figure
3.

the latter’s systematic bias in ‘easy’ configurations, lead-
ing to higher fit values z. In summary, a ‘mean field do-
main’ can be defined as the ensemble of parameters (h,J)
for which the adaptive TAP method efficiently predicts
the spin moments (m,C), and this is also the domain
where the Ising distribution can be easily replaced by a
Cox approximation, thanks to a variational principle.
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FIG. 6. Introduction of stochastic dependence between the
coupling weights, when parameter κ is decreased. Other pa-
rameters keep their reference value (J, J0, p) = (0.5, 0.5, 1).
(a) TAP, Bethe, adaptive TAP and variational Cox approxi-
mations on a typical configuration with κ = 1. (b), (c) : same
as Figure 3.

Optimal Cox distribution

As such, the above results do not explicitly tell whether
the Ising distribution can be approximated by a Cox dis-
tribution outside of the ‘mean field domain’. It may be
the case that a decent Cox approximation exists, but can-
not be retrieved by a variational principle anymore. To
clarify this point, I also considered the fit performance of

the optimal Cox distribution Q(µ?,Σ?) defined above.
My measure of fit in this case consisted in comparing
the true spin covariances C?ij to their values in the op-
timal Cox distribution, as given by eq. (21). Thus, a
successful fit indicates when assuming a Gaussian shape
for the latent field distribution P (r), without modifying
its moments, does not modify much the resulting spin
moments.

Figures 3-6(b) show that this measure globally corre-
lates with the efficiency of the adaptive TAP and varia-
tional Cox approximations, i.e, it also deteriorates out-
side of the ‘mean field domain’. Hence, the increased
discrepancy between Ising and Cox distributions outside
of the ‘mean field domain’ seems intrinsically related to
the Ising latent field P (r) becoming non-Gaussian. This
is also coherent with the fact that the adaptive TAP ap-
proximation is bound to fail precisely when the instan-
taneous field acting on each spin cannot be considered
Gaussian (see Appendix C).

Nonetheless, in quantitative terms, the loss of fit by the
optimal Cox distribution is never total. Figure 7 shows
examples of fit performance for the optimal Cox distribu-
tion in various configurations at the boundary (first row,
compare to Figures 3-6(a)) and far outside (second row)
of the mean field domain. It reveals that, even when
the Ising latent field P (r) is far from being Gaussian-
distributed, its replacement by a Gaussian preserves the
overall pattern of spin correlations (as visible in Figure
1(b)). This global correctness is hardly reflected in the
magnitude of error z, yet it does imply that an Ising
model is never ‘too far’ away from its optimal Cox dis-
tribution.

VI. DISCUSSION

I have proposed a reformulation of the Ising distribu-
tion as a latent variable model, and used it to derive prin-
cipled approximations by the simpler Cox distribution.
In practical applications, Cox models (including the di-
chotomized Gaussian, and Cox point processes) are often
preferred to the corresponding maximum entropy distri-
butions (Ising distribution, Gibbs point process) because
they are easier to sample, and to parametrize from a set
of observed moments. This article establishes a simple
analytical connection between the two families of mod-
els, and investigates under what conditions they can be
used interchangeably.

The most natural connection between an Ising and a
Cox distribution is obtained by equating the two first
moments of their latent variables, eq. (10)-(11), a sim-
ple but fundamental result of the article. The result-
ing ‘optimal’ Cox approximation holds well in paramag-
netic conditions, and even beyond, as far as global trends
are concerned (Figure 7). However, eq. (10)-(11) involve
both the natural parameters (h,J) and the resulting mo-
ments (m?,C?) of the Ising distribution, which makes
them unpractical in most concrete situations.

To target a Cox approximation given only some natu-
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FIG. 7. Fit for the optimal Cox distribution on typical configurations at the boundary (first row) and far outside (second
row) of the paramagnetic SK phase. Each panel plots the pairwise spin covariances in the true Ising distribution (C?

ij)
against their values in the optimal Cox distribution (Cij), computed with eq. (21). Starting from reference parameter values
(J0, J, κ, p) = (0.5, 0.5,∞, 1), the approximation is assessed at different values of J0 (first column, transition to ferromagnetic SK
model), J (second column, transition to spin glass SK model), κ (third column, introduction of correlations between coupling
weights Jij), and p (fourth column, dilution of connectivity).

ral parameters (h,J), I have explored a classic variational
approach, leading to eq. (14)-(18). These equations are
not particularly interesting as a mean-field method for
predicting (m,C), since they globally behave as a biased
version of Opper and Winther’s adaptive TAP method.
However, their analytical (Section IV) and numerical
(Section V) analysis allows to formulate the key conclu-
sion of this article : mean-field methods are efficient pre-
cisely when the Ising distribution can be associated to a
quasi-normal latent field distribution.

If the practical goal is to establish a Cox approxima-
tion for the Ising distribution of parameters (h,J), the
moments (m,C) may as well be estimated with any other
choice of mean field method, and then input to eq. (14)-
(15) to produce the corresponding Cox approximation.

Naturally, the relation to mean field methods is not
accidental. From eq. (8), given a spin configuration s,
the latent field ri is distributed as N (hi +

∑
j Jijsj , Jii).

In particular, if self-couplings Jii are zero as in the classic
Ising model, we simply recover

ri = hi +
∑
j 6=i

Jijsj ,

that is, the instantaneous field variable considered in
the cavity method (Appendix C, eq. (C1)) and adaptive
TAP equations. Thus, the latent field formalism differs
from the classic cavity approach only through the role of
nonzero self-couplings Jii. Coherently, the weak coupling
expansions of the variational Cox and adaptive TAP ap-
proximations up to order 4 differ only because of nonzero

Jii.

This suggests that nonzero self-couplings Jii may be
responsible for the systematic bias of the Cox approxima-
tion in its prediction of (m,C), compared to the adaptive
TAP approximation. As a direct confirmation, I observed
that when matrix J is given a zero diagonal, the vari-
ational Cox equation (14)-(18) generally retains a solu-
tion, and it is then remarkably close to the adaptive TAP
solution (see Supplementary Material). Unfortunately,
nonzero weights Jii are required to endow the field vari-
ables ri with a true, multivariate distribution P (r) (this
is not the case in the cavity method), and thus produce
a concrete approximation of the Ising distribution by a
simpler latent variable distribution.

A disturbing consequence is that there is not one la-
tent field distribution associated to the Ising distribution,
but many different distributions, depending on the value
given to self-couplings Jii. When all values Jii are taken
very large, the latent field P (r) is ‘useless’ : it is the mere
mixture of 2N Gaussian bumps with no overlap, located
on the 2N summits of a hypercube, and the bump at sum-
mit s is simply associated to weight P (s) (as in Figure
1(b)). Then, as the Jii become smaller, some of the 2N

bumps start overlapping, and P (r) acquires a less triv-
ial overall distribution. In some cases, when the Jii are
made small enough, the overall shape of P (r) becomes
quasi-Gaussian (as in Figure 1(a)). In other cases, P (r)
never becomes quasi-Gaussian, because a lower bound
is reached where the Jii cannot be made smaller while
ensuring that matrix J remains definite positive.
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Given some classic Ising parameters {Jij}i<j , the set
of self-couplings Jii obtained with eq. (19) represents the
“smallest” diagonal elements that can be used, and we
could suppose that if the latent field P (r) is still not
Gaussian for these values, it won’t be either for other
values of Jii. Interestingly, the optimization problem in
eq. (19) has an intrinsic significance for the ‘classic’ Ising
distribution (without self-couplings) : the resulting value
of −

∑
i Jii constitutes the Lagrangian dual approxima-

tion for the minimum of
∑
i<j Jijsisj over all 2N spin

configurations [29], that is, the log-likelihood of the most
unlikely spin configuration in the model. Arguments of
this type suggests that, while self-couplings Jii are ex-
traneous elements to the standard Ising model, the set of
admissible values for the Jii may have theoretical links
with the nature and global difficulty of the considered
Ising model.

Empirically, I observed a certain robustness to the ex-
act choice of diag(J), and the values could generally be
doubled without affecting much the numerical results.
In some cases, increasing all self-couplings Jii a little
from the ‘optimal’ solution of eq. (19) can even improve
the fit performance of the variational Cox approximation,
presumably because it reduces the condition number of
matrix J (see also Appendix A). Thus, theoretically as
well as practically, the significance and optimal choice of
diag(J) is not totally settled, and could be the subject of
future work.

More generally, the present work could give rise to a
number of developments. For example, the theoretical
study of phase transitions in the variational Cox approxi-
mation, as observed in Figures 3-6(c), remains to be done.
Intuitively, these phase transitions are related to the ap-
parition of multiple, well-separated modes in the distri-
bution of the latent fields (see Figure 1), which would
then play a role similar to the “pure states” of spin glass
theory [4, 6].

On a more applied level, the latent field variables ri
could be incorporated into MCMC sampling schemes for
the Ising distribution. For example, drawing the initial
spins si with a Cox approximation Q(s), instead of a clas-
sic independent Bernoulli draw, can largely reduce the
chain’s convergence time to its equilibrium distribution
P (s). One step further, one could devise MCMC schemes
that directly sample the fields’ distribution P (r) and use
it to generate the spins.

Finally, the formalism of latent variables could be ap-
plied to the inverse problem of retrieving (h,J) from
a set of observed moments (m,C), which is arguably
the biggest obstacle in practical applications of the Ising
model listed above [7–9]. On the one hand, advanced
methods of mean-field inspiration have been developed
in the last decade to tackle the inverse Ising problem
[13, 14, 39]. On the other hand, it has been suggested to
replace the Ising distribution by a dichotomized Gaussian
(a limiting case of Cox distribution) in practical applica-
tions, precisely because it offers an easier inverse problem
[19]. Hopefully, the latent field formalism can reconcile
the two approaches in a unified picture.

Appendix A: Numerical procedures

In this appendix, I give numerical details of the tests
presented in Section V. All approximation methods con-
sidered are naturally described by a fixed point equation
of the form X = F (X). A simple heuristic for solving
such equations is a numerical scheme

Xn+1 = (1− α)Xn + αF (Xn),

with α a small, adaptive, update parameter. When
‖Xn − F (Xn)‖ is found to increase between two succes-
sive iterations, α is divided by 10. Else, α is multiplied
by 1.05. This heuristic proved sufficient to target a fixed
point, in all cases encountered.

In the Cox approximation, the variable was X =
{mi, d

−1
i }i=1...N . In the adaptive TAP approximation,

it was X = {mi, Vi}i=1...N . The starting point X0 was
chosen with mi = 0, and numbers ∆i = d−1i (resp
∆i = 1 + Vi) as the minimal values ensuring that ma-
trix C−1 = diag(∆i)−J be definite positive (see eq. (18)
and eq. (27)).

In the TAP and Bethe approximations, the starting
point X0 = m = 0 was directly a solution of the fixed
point equation, and I simply used the linear response pre-
diction for C at this point. This seemed the fairer choice
in the context of these tests, even though in some param-
eter regimes (e.g., SK ferromagnetic phase) the solution
at m = 0 is unstable : the iterative scheme started at
any neighboring point does not converge to this solution.

It is well-known that, in certain regimes of parame-
ters, the Ising model can display spontaneous symme-
try breaking [4]. First, ergodicity breaking can occur in
the MCMC chain used to sample the distribution. To
counteract this effect, the true moments (m?

i , C
?
ij) were

estimated from several independent MCMC chains with
simulated annealing.

Second, the various approximations themselves can
start displaying multiple solutions to their constitutive
equation [4]. To assess this effect, for each tested
configuration (h,J) and approximation formula, I re-
launched the numerical search from different starting
points, namely, the empirical means found in each in-
dividual MCMC chain used during the sampling phase.
This procedure only served as a (rudimentary) attempt
to detect the presence of multiple solutions. It did not
affect the measure of fit for the approximation, which
was always based on the solution found from the starting
points X0 listed above.

In the Cox approximations (optimal and varia-
tional), for each configuration with off-diagonal elements
{Jij}i<j , the diagonal couplings Jii were chosen as the
solution of eq. (19), plus a constant ridge term λ cho-
sen for J to have a condition number of 10. Indeed, ill-
conditioned matrices J lead to increased errors in some
parameter regimes.
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Appendix B: Variational mean field approximations

In this appendix, I recall the variational approach of
mean field theory, which can be used to recover the Plefka
expansion of the exact Ising model, as well as the TAP
and Bethe approximations.

Mean field variational approach

As in the main text, let us note P (s) the true Ising
distribution of parameters (h,J), and (m?,C?) its cor-
responding moments. Let Q(s) any other distribution
proposed as an approximation of P . The KL divergence
KL(Q||P ) =

∑
sQ(s) ln(Q(s)/P (s)) can be expressed as

KL(Q||P ) = U(Q)− S(Q) + lnZI(h,J),

where U(Q) is the average Ising energy, and S(Q) the
entropy, under distribution Q :

U(Q) := −
∑
s

Q(s)
(
h>s +

1

2
s>Js

)
,

S(Q) := −
∑
s

Q(s) lnQ(s).

The functional G(Q) := U(Q)− S(Q) is called the vari-
ational (or Gibbs) free energy of distribution Q as an
approximation of P . Smaller values of G(Q) correspond
to a lower KL divergence and thus to a better fit, and its
minimum is achieved for Q = P .

In the Ising distribution, given fixed couplings J, there
is a one-to-one correspondence between values of h and
resulting values of m = E(s). Thus, in theory, we can
apply the variational approach to the family of Ising dis-
tributions Q(m,J), where couplings J are taken equal
to those in P , and m constitutes the N -dimensional
parametrization variable. The natural field parameters
of Q, say θ, are then a (generally intractable) function of
(m,J), and the associated free energy writes

G(m,J) = (θ − h)>m− lnZI(θ,J), (B1)

whose minimum over m is obtained when m = m?, that
is, when Q = P . (Note that G also depends on the field
parameter h of distribution P , but I omit it for lighter
notations.)

Using the classic conjugacy relation ∂θ lnZI = m in
the Ising model, one can note that

∂mG(m,J) = θ − h, (B2)

so function G(m,J) + h>m corresponds to the Legendre
transform of lnZI in its first variable.

Function G(m,J) is not tractable in general, but it can
be approximated – and the resulting minimum will yield
an approximation of the true moments m?. This ap-
proach is known as the mean field variational method, of
which the TAP and Bethe approximations are two promi-
nent examples.

TAP and Plefka approximations

In so-called Plefka expansions, one approximates
G(m,J) by its Taylor expansion in J around J = 0 :

Gn(m,J) :=G(m,0) + [∂JG(m,0)](J) +
1

2
[∂2JG(m,0)](J,J)

+ · · ·+ 1

n!
[∂nJG(m,0)](J, . . . ,J),

where ∂nJG(m,0) is the n-th derivative ofG wrt J (a sym-
metric tensor of order n) evaluated at point (m,0). All
these terms can be evaluated, albeit laboriously. First,
the fundamental relation ∂Jij lnZI = mimj + ∂2θi,θj lnZI
allows to replace derivatives wrt. J by derivatives wrt.
θ. Second, at J = 0, the Ising distribution boils down to
a Bernoulli distribution, where all derivatives wrt. θ are
fully tractable.

The approximation at order n = 4 is a classic compu-
tation [27, 40–42], which yields :

G4(m,J) =
∑
i

G(mi)−
∑
(ij)

Jijmimj −
1

2

∑
(ij)

J2
ijcicj

−
∑
(ijk)

JijJjkJkicicjck −
2

3

∑
(ij)

J3
ijmicimjcj

−
∑
(ijkl)

JijJjkJklJlicicjckcl

− 2
∑
(ij),k

J2
ijJjkJkimicimjcjck

+
1

12

∑
(ij)

J4
ijcicj(1 + 3m2

i + 3m2
j − 15m2

im
2
j ).

(B3)

Here, (ij), (ijk), (ijkl) indicate respectively all un-
ordered pairs, triplets and quadruplets of distinct spins.
G(mi) is the free energy of each 1-spin marginal distri-
bution (eq. (B1) with θi = tanh−1(mi)). Finally, we use
the shorthand ci = 1−m2

i .
By differentiating this function wrt. m, we obtain a

fixed point characterization of its extremum(s) m. Stop-
ping at order 1 in J yields the “naive” mean field equa-
tion. Stopping at order 2 (first line) yields the TAP equa-
tion. Stopping at order 3 (two first lines) yields eq. (29)
from the main text.

Bethe approximation

In one particular case, G(m,J) in eq. (B1) is tractable
exactly. This is when the underlying couplings Jij define
a tree topology, that is, they are zero except on a subset
of the edges defining a graph without loops. In that case,
the test Ising distribution Q(m,J) can be written as

Q(s|m,J) =
∏
〈ij〉

Q(si, sj)

Q(si)Q(sj)

∏
i

Q(si), (B4)
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where 〈ij〉 denotes all edges in the tree. This can be
proved by repeated applications of Bayes’ formula, start-
ing from any leaf of the tree. Besides, each marginal
Q(si, sj) is a 2-spin Ising distribution with coupling pa-
rameter Jij , as proved directly by integrating out the
remaining variables from the original Ising formula.

In consequence, the (exact) free energy writes

GB(m,J) =
∑
i<j

G(mi,mj , Jij)− (N − 2)
∑
i

G(mi),

(B5)
G(mi) and G(mi,mj , Jij) being the respective free ener-
gies of the marginal distributions Q(si) and Q(si, sj), as
defined by eq. (B1). Note that the sum can be made over
all spin pairs i < j, and not just neighboring pairs 〈ij〉
in the tree. Indeed, unconnected spin pairs yield a zero
contribution, as G(mi,mj , 0) = G(mi) +G(mj).

The Bethe approximation consists in using eq. (B5) as
an approximation for the free energy, even when the Jij
do not have a tree topology.

Imposing that ∂mGB = 0 and using eq. (B2), leads to
the N equations

∀i, (N − 2) tanh−1(mi) =
(∑

j

θ
(j)
i

)
− hi, (B6)

where the so-called cavity fields (θ
(j)
i , θ

(i)
j ) are the nat-

ural field parameters of each 2-spin Ising distribution
Q(si, sj), that is, tractable functions of (mi,mj , Jij). In
fact, it is easily shown that the 2-spin Ising distribution

of natural parameters (θ
(j)
i , θ

(i)
j , Jij) has moments

mi =
ti + tjtij
1 + titjtij

, cij = tij
(1− t2i )(1− t2j )

(1 + tijtitj)2
, (B7)

with tij = tanh(Jij), ti = tanh(θ
(j)
i ), tj = tanh(θ

(i)
j ).

Inserting this expression for mi into eq. (B6), with
tanh−1(m) = 1

2 (ln(1 + m) − ln(1 −m)), and after some
linear recombinations, we obtain

∀(i, j), θ
(j)
i = hi +

∑
k 6=j

tanh−1
(
tik tanh(θ

(i)
k )
)
, (B8)

and the optimum is now characterized by N(N−1) equa-
tions over the N(N − 1) cavity variables. This switching
from N principal variables (the mi) to N(N − 1) auxil-

iary variables (the θ
(j)
i ) can also be interpreted as a dual

Lagrangian optimization procedure [31].
In a tree-like topology, eq. (B8) can be solved iter-

atively starting from any leaf of the tree, allowing to

recover the exact values for all the θ
(j)
i , and thus, for

magnetizations m?
i . The resulting algorithm is known as

belief propagation, or sum-product. In a general topol-
ogy, the fixed point approach to characterize solutions of
eq. (B8) is known as loopy belief propagation. It is not
guaranteed to have a single solution anymore – and it
only characterizes an approximation for the magnetiza-
tions mi.

The covariances Cij can be approximated in turn,
based on the linear response formula, eq. (22). Ap-
plied to each 2-spin distribution of natural parameters

(θ
(j)
i , θ

(i)
j , Jij), it implies the differential equality

∀(i, j), (∂mi) = (1−m2
i )
(
∂θ

(j)
i

)
+ cij

(
∂θ

(i)
j

)
(B9)

with cij given by eq. (B7). We can then differentiate
eq. (B6) as a function of (∂hi) and linearly eliminate the

cavity fields (∂θ
(j)
i ) thanks to eq. (B9). As a result, we

express (∂hi) as a function of the (∂mj) only, and this
provides the linear response prediction :

(C−1B )ij =

(
1 +

∑
k

c2ik
(1−m2

i )(1−m2
k)− c2ik

)
δij

1−m2
i

− cij
(1−m2

i )(1−m2
j )− c2ij

. (B10)

This derivation, which I could not find in the literature,
expresses the linear response matrix CB in an alternative
form than in [36].

To derive the weak coupling (Plefka) expansion of the
Bethe approximation, note that each G(mi,mj , Jij) in
eq. (B5) is an exact Ising free energy over two spins i
and j. Compared to a generic Ising free energy over N
spins, its expansion only contains the two-spin diagrams,
summed over the single spin pair involved. It follows,
after summing over all spin pairs i < j in eq. (B5), that
the Plefka expansion of the Bethe free energy is obtained
by keeping only the pairwise diagrams in the expansion
for the true Ising free energy.

Appendix C: Cavity method and adaptive TAP
equations

Cavity method

The cavity method is a classic approach allowing to
recover many analytical properties of the Ising model,
and other multivariate exponential models [4, 5]. Singling
out an arbitrary spin location i, one can rewrite eq. (1)
as

P (s\i, si) ∼ P\i(s\i) exp
(
si
(
hi +

∑
j 6=i

Jijsj
))
,

where s\i denotes the remaining N − 1 spins, and the
so-called cavity distribution P\i is the Ising distribution
obtained by deleting line and column i from (h,J). The
remaining spins interact with i only through the random
variable

r̃i := hi +
∑
j 6=i

Jijsj , (C1)

and we can write

P (r̃i, si) ∼ P\i(r̃i) exp(sir̃i), (C2)
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P\i(r̃i) indicating the distribution of variable r̃i when the
spins s\i follow the cavity distribution P\i.

In general, distribution P\i(r̃i) is not tractable exactly
3. But in many circumstances, since r̃i is the sum of vari-
ables with many degrees of freedom, it can be assumed
to have a normal distribution :

P\i(r̃i) = N (r̃i|θi, Vi),

and eq. (C2) becomes, approximately :

P (r̃i, si) ∼ exp

(
− 1

2Vi
(r̃i − θi)2 + sir̃i

)
. (C3)

This equation is the starting point of the classic cavity
method. Note the formal similarity with our definition
for the joint probability of spins and latent fields, eq. (4),
so we can simply recycle our results. From eq. (7), P (si)
is the Bernoulli distribution of parameter θi, so mi =
tanh(θi). From eq. (14), we have E(r̃i) = θi+Vimi. Taken
together, this yields the generalized TAP equation :

mi = tanh
(
hi +

∑
j

Jijmj −miVi
)
. (C4)

For the SK model in the limit N → ∞, it can be
shown that the different summands to r̃i in the cavity
distribution (eq. (C1)) become linearly independent [4,
6], so the variance writes Vi '

∑
j J

2
ij(1 − m2

j ) and we
recover the classic TAP equation.

Adaptive TAP approximation

Instead, in the adaptive TAP method [33, 34], Vi is
left as a free variable which can adapt to any statisti-
cal structure of the couplings J. First, differentiating
eq. (C4) wrt. h (but neglecting the dependency of Vi
itself) leads to a linear response prediction for C :

(C−1A )ij =
(
1 + (1−m2

i )Vi
) δij

1−m2
i

− Jij . (C5)

Second, given magnetization mi, the individual variance
of spin i should be 1−m2

i . Self-coherence of the variance
prediction imposes that

1−m2
i = (CA)ii. (C6)

Taken together, eq. (C4)-(C6) constitute a system on
variables {mi, Vi}, which can be solved by classic iter-
ative methods [34].

I now turn to the weak coupling (Plefka) expansion of
eq. (C4)-(C6), when magnetizations mi are fixed, and the

3 Except when the couplings Jij have a tree-like topology. In this
case, P\i(r̃i) is a factorized product over the neighboring spins
of i, and this is another way of deriving the Bethe equation (B8)
[32].

coupling matrix writes αJ. Given the form of eq. (C4),
this only requires to obtain the expansion for miVi or,
after a convenient rescaling, for variable

xi := Vi(1−m2
i ),

for which we want to establish the Taylor development

xi = αx
[1]
i + α2x

[2]
i + α3x

[3]
i + . . .

(note that xi = Vi = 0 when α = 0).
From eq. (C5), it is clear that the solution depends on

the diagonal of J only through the simple offset Vi → Vi+
Jii, so we may assume Jii = 0 without loss of generality.

Introducing the variables

di :=
1−m2

i

1 + (1−m2
i )Vi

= (1−m2
i )
[
1− xi + x2i − x3i + . . .

]
,

and matrix D = diag(di), we rewrite eq. (C5) as

C−1 = D−1 − (αJ)

and thus, after a classic switching from C−1 to C :

C = D + αDJD + α2D(JD)2 + α3D(JD)3 + . . . ,

allowing to easily express the development of C from that
of di.

Then, noting ci := 1−m2
i for concision, the fixed point

equation (C6) imposes, at order 4 :

1 =
(

1− xi + x2i − x3i + x4i

)
+ α2

∑
j

ciJ
2
ijcj

(
1− 2xi + 3x2i − xj + 2xixj + x2j

)
+ α3

∑
j,k

ciJijcjJjkckJki

(
1− 2xi − xj − xk

)
+ α4

∑
j,k,l

ciJijcjJjkckJklclJli + o(α4).

We can then replace xi by its expansion, and regroup the
powers of α. For the equation to be verified at order 1,
this imposes that

x
[1]
i = 0.

Using this newly found value, the fixed point equation at
order 2 imposes

mi

ci
x
[2]
i = mi

∑
j 6=i

J2
ijcj .

Then, the fixed point equation at order 3 imposes

mi

ci
x
[3]
i = 2mi

∑
(jk|i)

JijJjkJkicjck.

where (jk|i) denotes all unordered triplets of the form
{i, j, k} with j and k distinct, and distinct from i. By
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inserting these values into eq. (C4), we recover the ex-
pansion from the main text, eq. (30).

Finally, the fixed point equation at order 4 yields

mi

ci
x
[4]
i = 2mi

∑
(jkl|i)

JijJjkJklJlicjckcl −mici
∑
j 6=i

J4
ijc

2
j .

(C7)
Note that the sum over (jkl|i) – which involves the most
terms and is generally dominant – is identical to that for
the true Ising expansion : see eq. (B3).

Appendix D: Weak coupling expansion for the Cox
approximation

We consider the ‘variational’ Cox approximation, so-
lution to the equations

mi =

∫
x∈R

tanh
(
µi + x

√
Σii

)
φ(x)dx, (D1)

di =

∫
x∈R

(
1− tanh2

(
µi + x

√
Σii

))
φ(x)dx,

(D2)

(C−1)ij = d−1i δij − αJij . (D3)

µ = h + αJm, (D4)

Σ = αJ + α2JCJ, (D5)

when magnetizations mi are fixed, and the coupling ma-
trix writes αJ, α being the small parameter of the ex-
pansion.

Here, I detail the computation up to order 3, and also
provide the result at order 4. The overall structure of the
computation is largely similar to that for the adaptive
TAP approximation, in the previous paragraph.

When α = 0, the solution is obvious : couplings αJ
vanish, and so does the covariance matrix Σ. The Cox
distribution Q(µ,Σ) is simply a Bernoulli distribution
B(µ) with µ = h, and the fixed point equations impose
that

µi = tanh−1(mi),

di = 1−m2
i .

We now seek a Taylor expansion for the solution of
eq. (D1)-(D5) when α is small but nonzero, and magne-

tizations mi are fixed. More precisely, noting

∆i := µi − tanh−1(mi),

our purpose is to find the parameters in the following
Taylor expansions :

∆i = α∆
[1]
i + α2∆

[2]
i + α3∆

[3]
i + . . .

Σij = αΣ
[1]
ij + α2Σ

[2]
ij + α3Σ

[3]
ij + . . .

When inserted into eq. (D4), the development of ∆i will
exactly provide the desired Plefka expansion.

Development for equation (D1)

Equation (D1) writes

mi =

∫
x∈R

tanh
(

tanh−1(mi) + ∆i + x
√

Σii

)
φ(x)dx,

where ∆i is of leading order α, and
√

Σii is of leading
order α1/2. Applying the Taylor development of tanh :

tanh
(
tanh−1(m) +X

)
=m+ (1−m2)

[
X −mX2 + . . .

]
up to order 6 (because

√
Σii is of leading order α1/2),

and using the classic integration formulas :

∫
x

xnφ(x)dx =

{
(n− 1)(n− 3) . . . if n is even

0 if n is odd
(D6)

we obtain

mi =mi + (1−m2
i )
[
∆i −mi

(
∆2
i + Σii

)
+
(
m2
i − 1

3

)(
∆3
i + 3∆iΣii

)
+
(
−m3

i + 2
3mi

)(
∆4
i + 6∆2

iΣii + 3Σ2
ii

)
+
(
m4
i −m2

i + 2
15

)(
10∆3

iΣii + 15∆iΣ
2
ii

)
+
(
−m5

i + 4
3m

3
i − 17

45mi

)(
45∆2

iΣ
2
ii + 15Σ3

ii

)]
+ o(α3).

Notice that, after integration by the Gaussian kernel,
only integer powers of Σii remain.

For this equation to be verified, the term inside square brackets must be equal to zero up to order α3. Expanding

∆i and Σii with the shorthand Xk = ∆
[k]
i , Yk = Σ

[k]
ii , and regrouping the powers of α, we obtain :

0 = α
[
X1 −miY1

]
(D7)

+ α2
[
X2 −mi(X

2
1 + Y2) + (3m2

i − 1)X1Y1 + (−3m3
i + 2mi)Y

2
1

]
(D8)

+ α3
[
X3 −mi(2X2X1 + Y3) + (m2

i − 1
3 )(X3

1 + 3X2Y1 + 3X1Y2) + (−6m2
i + 4mi)(X

2
1Y1 + Y2Y1)

+ (15m4
i − 15m2

i + 2)X1Y
2
1 + (−15m5

i + 20m3
i − 17

3 mi)Y
3
1

]
+o(α3). (D9)
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Solution at order 2

At this point, we can readily find the two first orders
of the solution. Indeed, we have Σ = αJ + α2JCJ and
Cij = (1−m2

i )δij + o(1), and so

Σ
[1]
ij = Jij ,

Σ
[2]
ij =

∑
k

JikJjk(1−m2
k).

Then, at order 1, the fixed point equation above (line
(D7)) imposes that

∆
[1]
i = miΣ

[1]
ii = miJii.

Using this new value, the fixed point equation at order
2 (line (D8)) imposes that

∆
[2]
i = mi

(
(∆

[1]
i )2 + Σ

[2]
ii

)
− (3m2

i − 1)∆
[1]
i Σ

[1]
ii + . . .

= mi

∑
j 6=i

J2
ij(1−m2

j ),

which is identical to the order 2 coefficient in the exact
Ising model – see eq. (29). Note that the diagonal terms
Jii are nonzero and an active part of the derivation, but
cancel out in the final result, so they play no role in the
expansion up to order 2.

Development for C

In general, to establish the development of Σ at any
given order n, we need the expansion of C up to order
n−2, because Σ = αJ+α2JCJ. Thus, to expand µ and
Σ at order 3, we must first establish the development
for C at order 1, based on the development of (µ,Σ) at
order 1 established above.

Regarding eq. (D2), a very similar computation (de-
velopment of tanh at order 2, and simplification by the
integral formulas of eq. (D6)) yields :

di = (1−m2
i )− α(1−m2

i )
2Jii + o(α).

Introducing matrix D = diag(di), eq. (D3) writes

C−1 = D−1 − (αJ),

and thus, after a classic switching from C−1 to C :

C = D + αDJD + o(α).

So finally :

Cij = δij(1−m2
i )

+ α(1− δij)(1−m2
i )(1−m2

j )Jij + o(α). (D10)

Solution at orders 3 and 4

The coefficient C
[1]
ij found in eq. (D10) is pasted into

Σ = αJ + α2JCJ, to obtain :

Σ
[3]
ij =

∑
k 6=l

JikJklJlj(1−m2
k)(1−m2

l ). (D11)

Then, line (D9) allows to find the order 3 coefficient of
µ. After computation, this gives :

∆
[3]
i = 2mi

∑
(jk|i)

JijJjkJki(1−m2
j )(1−m2

k)

− 2(m2
i − 1

3 )J3
iimi(1−m2

i ),

where (jk|i) denotes all unordered triplets of the form
{i, j, k} with j and k distinct, and distinct from i.

Using the values found for ∆
[1]
i , ∆

[2]
i and ∆

[3]
i , and the

fact that µi = hi + α
∑
j Jijmj , yields eq. (31) from the

main text.
Pushing all computations one order further, with the

help of the computer algebra system MAXIMA, yields :

∆
[4]
i = 2mi

∑
(jkl|i)

JijJjkJklJlicjckcl −mici
∑
j 6=i

J4
ijc

2
j

− 2mici(3m
2
i − 1)J2

ii

∑
j 6=i

J2
ijcj

− 2mici(7m
4
i − 8m2

i + 5
3 )J4

ii

− 2mi

∑
j 6=i

J2
ijJ

2
jjm

2
jc

2
j , (D12)

with the shorthand ci = 1−m2
i . The two first terms are

identical to the adaptive TAP expansion, eq. (C7). The
remaining terms involve the diagonal weights Jii, and
would be absent if the coupling matrix was such that
diag(J) = 0.

Appendix E: Approximate formulas for the Cox
distribution

The formulas inherent to the Cox distribution, eq. (13),
(16), (17) and (21) from the main text, are easily esti-
mated by numerical integration (for example, Simpson
quadrature). But the overall computation time quickly
becomes forbidding, as these estimations must be done
for each pair of spins, and on many iterations to target
the fixed point.

Hence, I found it more convenient to use approximate
formulas. Let us note L the logistic function at scale 1/2,
that is :

L(r) :=
1

1 + e−2r
.

Function L is pivotal in the Bernoulli distribution, since
tanh(r) = 2L(r)−1, log 2 cosh(r) = 2

∫ r
0
L(u)du− r, and

1− tanh2(r) = 2L′(r).
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I suggest to approximate L by the following combina-
tion of Gaussian functions :

Lapp(r) = Φ
( r
κ

)
+ νφ′

( r
λ

)
, (E1)

with Φ(x) :=
∫ x
−∞ φ(u)du the standard normal cumula-

tive distribution, and φ′(r) = −rφ(r).
Taking parameters (κ, ν, λ) ' (0.7072, 0.1648, 0.9712),

one has ‖L − Lapp‖∞ < 0.001 on the whole real line.
The approximation also applies to the primitive, with
‖
∫

(L − Lapp)‖∞ < 0.001, and to the first derivative,
with ‖L′ − (Lapp)′‖∞ < 0.0033.

As the convolution product of two Gaussian functions
remains Gaussian, this replacement allows to compute
analytically all the formulas. Here, I only provide the re-
sults, and refer to Supplementary Material for the deriva-
tion.

Given spin index i, let us introduce the following re-
duced quantities :

xi :=
µi√
Σii

,

ki :=

√
Σii√

κ2 + Σii
,

li :=

√
Σii√

λ2 + Σii
.

Then, the first moment of the Cox distribution, eq. (16)

(or equivalently eq. (20)), can be approximated as

mapp
i = 2

[
Φ (xiki) + ν(1− l2i )φ′ (xili)

]
− 1 (E2)

with a guaranteed maximum error |mi −mapp
i | < 0.002.

The variance term di in eq. (17) is approximated as

dappi = 2Σ
−1/2
ii

[
kiφ(xiki) + ν(1− l2i )liφ′′(xili)

]
with a guaranteed maximum error |di − dappi | < 0.007.

To concretely estimate the free energy associated
to eq. (13), it is necessary to compute Fi :=∫
x

log 2 cosh(µi + x
√

Σii)φ(x)dx. It is approximated as

F app
i = µi [2Φ(xiki)− 1] + 2

√
Σii

[
φ(xiki)

ki
− ν φ

′′(xili)

li

]
with a guaranteed maximum error inferior to 0.002.

The approximate formula for the covariance of the Cox
distribution, eq. (21), is quite bulky and provided in Sup-
plementary Material. It has guaranteed maximum error
inferior to 0.008.

In my numerical tests, using these approximate for-
mulas instead of lengthier Simpson quadrature yielded
no noticeable difference in the final solution of the fixed
point equations. At the same time, computation times
were cut by (up to) two orders of magnitude.
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