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Introduction

The theory of quantum groups, originating from the study of integrable systems,
has seen a rapid development from the mid 1980’s with far-reaching connections to
various branches of mathematics, including knot theory, representation theory and
operator algebras, see [25], [57], [17]. While the term quantum group itself has no
precise definition, it is used to denote a number of related constructions, including in
particular quantized universal enveloping algebras of semisimple Lie algebras and,
dually, deformations of the algebras of polynomial functions on the corresponding
semisimple groups. In operator algebras, the theory of locally compact quantum
groups [54] is a powerful framework which allows one to extend Pontrjagin duality
to a fully noncommutative setting.

In both the algebraic and the analytic theory of quantum groups, an important
role is played by the Drinfeld double, also known as the quantum double, which
is designed to produce solutions to the quantum Yang-Baxter equation. While the
algebraic version of this construction, due to Drinfeld, appears already in [25], the
analytical analogue of the Drinfeld double was defined and studied first by Podleś
and Woronowicz in [63].

If one applies the Drinfeld double construction to the Hopf algebra of functions
on the q-deformation of a compact semisimple Lie group then in accordance with
the quantum duality principle [25], [30], the resulting quantum group can be viewed
as a quantization of the corresponding complex semisimple group. This fact, which
was exhibited in [63] in the case of the quantum Lorentz group SLq(2,C), is key
to understanding the structure of these Drinfeld doubles. More precisely, one can
transport techniques from the representation theory of classical complex semisimple
groups to the quantum situation, and it turns out that the main structural results
carry over, albeit with sometimes quite different proofs.

These notes contain an introduction to the theory of complex semisimple quan-
tum groups, that is, Drinfeld doubles of compact quantum groups arising from
q-deformations. Our main aim is to present the classification of irreducible Harish-
Chandra modules for these quantum groups, or equivalently the irreducible Yetter-
Drinfeld modules of q-deformations of compact semisimple Lie groups. We also
treat some operator algebraic aspects of these constructions, but we put our main
emphasis on the algebraic considerations based on quantized universal enveloping
algebras.

The main reason for going into a considerable amount of detail on the algebraic
side is that the existing literature does not quite contain the results in the form
needed for our purposes. Many authors work over the field Q(q) of rational functions
in q, while we are mainly interested in the case that q ∈ C× is not a root of unity.
Although it is folklore that this does not affect the general theory in a serious
way, there are subtle differences which are easily overlooked, in particular when
it comes to Verma modules and Harish-Chandra bimodules. In addition, different
conventions are used in the literature, which can make it cumbersome to combine
results from different sources.

In the first part of these notes, consisting of Chapters 1 and 2, we work over a
general ground field K and a deformation parameter q ∈ K× which is not a root of
unity. Technically, this means that one has to start from an element s ∈ K such
that sL = q for a certain number L ∈ N depending on the type of the underlying
semisimple Lie algebra. No assumptions on the characteristic of K are made, and
in particular we shall not rely on specialization at q = 1 in order to transport
results from the classical situation to the quantum case. However, we shall freely
use general constructions and facts from classical Lie theory as can be found, for
instance, in [35].
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In the second part of the notes, consisting of Chapters 3, 4 and 5, we restrict
ourselves to the case K = C and assume that q = eh 6= 1 is a positive real number.
Some parts of the material could be developed in greater generality, but for certain
arguments the specific properties of the ground field C and its exponential map
do indeed play a role. This is the case, for instance, for the characterization of
dominant and antidominant weights in Chapter 4.

We have used a number of textbooks as the basis of our presentation, let us men-
tion in particular the books by Lusztig [57], Jantzen [39], Klimyk and Schmüdgen
[48], Chari and Pressley [17], Brown and Goodearl [15], and the book by Humphreys
on category O in the classical setting [37]. The key source for the second half of
these notes is the book by Joseph [41], which in turn builds to a large extent on
work of Joseph and Letzter. Our account is largely self-contained, the only notable
exception being the section on separation of variables in Chapter 2, which relies on
the theory of canonical bases. Nonetheless, we assume that the reader has some pre-
vious acquaintance with quantum groups, and we have kept short those arguments
which can be easily found elsewhere. Let us also point out that our bibliography
is far from complete, and the reader should consult the above mentioned sources
for a historically accurate attribution of the results covered here, along with much
more background and motivation.

Let us now explain in detail how this text is organized.
In Chapter 1 we review the theory of Hopf algebras and multiplier Hopf algebras.

While the basics of Hopf algebras can be found in numerous textbooks, the non-
unital version, developed by Van Daele [73], [74] under the name of multiplier Hopf
algebras, is not as widely known. Multiplier Hopf algebras provide a natural setting
for the study of some aspects of quantized enveloping algebras, like the universal
R-matrix. Moreover, they are a very useful tool for studying the link between the
algebraic and analytic theory of quantum groups [51]. Since only a limited amount
of the general theory of multiplier Hopf algebras is needed for our purposes, we
refer to the original sources for most of the proofs.

Chapter 2 contains an exposition of the basic theory of quantized universal en-
veloping algebras. Most of the material is standard, but we have made an effort
to establish uniform conventions and notation. We work throughout with what is
often called the simply connected version of Uq(g). This is crucial for some of the
more advanced parts of the theory, notably in connection with the l-functionals.
Our discussion of the braid group action on Uq(g) and its modules is significantly
more detailed than what can be found in the standard textbooks. We have also
tried to simplify and streamline various arguments in the literature, in particular
we avoid some delicate filtration arguments in [41] in the proof of Noetherianity of
the locally finite part of Uq(g).

In Chapter 3 we introduce our main object of study, namely complex semisimple
quantum groups. These quantum groups can be viewed as quantizations of complex
semisimple Lie groups viewed as real groups. As indicated above, they are obtained
by applying the quantum double construction to compact semisimple quantum
groups. We discuss the structure of complex quantum groups as locally compact
quantum groups, including their Haar weights and dual Haar weights.

The remaining two chapters are devoted to representation theory. Chapter 4
contains a discussion of category O for quantized universal enveloping algebras.
This is parallel to the theory for classical universal enveloping algebras, but some
peculiar new features arise in the quantum situation due to the periodicity in the
space of purely imaginary weights.
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Finally, Chapter 5, covers the representation theory of complex semisimple quan-
tum groups and their associated Harish-Chandra modules. We also provide a de-
tailed account of intertwining operators, by taking advantage of the relation between
the category of Harish-Chandra modules and category O. This both simplifies and
extends the work by Pusz and Woronowicz [66], [64] on the quantum Lorentz group
SLq(2,C).

Let us conclude with some remarks on notation and conventions. By default, an
algebra is a unital associative algebra over a commutative ground ring, which will
typically be a field K. In some situations we have to deal with non-unital algebras
and their multiplier algebras, but it should always be clear from the context when
a non-unital algebra appears. Unadorned tensor products are over the ground field
K. In some situations we also use ⊗ to denote the tensor product of Hilbert spaces,
the spatial tensor product of von Neumann algebras, or the minimal tensor product
of C∗-algebras. Again, the meaning should be clear from the context.

Let us note that we have aimed to make the transition between the algebraic
and analytic points of view as convenient as possible. This results in some slightly
unconventional choices for the algebraically-minded reader, in particular in terms of
the pairing between quantized enveloping algebras and their dual function algebras,
which we define to be skew-pairings by default.

Last but not least, it is a pleasure to thank a number of people with whom we
have discussed aspects of quantum groups and representation theory over the past
few years. Let us mention in particular Y. Arano, P. Baumann, K. A. Brown, I.
Heckenberger, N. Higson, U. Krähmer, S. Neshveyev, S. Riche and D. Vogan; we
are grateful to all of them for sharing their insight with us.
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1. Multiplier Hopf algebras

In this chapter we collect definitions and basic results regarding Hopf algebras
and multiplier Hopf algebras. Algebras are not assumed to have identities in general.
Throughout we shall work over an arbitrary base field K, and all tensor products
are over K.

1.1. Hopf algebras. The language of Hopf algebras is the starting point for the
study of noncommutative symmetries. In this section we collect some basic defini-
tions and facts from the theory. There is a large variety of textbooks devoted to
Hopf algebras and quantum groups where more information can be found, let us
mention in particular [17], [39], [47], [48].

An algebra is a vector space H together with a linear map m : H⊗H → H such
that the diagram

H ⊗H ⊗H m⊗id
//

id⊗m
��

H ⊗H

m

��

H ⊗H m // H

is commutative. An algebra H is called unital if there exists a linear map u : K→ H
such that the diagram

K⊗H
∼=

u⊗id
// H ⊗H

m

��

H ⊗Kid⊗u
oo

H

∼=

is commutative. Here the isomorphisms are induced by scalar multiplication. As
usual, we write fg for m(f ⊗ g), and 1H or simply 1 for u(1) in the unital case.

A (unital) algebra homomorphism between (unital) algebras A and B is a linear
map ϕ : A → B such that ϕmA = mB(ϕ⊗ ϕ) (and ϕuA = uB in the unital case).
Here mA,mB denote the multiplication maps of A and B, respectively, and uA, uB
the unit maps in the unital case. In other words, ϕ is an algebra homomorphism iff
ϕ(fg) = ϕ(f)ϕ(g) for all f, g ∈ A, and additionally ϕ(1A) = 1B in the unital case.

By definition, a coalgebra is a vector space H together with a linear map ∆ :
H → H ⊗H such that the diagram

H
∆ //

∆

��

H ⊗H

id⊗∆

��

H ⊗H ∆⊗id
// H ⊗H ⊗H

is commutative. A coalgebra H is called counital if there exists a linear map
ε : H → K such that the diagram

K⊗H
∼=

oo
ε⊗id

H ⊗H
OO

∆

H ⊗K//
id⊗ε

H

∼=

is commutative.
We shall use the Sweedler notation

∆(c) = c(1) ⊗ c(2)
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when performing computations in coalgebras, where we are suppressing a summa-
tion on the right-hand side. For instance, the counit axiom reads ε(c(1))c(2) = c =
c(1)ε(c(2)) in this notation.

In analogy to the case of algebras, a (counital) coalgebra homomorphism between
(counital) coalgebras C and D is a linear map ϕ : C → D such that (ϕ⊗ ϕ)∆C =
∆Dϕ (and εDϕ = εC in the counital case).

If C is a (counital) coalgebra then the linear dual space C∗ = Hom(C,K) is a
(unital) algebra with multiplication

(fg, c) = (f, c(1))(g, c(2))

(and unit element εC). Here ( , ) denotes the canonical pairing between C and C∗.
Conversely, if A is a finite dimensional (unital) algebra, then the linear dual

space A∗ becomes a (counital) coalgebra using the transpose m∗ : A∗ → (A⊗A)∗ ∼=
A∗ ⊗ A∗ of the multiplication map m : A ⊗ A → A (and counit ε(f) = f(1)). We
point out that if A is infinite dimensional this will typically break down since then
(A⊗A)∗ 6= A∗ ⊗A∗.

However, at least in the finite dimensional situation, we have a complete duality
between algebras and coalgebras. This can be used to transport concepts from
algebras to coalgebras and vice versa. For instance, a coalgebra C is called cosimple
if it does not admit any proper subcoalgebras. Here a subcoalgebra of C is a linear
subspace D ⊂ C such that ∆(D) ⊂ D ⊗D. This notion corresponds to simplicity
for the dual algebra A. A coalgebra is called cosemisimple if it is a direct sum of
its simple subcoalgebras.

A basic example of a cosimple coalgebra is the dual coalgebra C = Mn(K)∗ of
the algebra of n× n-matrices over K. Explicitly, the coproduct of C is given by

∆(uij) =

n∑
k=1

uik ⊗ ukj

for 1 ≤ i, j ≤ n, where the elements uij ∈ C are dual to the basis of standard
matrix units for Mn(K). All cosemisimple coalgebras we will encounter later on are
direct sums of such cosimple matrix coalgebras.

A Hopf algebra structure is the combination of the structures of a unital algebra
and a counital coalgebra as follows.

Definition 1.1. A bialgebra is a unital algebra H which is at the same time a
counital coalgebra such that the comultiplication ∆ : H → H ⊗H and the counit
ε : H → K are algebra homomorphisms.
A bialgebra is a Hopf algebra if there exists a linear map S : H → H, called the
antipode, such that the diagrams

H
uε //

∆

��

HOO

m

H ⊗H id⊗S
// H ⊗H

H
uε //

∆

��

HOO

m

H ⊗H S⊗id
// H ⊗H

are commutative.

In the definition of a bialgebra, one can equivalently require that the multiplica-
tion map m and the unit map u are coalgebra homomorphisms.

For many examples of Hopf algebras the antipode S is an invertible linear map.
We write S−1 for the inverse of S in this situation. We remark that S is always
invertible if H is a finite dimensional Hopf algebra.
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If H is a finite dimensional Hopf algebra then the dual space Ĥ = H∗ =
Hom(H,K) can be naturally equipped with a Hopf algebra structure with comulti-

plication ∆̂ : Ĥ → Ĥ ⊗ Ĥ and counit ε̂ such that

(xy, f) = (x⊗ y,∆(f))

(∆̂(x), f ⊗ g) = (x, gf)

ε̂(x) = (x, 1)

(Ŝ(x), f) = (x, S−1(f))

for all x, y ∈ Ĥ and f, g ∈ H. Here ( , ) denotes the canonical pairing between H

and Ĥ, or H ⊗H and Ĥ ⊗ Ĥ respectively, given by evaluation. Note that we are
choosing the convention whereby Ĥ and H are skew-paired, in the sense that the
comultiplication ∆̂ is dual to the opposite multiplication f ⊗ g 7→ gf .

In order to generalize this construction to certain infinite dimensional examples
we shall work with the theory of multiplier Hopf algebras discussed in the next
section.

1.2. Multiplier Hopf algebras. The theory of multiplier Hopf algebras developed
by van Daele and his coauthors [74], [23], [24] is an extension of the theory of Hopf
algebras to the case where the underlying algebras do not necessarily have identity
elements.

1.2.1. Essential algebras. In order to obtain a reasonable theory, it is necessary to
impose some conditions on the multiplication of an algebra. We will work with
algebras that are essential in the following sense.

Definition 1.2. An algebra H is called essential if H 6= 0 and the multiplication
map induces an isomorphism H ⊗H H ∼= H.

Clearly, every unital algebra is essential.
More generally, assume that H has local units in the sense that for every finite

set of elements h1, . . . , hn ∈ H there exists u, v ∈ H such that uhj = hj and
hjv = hj for all j. Then H is essential. Regular multiplier Hopf algebras, to be
defined below, automatically have local units, see [24].

The prototypical example of a non-unital essential algebra to keep in mind is an
algebra of the form

H =
⊕
i∈I

Ai,

where (Ai)i∈I is a family of unital algebras and multiplication is componentwise.
In fact, all non-unital essential algebras that we will encounter later on are of this
form.

Let H be an algebra. A left H-module V is called essential if the canonical map
H ⊗H V → V is an isomorphism. An analogous definition can be given for right
modules. In particular, an essential algebra H is an essential left and right module
over itself.

1.2.2. Algebraic multiplier algebras. To proceed further we need to discuss multi-
pliers. A left multiplier for an algebra H is a linear map L : H → H such that
L(fg) = L(f)g for all f, g ∈ H. Similarly, a right multiplier is a linear map
R : H → H such that R(fg) = fR(g) for all f, g ∈ H. We let Ml(H) and Mr(H)
be the spaces of left and right multipliers, respectively. These spaces become alge-
bras with multiplication given by composition of maps.
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Definition 1.3. The algebraic multiplier algebra M(H) of an algebra H is the
space of all pairs (L,R) where L is a left multiplier and R is a right multiplier for
H such that fL(g) = R(f)g for all f, g ∈ H.

The algebra structure of M(H) is inherited from Ml(H) ⊕Mr(H). There is
a natural homomorphism ι : H → M(H). By construction, H is a left and right
M(H)-module in a natural way.

In the case that H =
⊕

i∈I Ai is a direct sum of unital algebras Ai for i ∈ I, it
is straightforward to check that

M(H) ∼=
∏
i∈I

Ai

is the direct product of the algebras Ai.
Let H and K be algebras and let ϕ : H → M(K) be a homomorphism. Then

K is a left and right H-module in an obvious way. We say that the homomorphism
ϕ : H →M(K) is essential if it turns K into an essential left and right H-module,
that is, we require H⊗HK ∼= K ∼= K⊗HH. Note that the identity map id : H → H
defines an essential homomorphism H →M(H) iff the algebra H is essential.

Lemma 1.4. Let H be an algebra and let ϕ : H → M(K) be an essential homo-
morphism into the multiplier algebra of an essential algebra K. Then there exists
a unique unital homomorphism Φ : M(H) → M(K) such that Φι = ϕ where
ι : H →M(H) is the canonical map.

Proof. We obtain a linear map Φl :Ml(H)→Ml(K) by

Ml(H)⊗K ∼= Ml(H)⊗H ⊗H K
m⊗id

// H ⊗H K ∼= K

and accordingly a linear map Φr :Mr(H)→Mr(K) by

K ⊗Mr(H) ∼= K ⊗H H ⊗Mr(H)
id⊗m

// K ⊗H H ∼= K.

It is straightforward to check that Φ((L,R)) = (Φl(L),Φr(R)) defines a unital
homomorphism Φ : M(H) → M(K) such that Φι = ϕ. Uniqueness of Φ follows
from the fact that ϕ(H) ·K = K and K · ϕ(H) = K. �

We note that essential homomorphisms behave well under tensor products. More
precisely, assume that H1, H2 are essential algebras and let ϕ1 : H1 →M(K1) and
ϕ2 : H2 → M(K2) be essential homomorphisms into the multiplier algebras of
algebras K1 and K2. Then the induced homomorphism ϕ1 ⊗ ϕ2 : H1 ⊗ H2 →
M(K1 ⊗K2) is essential.

Following the terminology of van Daele, we say that an algebra H is nondegener-
ate if the multiplication map H ×H → H defines a nondegenerate bilinear pairing.
That is, H is nondegenerate iff fg = 0 for all g ∈ H implies f = 0 and fg = 0
for all f implies g = 0. These conditions can be reformulated by saying that the
natural maps

H →Ml(H), H →Mr(H)

are injective. In particular, for a nondegenerate algebra the canonical map H →
M(H) is injective.

Nondegeneracy of an algebra is a consequence of the existence of a faithful linear
functional in the following sense.

Definition 1.5. Let H be an algebra. A linear functional ω : H → K is called
faithful if ω(fg) = 0 for all g implies f = 0 and ω(fg) = 0 for all f implies g = 0.
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1.2.3. Multiplier Hopf algebras. In this subsection we introduce the notion of a
multiplier Hopf algebra.

Let H be an essential algebra and let ∆ : H →M(H⊗H) be a homomorphism.
The left Galois maps γl, γr : H ⊗H →M(H ⊗H) for ∆ are defined by

γl(f ⊗ g) = ∆(f)(g ⊗ 1), γr(f ⊗ g) = ∆(f)(1⊗ g).

Similarly, the right Galois maps ρl, ρr : H ⊗H →M(H ⊗H) for ∆ are defined by

ρl(f ⊗ g) = (f ⊗ 1)∆(g), ρr(f ⊗ g) = (1⊗ f)∆(g).

These maps, or rather their appropriate analogues on the Hilbert space level, play an
important role in the analytical study of quantum groups [5], [54]. Our terminology
originates from the theory of Hopf-Galois extensions, see for instance [60].

We say that an essential homomorphism ∆ : H →M(H ⊗H) is a comultiplica-
tion if it is coassociative, that is, if

(∆⊗ id)∆ = (id⊗∆)∆

holds. Here both sides are viewed as maps from H toM(H⊗H⊗H). An essential
algebra homomorphism ϕ : H →M(K) between algebras with comultiplications is
called a coalgebra homomorphism if ∆ϕ = (ϕ⊗ ϕ)∆.

We need some more terminology. The opposite algebra Hopp of H is the space
H equipped with the opposite multiplication. That is, the multiplication mopp in
Hopp is defined by mopp = mσ where m : H ⊗H → H is the multiplication in H
and σ : H ⊗H → H ⊗H is the flip map given by σ(f ⊗ g) = g ⊗ f . An algebra
antihomomorphism between H and K is an algebra homomorphism from H to
Kopp. Equivalently, an algebra antihomomorphism can be viewed as an algebra
homomorphism Hopp → K. If ∆ : H → M(H ⊗H) is a comultiplication then ∆
also defines a comultiplication Hopp →M(Hopp ⊗Hopp).

Apart from changing the order of multiplication we may also reverse the order of
a comultiplication. If ∆ : H →M(H ⊗H) is a comultiplication then the opposite
comultiplication ∆cop is the essential homomorphism from H toM(H⊗H) defined
by ∆cop = σ∆. Here σ :M(H ⊗H)→M(H ⊗H) is the extension of the flip map
to multipliers. We write Hcop for H equipped with the opposite comultiplication.
Using opposite comultiplications we obtain the notion of a coalgebra antihomomor-
phism. That is, a coalgebra antihomomorphism between H and K is a coalgebra
homomorphism from H to Kcop, or equivalently, from Hcop to K.

Let us now give the definition of a multiplier Hopf algebra [73].

Definition 1.6. A multiplier Hopf algebra is an essential algebra H together with
a comultiplication ∆ : H → M(H ⊗ H) such that the Galois maps γr, ρl are
isomorphisms from H ⊗H to H ⊗H ⊂M(H ⊗H).

A regular multiplier Hopf algebra is an essential algebra H together with a
comultiplication ∆ : H → M(H ⊗ H) such that all Galois maps γl, γr, ρl, ρr are
isomorphisms from H ⊗H to H ⊗H.

A morphism between multiplier Hopf algebras H and K is an essential algebra
homomorphism α : H →M(K) such that (α⊗ α)∆ = ∆α.

Note that a multiplier Hopf algebra H is regular iff Hopp is a multiplier Hopf
algebra, or equivalently, iff Hcop is a multiplier Hopf algebra.

We have the following fundamental result due to van Daele [73].

Theorem 1.7. Let H be a multiplier Hopf algebra. Then there exists an essential
algebra homomorphism ε : H → K and an algebra antihomomorphism S : H →
M(H) such that

(ε⊗ id)∆ = id = (id⊗ε)∆
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and

m(S ⊗ id)γr = ε⊗ id, m(id⊗S)ρl = id⊗ε.
If H is a regular multiplier Hopf algebra, then S is a linear isomorphism from H
to H.

If follows from Theorem 1.7 that Definition 1.6 reduces to the definition of Hopf
algebras in the unital case. A unital regular multiplier Hopf algebra is the same
thing as a Hopf algebra with invertible antipode.

We will be exclusively interested in regular multiplier Hopf algebras. For a
regular multiplier Hopf algebra, the antipode S is a coalgebra antihomomorphism,
that is, it satisfies (S ⊗ S)∆ = ∆copS, see [73].

Given a multiplier Hopf algebra we will again use the Sweedler notation

∆(f) = f(1) ⊗ f(2)

for the comultiplication of H. This is useful for writing calculations formally, al-
though in principle one always has to reduce everything to manipulations with
Galois maps.

1.3. Integrals. In this section we discuss integrals for multiplier Hopf algebras.
For a detailed treatment we refer to [74]. The case of ordinary Hopf algebras can
be found in [69].

1.3.1. The definition of integrals. Let H be a regular multiplier Hopf algebra. For
technical reasons we shall suppose throughout that H admits a faithful linear func-
tional, see Definition 1.5. As noted before that definition, we may therefore view H
as a subalgebra of the algebraic multiplier algebraM(H). An analogous statement
applies to tensor powers of H.

Assume that ω is a linear functional on H. Then we define for any f ∈ H a
multiplier (id⊗ω)∆(f) ∈M(H) by

(id⊗ω)∆(f) · g = (id⊗ω)γl(f ⊗ g)

g · (id⊗ω)∆(f) = (id⊗ω)ρl(g ⊗ f).

To check that this is indeed a two-sided multiplier observe that

(f ⊗ 1)γl(g ⊗ h) = ρl(f ⊗ g)(h⊗ 1)

for all f, g, h ∈ H. In a similar way we define (ω ⊗ id)∆(f) ∈M(H) by

(ω ⊗ id)∆(f) · g = (ω ⊗ id)γr(f ⊗ g)

g · (ω ⊗ id)∆(f) = (ω ⊗ id)ρr(g ⊗ f).

Definition 1.8. Let H be a regular multiplier Hopf algebra. A linear functional
φ : H → K is called a left invariant integral if

(id⊗φ)∆(f) = φ(f)1

for all f ∈ H. Similarly, a linear functional ψ : H → K is called a right invariant
integral if

(ψ ⊗ id)∆(f) = ψ(f)1

for all f ∈ H.

Definition 1.9. A regular multiplier Hopf algebra with integrals is a regular mul-
tiplier Hopf algebra H together with a faithful left invariant functional φ : H → K
and a faithful right invariant functional ψ : H → K.
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Note that the existence of one of φ or ψ is sufficient. More precisely, one obtains
a faithful right/left invariant functional by taking a faithful left/right invariant
functional and precomposing with the antipode.

It can be shown that left/right invariant integrals are always unique up to a
scalar, see Section 3 in [74]. Moreover, they are related by a modular element, that
is, there exists an invertible multiplier δ ∈M(H) such that

(φ⊗ id)∆(f) = φ(f)δ

for all f ∈ H. The multiplier δ is a group-like element in the sense that

∆(δ) = δ ⊗ δ, ε(δ) = 1, S(δ) = δ−1.

It follows that a right invariant integral ψ is defined by

ψ(f) = φ(fδ) = φ(δf).

We say that H is unimodular if δ = 1, or equivalently if we can choose ψ = φ.
For ordinary (unital) Hopf algebras, the existence of integrals is closely related

to cosemisimplicity.

Proposition 1.10. Let H be a Hopf algebra. Then the following conditions are
equivalent.

a) H is cosemisimple.
b) H admits a left and right invariant integral φ such that φ(1) = 1.

Proof. a) ⇒ b) Assume that H =
⊕

λ∈Λ Cλ is written as a direct sum of its sim-
ple coalgebras, and without loss of generality let us write C0 ⊂ H for the one-
dimensional simple subcoalgebra spanned by 1 ∈ H. Then we can define φ : H → K
to be the projection onto C0

∼= K. Since ∆(Cλ) ⊂ Cλ ⊗ Cλ it is straightforward to
check that φ is a left and right invariant integral such that φ(1) = 1.
b) ⇒ a). Let us only sketch the argument. Firstly, using the invariant integral

φ one proves that every comodule for H is a direct sum of simple comodules. This
is then shown to be equivalent to H being cosemisimple. We refer to chapter 14 of
[69] for the details. �

1.3.2. The dual multiplier Hopf algebra. Given a regular multiplier Hopf algebra
with integrals we shall introduce the dual multiplier Hopf algebra and discuss the
Biduality Theorem. These constructions and results are due to van Daele [74].

We define Ĥ as the linear subspace of the dual space H∗ = Hom(H,K) given by
all functionals of the form F(f) for f ∈ H where

(F(f), h) = F(f)(h) = φ(hf).

It can be shown that one obtains the same space of linear functions upon replacing
φ by ψ, or reversing the order of multiplication under the integral in the above
formula, see [74]. Note that these other choices correspond to reversing the multi-
plication or comultiplication of H, respectively.

Using the evaluation of linear functionals, we obtain the canonical pairing Ĥ ×
H → K by

(x, f) = x(f)

for x ∈ Ĥ and h ∈ H. Note that the formula for F(f) above can be used to extend

this to a pairing Ĥ ×M(H) → K. In a similar way one obtains pairings between

tensor powers of H and Ĥ.
Let us now explain how the space Ĥ can be turned into a regular multiplier

Hopf algebra with integrals. We point out, however, that we work with the opposite
comultiplication on Ĥ compared to the conventions in [74].
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Theorem 1.11. Let H be a regular multiplier Hopf algebra with integrals. The
vector space Ĥ becomes a regular multiplier Hopf algebra with comultiplication ∆̂ :
Ĥ →M(Ĥ ⊗ Ĥ), counit ε̂ : Ĥ → K, and antipode Ŝ : Ĥ → Ĥ, such that

(xy, f) = (x⊗ y,∆(f))

(∆̂(x), f ⊗ g) = (x, gf)

ε̂(x) = (x, 1)

(Ŝ(x), f) = (x, S−1(f))

for x, y ∈ Ĥ and f, g ∈ H. A left invariant integral for Ĥ is given by

φ̂(F(f)) = ε(f)

for f ∈ H.

Proof. We shall only sketch two parts of the argument; a central part of the proof
consists in showing that the above formulas are well-defined.

Firstly, for f, g ∈ H the product F(f)F(g) in Ĥ is defined by

F(f)F(g) = φ(S−1(g(1))f)F(g(2)) = (F ⊗ φ)γ−1
l (g ⊗ f).

Then formally using

(F(f)F(g))(h) = (F(f)⊗F(g),∆(h))

= φ(h(1)f)φ(h(2)g)

= φ(h(1)g(2)S
−1(g(1))f)φ(h(2)g(3))

= φ(S−1(g(1))f)φ(hg(2))

= φ(S−1(g(1))f)F(g(2))(h)

we see that this agrees with the transposition of the coproduct of H. From the fact
that the product can be described in this way it follows easily that multiplication
in Ĥ is associative.

Secondly, assuming that ∆̂ is well-defined let us check that φ̂ is left invariant.
For this we compute

((id⊗φ̂)∆̂(F(f)), h) = φ̂(F(hf)) = ε(f)ε(h) = (1φ̂(F(f)), h)

for any h ∈ H.
For the construction of the remaining structure maps and the verification of the

axioms see [74]. �

We shall again use the Sweedler notation

∆̂(x) = x(1) ⊗ x(2)

for the comultiplication of Ĥ. The compatibility between H and Ĥ can be summa-
rized as follows.

Proposition 1.12. Let H be a regular multiplier Hopf algebra with integrals. Then
the canonical evaluation pairing between Ĥ and H satisfies

(xy, f) = (x, f(1))(y, f(2)), (x, fg) = (x(2), f)(x(1), g)

and

(Ŝ(x), f) = (x, S−1(f))

for all x, y ∈ Ĥ and f, g ∈ H.
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Note that the final relation implies

(Ŝ−1(x), f) = (x, S(f))

for all x ∈ Ĥ and f ∈ H.

The next major result is the Biduality Theorem, which states that
ˆ̂
H ∼= H as

multiplier Hopf algebras. It is important to note, however, that under this isomor-

phism the canonical pairing
ˆ̂
H × Ĥ → K will not correspond to evaluation between

H and Ĥ. This is due to our choice to work with the coopposite comultiplication in
the definition of the dual. We therefore introduce the following convention, which
will apply throughout this work.

Definition 1.13. If H is a regular multiplier Hopf algebra, we define the reverse
pairing H × Ĥ → K by

(f, x) = (x, S−1(f)),

for all f ∈ H, x ∈ Ĥ.

Let us stress that with these conventions, we have (f, x) 6= (x, f) in general.

Since Ĥ is again a regular multiplier Hopf algebra with integrals, we can construct
its dual. As in the case of finite dimensional Hopf algebras one has a duality result,
see [74].

Theorem 1.14 (Biduality Theorem). Let H be a regular multiplier Hopf algebra

with integrals. Then the dual of Ĥ is isomorphic to H. The isomorphism is given
by

B : H → ˆ̂
H; B(f)(x) = (f, x),

for f ∈ H, x ∈ Ĥ.

Proof. Again we shall only give a brief sketch of the argument. The key step in the
proof—which we will not carry out—is to show that B is well-defined. Injectivity
then follows from the nondegeneracy of the pairing ( , ). The fact that B is
compatible with multiplication and comultiplication is a consequence of Proposition
1.12. �

Let us conclude this section by writing down a formula for the inverse of the
Fourier transform F .

Proposition 1.15. Let H be a regular multiplier Hopf algebra. For any x, y ∈ Ĥ
we have

(y,F−1(x)) = φ̂(Ŝ−1(y)x).

Proof. Let us first observe that for any x ∈ Ĥ, f ∈ H we have the formula

xF(f) = (x, S−1(f(1)))F(f(2)),

which can be confirmed by pairing each side with some g ∈ H and using the left
invariance of φ. Then, using the proposed formula for F−1 from the proposition,
we compute

(y,F−1F(f)) = φ̂(Ŝ−1(y)F(f)) = φ̂(F(f(2)))(y, f(1)) = (y, f),

for all f ∈ H, y ∈ Ĥ. Since F is surjective by definition, we see that F is invertible
with inverse F−1 as proposed. �

If, as above, we identify the dual of Ĥ with H via the reverse pairing H×Ĥ → K,
then we can reinterpret the relation F−1F = id by saying that F̂ = F−1. Indeed,
notice that

(F̂(x), y) = φ̂(yx) = (Ŝ(y),F−1(x)) = (F−1(x), y)
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for all x, y ∈ Ĥ.
This simple relation between F and F̂ is a feature of our conventions to work

with the coopposite comultiplication on the dual.

1.4. The Drinfeld double - algebraic level. In this section we discuss the al-
gebraic version of the Drinfeld double construction. This construction produces a
regular multiplier Hopf algebra L ./ K out of two regular multiplier Hopf algebras
K,L equipped with an invertible skew-pairing. For ordinary Hopf algebras—that
is, in the situation that K and L are unital—this is covered in all standard text-
books, see for instance [48]. For a more detailed account in the non-unital setting
we refer to [23].

This construction will be crucial for the later chapters, since the quantized con-
volution algebra of a complex semisimple group is defined as the Drinfeld double of
the quantized convolution algebra of the associated compact form, see Section 3.4
for a precise statement.

Let us first discuss skew-pairings in the unital case. If K and L are Hopf algebras
then a skew-pairing between L and K is simply a bilinear map τ : L × K → K
satisfying

τ(xy, f) = τ(x, f(1))τ(y, f(2))

τ(x, fg) = τ(x(1), g)τ(x(2), f)

τ(1, f) = εK(f)

τ(x, 1) = εL(x)

for all f, g ∈ K and x, y ∈ L.
In the non-unital case this needs to be phrased more carefully. Assume that K,L

are regular multiplier Hopf algebras and let τ : L×K → K be a bilinear map. For
x ∈ L and f ∈ K we define linear maps τx : K → K and fτ : L→ K by

τx(g) = τ(x, g), fτ(y) = τ(y, f).

We can then define multipliers τ(x(1), f)x(2) = (fτ ⊗ id)∆L(x), τ(x(2), f)x(1) =
(id⊗fτ)∆L(x) ∈ M(L) by first multiplying the outer leg of the coproduct of x
with elements of L, and then applying fτ to the first leg. In the same way one ob-
tains multipliers τ(x, f(1))f(2) = (τx ⊗ id)∆K(f), τ(x, f(2))f(1) = (id⊗τx)∆K(f) ∈
M(K).

We will say that the pairing τ is regular if the following two conditions are
satisfied. Firstly, we require that all the multipliers defined above are in fact con-
tained in L and K, respectively, and not just in M(L) and M(K). Secondly, we
require that the linear span of all τ(x(1), f)x(2) is equal to L, and the linear span
of all τ(x, f(1))f(2) is equal to K, as well as the analogous conditions for the flipped
comultiplications. It is shown in [23] that this implies that the multiplier

τ(x(1), f(1))x(2) ⊗ f(2)

of M(L ⊗ K) is in fact contained in L ⊗ K. The same holds for the multipliers
obtained by flipping the comultiplications in this formula in one or both factors.

Definition 1.16. Let K,L be regular multiplier Hopf algebras. A skew-pairing
between L and K is a regular bilinear map τ : L×K → K which satisfies

a) τxy(f) = τx(id⊗τy)∆K(f) = τy(τx ⊗ id)∆K(f)
b) fgτ(x) =g τ(id⊗fτ)∆L(x) =f τ(gτ ⊗ id)∆L(x)

for all f, g ∈ K and x, y ∈ L.

Occasionally we will identify τ with its associated linear map L ⊗K → K and
write τ(x⊗ f) instead of τ(x, f).
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Note that the conditions in Definition 1.16 are well-defined by the regularity
assumption on τ . Informally, these conditions can be written as

τ(xy, f) = τ(x, f(1))τ(y, f(2)), τ(x, fg) = τ(x(1), g)τ(x(2), f)

for f, g ∈ K,x, y ∈ L, as in the unital case explained above.
Regularity implies that the skew-pairing τ induces essential module structures of

K acting on L and vice versa. More precisely, K becomes an essential left L-module
and an essential right L-module by

x . f = τ(x, f(2))f(1), f / x = τ(x, f(1))f(2)

and L becomes an essential left and right K-module by

f . x = τ(x(1), f)x(2), x / f = τ(x(2), f)x(1).

This means in particular that τ extends canonically to bilinear pairings M(L) ×
K → K and L×M(K)→ K by setting

τ(x, f) = εK(x . f) = εK(f / x), τ(y, g) = εL(g . y) = εL(y / g)

for x ∈ M(L), f ∈ K and y ∈ L, g ∈ M(K), respectively. With this notation, we
get in particular

τ(x, 1) = εL(x), τ(1, f) = εK(f)

for all x ∈ L, f ∈ K, again reproducing the formulas in the unital case.
The convolution product τη of two regular pairings τ, η : L⊗K → K is defined

by

(τη)(x⊗ f) = η(x(1) ⊗ f(1))τ(x(2) ⊗ f(2)).

This defines an associative multiplication on the linear space of all regular pairings
L⊗K → K, with unit element εL ⊗ εK . Any skew-pairing τ : L⊗K → K between
regular multiplier Hopf algebras is convolution invertible, with inverse given by

τ−1(x, f) = τ(SL(x), f) = τ(x, S−1
K (f)).

Let us now introduce the Drinfeld double of skew-paired regular multiplier Hopf
algebras.

Definition 1.17. Let K,L be regular multiplier Hopf algebras and let τ : L⊗K →
K be a skew-pairing between them. The Drinfeld double L ./ K is the regular
multiplier Hopf algebra with underlying vector space L ⊗ K, equipped with the
multiplication

(x ./ f)(y ./ g) = xτ(y(1), f(1)) y(2) ./ f(2) τ
−1(y(3), f(3))g,

the coproduct

∆L./K(x ./ f) = (x(1) ./ f(1))⊗ (x(2) ./ f(2)),

antipode

SL./K(x ./ f) = τ−1(x(1), f(1))SL(x(2)) ./ SK(f(2))τ(x(3), f(3)),

and the counit

εL./K(x ./ f) = εL(x)εK(f).

It is proved in [23] that these structures indeed turn L ./ K into a regular
multiplier Hopf algebra such thatM(L ./ K) contains both L and K as multiplier
Hopf subalgebras in a natural way. Note that the formula for the antipode is forced
by requiring that it be compatible with the antipodes SL and SK on the subalgebras
L and K in M(L ./ K), thanks to the formula

SL./K(x ./ f) = SL./K((x ./ 1)(1 ./ f)) = (1 ./ SK(f)) (SL(x) ./ 1),

for x ∈ L, f ∈ K.
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Formally, associativity of the multiplication in L ./ K follows from

((x ./ f)(y ./ g))(z ./ h) =
(
xτ(y(1), f(1))y(2) ./ f(2)τ

−1(y(3), f(3))g
)

(z ./ h)

= xτ(y(1), f(1))y(2)τ(z(1), f(2)g(1))z(2) ./ f(3)g(2)τ
−1(z(3), f(4)g(3))τ

−1(y(3), f(5))h

= xτ(y(1)z(2), f(1))τ(z(1), g(1))y(2)z(3) ./ f(2)τ
−1(y(3)z(4), f(3))g(2)τ

−1(z(5), g(3))h

= (x ./ f)
(
yτ(z(1), g(1))z(2) ./ g(2)τ

−1(z(3), g(3))h
)

= (x ./ f)((y ./ g)(z ./ h))

for x ./ f, y ./ g, z ./ h ∈ L ./ K. To check that ∆L./K is an algebra homomorphism
one may formally compute

∆L./K((x ./ f)(y ./ g)) = ∆L./K(xτ(y(1), f(1))y(2) ./ f(2)τ
−1(y(3), f(3))g)

= x(1)τ(y(1), f(1))y(2) ./ f(2)g(1) ⊗ x(2)y(3) ./ τ
−1(y(4), f(4))f(3)g(2)

= (x(1)τ(y(1), f(1))y(2) ./ f(2)τ
−1(y(3), f(3))g(1))

⊗ (x(2)τ(y(4), f(4))y(5) ./ f(5)τ
−1(y(6), f(6))g(2))

= (x(1) ./ f(1) ⊗ x(2) ./ f(2))(y(1) ./ g(1) ⊗ y(2) ./ g(2))

= ∆L./K(x ./ f)∆L./K(y ./ g)

for x ./ f, y ./ g ∈ L ./ K. It is clear from the definition that ∆L./K is coassociative
and that εL./K is a counit for ∆L./K . For the antipode axiom we compute

mL./K(SL./K ⊗ id)∆L./K(x ./ f) = mL./K(SL./K ⊗ id)(x(1) ./ f(1) ⊗ x(2) ./ f(2))

= mL./K(τ−1(x(1), f(1))SL(x(2)) ./ SK(f(2))τ(x(3), f(3))⊗ x(4) ./ f(4))

= τ−1(x(1), f(1))SL(x(2))τ(x(4), SK(f(4)))x(5)

./ SK(f(3))× τ−1(x(6), SK(f(2)))τ(x(3), f(5))f(6)

= τ−1(x(1), f(1))SL(x(2))x(3) ./ τ
−1(x(4), SK(f(2)))SK(f(3))f(4)

= τ−1(x(1), f(1))1 ./ τ
−1(x(2), SK(f(2)))1

= εL./K(x ./ f)1,

where mL./K denotes the multiplication of L ./ K. In a similar way one verifies
the other antipode condition.

Let K,L be regular multiplier Hopf algebras and let ρ : L ⊗ K → K be an
invertible skew-pairing. Then τ : K ⊗ L→ K given by

τ(f, x) = ρ(x, S−1
K (f)) = ρ(SL(x), f)

is also an invertible skew-pairing.

Definition 1.18. With the above notation, the Rosso form is the bilinear form κ
on the Drinfeld double L ./ K defined by

κ(x ./ f, y ./ g) = ρ(y, f)ρ(SL(x), S−1
K (g)) = τ(SK(f), y)τ(g, SL(x)).

The left adjoint action of a regular multiplier Hopf algebra H on itself is defined
by

ad(f)(g) = f → g = f(1)g S(f(2)).

A bilinear form κ on H is called ad-invariant if

κ(f → g, h) = κ(g, S(f)→ h)

for all f, g, h ∈ H.
For the following result compare Section 8.2.3 in [48].

Proposition 1.19. Let K,L be regular multiplier Hopf algebras equipped with an
invertible skew-pairing ρ : L×K → K. Then the Rosso form on the Drinfeld double
L ./ K is ad-invariant.
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Proof. Since L ./ K is generated as an algebra by L and K it suffices to consider
the adjoint action of x ∈ L and f ∈ K on an element y ./ g of the double. We
compute

ad(x)(y ./ g) = (x(1) ./ 1)(y ./ g)(SL(x(2)) ./ 1)

= x(1)y SL(x(3))ρ(SL(x(4)), g(1)) ./ ρ
−1(SL(x(2)), g(3))g(2).

Noting that ρ(SL(x), SK(f)) = ρ(x, f) we obtain

κ(x→ (y ./ g), z ./ h)

= κ(x(1)ySL(x(3))ρ
−1(x(4), g(1)) ./ ρ

−1(SL(x(2)), g(3))g(2), z ./ h)

= ρ−1(SL(x(1)ySL(x(3))), h)ρ−1(x(4), g(1))ρ
−1(SL(x(2)), g(3))ρ(z, g(2))

= ρ−1(SL(x(1)), h(1))ρ
−1(SL(y), h(2))ρ

−1(S2
L(x(3))), h(3))

× ρ−1(x(4), g(1))ρ
−1(SL(x(2)), g(3))ρ(z, g(2))

= ρ−1(SL(x(1)), h(1))ρ
−1(SL(y), h(2))ρ

−1(S2
L(x(3)), h(3))ρ(SL(x(4))zS

2
L(x(2)), g)

= κ
(
y ./ g, SL(x(4))zS

2
L(x(2))ρ

−1(SL(x(1)), h(1)) ./ ρ
−1(S2

L(x(3)), h(3))h(2)

)
= κ (y ./ g, SL(x)→ (z ./ h)) .

Similarly, we have

ad(f)(y ./ g) = (1 ./ f(1))(y ./ g)(1 ./ SK(f(2)))

= ρ(y(1), f(1))y(2) ./ ρ
−1(y(3), f(3))f(2)gSK(f(4))

and so

κ(f → (y ./ g), z ./ h)

= κ(ρ(y(1), f(1))y(2) ./ ρ
−1(y(3), f(3))f(2)gSK(f(4)), z ./ h)

= ρ(y(1), f(1))ρ
−1(SL(y(2)), h)ρ−1(y(3), f(3))ρ(z, f(2)gSK(f(4)))

= ρ(y(1), f(1))ρ(y(2), S
−2
K (h))ρ(y(3), S

−1
K (f(3)))ρ(z(1), SK(f(4)))ρ(z(2), g)ρ(z(3), f(2))

= ρ(y, S−1
K (f(3))S

−2
K (h)f(1))ρ(z(1), SK(f(4)))ρ(z(2), g)ρ−1(z(3), SK(f(2)))

= κ(y ./ g, ρ(z(1), SK(f(4)))z(2) ./ ρ
−1(z(3), SK(f(2)))SK(f(3))hS

2
K(f(1)))

= κ(y ./ g, SK(f)→ (z ./ h)).

This yields the claim. �
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2. Quantized universal enveloping algebras

In this chapter we collect background material on quantized universal enveloping
algebras. We give in particular a detailed account of the construction of the braid
group action and PBW-bases, and discuss the finite dimensional representation
theory in the setting that the base field K is an arbitrary field and the deformation
parameter q ∈ K× is not a root of unity. Our presentation mainly follows the
textbooks [39], [41] and [57].

2.1. q-calculus. Let K be a field. We will assume q ∈ K× is not a root of unity.
For n ∈ Z we write

[n]q =
qn − q−n

q − q−1
= q−n+1 + q−n+3 + · · ·+ qn−1

for the corresponding q-number. For n ∈ N we set

[n]q! =

n∏
k=1

[k]q,

and in addition we define [0]q! = 1.
The q-binomial coefficients are defined by[

n
m

]
q

=
[n]q[n− 1]q · · · [n−m+ 1]q

[m]q!

for n ∈ Z and m ∈ N. In addition we declare

[
n
0

]
q

= 1 for all n ∈ Z and

[
n
m

]
q

= 0

for m < 0. Note that if n ∈ N0 we have[
n
m

]
q

=
[n]q!

[n−m]q![m]q!

for 0 ≤ m ≤ n. We shall often omit the subscripts q if no confusion is likely.

Lemma 2.1. We have

qm
[
n
m

]
+ qm−n−1

[
n

m− 1

]
=

[
n+ 1
m

]
and

q−m
[
n
m

]
+ qn+1−m

[
n

m− 1

]
=

[
n+ 1
m

]
for any n ∈ Z and m ∈ N.

Proof. We calculate(
qm
[
n
m

]
+qm−n−1

[
n

m− 1

])
× [m]

= qm[n] . . . [n−m+ 2][n−m+ 1] + qm−n−1[n] . . . [n−m+ 2][m]

=
(
qm[n−m+ 1] + qm−n−1[m]

)
[n] . . . [n−m+ 2]

=
(
qn+1−q2m−n−1+q2m−n−1−q−n−1

q−q−1

)
[n] . . . [n−m+ 2]

= [n+ 1][n] . . . [n−m+ 2]

=

[
n+ 1
m

]
× [m].

This yields the first claim. The second follows by replacing q by q−1. �
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Lemma 2.2. For any n ∈ N0 we have

n∑
m=0

(−1)m
[
n
m

]
qm(n−1) =

{
1 if n = 0,

0 if n > 0

and
n∑

m=0

(−1)m
[
n
m

]
q−m(n−1) =

{
1 if n = 0,

0 if n > 0.

Proof. For n = 0 or 1 the claim can be checked directly. For n ≥ 2 we compute,
using Lemma 2.1,

n∑
m=0

(−1)m
[
n
m

]
qm(n−1)

=

n−1∑
m=0

(−1)mqm
[
n− 1
m

]
qnm−m +

n∑
m=1

(−1)mqm−n
[
n− 1
m− 1

]
qnm−m

=

n−1∑
m=0

(−1)mqnm
[
n− 1
m

]
+

n∑
m=1

(−1)mqn(m−1)

[
n− 1
m− 1

]
= 0.

For n = 1 the claim can be checked directly. The second equation follows by
replacing q by q−1. �

Consider the special case K = Q(q). It is clear by definition that [n] ∈ Z[q, q−1] ⊂
Q(q). Moreover, from Lemma 2.1 one obtains by induction that all q-binomial coef-
ficients are contained in Z[q, q−1]. That is, the above formulas, suitably interpreted,
are valid in Z[q, q−1]. With this in mind, one can dispense of our initial assumption
that q is not a root of unity.

2.2. The definition of Uq(g). In this section we explain the construction of the
quantized universal enveloping algebra of a semisimple Lie algebra.

2.2.1. Semisimple Lie algebras. Let g a semisimple Lie algebra over C of rank N .
We fix a Cartan subalgebra h ⊂ g and a set Σ = {α1, . . . , αN} of simple roots. We
write ( , ) for the bilinear form on h∗ obtained by rescaling the Killing form such
that the shortest root α of g satisfies (α, α) = 2. Moreover we set

di = (αi, αi)/2

for all i = 1, . . . , N and let

α∨i = d−1
i αi

be the simple coroot corresponding to αi.
Denote by $1, . . . , $N the fundamental weights of g, satisfying the relations

($i, α
∨
j ) = δij . We write

P =

N⊕
j=1

Z$j , Q =

N⊕
j=1

Zαj , Q∨ =

N⊕
j=1

Zα∨j ,

for the weight, root and coroot lattices of g, respectively. Note that Q ⊂ P ⊂ h∗

and that Q∨ identifies with the Z-dual of P under the pairing.
The set P+ of dominant integral weights is the set of all non-negative integer

combinations of the fundamental weights. We also write Q+ for the non-negative
integer combinations of the simple roots.

The Cartan matrix for g is the matrix (aij)1≤i,j≤N with coefficients

aij = (α∨i , αj) =
2(αi, αj)

(αi, αi)
.
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We write W for the Weyl group, that is, the finite group of automorphisms of
P generated by the reflections si in the hyperplanes orthogonal to the simple roots
αi ∈∆+, namely

si(µ) = µ− (α∨i , µ)αi

for all µ ∈ P.
Throughout we fix the smallest positive integer L such that the numbers ($i, $j)

take values in 1
LZ for all 1 ≤ i, j ≤ N , see Section 1 in [68] for the explicit values

of L in all types and more information.
In the sequel we shall also work over more general ground fields K. We will always

keep the notions of weights and roots from the classical case as above. Remark that
associated to the complex semisimple Lie algebra g we can construct a Lie algebra
over K using the Serre presentation of g. We will sometimes work implicitly with
this Lie algebra and, by slight abuse of notation, denote it by g again. This apparent
ambiguity is resolved by observing that the starting point for all constructions in
the sequel is in fact a finite Cartan matrix, rather than a semisimple Lie algebra.

2.2.2. The quantized universal enveloping algebra without Serre relations. For prac-
tical purposes it is convenient to construct the quantized universal enveloping alge-
bra in two steps, mimicking the standard approach to defining Kac-Moody algebras.
In this subsection we present the first step, namely the definition of a Hopf algebra
which will admit the quantized universal enveloping algebra as a quotient.

Let g be a semisimple Lie algebra. We keep the notation introduced above.

Definition 2.3. Let K be a field and q = sL ∈ K× be an invertible element such
that qi 6= ±1 for all 1 ≤ i ≤ N where qi = qdi . The algebra Ũq(g) over K has
generators Kλ for λ ∈ P, and Ei, Fi for i = 1, . . . , N , and the defining relations

K0 = 1

KλKµ = Kλ+µ

KλEjK
−1
λ = q(λ,αj)Ej

KλFjK
−1
λ = q−(λ,αj)Fj

[Ei, Fj ] = δij
Ki −K−1

i

qi − q−1
i

for all λ, µ ∈ P and all 1 ≤ i, j ≤ N . Here we abbreviate Ki = Kαi for all simple
roots.

Our hypothesis on q mean that we always require q2 6= 1, and in fact q4 6= 1
or q6 6= 1 in the case that g contains a component of type Bn, Cn, F4 or G2,
respectively.

Notice that q(αi,αj) = q
aij
i . Therefore we have

KiEjK
−1
i = q

aij
i Ej , KiFjK

−1
i = q

−aij
i Fj

for all 1 ≤ i, j ≤ N . In particular

KiEiK
−1
i = q2

iEi, KiFiK
−1
i = q−2

i Fi.

The algebra Ũq(g) admits a Hopf algebra structure as follows.

Lemma 2.4. The algebra Ũq(g) is a Hopf algebra with comultiplication ∆̂ : Ũq(g)→
Ũq(g)⊗ Ũq(g) given by

∆̂(Kµ) = Kµ ⊗Kµ,

∆̂(Ei) = Ei ⊗Ki + 1⊗ Ei
∆̂(Fi) = Fi ⊗ 1 +K−1

i ⊗ Fi,
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counit ε̂ : Ũq(g)→ K given by

ε̂(Kλ) = 1, ε̂(Ej) = 0, ε̂(Fj) = 0,

and antipode Ŝ : Ũq(g)→ Ũq(g) given by

Ŝ(Kλ) = K−λ, Ŝ(Ej) = −EjK−1
j , Ŝ(Fj) = −KjFj .

Proof. These are straightforward calculations. In order to verify that ∆̂ extends to
a homomorphism as stated we compute, for instance,

[∆̂(Ei), ∆̂(Fj)] = [Ei ⊗Ki + 1⊗ Ei, Fj ⊗ 1 +K−1
j ⊗ Fj ]

= K−1
j ⊗ [Ei, Fj ] + [Ei, Fj ]⊗Ki

=
δij

qi − q−1
i

∆̂(Ki −K−1
i ).

To see that Ŝ defines an antihomomorphism we check for instance

Ŝ([Ei, Fj ]) =
δij

qi − q−1
i

Ŝ(Ki −K−1
i )

=
δij

qi − q−1
i

(K−1
i −Ki)

= KjFjEiK
−1
i −KjEiFjK

−1
i

= KjFjEiK
−1
i − EiK

−1
i KjFj

= [−KjFj ,−EiK−1
i ] = [Ŝ(Fj), Ŝ(Ei)].

The Hopf algebra axioms are easily verified on generators. �

Throughout we will use the Sweedler notation

∆̂(X) = X(1) ⊗X(2)

for the coproduct of X ∈ Ũq(g).
The following fact is frequently useful.

Lemma 2.5. There exists an algebra automorphism ω : Ũq(g)→ Ũq(g) given by

ω(Kλ) = K−λ, ω(Ej) = Fj , ω(Fj) = Ej

on generators. Moreover ω is a coalgebra antihomomorphism.

Proof. It is straightforward to verify that the defining relations of Ũq(g) are pre-
served by the above assignment. For the coalgebra antihomomorphism property
notice that

σ∆̂(ω(Ej)) = Fj ⊗K−1
j + 1⊗ Fj = (ω ⊗ ω)(∆̂(Ej))

for all j = 1, . . . , N . Here σ denotes the flip map. �

Note that, as a consequence of Lemma 2.5, we have ω ◦ Ŝ = Ŝ−1 ◦ ω.
Let us record the following explicit formulas for certain coproducts in Ũq(g).

Lemma 2.6. We have

∆̂(Erj ) =

r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

Eij ⊗ Er−ij Ki
j

∆̂(F rj ) =

r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

F r−ij K−ij ⊗ F
i
j

for all r ∈ N and j = 1, . . . , N .
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Proof. We use induction on r. The claim for ∆̂(E1
j ) = ∆̂(Ej) is clear. Assume the

formula for ∆̂(Erj ) is proved for r ∈ N. Using Lemma 2.1, we compute

∆̂(Er+1
j ) = ∆̂(Ej)∆̂(Erj )

= (Ej ⊗Kj + 1⊗ Ej)
r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

Eij ⊗ Er−ij Ki
j

=

r∑
i=0

(
q

2(r−i)
j q

i(r−i)
j

[
r
i

]
qj

Ei+1
j ⊗ Er−ij Ki+1

j + q
i(r−i)
j

[
r
i

]
qj

Eij ⊗ Er+1−i
j Ki

j

)

=

r+1∑
i=1

q
2(r+1−i)
j q

(i−1)(r+1−i)
j

[
r

i− 1

]
qj

Eij ⊗ Er+1−i
j Ki

j

+

r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

Eij ⊗ Er+1−i
j Ki

j

=

r+1∑
i=0

q
i(r+1−i)
j

[
r + 1
i

]
qj

Eij ⊗ Er+1−i
j Ki

j .

The formula for ∆̂(F rj ) is proved in a similar way, or by applying the automorphism
ω from Lemma 2.5 to the first formula. �

Let

ρ =

N∑
i=1

$i =
1

2

∑
α∈∆+

α

be the half-sum of all positive roots. Note that for all 1 ≤ i ≤ N , we have

(ρ, α∨i ) = 1, (ρ, αi) = di.

Lemma 2.7. For all X ∈ Uq(g) we have

Ŝ2(X) = K2ρXK−2ρ.

Proof. This is easily checked on generators. �

In particular, the antipode Ŝ is invertible, so that Ũq(g) is a regular Hopf algebra,

compare the remarks after Theorem 1.7. The inverse of Ŝ is given on generators by

Ŝ−1(Kλ) = K−λ, Ŝ−1(Ej) = −K−1
j Ej , Ŝ−1(Fj) = −FjKj .

Let Ũq(n+) be the subalgebra of Ũq(g) generated by the elements E1, . . . , EN ,

and let Ũq(n−) be the subalgebra generated by F1, . . . , FN . Moreover we let Ũq(h)

be the subalgebra generated by the elements Kλ for λ ∈ P. We write Ũq(b+) for the

subalgebra of Ũq(g) generated by E1, . . . , EN and all Kλ for λ ∈ P, and similarly

we write Ũq(b−) for the subalgebra generated by the elements F1, . . . , FN ,Kλ for

λ ∈ P. The algebras Ũq(h) and Ũq(b±) are Hopf subalgebras. It is often convenient

to use the automorphism ω from Lemma 2.5 to transport results for Ũq(n+) and

Ũq(b+) to Ũq(n−) and Ũq(b−), and vice versa.

Proposition 2.8. Multiplication in Ũq(g) induces a linear isomorphism

Ũq(n−)⊗ Ũq(h)⊗ Ũq(n+) ∼= Ũq(g).

Proof. In order to prove the claim it suffices to show that the elements FIKµEJ , for
FI = Fi1 · · ·Fik , EJ = Ej1 · · ·Ejl finite sequences of simple root vectors and µ ∈ P,

form a linear basis of Ũq(g). This in turn is an easy consequence of the Diamond

Lemma [12]. Indeed, from the definition of Ũq(g) we see that there are only overlap
ambiguities, and all of these turn out to be resolvable. �
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In a similar way we obtain linear isomorphisms

Ũq(n±)⊗ Ũq(h) ∼= Ũq(b±);

moreover Ũq(h) identifies with the group algebra of P, whereas Ũq(n±) is isomorphic
to the free algebra generated by the Ei or Fj , respectively.

The algebra Ũq(g) is equipped with a Q-grading such that the generators Kλ

have degree 0, the elements Ei degree αi, and the elements Fi degree −αi. We shall
also refer to the degree of a homogeneous element with respect to this grading as
its weight, and denote by Ũq(g)β ⊂ Ũq(g) the subspace of all elements of weight β.
The weight grading induces a direct sum decomposition

Ũq(g) =
⊕
β∈Q

Ũq(g)β

of Ũq(g). Notice that Ũq(g)αŨq(g)β ⊂ Ũq(g)α+β for all α, β ∈ Q.
If q ∈ K× is not a root of unity we can describe the weight grading equivalently

in terms of the adjoint action. More precisely, we have that X ∈ Ũq(g) is of weight
λ iff

ad(Kµ)(X) = KµXK
−1
µ = q(µ,λ)X

for all µ ∈ P.
As for any Hopf algebra, we may consider the adjoint action of Ũq(g) on itself,

given by

ad(X)(Y ) = X → Y = X(1)Y Ŝ(X(2)).

Explicitly, we obtain

Ej → Y = Y Ŝ(Ej) + EjY Ŝ(Kj) = −Y EjK−1
j + EjY K

−1
j = [Ej , Y ]K−1

j

Fj → Y = K−1
j Y Ŝ(Fj) + FjY = −K−1

j Y KjFj + FjY

Kλ → Y = KλY Ŝ(Kλ) = KλY K
−1
λ

for all 1 ≤ j ≤ N and λ ∈ P.
We shall occasionally also consider the right adjoint action of Ũq(g) on itself,

given by

Y ← X = Ŝ(X(1))Y X(2).

These actions are linked via

ω(X → Y ) = ω(Y )← Ŝ−1(ω(X)),

where ω is the automorphism from Lemma 2.5.

Lemma 2.9. We have

Erj → Y =

r∑
i=0

(−1)r−iq
−(r−i)(r−1)
j

[
r
i

]
qj

EijY E
r−i
j K−rj

F rj → Y =

r∑
i=0

(−1)iq
i(r−1)
j

[
r
i

]
qj

F r−ij K−ij Y Ki
jF

i
j

for all r ∈ N.
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Proof. We apply Lemma 2.6 to obtain

Erj → Y =

r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

EijY Ŝ(Er−ij Ki
j)

=

r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

(−1)r−iEijY K
−i
j (EjK

−1
j )r−i

=

r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

(−1)r−iq
−(r−i)(r−i−1)−2i(r−i)
j EijY E

r−i
j K−rj

=

r∑
i=0

(−1)r−iq
−(r−i)(r−1)
j

[
r
i

]
qj

EijY E
r−i
j K−rj .

Similarly,

F rj → Y =

r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

F r−ij K−ij Y Ŝ(Fj)
i

=
r∑
i=0

q
i(r−i)
j

[
r
i

]
qj

(−1)iq
(i−1)i
j F r−ij K−ij Y Ki

jF
i
j

=

r∑
i=0

(−1)iq
i(r−1)
j

[
r
i

]
qj

F r−ij K−ij Y Ki
jF

i
j .

This yields the claim. �

2.2.3. The Serre elements. For the construction of Uq(g) we shall be interested in

the Serre elements of Ũq(g), defined by

u+
ij =

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

E
1−aij−k
i EjE

k
i

u−ij =

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

F
1−aij−k
i FjF

k
i ,

for 1 ≤ i, j ≤ N with i 6= j. We note that

u−ij = F
1−aij
i → Fj , u+

ij = Ej ← Ŝ−1(E
1−aij
i )

due to Lemma 2.9. Note also that ω(u+
ij) = u−ij .

Proposition 2.10. We have

∆̂(u+
ij) = u+

ij ⊗K
1−aij
i Kj + 1⊗ u+

ij

∆̂(u−ij) = u−ij ⊗ 1 +K
−(1−aij)
i K−1

j ⊗ u
−
ij

and

Ŝ(u+
ij) = −u+

ijK
aij−1
i K−1

j

Ŝ(u−ij) = −K1−aij
i Kju

−
ij

for all 1 ≤ i, j ≤ N with i 6= j.

Proof. Let us prove the first claim for u+
ij , following Lemma 4.10 in [39]. We note

that

∆̂(u+
ij) =

1−aij∑
k=0

(−1)1−aij−k
[
1− aij
k

]
qi

∆̂(Eki )∆̂(Ej)∆̂(E
1−aij−k
i ),
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and by Lemma 2.6 we have

∆̂(Eri ) = Eri ⊗Kr
i + 1⊗ Eri +

r−1∑
m=1

q
m(r−m)
i

[
r
m

]
qi

Emi ⊗ Er−mi Km
i .

It follows that ∆̂(u+
ij) has the form

∆̂(u+
ij) = u+

ij ⊗K
1−aij
i Kj + 1⊗ u+

ij +

1−aij∑
m=1

Emi ⊗Xm +
∑
m,n

Emi EjE
n
i ⊗ Ymn

for suitable elements Xk, Ykl, where the second sum is over all m,n ≥ 0 such that
m+ n ≤ 1− aij .

We shall show that all Xk and Ykl are zero. Collecting terms in the binomial
expansions we obtain

Ymn =

1−aij−n∑
k=m

(−1)1−aij−k
[
1− aij
k

]
qi

q
m(k−m)
i

×
[
k
m

]
qi

Ek−mi Km
i Kjq

n(1−aij−k−n)
i

[
1− aij − k

n

]
qi

E
1−aij−k−n
i Kn

i .

We have[
r
k

]
qi

[
k
m

]
qi

[
r − k
n

]
qi

=
[r]![k]![r − k]!

[k]![m]![n]![r − k]![k −m]![r − k − n]!

=
[r]!

[m]![n]![k −m]![r − k − n]!

=
[r −m− n]![r − n]![r]!

[k −m]![m]![n]![r − k − n]![r −m− n]![r − n]!

=

[
r −m− n
k −m

]
qi

[
r − n
m

]
qi

[
r
n

]
qi

.

This shows

Ymn = (−1)1−aijymn

[
1− aij − n

m

]
qi

[
1− aij
n

]
qi

E
1−aij−m−n
i Km+n

i Kj

where

ymn =

1−aij−n∑
k=m

(−1)k
[
1− aij −m− n

k −m

]
qi

q
m(k−m)+(n+2m+aij)(1−aij−k−n)
i

= (−1)mq
(n+2m+aij)(1−aij−m−n)
i

×
1−aij−m−n∑

l=0

(−1)l
[
1− aij −m− n

l

]
qi

q
(1−aij−m−n)l
i q−li = 0

according to Lemma 2.2.
For Xm we get

Xm =

1−aij∑
k=0

(−1)1−aij−k
[
1− aij
k

]
qi

∑
l

q
l(k−l)
i

[
k
l

]
qi

Ek−li Kl
iEj

× q(m−l)(1−aij−k−m+l)
i

[
1− aij − k
m− l

]
qi

E
1−aij−k−m+l
i Km−l

i ,
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where l runs over max(0,m+ k + aij − 1) ≤ l ≤ min(k,m). We get

Xm = (−1)1−aij
1−aij−m∑
s=0

amsE
s
iEjE

1−aij−m−s
i Km

i ,

where

ams =

m+s∑
k=s

(−1)k
[
1− aij
k

]
qi

[
k
s

]
qi

[
1− aij − k
m+ s− k

]
qi

× q(k−s)s+(m+s−k)(1−aij−m−s)+aij(k−s)+2(k−s)(1−aij−m−s)
i .

Using[
r
k

]
qi

[
k
s

]
qi

[
r − k

m+ s− k

]
qi

=
[r]![k]![r − k]!

[k]![s]![m+ s− k]![r − k]![k − s]![r −m− s]!

=
[r]!

[s]![m+ s− k]![k − s]![r −m− s]!

=
[r]![r −m]![m]!

[m]![s]![k − s]![r −m]![r −m− s]![m+ s− k]!

=

[
r
m

]
qi

[
r −m
s

]
qi

[
m

k − s

]
qi

,

this simplifies to

ams =

m+s∑
k=s

(−1)k
[
1− aij
m

]
qi

[
1− aij −m

s

]
qi

[
m

k − s

]
qi

× q(k−s)s+(m+s−k)(1−aij−m−s)+aij(k−s)+2(k−s)(1−aij−m−s)
i

=

m+s∑
k=s

(−1)k
[
1− aij
m

]
qi

[
1− aij −m

s

]
qi

[
m

k − s

]
qi

× q(k−s)s+(m+k−s)(1−aij−m−s)+aij(k−s)
i

=

[
1− aij
m

]
qi

[
1− aij −m

s

]
qi

m+s∑
k=s

(−1)k
[
m

k − s

]
qi

q
m(1−aij−m−s)+(k−s)(1−m)
i

= (−1)sq
m(1−aij−m−s)
i

[
1− aij
m

]
qi

[
1− aij −m

s

]
qi

m∑
l=0

(−1)l
[
m
l

]
qi

q
l(1−m)
i = 0,

taking into account Lemma 2.2.
The claim for the coproduct of u−ij is obtained by applying the automorphism ω

from Lemma 2.5.
The remaining assertions follow from the formulas for ∆̂(u±ij) and the antipode

relations. �

Lemma 2.11. For any 1 ≤ k ≤ N and r ∈ N we have

[Ek, F
r
k ] = [r]qkF

r−1
k

1

qk − q−1
k

(q
−(r−1)
k Kk − qr−1

k K−1
k ).
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Proof. For r = 1 the formula clearly holds. Assuming the claim for r, we compute

[Ek,F
r+1
k ] = [Ek, F

r
k ]Fk + F rk [Ek, Fk]

= [r]qkF
r−1
k

1

qk − q−1
k

(q
−(r−1)
k Kk − qr−1

k K−1
k )Fk + F rk

1

qk − q−1
k

(Kk −K−1
k )

=
1

qk − q−1
k

[r]qkF
r
k (q
−(r+1)
k Kk − qr+1

k K−1
k ) + F rk

1

qk − q−1
k

(Kk −K−1
k )

=
1

qk − q−1
k

(qr−1
k + qr−3

k + · · ·+ q−r+1
k )F rk (q

−(r+1)
k Kk − qr+1

k K−1
k )

+ F rk
1

qk − q−1
k

(Kk −K−1
k )

= (qrk + qr−2
k + · · ·+ q−rk )F rk

1

qk − q−1
k

(q−rk Kk − qrkK−1
k )

= [r + 1]qkF
r
k

1

qk − q−1
k

(q−rk Kk − qrkK−1
k ).

This finishes the proof. �

Lemma 2.12. For 1 ≤ i, j ≤ N and i 6= j we have

[Ek, u
−
ij ] = 0 = [Fk, u

+
ij ]

for all k = 1, . . . , N .

Proof. Let us verify [Ek, u
−
ij ] = 0. If k 6= i, j then the elements Ek commute with

Fi, Fj , so that the assertion is obvious. Assume now k = i. Note that

[Ek, u
−
ij ] = ad(Ek)(u−ij)Kk,

so it suffices to show ad(Ek)(u−kj) = 0. As observed at the beginning of this sub-

section, we have ad(F
1−akj
k )(Fj) = u−kj . Combining this relation with Lemma 2.11

we obtain

ad(Ek)(u−kj) = ad(Ek)ad(F
1−akj
k )(Fj)

= ad(F
1−akj
k )ad(Ek)(Fj) + ad([Ek, F

1−akj
k ])(Fj)

= ad(F
1−akj
k )ad(Ek)(Fj)

+ [1− akj ]qkad(F
−akj
k ) 1

qk−q−1
k

(q
akj
k ad(Kk)− q−akjk ad(K−1

k ))(Fj)

= 0,

by using [Ek, Fj ] = 0 and ad(Kk)(Fj) = q
−akj
k Fj .

Now let k = j. Then [Ek, Fi] = 0 and KkFi = qaiki FiKk, so that

[Ek, u
−
ik] =

1−aik∑
l=0

(−1)l
[
1− aik

l

]
qi

F 1−aik−l
i [Ek, Fk]F li

=
1

qk − q−1
k

1−aik∑
l=0

(−1)l
[
1− aik

l

]
qi

F 1−aik−l
i (Kk −K−1

k )F li

=
1

qk − q−1
k

1−aik∑
l=0

(−1)l
[
1− aik

l

]
qi

F 1−aik
i (qlaiki Kk − ql(−aik)

i K−1
k ) = 0

by Lemma 2.2.
Finally, the equality [Fk, u

+
ij ] = 0 follows by applying the automorphism ω from

Lemma 2.5. �
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2.2.4. The quantized universal enveloping algebra. Let us now give the definition of
the quantized universal enveloping algebra of g. We fix a ground field K.

Definition 2.13. Let K be a field and q = sL ∈ K× be an invertible element such
that qi 6= ±1 for all i. The algebra Uq(g) over K has generators Kλ for λ ∈ P, and
Ei, Fi for i = 1, . . . , N , and the defining relations for Uq(g) are

K0 = 1

KλKµ = Kλ+µ

KλEjK
−1
λ = q(λ,αj)Ej

KλFjK
−1
λ = q−(λ,αj)Fj

[Ei, Fj ] = δij
Ki −K−1

i

qi − q−1
i

for all λ, µ ∈ P and all i, j, together with the quantum Serre relations

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

E
1−aij−k
i EjE

k
i = 0

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

F
1−aij−k
i FjF

k
i = 0.

In the above formulas we abbreviate Ki = Kαi for all simple roots, and we use the
notation qi = qdi .

One often finds a slightly different version of the quantized universal enveloping
algebra in the literature, only containing elements Kλ for λ ∈ Q. For our purposes
it will be crucial to work with the algebra as in Definition 2.13.

It follows from Lemma 2.4 and Proposition 2.10 that Uq(g) is a Hopf algebra

with comultiplication ∆̂ : Uq(g)→ Uq(g)⊗ Uq(g) given by

∆̂(Kλ) = Kλ ⊗Kλ,

∆̂(Ei) = Ei ⊗Ki + 1⊗ Ei
∆̂(Fi) = Fi ⊗ 1 +K−1

i ⊗ Fi,

counit ε̂ : Uq(g)→ K given by

ε̂(Kλ) = 1, ε̂(Ej) = 0, ε̂(Fj) = 0,

and antipode Ŝ : Uq(g)→ Uq(g) given by

Ŝ(Kλ) = K−λ, Ŝ(Ej) = −EjK−1
j , Ŝ(Fj) = −KjFj .

Throughout the text we will use the Sweedler notation

∆̂(X) = X(1) ⊗X(2)

for the coproduct of X ∈ Uq(g).
Let Uq(n+) be the subalgebra of Uq(g) generated by the elements E1, . . . , EN ,

and let Uq(n−) be the subalgebra generated by F1, . . . , FN . Moreover we let Uq(h)
be the subalgebra generated by the elements Kλ for λ ∈ P.

Proposition 2.14. Multiplication in Uq(g) induces a linear isomorphism

Uq(n−)⊗ Uq(h)⊗ Uq(n+) ∼= Uq(g),

the quantum analogue of the triangular decomposition.
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Proof. Let us write I+ for the ideal in Ũq(n+) generated by the elements u+
ij . We

claim that under the isomorphism of Proposition 2.8 the ideal in Ũq(g) generated

by the u+
ij identifies with Ũq(n−)⊗ Ũq(h)⊗ I+. The left ideal property is obvious,

and the right ideal property follows using Lemma 2.12. An analogous claim holds
for the ideal I− in Ũq(n−) generated by the elements u−ij .

It follows that

I = I− ⊗ Ũq(h)⊗ Ũq(n+) + Ũq(n−)⊗ Ũq(h)⊗ I+

is an ideal in Ũq(g), and the quotient algebra Ũq(g)/I is canonically isomorphic to
Uq(g). The assertion now follows from Proposition 2.8. Note in particular that we

obtain a canonical isomorphism Uq(h) ∼= Ũq(h). �

We write Uq(b+) for the subalgebra of Uq(g) generated by E1, . . . , EN and all
Kλ for λ ∈ P, and similarly we write Uq(b−) for the subalgebra generated by the
elements F1, . . . , FN ,Kλ for λ ∈ P. These algebras are Hopf subalgebras. It follows
from Proposition 2.14 that these algebras, as well as the algebras Uq(n±) and Uq(h),
are canonically isomorphic to the universal algebras with the appropriate generators
and relations from Definition 2.13.

As a consequence of Proposition 2.14 we obtain linear isomorphisms

Uq(h)⊗ Uq(n±) ∼= Uq(b±).

Also note that Uq(h) is isomorphic to the group algebra of P.

We observe that the automorphism ω : Ũq(g)→ Ũq(g) from Lemma 2.5 induces
an algebra automorphism of Uq(g), which we will again denote by ω. This auto-
morphism allows us to interchange the upper and lower triangular parts of Uq(g).
We state this explicitly in the following Lemma.

Lemma 2.15. There exists an algebra automorphism ω : Uq(g)→ Uq(g) given by

ω(Kλ) = K−λ, ω(Ej) = Fj , ω(Fj) = Ej

on generators. Moreover ω is a coalgebra antihomomorphism.
Similarly, there exists an algebra anti-automorphism Ω : Uq(g)→ Uq(g) given by

Ω(Kλ) = Kλ, Ω(Ej) = Fj , Ω(Fj) = Ej

on generators.

Proof. It is straightforward to verify that the defining relations of Uq(g) are pre-
served by these assignments. �

We note that the automorphism ω can be used to translate formulas which
depend on our convention for the comultiplication of Uq(g) to the convention using
the coopposite comultiplication.

Let us introduce another symmetry of Uq(g).

Lemma 2.16. There is a unique algebra antiautomorphism τ : Uq(g)→ Uq(g) such
that

τ(Ej) = KjFj , τ(Fj) = EjK
−1
j , τ(Kλ) = Kλ

for j = 1, . . . , N and λ ∈ P. Moreover τ is involutive, that is τ2 = id, and a
coalgebra homomorphism.

Proof. Observe first that all of the Hopf algebra relations of Uq(g) are preserved by
the transformation

Ei 7→ −Ei, Fi 7→ −Fi, Kλ 7→ Kλ,

so that these generate an involutive Hopf algebra automorphism of Uq(g). Now τ

agrees on generators with the composition of this map with the involution Ŝ ◦ ω,
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which is an algebra anti-automorphism and coalgebra automorphism. The result
follows. �

In the same way as for Ũq(g) one obtains a Q-grading on Uq(g) such that the
generators Kλ have degree 0, the elements Ei degree αi, and the elements Fi degree
−αi. The degree of a homogeneous element with respect to this grading will again
be referred to as its weight, and we write Uq(g)β ⊂ Uq(g) for the subspace of all
elements of weight β. The weight grading induces a direct sum decomposition

Uq(g) =
⊕
β∈Q

Uq(g)β

of Uq(g), and we have Uq(g)αUq(g)β ⊂ Uq(g)α+β for all α, β ∈ Q.
If q ∈ K× is not a root of unity the weight grading is determined by the adjoint

action of Uq(g) on itself in the same way as for Ũq(g).

2.2.5. The restricted integral form. Instead of working over a field K, it is sometimes
necessary to consider more general coefficient rings.

Let us fix a semisimple Lie algebra g and put q = sL ∈ Q(s). We consider the
ring A = Z[s, s−1] ⊂ Q(s). With this notation in place, we define the restricted
integral form of the quantized universal enveloping algebra, compare [56].

Definition 2.17. The restricted integral form UAq (g) of Uq(g) is the A-subalgebra
of the quantized universal enveloping algebra Uq(g) over Q(s) generated by the
elements Kλ for λ ∈ P and

[Ki; 0] =
Ki −K−1

i

qi − q−1
i

for i = 1, . . . , N , together with the divided powers

E
(r)
i =

1

[r]qi !
Eri , F

(r)
i =

1

[r]qi !
F ri

for i = 1, . . . , N .

Let us show that UAq (g) is a Hopf algebra over the commutative ring A in a
natural way.

Lemma 2.18. The comultiplication, counit and antipode of Uq(g) induce on UAq (g)
the structure of a Hopf algebra over A.

Proof. Let us verify that the formulas for the coproducts of all generators of UAq (g)

make sense as elements in UAq (g)⊗A UAq (g). For the generators Kλ this is obvious.
Moreover we observe

∆̂([Ki; 0]) = [Ki; 0]⊗Ki +K−1
i ⊗ [Ki; 0].

According to Lemma 2.6 we have

∆̂(E
(r)
j ) =

r∑
i=0

q
i(r−i)
j E

(i)
j ⊗ E

(r−i)
j Ki

j

∆̂(F
(r)
j ) =

r∑
i=0

q
i(r−i)
j F

(r−i)
j K−ij ⊗ F

(i)
j

for all j, so the assertion also holds for the divided powers.
It is clear that the antipode and counit of Uq(g) induce corresponding maps on

the level of UAq (g). The Hopf algebra axioms are verified in the same way as in
Lemma 2.4. �
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We next define the bar involution of UAq (g). The field automorphism β of Q(s)

determined by β(s) = s−1 restricts to a ring automorphism of A. This extends to
UAq (g) as follows.

Lemma 2.19. The quantized universal enveloping algebra Uq(g) over Q(s) admits
an automorphism β : Uq(g)→ Uq(g) of Q-algebras such that β(s) = s−1 and

β(Kµ) = K−µ, β(Ei) = Ei, β(Fi) = Fi

for all µ ∈ P and 1 ≤ i ≤ N . This restricts to an automorphism of UAq (g).

Proof. We can view Uq(g) as a Q(s)-algebra using the scalar action c •X = β(c)X
for c ∈ Q(s). Let us write Uq(g)β for the resulting Q(s)-algebra. Sending Kµ to
K−µ and fixing the generators Ei, Fj determines a homomorphism Uq(g)→ Uq(g)β

of Q(s)-algebras. By slight abuse of notation we can view this as the desired
automorphism β : Uq(g)→ Uq(g) of Q-algebras.

The fact that β restricts to UAq (g) follows directly from the definition of the
integral form. �

In the literature, the bar involution β of Uq(g) is usually denoted by a bar. We

shall write β(X) instead of X for X ∈ Uq(g) in order to avoid confusion with
∗-structures later on. Note that β : Uq(g)→ Uq(g) is not a Hopf algebra automor-
phism.

For l ∈ Z and 1 ≤ i ≤ N we will use the notation

[Ki; l]qi = [Ki; l] =
qliKi − q−li K−1

i

qi − q−1
i

,

and for any m ∈ N0 we define[
Ki; l
m

]
qi

=
[Ki; l]qi [Ki; l − 1]qi . . . [Ki; l −m+ 1]qi

[m]qi !
=

m∏
j=1

ql+1−j
i Ki − q−(l+1−j)

i K−1
i

qji − q
−j
i

,

where, as usual, we interpret this as 1 when m = 0. Note that[
Ki; l

1

]
qi

= [Ki; l]qi .

These expressions should be considered as elements in Uq(g). We will see in Propo-
sition 2.24 that they in fact belong to the restricted integral form UAq (g).

Lemma 2.20. Let m ∈ N0, l ∈ Z and 1 ≤ i ≤ N . Then the following relations
hold.

a) We have

q
−(m+1)
i

[
Ki; l
m+ 1

]
qi

= K−1
i q−li

[
Ki; l − 1

m

]
qi

+

[
Ki; l − 1
m+ 1

]
qi

and

qm+1
i

[
Ki; l
m+ 1

]
qi

= Kiq
l
i

[
Ki; l − 1

m

]
qi

+

[
Ki; l − 1
m+ 1

]
qi

.

b) If l ≥ 0 then [
Ki; l
m

]
qi

=

m∑
j=0

q
l(m−j)
i

[
l
j

]
qi

K−ji

[
Ki; 0
m− j

]
qi

.

c) If l < 0 then[
Ki; l
m

]
qi

=

m∑
j=0

(−1)jq
l(j−m)
i

[
−l + j − 1

j

]
qi

Kj
i

[
Ki; 0
m− j

]
qi

.
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Proof. a) To verify the first equation we use induction on m. For m = 0 one
computes

q−1
i

[
Ki; l

1

]
qi

=
ql−1
i Ki − q−l−1

i K−1
i

qi − q−1
i

=
ql−1
i Ki − q−(l−1)

i K−1
i + q−li (qi − q−1

i )K−1
i

qi − q−1
i

= q−li K−1
i +

ql−1
i Ki − q−(l−1)

i K−1
i

qi − q−1
i

= q−li K−1
i

[
Ki; l − 1

0

]
qi

+

[
Ki; l − 1

1

]
qi

as desired. Assume that the assertion is proved for m− 1 ≥ 0 and compute

q
−(m+1)
i

[
Ki; l
m+ 1

]
qi

= q−mi

[
Ki; l
m

]
qi

ql−m−1
i Ki − q−(l−m+1)

i K−1
i

qm+1
i − q−(m+1)

i

=

(
K−1
i q−li

[
Ki; l − 1
m− 1

]
qi

+

[
Ki; l − 1

m

]
qi

)
ql−m−1
i Ki − q−(l−m+1)

i K−1
i

qm+1
i − q−(m+1)

i

= K−1
i q−li

[
Ki; l − 1
m− 1

]
qi

ql−m−1
i Ki − q−(l−m+1)

i K−1
i

qm+1
i − q−(m+1)

i

+

[
Ki; l − 1

m

]
qi

q
−(l−m−1)
i K−1

i − q
−(l−m+1)
i K−1

i

qm+1
i − q−(m+1)

i

+

[
Ki; l − 1
m+ 1

]
qi

= K−1
i q−li

[
Ki; l − 1

m

]
qi

(
q−1
i

qm+1
i − q−(m+1)

i

(qmi − q−mi ) +
qm+1
i − qm−1

i

qm+1
i − q−(m+1)

i

)
+

[
Ki; l − 1
m+ 1

]
qi

= K−1
i q−li

[
Ki; l − 1

m

]
qi

+

[
Ki; l − 1
m+ 1

]
qi

.

This yields the first equality. Applying the automorphism β to this equality yields

the second claim, where we note that the terms

[
Ki; l
m

]
qi

are fixed under β for all

l ∈ Z and m ∈ N0.
b) We use induction on l. Assume without loss of generality that m > 0. For

l = 0 the assertion clearly holds. To check the inductive step we use a) and the
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inductive hypothesis to calculate[
Ki; l + 1

m

]
qi

= K−1
i qm−l−1

i

[
Ki; l
m− 1

]
qi

+ qmi

[
Ki; l
m

]
qi

= K−1
i qm−l−1

i

m−1∑
j=0

q
l(m−1−j)
i

[
l
j

]
qi

K−ji

[
Ki; 0

m− 1− j

]
qi

+ qmi

m∑
j=0

q
l(m−j)
i

[
l
j

]
qi

K−ji

[
Ki; 0
m− j

]
qi

= qm−l−1
i

m∑
j=1

q
l(m−j)
i

[
l

j − 1

]
qi

K−ji

[
Ki; 0
m− j

]
qi

+ qmi

m∑
j=0

q
l(m−j)
i

[
l
j

]
qi

K−ji

[
Ki; 0
m− j

]
qi

=

m∑
j=0

q
(l+1)(m−j)
i

[
l + 1
j

]
qi

K−ji

[
Ki; 0
m− j

]
qi

,

taking into account Lemma 2.1 in the last step.
c) We first show

m∏
k=1

q−ki Ki − qkiK
−1
i

qki − q
−k
i

=

m∑
j=0

(−1)jq
−(j−m)
i Kj

i

m−j∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

by induction on m. For m = 0 this relation clearly holds. If it holds for m ≥ 0 then
using the inductive hypothesis we get

m+1∏
k=1

q−ki Ki − qkiK
−1
i

qki − q
−k
i

=

m+1∏
k=1

q−ki Ki − qkiK
−1
i

qki − q
−k
i

+ qm+1
i

m+1∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

− qm+1
i

Ki −K−1
i

qm+1
i − q−(m+1)

i

m∏
k=1

q−ki Ki − qkiK
−1
i

qki − q
−k
i

= qm+1
i

m+1∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

+

(
q
−(m+1)
i Ki − qm+1

i K−1
i

qm+1
i − q−(m+1)

i

− qm+1
i Ki − qm+1

i K−1
i

qm+1
i − q−(m+1)

i

) m∑
j=0

(−1)jq
−(j−m)
i Kj

i

m−j∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

= qm+1
i

m+1∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

−Ki

m∑
j=0

(−1)jq
−(j−m)
i Kj

i

m−j∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

= qm+1
i

m+1∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

+Ki

m+1∑
j=1

(−1)jq
−(j−m−1)
i Kj−1

i

m+1−j∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

=

m+1∑
j=0

(−1)jq
−(j−m−1)
i Kj

i

m+1−j∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i
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as desired.
Let us now prove the assertion. For l = −1 we obtain

[
Ki;−1
m

]
qi

=

m∏
k=1

q−ki Ki − qkiK
−1
i

qki − q
−k
i

=

m∑
j=0

(−1)jq
−(j−m)
i Kj

i

m−j∏
k=1

q1−k
i Ki − q−(1−k)

i K−1
i

qki − q
−k
i

=

m∑
j=0

(−1)jq
−(j−m)
i Kj

i

[
Ki; 0
m− j

]
qi

using the above calculation. Assume now that the claim holds for some l < 0 and
all m ∈ N0. For l − 1 and m = 0 the assertion clearly holds too. Using induction
on m and applying the second formula from a) we get

[
Ki; l − 1

m

]
qi

= qmi

[
Ki; l
m

]
qi

−Kiq
l
i

[
Ki; l − 1
m− 1

]
qi

= qmi

m∑
j=0

(−1)jq
l(j−m)
i

[
−l + j − 1

j

]
qi

Kj
i

[
Ki; 0
m− j

]
qi

−Kiq
l
i

m−1∑
j=0

(−1)jq
(l−1)(j−m+1)
i

[
−l + j
j

]
qi

Kj
i

[
Ki; 0

m− 1− j

]
qi

= qmi

m∑
j=0

(−1)jq
l(j−m)
i

[
−l + j − 1

j

]
qi

Kj
i

[
Ki; 0
m− j

]
qi

+ qli

m∑
j=1

(−1)jq
(l−1)(j−m)
i

[
−l + j − 1
j − 1

]
qi

Kj
i

[
Ki; 0
m− j

]
qi

=

m∑
j=0

(−1)jq
(l−1)(j−m)
i

[
−l + j
j

]
qi

Kj
i

[
Ki; 0
m− j

]
qi

as claimed, again taking into account Lemma 2.1. �

We collect some more formulas.

Lemma 2.21. Assume m ∈ N and n ∈ N0. Then we have

n∑
j=0

(−1)jq
m(n−j)
i

[
m+ j − 1

j

]
qi

Kj
i

[
Ki; 0
m

]
qi

[
Ki; 0
n− j

]
qi

=

[
Ki; 0
m

]
qi

[
Ki;−m

n

]
qi

=

[
m+ n
n

]
qi

[
Ki; 0
m+ n

]
qi

for all i = 1, . . . , N .
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Proof. The first equality follows from Lemma 2.20 c). For the second equality we
compute[

Ki; 0
m

]
qi

[
Ki;−m

n

]
qi

=

m∏
j=1

q1−j
i Ki − q−(1−j)

i K−1
i

qji − q
−j
i

n∏
k=1

q−m+1−k
i Ki − q−(−m+1−k)

i K−1
i

qki − q
−k
i

=

m∏
j=1

q1−j
i Ki − q−(1−j)

i K−1
i

qji − q
−j
i

m+n∏
k=m+1

q1−k
i Ki − q−(1−k)

i K−1
i

qk−mi − q−(k−m)
i

=

[
m+ n
n

]
qi

m+n∏
j=1

q1−j
i Ki − q−(1−j)

i K−1
i

qji − q
−j
i

=

[
m+ n
n

]
qi

[
Ki; 0
m+ n

]
qi

as desired. �

Lemma 2.22. Given any l ∈ Z,m ∈ N0 we have[
Ki; l
m

]
qi

E
(r)
i = E

(r)
i

[
Ki; l + 2r

m

]
qi[

Ki; l
m

]
qi

F
(r)
i = F

(r)
i

[
Ki; l − 2r

m

]
qi

for all r ∈ N0.

Proof. We compute[
Ki; l
m

]
qi

E
(r)
i =

m∏
j=1

ql+1−j
i Ki − q−(l+1−j)

i K−1
i

qji − q
−j
i

E
(r)
i

= E
(r)
i

m∏
j=1

ql+1−j+2r
i Ki − q−(l+1−j+2r)

i K−1
i

qji − q
−j
i

= E
(r)
i

[
Ki; l + 2r

m

]
qi

as desired. The proof of the second formula is analogous. �

According to Lemma 2.11 We have

[Ei, F
m
i ] = [m]qiF

m−1
i [Ki; 1−m]qi

for m ≥ 1. This can also be written in the form

[Ei, F
(m)
i ] = F

(m−1)
i [Ki; 1−m]qi .

Let us record a more general commutation relation.

Proposition 2.23. We have

E
(r)
i F

(s)
i =

∑
r,s≥t≥0

F
(s−t)
i E

(r−t)
i

[
Ki; r − s

t

]
qi

=
∑

r,s≥t≥0

F
(s−t)
i

[
Ki; 2t− r − s

t

]
qi

E
(r−t)
i

for all r, s ∈ N0.
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Proof. Let us verify the first equality. For r = 0 and s ∈ N0 arbitrary the for-
mula clearly holds. For r = 1 and s ∈ N0 arbitrary the formula follows from the
computation just before the proposition.

Assume that the equality is true for some r ≥ 1 and all s ∈ N0. Then we compute

E
(r+1)
i F

(s)
i =

1

[r + 1]qi
E

(r)
i EiF

(s)
i

=
1

[r + 1]qi
(E

(r)
i F

(s−1)
i [Ki; 1− s] + E

(r)
i F

(s)
i Ei)

=
1

[r + 1]qi

∑
r,s−1≥t≥0

F
(s−1−t)
i E

(r−t)
i

[
Ki; r − s+ 1

t

]
qi

[Ki; 1− s]

+
1

[r + 1]qi

∑
r,s≥t≥0

F
(s−t)
i E

(r−t)
i

[
Ki; r − s

t

]
qi

Ei

=
1

[r + 1]qi

∑
r+1,s≥t+1≥1

F
(s−1−t)
i E

(r−t)
i

[
Ki; r − s+ 1

t

]
qi

[Ki; 1− s]

+
1

[r + 1]qi

∑
r,s≥t≥0

[r + 1− t]qiF
(s−t)
i E

(r+1−t)
i

[
Ki; r − s+ 2

t

]
qi

=
1

[r + 1]qi

∑
r+1,s≥t≥1

F
(s−t)
i E

(r+1−t)
i

[
Ki; r − s+ 1

t− 1

]
qi

[Ki; 1− s]

+
1

[r + 1]qi

∑
r+1,s≥t≥0

[r + 1− t]qiF
(s−t)
i E

(r+1−t)
i

[
Ki; r − s+ 2

t

]
qi

,

using Lemma 2.22. Therefore it suffices to show[
Ki; r − s+ 1

t− 1

]
qi

[Ki; 1− s] + [r + 1− t]qi
[
Ki; r − s+ 2

t

]
qi

= [r + 1]qi

[
Ki; r + 1− s

t

]
qi

for r, s ≥ t ≥ 1; note that the contribution corresponding to t = 0 is covered by the
second term in the previous expression.

We compute the left-hand side,[
Ki; r − s+ 1

t− 1

]
qi

[Ki; 1− s] + [r + 1− t]qi
[
Ki; r − s+ 2

t

]
qi

=
[Ki; r − s+ 1] . . . [Ki; r − s− t+ 3]

[t]qi !

(
[t]qi [Ki; 1− s] + [r + 1− t]qi [Ki; r − s+ 2]

)
The expression in parentheses here is

([t]qi [Ki; 1− s] + [r + 1− t]qi [Ki; r − s+ 2])

= 1
(qi−q−1

i )2

(
(qti − q−ti )(q1−s

i Ki − q−(1−s)
i K−1

i )

+ (qr+1−t
i − q−(r+1−t)

i )(qr−s+2
i Ki − q−(r−s+2)

i K−1
i )

)
= 1

(qi−q−1
i )2

(
(q2r+3−t−s
i − q−t+1−s

i )Ki + (q−2r−3+t+s
i − qt−1+s

i )K−1
i

)
= 1

(qi−q−1
i )2

(qr+1
i − q−(r+1)

i )(qr−s+2−t
i Ki − q−(r−s+2−t)

i K−1
i )

= [r + 1]qi [Ki; r − s+ 2− t],



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 39

which yields the claim.
The second equality follows from Lemma 2.22. �

We denote by UAq (n+) the subalgebra of UAq (g) generated by the divided powers

E
(t1)
1 , . . . , E

(tN )
N with tj ∈ N0, and let UAq (n−) be the subalgebra generated by

the corresponding divided powers F
(t1)
1 , . . . , F

(tN )
N . Moreover we let UAq (h) be the

intersection of UAq (g) with Uq(h).

The algebras UAq (n±) will be studied in greater detail later on. Here we shall

determine the structure of UAq (h), see Theorem 6.7 in [56].

Proposition 2.24. The algebra UAq (h) is free as an A-module, with basis given by
all elements of the form

Kλ

N∏
i=1

Ksi
i

[
Ki; 0
mi

]
qi

where si ∈ {0, 1}, mi ∈ N0 and λ belongs to a set of representatives of the cosets of
Q in P.

Proof. Let us first show by induction on m that UAq (h) contains all elements[
Ki; l
m

]
qi

for l ∈ Z and m ∈ N0. The assertion clearly holds for m = 0. As-

sume that it holds for some m ≥ 0. Then Proposition 2.23 applied to r = s = m+1

and induction shows that

[
Ki; 0
m+ 1

]
qi

is contained in UAq (h). Finally, parts b) and c)

of Lemma 2.20 and induction allow us to conclude that

[
Ki; l
m+ 1

]
qi

is in UAq (h) for

all positive and negative integers l, respectively.
For λ ∈ P and s = (s1, . . . , sN ) ∈ ZN , m = (m1, . . . ,mN ) ∈ NN0 let us abbreviate

K(λ, s,m) = Kλ

N∏
i=1

Ksi
i

[
Ki; 0
mi

]
qi

.

According to the definition of UAq (h) and our above considerations, these elements

are all contained in UAq (h).

Let us writeH for theA-linear span of all elements of the formKλ

∏N
i=1

[
Ki; li
mi

]
qi

with λ ∈ P, li ∈ Z and mi ∈ N0. Then H ⊂ UAq (h). We claim that H is
closed under multiplication. For this, it suffices to consider products of the form[
Ki; l
m

]
qi

[
Ki; l

′

m′

]
qi

with l, l′ ∈ Z, m,m′ ∈ N0. Using Lemma 2.20, we can re-

duce to the case l = l′ = 0, which follows from Lemma 2.21 by induction on
m′. Next, note that according to Proposition 2.23 and Lemma 2.22, the A-module
UAq (n−)HUAq (n+) is closed under multiplication, and therefore agrees with UAq (g).

This implies H = UAq (h).
Now fix a set of coset representatives of Q in P, which we will denote temporarily

by R. Let us write L for the A-linear span of all K(λ, s,m) with λ ∈ R and
s = (s1, . . . , sN ) ∈ {0, 1}N ,m = (m1, . . . ,mN ) ∈ NN0 . We will prove that L
contains K(λ, t,m) for all λ ∈ P, t ∈ ZN , m ∈ NN0 by induction on t. For this, it

is enough to show that L contains
∏N
i=1K

ti
i

[
Ki; 0
mi

]
qi

for all t ∈ ZN and m ∈ NN0 .

This is trivially true for t ∈ {0, 1}N and any m. From the definition of

[
Ki;−mi

ti + 1

]
qi
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we can write

Kti+2
i = aKi

[
Ki;−mi

ti + 1

]
qi

+

ti∑
k=−ti

bkK
k
i

for some a, b−ti , . . . , bti ∈ A, and likewise

K−ti−1
i = a′

[
Ki;−mi

ti + 1

]
qi

+

ti+1∑
k=−ti+1

b′kK
k
i

for some a′, b′−ti+1, . . . , b
′
ti+1 ∈ A. Using the second equality from Lemma 2.21 we

therefore obtain

Kti+2
i

[
Ki; 0
mi

]
qi

= a

[
mi + ti + 1
ti + 1

]
qi

Ki

[
Ki; 0

mi + ti + 1

]
qi

+

ti∑
k=−ti

bkK
k
i

[
Ki; 0
mi

]
qi

,

K−ti−1
i

[
Ki; 0
mi

]
qi

= a′
[
mi + ti + 1
ti + 1

]
qi

[
Ki; 0

mi + ti + 1

]
qi

+

ti+1∑
k=−ti+1

b′kK
k
i

[
Ki; 0
mi

]
qi

.

Performing an induction on ti successively for i = 1, . . . , N , we see that every
K(λ, t,m) is a linear combination of the elements K(λ, s,m) with s ∈ {0, 1}N .
Taking into account Lemma 2.20 b), c) we conclude L = H = UAq (h) as desired.

It remains to show that the elements K(λ, s,m) in L are linearly independent
over A. For this it suffices to observe that the elements K(0, s,m) with s ∈ {0, 1}N
and m = (m1, . . . ,mN ) satisfying mj ≤ m for all j = 1, . . . , N span the 2N (m+1)N -
dimensional subspace of Uq(g) over Q(s) generated by all elements of the form
Kr1

1 · · ·K
rN
N such that −m ≤ ri ≤ m+ 1 for all i. �

It will be shown later on that UAq (g) is indeed an integral form of the quantized
universal enveloping algebra Uq(g) over K = Q(s) in the sense that there is a
canonical isomorphism Q(s)⊗A UAq (g) ∼= Uq(g).

Using the integral form one can also show that Uq(g) tends to the classical
universal enveloping algebra U(g) as q tends to 1. More precisely, let K be a field
and let U1(g) = UAq (g)⊗A K be the algebra obtained by extension of scalars from
A to K such that s is mapped to 1 ∈ K.

Recall that the classical universal enveloping algebra U(g) of g over K is the
K-algebra with generators Ei, Fi, Hi for 1 ≤ i ≤ N satisfying

[Hi, Hj ] = 0

[Hi, Ej ] = aijEj

[Hi, Fj ] = −aijFj
[Ei, Fj ] = δijHj

for all 1 ≤ i, j ≤ N and the Serre relations

1−aij∑
k=0

(−1)k
(

1− aij
k

)
Eki EjE

1−aij−k
i = 0

1−aij∑
k=0

(−1)k
(

1− aij
k

)
F ki FjF

1−aij−k
i = 0

for i 6= j.

Proposition 2.25. Let U(g) be the universal enveloping algebra of g. Then there
exists a canonical surjective homomorphism U1(g)→ U(g) of Hopf algebras.
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Proof. Let us write ei, fi, hi for the generators Ei, Fi, [Ki; 0] viewed as elements
of U1(g), and similarly write kλ for Kλ. Moreover let Iq ⊂ UAq (g) be the ideal
generated by all elements Kλ − 1. We claim that U1(g)/I1 is isomorphic to U(g).

For this we need to verify that the generators ei, fi, hi ∈ U1(g)/I satisfy the
defining relations of U(g). Clearly the elements hi commute among themselves.
We compute

[[Ki; 0], Ej ] =
Ki −K−1

i

qi − q−1
i

Ej − Ej
Ki −K−1

i

qi − q−1
i

=
(1− q−aiji )Ki − (1− qaiji )K−1

i

qi − q−1
i

Ej

= [aij ]qiEj

in Uq(g)/Iq, and hence deduce [hi, ej ] = aijej in U1(g)/I1. Similarly one obtains
[hi, fj ] = −aijfj , and the relation [ei, fj ] = δijhj follows from the definitions.
Finally, to check the Serre relations for the ei and fj it suffices to observe that
quantum binomial coefficients become ordinary binomial coefficients at q = 1.

Hence we obtain an algebra homomorphism ι : U1(g)→ U(g) by sending ei, fi, hi
to Ei, Fi, Hi, respectively. This map is clearly surjective. It induces an isomorphism
U1(g)/I1 → U(g) whose inverse is obtained by using the universal property of U(g).

To check that this map is compatible with coproducts we use Lemma 2.18 to
calculate

∆̂([Ki; 0]) = [Ki; 0]⊗ 1 + 1⊗ [Ki; 0]

in Uq(g)/Iq, and the corresponding formulas for ∆̂(Ei), ∆̂(Fj) follow from the def-
initions. This yields the claim. �

Let us finally note that the integral form UAq (g) plays a prominent role in the
construction of canonical bases. More recently, it has appeared in connection with
categorification of quantum groups.

2.3. Verma modules. This section contains some basic definitions and results on
weight modules and Verma modules for Uq(g). Throughout, our basic assumption
is that K is a field and q = sL ∈ K× is not a root of unity. At this stage, some
constructions and results work for more general parameters q, but our interest is in
the case that q is not a root of unity anyway.

2.3.1. The parameter space h∗q . The notion of a (non-integral) weight for a rep-
resentation of the quantum enveloping algebra Uq(g) is more subtle than in the
classical case. To illustrate this, let us start with the case where the ground field
is K = C and q is a strictly positive real. This will be the main case of interest in
later chapters.

Let h ∈ R× with q = eh and put ~ = h/2π. One says that a vector v in a
representation of Uq(g) is a weight vector of weight λ ∈ h∗ = HomC(h,C) if it is a
common eigenvector for the action of Uq(h) with

Kµ · v = q(λ,µ)v, for all µ ∈ P.

Note, however, that the characters

Uq(h)→ C; Kµ 7→ q(λ,µ)

are not all distinct. Specifically, q(λ,·) ≡ 1 as a function on P whenever λ ∈ 2πi
h Q∨ =

i~−1Q∨. Therefore, the appropriate parameter space for weights is

h∗q = h∗/i~−1Q∨.
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For more general ground fields K, weights should be understood as algebra char-
acters of the Cartan part Uq(h) of Uq(g). The set of such characters is an abelian
group with product dual to the coproduct on Uq(h), namely for any characters
χ1, χ2 of Uq(h),

χ1χ2(K) = (χ1 ⊗ χ2)(∆̂K), for all K ∈ Uq(h).

This character group is isomorphic to Hom(P,K×), upon observing that Uq(h) is
the group algebra K[P]. In order to be consistent with the notation when K = C,
we will use a formal q-exponential notation for elements of Hom(P,K×), as follows.

Definition 2.26. The parameter space h∗q is the character group of Uq(h), writ-
ten additively. For an element λ ∈ h∗q we denote the corresponding character of

Uq(h) by χλ. The associated elements of Hom(P,K×) will be written as formal
q-exponentials,

P→ K×; µ 7→ q(λ,µ),

so that χλ(Kµ) = q(λ,µ) for all µ ∈ P.

To justify this notation, let us make some observations according to the proper-
ties of the base field K.

Firstly, consider the case where K is a field satisfying no further assumptions.
Let λ ∈ P be an integral weight. Note that (λ, µ) ∈ 1

LZ for all µ ∈ P, so it makes
sense to define a character of Uq(hq) by

χλ(Kµ) = q(λ,µ) = sL(λ,µ).

The map λ 7→ χλ is a homomorphism of P into the characters of Uq(h), and we
claim that it is injective. Indeed, if λ is in the kernel of this map, then we have
q(λ,µ) = 1 for all µ ∈ P. Since q is not a root of unity, this implies λ = 0. Therefore,
we obtain an embedding

P ⊂ h∗q

which is compatible with the formal q-exponential notation q(λ,µ) above.
Occasionally, we will consider the stronger condition that q = s2L, in which case

we have an embedding 1
2P ⊂ h∗q .

The other case of interest to us is that the field K is exponential and the param-
eter q is obtained by exponentiating an element h ∈ K. Recall that an exponen-
tial field is a field K of characteristic zero together with a group homomorphism
e• : K→ K×, which we will denote by e•(h) = eh. We shall assume that q = eh for
some element h ∈ K, and write q• for the group homomorphism K→ K× given by
q•(x) = ehx.

In this case we set h∗ = K ⊗Z P. We can associate to any λ ∈ h∗ the character
χλ given by

χλ(Kµ) = q(λ,µ) = eh(λ,µ).

Again, the map λ 7→ χλ is a homomorphism from h∗ to the characters of Uq(h),
and therefore induces a homomorphism

h∗ → h∗q ; λ 7→ χλ,

which is compatible with the formal q-exponential notation. Under the continuing
assumption that q is not a root of unity, the kernel of this map is ker(q•)Q∨, so we
obtain an embedding

h∗/ ker(q•)Q∨ ⊂ h∗q .

Of course, the prototypical example of an exponential field is K = C with the
standard exponential function. In this case, q• : C→ C× is surjective, with kernel
ker(q•) = (2πi/h)Z = i~−1Z. Using the fact that any character of Uq(h) is uniquely
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determined by its values on the generators K$i for i = 1, . . . , n, one can check that
the map h∗ → h∗q is a surjection, and we have an isomorphism

h∗q
∼= h∗/i~−1Q∨.

In other words, Definition 2.26 is consistent with our definition of h∗q at the start
of this subsection in the case K = C.

There is an action of the Weyl group W on the quantum weight space h∗q , induced

by the action on Hom(P,K×). Specifically, if w ∈W and λ ∈ h∗q then wλ is defined
by

q(wλ,µ) = q(λ,w−1µ)

for all µ ∈ P. This extends the usual action of W on P ⊂ h∗q .
We can extend the usual ordering on Q to h∗q as follows. Recall that we write

Q+ for the set of non-negative integer combinations of the simple roots.

Definition 2.27. We define a relation ≥ on h∗q by saying that

λ ≥ µ if λ− µ ∈ Q+.

Here we are identifying Q+ with its image in h∗q .

Since Q+ is embedded in h∗q , it is a simple matter to check that this is indeed a
partial order.

2.3.2. Weight modules and highest weight modules. Let V be a left module over
Uq(g). For any λ ∈ h∗q we define the weight space

Vλ = {v ∈ V | Kµ · v = q(µ,λ)v for all µ ∈ P}.
A vector v ∈ V is said to have weight λ iff v ∈ Vλ.

Definition 2.28. A module V over Uq(g) is called a weight module if it is the
direct sum of its weight spaces Vλ for λ ∈ h∗q . We say that λ is a weight of V if
Vλ 6= 0.

Every submodule of a weight module is again a weight module. This is a conse-
quence of Artin’s Theorem on linear independence of characters.

Definition 2.29. A Uq(g)-module V is called integrable if it is a weight module
whose weights all belong to P, and the operators Ei, Fj are locally nilpotent on V
for all 1 ≤ i, j ≤ N .

Such modules are sometimes referred to as type 1 modules.

Definition 2.30. A vector v in a weight module V is called primitive if

Ei · v = 0 for all i = 1, . . . , N.

A module of highest weight λ ∈ h∗q is a weight module V with a primitive cyclic
vector vλ ∈ V of weight λ.

If V is a weight module such that all weight spaces are finite dimensional, we
define the restricted dual of V to be the Uq(g)-module

V ∨ =
⊕
λ∈h∗q

Hom(Vλ,K),

with the left Uq(g)-module structure given by

(X · f)(v) = f(τ(X) · v).

Here τ is the automorphism from Lemma 2.16. It is clear that V ∨ is again a weight
module with (V ∨)λ = Hom(Vλ,K). Notice that we have a canonical isomorphism
V ∨∨ ∼= V since τ is involutive. If 0 → K → M → Q → 0 is an exact sequence
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of weight modules with finite dimensional weight spaces then the dual sequence
0→ Q∨ →M∨ → K∨ → 0 is again exact.

2.3.3. The definition of Verma modules. Let us now come to the definition of Verma
modules. Recall that Uq(b+) denotes the subalgebra of Uq(g) generated by the
elements Ei and Kλ. The projection

Uq(b+) ∼= Uq(h)⊗ Uq(n+)
id⊗ε−→ Uq(h)

which kills the generators Ei is an algebra morphism, and we can use this to extend
any character χ : Uq(h) → K to a character of Uq(b+) which sends the generators
Ei to zero. We write again χ for the resulting homomorphism Uq(b+)→ K.

Conversely, every algebra homomorphism Uq(b+)→ K vanishes on the elements
Ei, and therefore is determined by a homomorphism Uq(h)→ K. In particular, for
each λ ∈ h∗q we have the character χλ of Uq(b+) determined, as above, by

χλ(Kµ) = q(λ,µ), for all µ ∈ P.

Definition 2.31. The Verma module M(λ) associated to λ ∈ h∗q is the induced
Uq(g)-module

M(λ) = Uq(g)⊗Uq(b+) Kλ
where Kλ denotes the one-dimensional Uq(b+)-module K with the action induced
from the character χλ. The vector vλ = 1 ⊗ 1 ∈ Uq(g) ⊗Uq(b+) Kλ is called the
highest weight vector of M(λ).

By construction, M(λ) for λ ∈ h∗q is a highest weight module of highest weight
λ, and every other highest weight module of highest weight λ is a quotient of M(λ).

Using Proposition 2.14 one checks that M(λ) is free as a Uq(n−)-module. More
specifically, the natural map Uq(n−) → M(λ) given by Y 7→ Y · vλ sends Uq(n−)µ
bijectively on to M(λ)λ−µ.

As in the classical case, the Verma module M(λ) contains a unique maximal
submodule.

Lemma 2.32. The Verma module M(λ) contains a unique maximal proper sub-
module I(λ), namely the linear span of all submodules not containing the highest
weight vector vλ.

Proof. Since every submodule U of M(λ) is a weight module, it is a proper sub-
module iff it does not contain the highest weight vector. That is, U is contained
in the sum of all weight spaces different from M(λ)λ. In particular, the sum I(λ)
of all proper submodules does not contain vλ, which means that I(λ) is the unique
maximal proper submodule of M(λ). �

The resulting simple quotient module M(λ)/I(λ) will be denoted V (λ). It is
again a weight module, and all its weight spaces are finite dimensional. We may
therefore form the restricted dual V (λ)∨ of V (λ). Note that V (λ)∨ is simple for any
λ ∈ h∗q because V (λ)∨∨ ∼= V (λ) is simple. Since V (λ)∨ is again a highest weight
module of highest weight λ we conclude V (λ)∨ ∼= V (λ).

2.4. Characters of Uq(g). Unlike the classical case, the quantized enveloping al-
gebras Uq(g) admit several one-dimensional representations, with a corresponding
multiplicity for all finite dimensional representations of Uq(g). We will only really
be interested in the integrable (type 1) finite dimensional modules, but at certain
points we will need to acknowledge the existence of their non-integrable analogues.

Definition 2.33. We write Xq for the set of weights ω ∈ h∗q satisfying

q(ω,α) = ±1, for all α ∈ Q.
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Proposition 2.34. The algebra characters of Uq(g) are in one-to-one correspon-
dence with elements of Xq. Specifically, for every ω ∈ Xq, there is an algebra
character χω : Uq(g)→ K defined on generators by

χω(Kµ) = q(ω,µ), χω(Ei) = χω(Fi) = 0,

and every algebra character of Uq(g) is of this form.

Proof. One can directly check that the formulas for χω respect the defining relations
of Uq(g). Conversely, suppose χ is an algebra character of Uq(g). Considering the

restriction of χ to Uq(h), there is ω ∈ h∗q with χ(Kµ) = q(ω,µ) for all µ ∈ P. Since

0 = [χ(Ei), χ(Fi)] =
q(ω,αi) − q−(ω,αi)

qi − q−1
i

,

we have q(ω,αi) = ±1 for all i, so ω ∈ Xq. Finally, from the relation KµEjK
−1
µ =

q(αj ,µ)Ej and the fact that q is not a root of unity, we deduce that χ(Ej) = 0, and
similarly χ(Fj) = 0. �

Definition 2.35. We define the extended integral weight lattice by

Pq = P + Xq.

We also put P+
q = P+ + Xq.

Note that P ∩Xq = {0} by the assumption that q is not a root of unity.

2.5. Finite dimensional representations of Uq(sl(2,K)). In this section we dis-
cuss the finite dimensional representation theory of Uq(sl(2,K)). We work over a

field K containing the non-root of unity q = s2 ∈ K×, and we write s = q
1
2 for

simplicity.
When discussing Uq(sl(2,K)), we will use the following notation for the genera-

tors. Let α be the unique simple root and $ = 1
2α be the fundamental weight. We

write

E = E1, F = F1, K = K$, K2 = Kα = K1.

We warn the reader that with this notation one must replace Ki with K2 when
specializing formulas for Uq(g) in terms of Ei, Fi,Ki to formulas for Uqi(sl(2,K)).

We will often identify P with 1
2Z in the sequel, so that $ corresponds to 1

2 and

α corresponds to 1. Note that K acts on any vector v of weight m ∈ 1
2Z by

K · v = qmv.

It is not hard to check that the formulas

π 1
2
(E) =

(
0 q−

1
2

0 0

)
, π 1

2
(K) =

(
q

1
2 0

0 q−
1
2

)
, π 1

2
(F ) =

(
0 0

q
1
2 0

)
define a 2-dimensional irreducible representation π 1

2
: Uq(sl(2,K)) → M2(K). We

will write V ( 1
2 ) for this module.

In order to construct further simple modules we shall use the following specific
instance of Lemma 2.11. We recall the notation

[K2;m] =
qmK2 − q−mK−2

q − q−1

for m ∈ Z.
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Lemma 2.36. In Uq(sl(2,K)) we have

[E,Fm+1] =
1

q − q−1
[m+ 1]qF

m(q−mK2 − qmK−2) = [m+ 1]qF
m[K2;−m]

for all m ∈ N0.

Proposition 2.37. Let λ ∈ h∗q .

a) The Verma module M(λ) is simple if and only if λ /∈ P+
q .

b) If λ ∈ P+
q , so that λ = nα + ω with n ∈ 1

2N0, ω ∈ Xq then M(λ) has a
unique simple quotient V (λ) of highest weight λ and dimension 2n + 1. Up
to isomorphism, these are the only finite dimensional simple weight modules of
Uq(sl(2,K)).

c) If λ ∈ P+ then V (λ) is integrable, and these are the only simple integrable
Uq(sl(2,K))-modules up to isomorphism.

Proof. a) The Verma module M(λ) is non-simple if and only if it contains a prim-
itive vector of the form Fm+1 · vλ for some m ≥ 0. According to Lemma 2.36, this
occurs if and only if q−mq(λ,α) − qmq−(λ,α) = 0, or equivalently q(λ−m$,α) = ±1.
Putting ω = λ−m$ we have ω ∈ Xq and so λ = m$ + ω ∈ P+

q .

b) In the case λ = m$+ω ∈ P+
q , the simple quotient is spanned by {F i ·vλ | i =

0, . . .m}. Putting m = 2n we obtain the dimension formula. Moreover, any finite
dimensional simple Uq(sl(2,K))-module is necessarily a highest weight module, and
so a quotient of some Verma module M(λ).

c) Likewise, any simple integrable module is necessarily a highest weight module
with highest weight in P. Since F must act locally nilpotently, a) implies that
λ ∈ P+. �

In the sequel we will write V (n) for the integrable module V (nα) with n ∈ 1
2N0.

Let us give an explicit description of V (n).

Lemma 2.38. Let n ∈ 1
2N0. The module V (n) over Uq(sl(2,K)) has a K-linear

basis vn, vn−1, . . . , v−n+1, v−n such that

K · vj = qjvj ,

F · vj = vj−1,

E · vj = [n− j][n+ j + 1]vj+1.

Here we interpret vk = 0 if k is not contained in the set {n, n − 1, . . . ,−n}. If we
rescale this basis as

v(j) =
1

[n− j]!
vj

we have

K · v(j) = qjv(j),

F · v(j) = [n− j + 1]v(j−1),

E · v(j) = [n+ j + 1]v(j+1).

Proof. This is an explicit description of the basis obtained from applying the oper-
ator F to the highest weight vector vn. Since FK = qKF we obtain the action of
K on the vectors vj by induction, for the inductive step use

K · vj−1 = KF · vj = q−1FK · vj = qj−1F · vj = qj−1vj−1.

Moreover, Lemma 2.36 yields

EF r+1 · vn = [E,F r+1] · vn = [r + 1][2n− r]F r · vn
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for all r ∈ N0, hence setting r = n− j − 1 we get

E · vj = EFn−j · vn = [n− j][n+ j + 1]Fn−j−1 · vn
= [n− j][n+ j + 1]vj+1

The second set of equations follows immediately from these formulas, indeed, we
have

E · v(j) =
1

[n− j]!
E · vj =

[n+ j + 1]

[n− j − 1]!
vj+1 = [n+ j + 1]v(j+1),

F · v(j) =
1

[n− j]!
F · vj =

[n− j + 1]

[n− j + 1]!
vj−1 = [n− j + 1]v(j−1)

as desired. �

We point out that the labels of the basis vectors in Lemma 2.38 run over half-
integers if n is a half-integer, and over integers if n ∈ N0.

The non-integrable simple modules are obtained by twisting the integrable simple
modules by a character. Specifically, if n ∈ 1

2N and ω ∈ Xq then

V (nα+ ω) ∼= V (n)⊗ V (ω),

since both are simple modules of highest weight nα + ω. More generally, we have
the following.

Lemma 2.39. All weights of a finite dimensional weight module V for Uq(sl(2,K))
belong to Pq. Moreover, V admits a direct sum decomposition

V ∼=
⊕
ω∈Xq

Wω ⊗ V (ω)

where the Wω are finite dimensional integrable Uq(sl(2,K))-modules.

Proof. Let λ ∈ h∗q be a weight of V . If we fix v ∈ Vλ nonzero then Ek ·v is primitive

vector for some k ∈ N0. By Proposition 2.37 we must have λ + kα ∈ P+
q and so

λ ∈ Pq.
Now fix ω ∈ Xq. The subspace

VP+ω =
⊕
µ∈P

Vµ+ω

is invariant under the Uq(g)-action. We obtain a direct sum decomposition V =⊕
ω∈Xq

VP+ω. Putting Wω = VP+ω ⊗ V (−ω) yields the result. �

We can now prove complete reducibility for finite dimensional weight modules of
Uq(sl(2,K)).

Proposition 2.40. Every finite dimensional weight module of Uq(sl(2,K)) is com-
pletely reducible.

Proof. By Lemma 2.39, it suffices to proof the proposition for finite dimensional
integrable modules V . In this case, the weights of V belong to P.

Let µ ∈ P be maximal among the weights of V . Any vector v ∈ Vµ generates a
finite dimensional Uq(sl(2,K))-module isomorphic to V (µ). Since the intersection of
this submodule with Vµ is Kv, one checks that V contains a direct sum of dim(Vµ)
copies of V (µ) as a submodule.

Writing K for this submodule and Q = V/K for the corresponding quotient, we
obtain a short exact sequence 0 → K → V → Q → 0 of finite dimensional weight
modules. Using induction on dimension we may assume that Q is a direct sum
of simple modules. Moreover the dual sequence 0 → Q∨ → V ∨ → K∨ → 0, see
the constructions after Definition 2.28, is split by construction because the highest
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weight subspace of V ∨ maps isomorphically onto the highest weight subspace of
K∨. Applying duality again shows that the original sequence is split exact, which
means that V is a direct sum of simple modules. �

2.6. Finite dimensional representations of Uq(g). In this section we begin the
study of finite dimensional representations of Uq(g). Ultimately, in Section 2.9, we
will prove complete reducibility of finite dimensional weight modules and obtain a
classification the finite dimensional simple modules, although those results require
considerably more machinery than in the case g = sl(2,K) discussed above. For
more information we refer to [39], [57].

Throughout this section we assume that g is a semisimple Lie algebra and q =
sL ∈ K× is not a root of unity.

2.6.1. Rank-one quantum subgroups. For each 1 ≤ i ≤ N , we write Uqi(gi) ⊂ Uq(g)

for the subalgebra generated by Ei, Fi,K
±1
i . It is isomorphic as a Hopf algebra to

the subalgebra of Uqi(sl(2,K)) generated by E,F,K±2.
The classification of finite dimensional simple modules for Uqi(gi) is essentially

identical to that of Uqi(sl(2,K)): such modules are indexed by highest weights of

the form µ = nαi + ω where n ∈ 1
2N0 and q

(ω,·)
i denotes a character of Zαi with

values in {±1}.
Note that if v ∈ Vλ is a vector of weight λ ∈ h∗q for some Uq(g)-module V , then

Ki acts on v by

Ki · v = q
(λ,α∨i )
i v.

In particular, if V is an integrable Uq(g)-module then it becomes an integrable
Uq(gi)-module by restriction, wherein vectors in Vλ have weight

1
2 (λ, α∨i ) ∈ 1

2Z
under the usual identification of half-integers with integral weights for Uqi(sl(2,K)).

2.6.2. Finite dimensional modules. As a consequence of the above remarks, we ob-
tain some basic structural results for finite dimensional Uq(g)-modules. We begin
with the analogue of Lemma 2.39, which will let us restrict our attention to inte-
grable modules.

Lemma 2.41. All the weights of a finite dimensional weight module V for Uq(g)
belong to Pq. Moreover, V admits a direct sum decomposition

V ∼=
⊕
ω∈Xq

Wω ⊗ V (ω)

where each Wω is a finite dimensional integrable Uq(g)-module and V (ω) is the one
dimensional representation with weight ω ∈ Xq.

Proof. Let λ ∈ h∗q and v ∈ Vλ be a nonzero weight vector. For each i = 1, . . . , N ,
we have

Ki · v = q(λ,αi)v.

Considering V as a Uqi(sl(2,K))-module by restriction, Lemma 2.39 implies that

q(λ,αi) ∈ ±qZ. It follows that λ ∈ Pq. The direct sum decomposition then follows
exactly as in the proof of Lemma 2.39. �

Proposition 2.42. The set of weights of any integrable Uq(g)-module V , and their
multiplicities, are invariant under the Weyl group.

Proof. Let 1 ≤ i ≤ N . By Proposition 2.40 V decomposes as a direct sum of
irreducible integrable Uqi(gi)-modules. It follows that the set of weights of V and
their multiplicities are invariant under the simple reflection si. Since these generate
W , the result follows. �
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Let us fix a dominant integral weight µ ∈ P+ and 1 ≤ i ≤ N . Then (α∨i , µ) ∈ N0,

and we claim that v = F
(α∨i ,µ)+1
i ·vµ is a primitive vector in M(µ). Indeed, Lemma

2.11 shows that Ei · v = 0, and Ej · v = 0 for j 6= i follows from the fact that
[Ej , Fi] = 0 and the primitivity of vλ. The vector v has weight si.µ, where si ∈W
denotes the simple reflection corresponding to αi and

w.λ = w(λ+ ρ)− ρ
denotes the shifted Weyl group action. Hence v generates a homomorphic image of
M(si.µ) inside M(µ). By slight abuse of notation we write M(si.µ) ⊂M(µ) for this
submodule, since it will be shown later that the homomorphism M(si.µ)→ M(µ)
is indeed injective.

We are now ready to describe the finite dimensional integrable quotients of Verma
modules, compare Section 5.9. in [39].

Theorem 2.43. Let λ ∈ P+. Then the largest integrable quotient L(λ) of M(λ) is
finite dimensional and given by

L(λ) = M(λ)

/ N∑
i=1

M(si.λ).

If λ ∈ h∗q\P+ then the Verma module M(λ) does not admit any nontrivial integrable
quotients.

Proof. It is clear that any integrable quotient of M(λ) must annihilate the sum of
the modules M(si.λ), because otherwise the action of Fi on vλ fails to be locally
finite.

In order to show that the action of Fi on any v ∈ L(λ) is locally nilpotent we use
that v can be written as a sum of terms F ·vλ where F is a monomial in F1, . . . , FN .
Let us show by induction on the degree r of F = Fi1 · · ·Fir that F ki · F · vλ = 0 for
some k ∈ N. For r = 0 the claim is obvious from the definition of L(λ). Assume
now F = FjY · vλ where Y is a monomial of degree r and 1 ≤ j ≤ N . If j = i then
the claim follows from our inductive hypothesis, so let us assume j 6= i. Writing
u = Y · vλ we have

Fi · (Fj · u) = (Fi → Fj) · u+K−1
i FjKiFi · u.

By applying this relation iteratively we obtain F ki ·(Fj ·u) = 0 in L(λ) for a suitable
k ∈ N, using the inductive hypothesis and the fact that the Serre relations imply

F
1−aij
i → Fj = 0. It follows that L(λ) is integrable, and it is indeed the largest

integrable quotient of M(λ).
By Proposition 2.42, the set of weights of L(λ) is invariant under the Weyl group

action. Since each weight space is finite dimensional this implies that L(λ) is finite
dimensional.

Finally, suppose M(λ) admits a nontrivial integrable quotient for some λ ∈
h∗q \ P+. The definition of integrability implies λ ∈ P. But since λ /∈ P+, we
have (α∨i , λ) /∈ N0 for some i. It follows that the Uqi(gi)-module generated by vλ
is infinite dimensional and simple by Proposition 2.37, and hence Fi does not act
locally nilpotently on any quotient of M(λ). �

Note that we will ultimately observe, in Theorem 2.97, that when µ ∈ P, the
finite dimensional quotients L(µ) are irreducible, and hence L(µ) = V (µ).

Corollary 2.44. The Verma module M(λ) admits a finite dimensional quotient if
and only if λ ∈ P+

q .

Proof. If M(λ) admits a nontrivial finite dimensional quotient then Lemma 2.41
implies λ ∈ Pq, so λ = µ + ω for some µ ∈ P, ω ∈ Xq. It is easy to check that
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M(µ) ∼= M(λ) ⊗ V (−ω). It follows that M(µ) has a nontrivial finite dimensional
hence integrable quotient. Theorem 2.43 implies µ ∈ P+, so λ ∈ P+

q .

Conversely, if λ = µ + ω ∈ P+
q then M(λ) ∼= M(µ) ⊗ V (ω) admits the finite

dimensional quotient L(λ)⊗ V (ω). �

The following technical lemma says roughly that in weight spaces sufficiently
close to the highest weight, the finite dimensional module L(µ) resembles the Verma
module M(µ).

Lemma 2.45. Let µ =
∑
imi$i ∈ P+. If λ =

∑
i liαi ∈ Q+ with li ≤ mi for all

i = 1, . . . , N then L(µ)µ−λ ∼= M(µ)µ−λ ∼= Uq(n−)−λ as vector spaces, via the map
which sends F ∈ Uq(n−)−λ to F · vµ ∈ L(µ)µ−λ.

Proof. Note that si.µ = µ −miαi. Therefore, with the given conditions on λ we
have µ− λ 6≤ si.µ for every i = 1, . . . , N , and the first claim follows from Theorem
2.43. The second claim then follows from the definition of ω. �

If ν =
∑
i ni$i ∈ P+, we will use the notation L(−ν) to denote the finite

dimensional module L(ν) twisted by the automorphism ω from Lemma 2.15, so
that the action of X ∈ Uq(g) on v ∈ L(−ν) = L(ν) is given by ω(X) · v. In this
case we have L(−ν)−ν+λ

∼= Uq(n+)λ provided li ≤ ni for all i = 1, . . . , N .
An important fact is that finite dimensional integrable representations separate

the points of Uq(g), compare for instance Section 7.1.5 of [48].

Theorem 2.46. The finite dimensional integrable representations of Uq(g) separate
points. That is, if X ∈ Uq(g) satisfies π(X) = 0 for all finite dimensional integrable
representations π : Uq(g)→ End(V ), then X = 0.

Proof. Let us write vµ for the highest weight vector in L(µ) and v−ν for the lowest
weight vector in L(−ν). Assume X 6= 0 and write this element as a finite sum

X =
∑
i,η,j

fijKηeij ,

where fij ∈ Uq(n−)−βi , eij ∈ Uq(n+)γj for pairwise distinct weights β1, . . . , βm
and γ1, . . . , γn, and η ∈ P. We shall show that X acts in a nonzero fashion on
L(−ν)⊗ L(µ) for suitable µ, ν ∈ P+.

Assume this is not the case, so that X acts by zero on all L(−ν) ⊗ L(µ) for
µ, ν ∈ P+. Let γt be maximal among the γj such that some fitKηeit is nonzero.

For each i, j we have ∆̂(eij) = eij ⊗Kγj + b where b is a sum of terms in Uq(n+)⊗
(Uq(b+) ∩ ker(ε̂)) which vanish on v−ν ⊗ vµ. We thus get

eij · (v−ν ⊗ vµ) = q(γj ,µ)eij · v−ν ⊗ vµ.

Moreover, since ∆̂(Kη) = Kη ⊗Kη we obtain

Kηeij · (v−ν ⊗ vµ) = q(η,µ−ν+γj)q(γj ,µ)eij · v−ν ⊗ vµ.

Finally, using that ∆̂(fij) = K−βi ⊗ fij + c where c ∈ (Uq(b−) ∩ ker(ε̂))⊗ (Uq(n−)
we get

fijKηeij · (v−ν ⊗ vµ) = q(βi,ν−γj)q(η,µ−ν+γj)q(γj ,µ)eij · v−ν ⊗ fij · vµ + r,

where r is a sum of terms in L(−ν)−ν+δ ⊗ L(µ) with δ 6= γt. It follows that the
component of X · (v−ν ⊗ vµ) contained in L(−ν)−ν+γt ⊗ L(µ) is

0 =
∑
i,η

q(βi,ν−γt)q(η,µ−ν+γt)q(γt,µ)eit · v−ν ⊗ fit · vµ.

Assume without loss of generality that all eit, fit for 1 ≤ i ≤ m are nonzero, and
using Lemma 2.45, fix ν large enough such that eit ·v−ν is nonzero for all i. Choosing
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µ large enough we get that the vectors eit · v−ν ⊗ fit · vµ are linearly independent.
Hence

0 =
∑
η

q(βi,ν−γt)q(η,µ−ν+γt)q(γt,µ)

for all i in this case. Cancelling the common nonzero factors q(βi,ν−γt)q(γt,µ) and
writing cη = q(η,γt−ν) we deduce

0 =
∑
η

q(η,µ−ν+γt) =
∑
η

cηq
(η,µ) =

∑
η

cηχη(Kµ).

Consider the subsemigroup P ⊂ P+ of all µ ∈ P+ such that the vectors eit · v−ν ⊗
fit ·vµ are linearly independent. Since the characters χη on P are pairwise distinct,

Artin’s Theorem on the linear independence of characters implies q(η,γt−ν) = cη = 0
for all η, which is clearly impossible.

Hence our initial assumption that X acts by zero on all modules of the form
V (−ν)⊗ V (µ) was wrong. This finishes the proof. �

2.7. Braid group action and PBW basis. In this section we explain the con-
struction of the PBW basis for Uq(g) and its integral form. A detailed exposition is
given in part VI of [57] and chapter 8 of [39]; we shall follow the discussion in [39].
In order to define the PBW basis one first constructs an action of the braid group
Bg of g on Uq(g) and its integrable modules. Throughout this section we assume
that q = sL ∈ K× is not a root of unity.

Let g be a semisimple Lie algebra of rank N . The braid group Bg is obtained
from the Cartan matrix (aij) of g as follows, see [17] Section 8.1. Let mij be equal
to 2, 3, 4, 6 iff aijaji equals 0, 1, 2, 3, respectively. By definition, Bg is the group
with generators Tj for j = 1, . . . , N and relations

TiTjTi · · · = TjTiTj · · ·

for all 1 ≤ i, j ≤ N with i 6= j, where there are mij terms on each side of the
equation.

For g of type A one obtains the classical braid groups in this way. In general,
there is a canonical quotient homomorphism Bg → W , sending the generators Tj
to the simple reflections sj . Indeed, the Weyl group W is the quotient of Bg by the
relations T 2

j = 1 for j = 1, . . . , N .

2.7.1. The case of sl(2,K). We use the notation for Uq(sl(2,K)) from Section 2.5,
in particular we write K = K$ and K2 = Kα. Let V be an integrable module
over Uq(sl(2,K)). We label the weights by 1

2Z, so that v ∈ V is of weight m if
K · v = qmv. The corresponding weight space is denoted by Vm.

We define operators T± : V → V by

T+(v) =
∑

r,s,t≥0
r−s+t=2m

(−1)sqs−rtF (r)E(s)F (t) · v

T−(v) =
∑

r,s,t≥0
r−s+t=2m

(−1)sqrt−sF (r)E(s)F (t) · v

for v ∈ Vm, where E(i) = Ei/[i]! and F (j) = F j/[j]! are the divided powers. Note
that these operators are well-defined because the action of E and F on V is locally
finite. It is also clear that T± maps Vm to V−m for any weight m.
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Recall the basis v(n), v(n−1), . . . , v(−n) of V (n) from Lemma 2.38. According to
Lemma 2.38 we obtain the formulas

E(r) · v(j) =
[n+ j + 1][n+ j + 2] · · · [n+ j + r]

[r]!
· v(j) =

[
n+ j + r

r

]
v(j+r)

F (r) · v(j) =
[n− j + 1][n− j + 2] · · · [n− j + r]

[r]!
· v(j) =

[
n− j + r

r

]
v(j−r)

for the action of divided powers on these basis vectors, where we adopt the conven-
tion v(n+1) = 0 = v(−n−1).

Using these formulas shall derive explicit expressions for the action of the oper-
ators T± on the basis vectors v(j). As a preparation we state some properties of
q-binomial coefficients.

Lemma 2.47. Let a ∈ Z and b,m ∈ N0. Then

m∑
i=0

qai−b(m−i)
[

a
m− i

] [
b
i

]
=

[
a+ b
m

]
.

Proof. We proceed using induction on b. For b = 0 the sum reduces to the single
term

qa0−0(m−0)

[
a

m− 0

] [
0
0

]
=

[
a+ 0
m

]
.

Suppose the assertion holds for some b. Using Lemma 2.1 with q replaced by q−1

and the inductive hypothesis we compute

m∑
i=0

qai−(b+1)(m−i)
[

a
m− i

] [
b+ 1
i

]

=

m∑
i=0

qai−b(m−i)−m+i

[
a

m− i

](
q−i

[
b
i

]
+ qb−i+1

[
b

i− 1

])

=

m∑
i=0

qai−b(m−i)−m
[

a
m− i

] [
b
i

]

+

m∑
i=1

qai−b(m−i−1)−m+1

[
a

m− i

] [
b

i− 1

]

= q−m
[
a+ b
m

]
+

m−1∑
i=0

qai+a−b(m−1−i)+b−m+1

[
a

m− i− 1

] [
b
i

]
= q−m

[
a+ b
m

]
+ qa+b−m+1

[
a+ b
m− 1

]
=

[
a+ b+ 1

m

]
as desired. �

Lemma 2.48. For any k, l ∈ N0 we have

k∑
a=0

k∑
c=0

(−1)a+c+kq±(a+c−ac−k−kl)
[
k
a

] [
a+ l
k − c

] [
c+ l
c

]
= 1.
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Proof. Using

[
c+ l
c

]
= (−1)c

[
−l − 1
c

]
and −(a+ l)c−(l+1)(k−c) = c−ac−k−kl

we obtain

k∑
a=0

k∑
c=0

(−1)a+c+kq±(a+c−ac−k−kl)
[
k
a

] [
a+ l
k − c

] [
c+ l
c

]

=

k∑
a=0

k∑
c=0

(−1)a+kq±(a+c−ac−k−kl)
[
k
a

] [
a+ l
k − c

] [
−l − 1
c

]

=

k∑
a=0

(−1)a+kq±a
[
k
a

] k∑
c=0

q±(−(a+l)c−(l+1)(k−c))
[
a+ l
k − c

] [
−l − 1
c

]

=

k∑
a=0

(−1)a+kq±a
[
k
a

] [
a− 1
k

]
,

using Lemma 2.47 for the sum over c in the final step. The last factor in this
expression vanishes for 0 ≤ a− 1 < k, so only the summand for a = 0 survives. We
conclude

k∑
a=0

k∑
c=0

(−1)a+c+kq±(a+c−ac−k−kl)
[
k
a

] [
a+ l
k − c

] [
c+ l
c

]
= (−1)k

[
k
0

] [
−1
k

]
= (−1)k · 1 · (−1)k = 1

as claimed. �

We are now ready to obtain explicit formulas for the action of T± on the simple
module V (n).

Proposition 2.49. For V = V (n) and any j ∈ {n, n− 1, . . . ,−n} we have

T±(v(j)) = (−1)n−jq±(n−j)(n+j+1)v(−j).

In particular, the operators T± are invertible with inverses given by

T −1
± (v(j)) = (−1)n+jq∓(n+j)(n−j+1)v(−j) = (−q)∓2jT∓(v(j)).

Proof. The formulas for the action of divided powers before Lemma 2.47 imply

T±(v(j)) =
∑

r,s,t≥0
r−s+t=2j

(−1)sq±(s−rt)F (r)E(s)F (t) · v(j)

=
∑

r,s,t≥0
r−s+t=2j

(−1)sq±(s−rt)
[
n− j + t

t

]
F (r)E(s) · v(j−t)

=
∑

r,s,t≥0
r−s+t=2j

(−1)sq±(s−rt)
[
n+ j − t+ s

s

] [
n− j + t

t

]
F (r) · v(j+s−t)

=
∑

r,s,t≥0
r−s+t=2j

(−1)sq±(s−rt)
[
n− j + t− s+ r

r

] [
n+ j − t+ s

s

] [
n− j + t

t

]
v(−j).

Note that all terms in this sum with t > n+ j or r > n+ j must vanish, since the
vectors v(j−t) or v(j+s−t) = v(r−j) vanish in these cases. Also, when t ≤ n+ j, the
middle binomial coefficient can be rewritten as[

n+ j − t+ s
s

]
=

[
n+ j − t+ s
n+ j − t

]
,
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and the latter expression vanishes when s < 0. Using s = r + t − 2j we therefore
have to show

n+j∑
r,t=0

(−1)r+t−2jq±(r+t−2j−rt)
[
n+ j
r

] [
n− j + r
n+ j − t

] [
n− j + t

t

]
= (−1)n−jq±(n−j)(n+j+1).

Setting k = n+ j, l = n− j, a = r, c = t this amounts to

k∑
a,c=0

(−1)l−k+a+cq±(l−k+a+c−ac)
[
k
a

] [
l + a
k − c

] [
l + c
c

]
= (−1)lq±l(k+1),

hence the first claim follows from Lemma 2.48.
In order to verify the formula for T −1

± we compute

(−1)n+jq∓(n+j)(n−j+1)T±(v(−j))

= (−1)n+jq∓(n+j)(n−j+1)(−1)n+jq±(n+j)(n−j+1)v(j) = v(j),

and to check T −1
± (v(j)) = (−q)∓2jT∓(v(j)) we observe

q∓(n+j)(n−j+1) = q∓((n+j)(n−j)+n+j)

= q∓2jq∓((n+j)(n−j)+n−j) = q∓2jq∓(n−j)(n+j+1).

This finishes the proof. �

The inverses of T± can be described in a similar fashion to the way we defined
the operators T± themselves, as we discuss next.

Corollary 2.50. Let V be an integrable module over Uq(sl(2,K)). Then we have

T −1
+ (v) =

∑
r,s,t≥0

−r+s−t=2m

(−1)sqrt−sE(r)F (s)E(t) · v,

T −1
− (v) =

∑
r,s,t≥0

−r+s−t=2m

(−1)sqs−rtE(r)F (s)E(t) · v

for v ∈ Vm.

Proof. It suffices to consider V = V (n). Consider the involutive linear automor-
phism ωV : V → V given by ωV (v(j)) = v(−j). Using the automorphism ω from
Lemma 2.15 and the formulas before Lemma 2.47 we obtain

ω(X) · ωV (v) = ωV (X · v)

for all X ∈ Uq(sl(2,K)) and v ∈ V . Accordingly, the claim becomes T −1
± ωV =

ωV T∓. This in turn follows immediately from Proposition 2.49. �

Let us also record the following commutation relations.

Lemma 2.51. Let V be an integrable Uq(sl(2,K))-module and v ∈ V . Then we
have

T±(E · v) = −K±2F · T±(v)

T±(K · v) = K−1 · T±(v)

T±(F · v) = −EK∓2 · T±(v)
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and

E · T±(v) = −T±(FK∓2 · v)

K · T±(v) = T±(K−1 · v)

F · T±(v) = −T±(K±2E · v).

Proof. It suffices to consider V = V (n) for n ∈ 1
2N0. Since T± interchanges the

weight spaces with weights ±j for all j the formulas for the action of K are obvious.
Using Lemma 2.38 and Lemma 2.49 we compute

T±(E · v(j)) = [n+ j + 1]T±(v(j+1))

= (−1)n−j−1[n+ j + 1]q±(n−j−1)(n+j+2)v(−j−1)

= (−1)n−j−1[n+ j + 1]q±(n−j)(n+j)±(−n−j−2+2n−2j)v(−j−1)

= −q±(−2j−2)(−1)n−jq±(n−j)(n+j)±(n−j)[n+ j + 1]v(−j−1)

= −q±(−2j−2)(−1)n−jq±(n−j)(n+j+1)F · v(−j)

= −q±(−2j−2)F · T±(v(j))

= −K±2F · T±(v(j)),

and similarly

T±(F · v(j)) = [n− j + 1]T±(v(j−1))

= (−1)n−j+1[n− j + 1]q±(n−j+1)(n+j)v(−j+1)

= (−1)n−j+1[n− j + 1]q±(n−j)(n+j)±(n+j)v(−j+1)

= −q±2j(−1)n−jq±(n−j)(n+j)±(n−j)[n− j + 1]v(−j+1)

= −q±2j(−1)n−jq±(n−j)(n+j+1)E · v(−j)

= −q±2jE · T±(v(j))

= −EK∓2 · T±(v(j)).

The remaining formulas can be easily deduced from these relations. �

2.7.2. The case of general g. Now let g be an arbitrary semisimple Lie algebra.
Based on the constructions in the previous subsection we will define operators Ti
for i = 1, . . . , N acting on every integrable Uq(g)-module.

Specifically, let V be an integrable Uq(g)-module and recall that Uqi(gi) for

1 ≤ i ≤ N denotes the subalgebra of Uq(g) generated by Ei, Fi,K
±1
i . Using the

canonical embedding Uqi(gi) ⊂ Uq(g) we can view V as an integrable Uqi(gi)-
module, and we define Ti : V → V to be the operator corresponding to T = T+ in
the notation of the previous subsection. Explicitly,

Ti(v) =
∑

r,s,t≥0
r−s+t=m

(−1)sqs−rti F
(r)
i E

(s)
i F

(t)
i · v

for v ∈ Vλ and m = (α∨i , λ). According to Proposition 2.49, the operators Ti are
bijective, and Ti maps Vλ onto Vsiλ. From this observation it follows that

Ti(Kµ · v) = Ksiµ · Ti(v)

for all µ ∈ P. Let us also record the following formulas.
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Lemma 2.52. Let V be an integrable Uq(g)-module and v ∈ V . Then we have

Ti(Ei · v) = −KiFi · Ti(v)

Ti(Fi · v) = −EiK−1
i · Ti(v)

Ei · Ti(v) = −Ti(FiK−1
i · v)

Fi · Ti(v) = −Ti(KiEi · v)

for all i = 1, . . . , N .

Proof. This is an immediate consequence of Lemma 2.51. �

Our first aim is to obtain explicit formulas for Ti(Ej · v) and Ej · Ti(v) also in
the case i 6= j, and similarly for Fj instead of Ej .

Rewriting the results from Lemma 2.9 in terms of divided powers we obtain

E
(m)
i → Y =

m∑
k=0

(−1)m−kq
−(m−k)(m−1)
i E

(k)
i Y E

(m−k)
i K−mi

F
(m)
i → Y =

m∑
k=0

(−1)kq
k(m−1)
i F

(m−k)
i K−ki Y Kk

i F
(k)
i .

In particular, we have

F
(m)
i → Fj =

m∑
k=0

(−1)kq
k(m−1+aij)
i F

(m−k)
i FjF

(k)
i ,

using K−ki FjK
k
i = q

kaij
i Fj .

Lemma 2.53. If i 6= j then for all m, l ∈ N0 we have

(F
(m)
i → Fj)E

(l)
i =

l∑
k=0

(−1)k
[
−aij −m+ k

k

]
qi

q
k(l−1)
i E

(l−k)
i (F

(m−k)
i → Fj)K

k
i

(F
(m)
i → Fj)F

(l)
i =

l∑
k=0

(−1)k
[
m+ k
k

]
qi

q
−l(aij+2m)−k(l−1)
i F

(l−k)
i (F

(m+k)
i → Fj).

Proof. We use induction on l for both formulas. For l = 0 there is nothing to show.
Assume the first formula holds for some l. Note that since Ei and Fj commute

we have Ei → Fj = 0, and hence

(EiF
(m)
i )→ Fj = [−aij + 1−m]qiF

(m−1)
i → Fj

due to Lemma 2.36. Writing a(m) = F
(m)
i → Fj we deduce

a(m)EiK
−1
i = Eia(m)K−1

i − Ei → a(m)

= Eia(m)K−1
i − [−aij + 1−m]qia(m− 1),

which implies

a(m− k)Ei = Eia(m− k)− [−aij + 1 + k −m]qia(m− k − 1)Ki

for all 0 ≤ k ≤ m. Now from the induction hypothesis we obtain

a(m)E
(l+1)
i = a(m)

E
(l)
i Ei

[l + 1]qi

=

l∑
k=0

(−1)k

[l + 1]qi

[
−aij −m+ k

k

]
qi

q
k(l−1)
i E

(l−k)
i (F

(m−k)
i → Fj)K

k
i Ei.



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 57

Since Kk
i Ei = q2k

i EiK
k
i our above computation yields

a(m)E
(l+1)
i =

l+1∑
k=0

bkE
(l+1−k)
i a(m− k)Kk

i ,

where

bk =
(−1)k

[l + 1]qi

[
−aij −m+ k

k

]
qi

q
k(l−1)+2k
i [l + 1− k]qi

− (−1)k−1

[l + 1]qi

[
−aij −m+ k − 1

k − 1

]
qi

q
(k−1)(l−1)+2k−2
i [−aij −m+ k]qi

=
(−1)k

[l + 1]qi

[
−aij −m+ k

k

]
qi

qkl+ki [l + 1− k]qi

+
(−1)k

[l + 1]qi

[
−aij −m+ k

k

]
qi

qkl+k−l−1
i [k]qi ,

note here that the first summand vanishes for k = l + 1, and the second summand
vanishes for k = 0. Using

qki [l + 1− k]qi + qk−l−1
i [k]qi

[l + 1]qi
=
qki (ql+1−k

i − q−l−1+k) + qk−l−1
i (qki − q

−k
i )

ql+1
i − q−l−1

i

= 1

we conclude

bk = (−1)k
[
−aij −m+ k

k

]
qi

qkli

as desired.
For the second formula we proceed in the same way. Assume that the formula

holds for some l. Writing again a(m) = F
(m)
i → Fj we compute

a(m)F
(l+1)
i = a(m)

F
(l)
i Fi

[l + 1]qi

=

l∑
k=0

(−1)k

[l + 1]qi

[
m+ k
k

]
qi

q
−l(aij+2m)−k(l−1)
i F

(l−k)
i a(m+ k)Fi

according to the induction hypothesis. Note also that

a(m)Fi = q
−2m−aij
i K−1

i a(m)KiFi

= q
−2m−aij
i (Fia(m)− Fi → a(m))

= q
−2m−aij
i (Fia(m)− [m+ 1]qia(m+ 1)),

using [m+ 1]qiF
(m+1)
i = FiF

(m)
i in the last step. We thus have

a(m+ k)Fi = q
−2m−2k−aij
i (Fia(m+ k)− [m+ k + 1]qia(m+ k + 1)),

and combining these formulas we obtain

a(m)F
(l+1)
i =

l+1∑
k=0

ckF
(l+1−k)
i a(m+ k)
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where

ck =
(−1)k

[l + 1]qi

[
m+ k
k

]
qi

q
−(l+1)(aij+2m)−2k−k(l−1)
i [l + 1− k]qi

− (−1)k−1

[l + 1]qi

[
m+ k − 1
k − 1

]
qi

q
−(l+1)(aij+2m)−2k+2−(k−1)(l−1)
i [m+ k]qi

=
(−1)k

[l + 1]qi

[
m+ k
k

]
qi

q
−(l+1)(aij+2m)−kl
i q−k[l + 1− k]qi

+
(−1)k

[l + 1]qi

[
m+ k
k

]
qi

q
−(l+1)(aij+2m)−kl−k+l+1
i [k]qi ,

note in particular that the first summand vanishes for k = l + 1, and the second
summand vanishes for k = 0. Using

q−ki [l + 1− k]qi + ql+1−k
i [k]qi

[l + 1]qi
=
q−ki (ql+1−k

i − q−l−1+k) + ql+1−k
i (qki − q

−k
i )

ql+1
i − q−l−1

i

= 1

we conclude

ck = (−1)k
[
m+ k
k

]
qi

q
−(l+1)(aij+2m)−kl
i .

This finishes the proof. �

Proposition 2.54. Let V be an integrable Uq(g)-module. If i 6= j we have

Ti(Ej · v) = (−qi)−aij (Ej ← Ŝ−1(E
(−aij)
i )) · Ti(v)

Ti(Fj · v) = (F
(−aij)
i → Fj) · Ti(v)

for all v ∈ V .

Proof. Let us first consider the second formula. In the same way as in the proof of

Lemma 2.53 we shall abbreviate a(m) = F
(m)
i → Fj . Since F

−aij+1
i → Fj = u−ij =

0, the second part of Lemma 2.53 implies

a(−aij)F (l)
i = (F

(−aij)
i → Fj)F

(l)
i = q

laij
i F

(l)
i (F

(−aij)
i → Fj) = q

laij
i F

(l)
i a(−aij)

for any l. Moreover we obtain

a(−aij)E(l)
i = (F

(−aij)
i → Fj)E

(l)
i

=

l∑
k=0

(−1)kq
k(l−1)
i E

(l−k)
i (F

(−aij−k)
i → Fj)K

k
i

=

l∑
k=0

(−1)kq
k(l−1)
i E

(l−k)
i a(−aij − k)Kk

i

from the first part of Lemma 2.53.
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Assume v ∈ Vλ for some λ ∈ P. Writing p = (α∨i , λ), the above formulas imply

a(−aij)Ti(v) =
∑

r,s,t≥0
r−s+t=p

(−1)sqs−rti a(−aij)F (r)
i E

(s)
i F

(t)
i · v

=
∑

r,s,t≥0
r−s+t=p

(−1)sq
s−rt+raij
i F

(r)
i a(−aij)E(s)

i F
(t)
i · v

=
∑

r,s,t≥0
r−s+t=p

s∑
k=0

(−1)k+sq
s−rt+raij+k(s−1)
i F

(r)
i E

(s−k)
i a(−aij − k)Kk

i F
(t)
i · v

=
∑

r,s,t≥0
r−s+t=p

s∑
k=0

(−1)k+sq
s−r(t−aij)+k(s−1+p−2t)
i F

(r)
i E

(s−k)
i a(−aij − k)F

(t)
i · v

=
∑

r,s,t≥0
r−s+t=p

s∑
k=0

t∑
l=0

(−1)k+sq
s−r(t−aij)+k(s−1+p−2t)
i F

(r)
i E

(s−k)
i ×

(−1)l
[
−aij − k + l

l

]
qi

q
−t(−aij−2k)−l(t−1)
i F

(t−l)
i a(−aij − k + l) · v

=
∑

r,s,t≥0
r−s+t=p

s∑
k=0

t∑
l=0

(−1)k+s+l

[
−aij − k + l

l

]
qi

×

q
s−r(t−aij)+k(s−1+p)+taij−l(t−1)
i F

(r)
i E

(s−k)
i F

(t−l)
i a(−aij − k + l) · v,

using

Kk
i F

(t)
i · v = q−2kt

i F
(t)
i Kk

i · v = qkp−2kt
i F

(t)
i · v

for k, t ∈ N0 and the second part of Lemma 2.53. Setting b = s−k, c = t− l we have
−r+b−c = −p−k+l, and since a(−aij−k+l) = 0 for l > k we see that a(−aij)Ti(v)

is a linear combination of terms F
(r)
i E

(b)
i F

(c)
i a(−aij−h) ·v with −r+b−c = −p−h

and h ≥ 0. Explicitly, the coefficient of F
(r)
i E

(b)
i F

(c)
i a(−aij − h) · v is

−aij−h∑
l=0

(−1)b+l
[
−aij − h

l

]
qi

q
b+k−r(c+l−aij)+k(b+k−1+p)+(c+l)aij−l(c+l−1)
i ,

where k = l + h. If we insert k = l + h in this expression we obtain

(−1)bq
b+h−r(c−aij)+h(b+h−1+p)+caij
i

−aij−h∑
l=0

(−1)l
[
−aij − h

l

]
qi

×

q
l(1−r+b+l+h−1+p+h+aij−c−l+1)
i

= (−1)bq
b−r(c−aij)+h(b+h+p)+caij
i

−aij−h∑
l=0

(−1)l
[
−aij − h

l

]
qi

×

q
l(1−r+b+2h+p+aij−c)
i .

Using −r + b− c = −p− h, the sum over l in the previous formula becomes

−aij−h∑
l=0

(−1)l
[
−aij − h

l

]
qi

q
l(1+h+aij)
i = δ−aij−h,0

according to Lemma 2.2. Hence only the term with h = −aij survives, and since

q
b−r(c−aij)+h(b+h+p)+caij
i = q

b−rc+h(−r+b−c+h+p)
i = qb−rci
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for h = −aij , we conclude

a(−aij)Ti(v) =
∑

r,b,c≥0
r−b+c=p−aij

(−1)bqb−rci F
(r)
i E

(b)
i F

(c)
i a(0)v = Ti(Fj · v)

as desired.
Let us now consider the first relation. Fix v ∈ Vλ and let ωV denote the au-

tomorphism of V defined as in the proof of Corollary 2.50 by viewing V as a
Uqi(qi)-module. Then combining Proposition 2.49 and the proof Corollary 2.50
yields

ωV TiωV (v) = (−qi)(α∨i ,λ)Ti(v).

Moreover we recall that

ω(X → Y ) = ω(X(1)Y Ŝ(X(2)))

= ω(X(1))ω(Y )Ŝ−1(ω(X(2)))

= ω(X)(2)ω(Y )Ŝ−1(ω(X)(1)) = ω(Y )← Ŝ−1(ω(X))

for X,Y ∈ Uq(g), where Y ← X = Ŝ(X(1))Y X(2). Using that the vector Fj ·ωV (v)
has weight −λ− αj we therefore obtain

Ti(Ej · v) = Ti(ω(Fj) · v)

= Ti(ωV (Fj · ωV (v)))

= (−qi)(α∨i ,−λ−αj)ωV (Ti(Fj · ωV (v)))

= (−qi)−(α∨i ,λ+αj)ωV ((F
(−aij)
i → Fj) · Ti(ωV (v)))

= (−qi)−(α∨i ,λ)−aijω(F
(−aij)
i → Fj) · ωV (Ti(ωV (v)))

= (−qi)−(α∨i ,λ)−aij (−qi)(α∨i ,λ)ω(F
(−aij)
i → Fj) · Ti(v)

= (−qi)−aij (ω(Fj)← Ŝ−1(ω(F
(−aij)
i ))) · Ti(v)

= (−qi)−aij (Ej ← Ŝ−1(E
(−aij)
i )) · Ti(v).

This finishes the proof. �

We obtain an algebra antiautomorphism γ : Uq(g)→ Uq(g) by defining

γ(Ei) = Ei, γ(Fi) = Fi, γ(Kµ) = K−µ

on generators. Notice that γ is involutive, that is, γ2 = id.
Let us define the γ-twisted adjoint action by

X
γ→ Y = γ(X → γ(Y ))

for X,Y ∈ Uq(g). Note that

Ei
γ→ Y = γ([Ei, γ(Y )]K−1

i ) = Ki[Y,Ei]

Fi
γ→ Y = γ(Fiγ(Y )−K−1

i γ(Y )KiFi) = Y Fi − FiK−1
i Y Ki

Kµ
γ→ Y = γ(Kµγ(Y )K−1

µ ) = KµY K
−1
µ

for all Y ∈ Uq(g), where 1 ≤ i ≤ N and µ ∈ P.

Lemma 2.55. Suppose X,Y ∈ Uq(g) satisfy X · Ti(v) = Ti(Y · v) for any vector v
in an integrable Uq(g)-module. Then

(Ei → X) · Ti(v) = Ti((Fi
γ→ Y ) · v)

(Fi → X) · Ti(v) = Ti((Ei
γ→ Y ) · v).
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Proof. Using the formula Ei ·Ti(v) = −Ti(FiK−1
i ·v) from Lemma 2.52 we compute

(Ei → X) · Ti(v) = [Ei, X]K−1
i · Ti(v)

= Ti((−FiK−1
i Y + Y FiK

−1
i )Ki · v)

= Ti((Y Fi − FiK−1
i Y Ki) · v)

= Ti((Fi
γ→ Y ) · v)

for v ∈ V . Similarly, using Fi · Ti(v) = −Ti(KiEi · v) we obtain

(Fi → X) · Ti(v) = (FiX −K−1
i XKiFi) · Ti(v)

= Ti((−KiEiY +KiY K
−1
i KiEi) · v)

= Ti(Ki[Y,Ei] · v)

= Ti((Ei
γ→ Y ) · v).

This yields the claim. �

Lemma 2.56. Let V be an integrable Uq(g)-module and v ∈ V . If i 6= j we have

(F
(−aij−l)
i → Fj) · Ti(v) = Ti((F (l)

i

γ→ Fj) · v)

for any 0 ≤ l ≤ −aij.

Proof. Using induction on l, Lemma 2.55 and Proposition 2.54 imply

Ti((F (l)
i

γ→ Fj) · v) = (E
(l)
i F

(−aij)
i → Fj) · Ti(v).

As already observed in the proof of Lemma 2.53, we have

(EiF
(m)
i )→ Fj = [−aij + 1−m]qiF

(m−1)
i → Fj .

Applying this formula iteratively we obtain

(E
(l)
i F

(−aij)
i )→ Fj = F

(−aij−l)
i → Fj ,

which yields the desired formula. �

Proposition 2.57. Let V be an integrable Uq(g)-module and v ∈ V . If i 6= j we
have

−aij−l∑
k=0

(−1)kq
k(l+1)
i E

(k)
i EjE

(−aij−l−k)
i · Ti(v)

=

l∑
k=0

(−1)kq
−k(l−1+aij)
i Ti(E(l−k)

i EjE
(k)
i · v)

and
−aij−l∑
k=0

(−1)kq
−k(l+1)
i F

(−aij−l−k)
i FjF

(k)
i · Ti(v)

=

l∑
k=0

(−1)kq
k(l−1+aij)
i Ti(F (k)

i FjF
(l−k)
i · v)

for any 0 ≤ l ≤ −aij.

Proof. Let us first consider the second formula. Recall from the calculations before
Lemma 2.53 that

F
(m)
i → Fj =

m∑
k=0

(−1)kq
k(m−1+aij)
i F

(m−k)
i FjF

(k)
i .
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Since γ is an anti-automorphism fixing the generators Fk for all k we therefore
obtain

F
(m)
i

γ→ Fj = γ(F
(m)
i → Fj) =

m∑
k=0

(−1)kq
k(m−1+aij)
i F

(k)
i FjF

(m−k)
i .

Combining these formulas with Lemma 2.56 yields

−aij−l∑
k=0

(−1)kq
k(−l−1)
i F

(−aij−l−k)
i FjF

(k)
i · Ti(v)

=

l∑
k=0

(−1)kq
k(l−1+aij)
i Ti(F (k)

i FjF
(l−k)
i · v)

as desired.
Next observe that ω(X) · Ti(v) = (−qi)(α∨i ,µ)Ti(ω(Y ) · v) if X has weight µ with

respect to the adjoint action and X · Ti(v) = Ti(Y · v) for all vectors v in integrable
Uq(g)-modules. Hence the formula proved above implies

−aij−l∑
k=0

(−1)kq
−k(−l−1)
i E

(k)
i EjE

(−aij−l−k)
i · Ti(v)

= q
(−aij−l)(l+1)
i

−aij−l∑
k=0

(−1)kq
(−aij−l−k)(−l−1)
i E

(k)
i EjE

(−aij−l−k)
i · Ti(v)

= (−1)aij+lq
(−aij−l)(l+1)
i

−aij−l∑
k=0

(−1)kq
k(−l−1)
i E

(−aij−l−k)
i EjE

(k)
i · Ti(v)

= (−1)aij+lq
(−aij−l)(l+1)
i (−qi)2l+aij

l∑
k=0

(−1)kq
k(l−1+aij)
i Ti(E(k)

i EjE
(l−k)
i · v)

= q
(−aij−l)(l+1)
i q

2l+aij
i q

l(l−1+aij)
i

l∑
k=0

(−1)kq
−k(l−1+aij)
i Ti(E(l−k)

i EjE
(k)
i · v)

=

l∑
k=0

(−1)kq
−k(l−1+aij)
i Ti(E(l−k)

i EjE
(k)
i · v),

upon reindexing k to−aij−l−k, and further below reindexing k to l−k, respectively.

Note here that F
(−aij−l)
i → Fj has weight (aij + l)αi − αj , so that

(α∨i , (aij + l)αi − αj) = 2l + aij .

This finishes the proof. �

Note that putting l = 0 in Proposition 2.57 yields in particular

Ti(Ej · v) =

−aij∑
k=0

(−1)kqki E
(k)
i EjE

(−aij−k)
i · Ti(v)

Ti(Fj · v) =

−aij∑
k=0

(−1)kq−ki F
(−aij−k)
i FjF

(k)
i · Ti(v).

2.7.3. The braid group action on Uq(g). We are now ready to construct automor-
phisms Ti of Uq(g) for i = 1, . . . , N .
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Theorem 2.58. For i = 1, . . . , N there exist algebra automorphisms Ti : Uq(g)→
Uq(g) satisfying

Ti(Kµ) = Ksiµ, Ti(Ei) = −KiFi, Ti(Fi) = −EiK−1
i

Ti(Ej) =

−aij∑
k=0

(−1)kqki E
(k)
i EjE

(−aij−k)
i , i 6= j

Ti(Fj) =

−aij∑
k=0

(−1)kq−ki F
(−aij−k)
i FjF

(k)
i , i 6= j.

Proof. We shall define Ti : Uq(g) → Uq(g) using conjugation with the operators
Ti on integrable Uq(g)-modules. More precisely, we consider the canonical map
Uq(g) →

∏
End(V ) ⊂ End(

⊕
V ) where V runs over all integrable Uq(g)-modules.

According to Theorem 2.46 this map is an embedding, and we shall identify X ∈
Uq(g) with its image in

∏
End(V ). We then define Ti(X) ∈

∏
End(V ) by setting

Ti(X) = TiXT −1
i ,

where the operators Ti ∈
∏

End(V ) are defined as in the previous subsection. In
order to show that this prescription yields a well-defined automorphism of Uq(g) it
is enough to check that conjugation with Ti ∈

∏
End(V ) preserves the action of

Uq(g). In fact, it is sufficient to verify this for the standard generators of Uq(g).
For the generators Kµ for µ ∈ P the claim follows from elementary weight

considerations, indeed the corresponding relation TiKµT −1
i = Ksiµ was already

pointed out in the discussion before Lemma 2.52. For the generators Ei, Fi the
assertion follows from Proposition 2.57. �

Next we shall verify the braid group relations.

Theorem 2.59. The automorphisms Ti of Uq(g) satisfy the braid relations in Bg,
that is,

TiTjTi · · · = TjTiTj · · ·
for all 1 ≤ i, j ≤ N such that i 6= j, with mij operators on each side of the equation.
In other words, the maps Ti : Uq(g) → Uq(g) induce an action of the braid group
Bg on Uq(g) by algebra automorphisms.

Proof. Recall that mij = 2, 3, 4, 6 iff aijaji = 0, 1, 2, 3, respectively. We have aij =
0 = aji if mij = 2, and aij = −1 = aji if mij = 3. Note that we may assume that
aij = −2, aji = −1 and aij = −3, aji = −1 in the cases mij = 4, 6, respectively. The
cases m = mij = 2, 3, 4, 6 are verified separately by explicit calculations, compare
[57] and [39].

m = 2: This corresponds to (αi, αj) = 0. In this case we clearly have TiTj = TjTi on
modules because the operators Ei, Fi commute pairwise with Ej , Fj . Since
the action of Ti on Uq(g) is obtained by conjugating with the operator Ti
on modules, it follows that TiTj = TjTi as automorphisms of Uq(g).

m = 3: Since aij = −1 = aji we have qi = qj , and the formulas in Proposition 2.57
give

Ti(Ej) = EjEi − qiEiEj = T −1
j (Ei)

Ti(Fj) = FiFj − q−1
i FjFi = T −1

j (Fi).

Symmetrically, we obtain

Tj(Ei) = EiEj − qiEjEi = T −1
i (Ej)

Tj(Fi) = FjFi − q−1
i FiFj = T −1

i (Fj).
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It suffices to verify TiTjTi(X) = TjTiTj(X) for X = Ek, Fk and k =
1, . . . , N as well as X = Kλ for λ ∈ P. For the generators Kλ the claim
follows from the fact that the action of the Weyl group on h∗ satisfies the
braid relations.

Let us consider X = Ej . The above relations imply TjTi(Ej) = Ei, and
hence we obtain

TiTjTi(Ej) = Ti(Ei) = −KiFi.

On the other hand we get

TjTiTj(Ej) = TjTi(−KjFj) = −TjTi(Kj)TjTi(Fj) = −KiFi

since the above relations imply TjTi(Fj) = Fi, and moreover we have
TjTi(Kj) = Ki. For the latter use

sjsi(αj) = sj(αj − (α∨i , αj)αi)

= sj(αj + αi) = −αj + αj + αi = αi.

For X = Fj analogous considerations give

TiTjTi(Fj) = Ti(Fi) = −EiK−1
i

and

TjTiTj(Fj) = TjTi(−EjK−1
j ) = −TjTi(Ej)TjTi(K−1

j ) = −EiK−1
i .

Since the situation is symmetric in i and j we also get the claim for X =
Ei, Fi.

Therefore it remains to consider the case X = Ek, Fk for k 6= i, j. For
k 6= i, j we have aik = 0 or ajk = 0. Again by symmetry we may assume
ajk = 0. Then [Ek, Ej ] = 0 = [Ek, Fj ]. From the construction of the
automorphism Tj using conjugation by the operator Tj we therefore get
Tj(Ek) = Ek. Moreover recall that TjTi(Ej) = Ei and TjTi(Fj) = Fi.
Hence we also get

[TjTi(Ek), Ei] = TjTi([Ek, Ej ]) = 0,

[TjTi(Ek), Fi] = TjTi([Ek, Fj ]) = 0.

Again by the construction of Ti we therefore get TiTjTi(Ek) = TjTi(Ek).
Combining these considerations yields

TiTjTi(Ek) = TjTi(Ek) = TjTiTj(Ek)

as desired. Upon replacing Ek by Fk, the above argument shows

TiTjTi(Fk) = TjTi(Fk) = TjTiTj(Fk)

as well.
m = 4: Let us assume aij = −2, aji = −1. In this case we have qi = q and qj = q2.

As in the case m = 3, Proposition 2.57 implies

Tj(Ei) = EiEj − q2EjEi,

T −1
j (Ei) = EjEi − q2EiEj .

Moreover, taking the first formula of Proposition 2.57 for l = 1 gives

Ti(EiEj − q2EjEi) = EjEi − q2EiEj .

Hence TiTj(Ei) = T −1
j (Ei), or equivalently TjTiTj(Ei) = Ei.

Swapping the roles of i and j, Proposition 2.57 gives

Ti(Ej) = EjE
(2)
i − qEiEjEi + q2E

(2)
i Ej ,

T −1
i (Ej) = E

(2)
i Ej − qEiEjEi + q2EjE

(2)
i .
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Multiplying these equations with [2]qi = qi + q−1
i = q + q−1 we obtain

[2]qiTi(Ej) = EjE
2
i − (1 + q2)EiEjEi + q2E2

i Ej

= T −1
j (Ei)Ei − EiT −1

j (Ei)

and

[2]qiT −1
i (Ej) = E2

i Ej − (1 + q2)EiEjEi + q2EjE
2
i

= EiTj(Ei)− Tj(Ei)Ei.

Combining these equations yields TjTi(Ej) = T −1
i (Ej), or equivalently

TiTjTi(Ej) = Ej .
In a completely analogous fashion we obtain

TiTjTi(Fj) = Fj , TjTiTj(Fi) = Fi.

Let us now show TiTjTiTj(X) = TjTiTjTi(X) for X = Ek, Fk where k =
1, . . . , N . Since

sjsisj(αi) = sjsi(αi − ajiαj)
= sj(−αi + αj − aijαi)
= sj(αi + αj) = αi + αj − αj = αi

we have TjTiTj(Ki) = Ki, and hence our above computations imply

TiTjTiTj(Ei) = Ti(Ei) = −KiFi

= −TjTiTj(Ki)TjTiTj(Fi)
= TjTiTj(−KiFi)

= TjTiTjTi(Ei).

In a similar way one obtains the assertion for X = Ej and X = Fi, Fj .
Consider now k 6= i, j. Then we have (α∨i , αk) = 0 or (α∨j , αk) = 0. If

(α∨j , αk) = 0 we obtain [Ek, Ej ] = 0 = [Ek, Fj ] and hence Tj(Ek) = Ek.
Moreover, our above computations yield

[TiTjTi(Ek), Ej ] = TiTjTi([Ek, Ej ]) = 0,

[TiTjTi(Ek), Fj ] = TiTjTi([Ek, Fj ]) = 0.

This implies TjTiTjTi(Ek) = TiTjTi(Ek), and thus

TjTiTjTi(Ek) = TiTjTi(Ek) = TiTjTiTj(Ek).

Replacing Ek by Fk in this argument yields the claim for X = Fk. Finally,
if (α∨i , αk) = 0 we swap the roles of i and j in the above argument, and
obtain the assertion in the same way.

m = 6: Let us assume aij = −3, aji = −1. In this case we have qi = q and qj = q3.
Given 0 ≤ l ≤ 3, let us abbreviate

E−ij (l) =

l∑
k=0

(−1)kq
k(4−l)
i E

(k)
i EjE

(l−k)
i ,

E+
ij(l) =

l∑
k=0

(−1)kq
k(4−l)
i E

(l−k)
i EjE

(k)
i .

As in the case m = 3, Proposition 2.57 implies

Tj(Ei) = EiEj − q3EjEi = E+
ij(1)

T −1
j (Ei) = EjEi − q3EiEj = E−ij (1).
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Moreover the relations from Proposition 2.57 give

Ej = Ti(E+
ij(3)),

E−ij (1) = Ti(E+
ij(2)),

E−ij (2) = Ti(E+
ij(1)),

E−ij (3) = Ti(Ej).

Explicitly, we have

E+
ij(3) = E

(3)
i Ej − qE(2)

i EjEi + q2EiEjE
(2)
i − q

3EjE
(3)
i ,

E−ij (3) = EjE
(3)
i − qEiEjE

(2)
i + q2E

(2)
i EjEi − q3E

(3)
i Ej ,

E+
ij(2) = E

(2)
i Ej − q2EiEjEi + q4EjE

(2)
i ,

E−ij (2) = EjE
(2)
i − q

2EiEjEi + q4E
(2)
i Ej .

Hence we obtain

[3]qE
+
ij(3) = [2]−1

q E3
i Ej − q[3]qE

(2)
i EjEi

+ q2[3]qEiEjE
(2)
i − q

3[2]−1
q EjE

3
i

= Ei(E
(2)
i Ej − q2EiEjEi + q4EjE

(2)
i )

− q−1(E
(2)
i Ej − q2EiEjEi + q4EjE

(2)
i )Ei

= EiE
+
ij(2)− q−1E+

ij(2)Ei

using q(q2+1+q−2) = q2(q+q−1)+q−1 and q2(q2+1+q−2) = q4+q(q+q−1).
Similarly,

[3]qE
−
ij (3) = [2]−1

q EjE
3
i − q[3]qEiEjE

(2)
i

+ q2[3]qE
(2)
i EjEi − q3[2]−1

q E3
i Ej

= (EjE
(2)
i − q

2EiEjEi + q4E
(2)
i Ej)Ei

− q−1Ei(EjE
(2)
i − q

2EiEjEi + q4E
(2)
i Ej)

= E−ij (2)Ei − q−1EiE
−
ij (2).

Let us also record

[2]qE
+
ij(2) = E2

i Ej − q2(q + q−1)EiEjEi + q4EjE
2
i

= EiE
+
ij(1)− qE+

ij(1)Ei

and

[2]qE
−
ij (2) = EjE

2
i − q2(q + q−1)EiEjEi + q4E2

i Ej

= E−ij (1)Ei − qEiE−ij (1).

Using E±ij (1) = T ±1
j (Ei) we obtain

E+
ij(2) = [2]−1

q (EiTj(Ei)− qTj(Ei)Ei)
= [2]−1

q Tj(E−ij (1)Ei − qEiE−ij (1))

= Tj(E−ij (2)).
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Now we compute

TjTi(Ej) = Tj(E−ij (3))

= [3]−1
q Tj(E−ij (2)Ei − q−1EiE

−
ij (2))

= [3]−1
q (Tj(E−ij (2))E+

ij(1)− q−1E+
ij(1)T −1

j (E−ij (2)))

= [3]−1
q (E+

ij(2)E+
ij(1)− q−1E+

ij(1)E+
ij(2))

and

T −1
j T

−1
i (Ej) = T −1

j (E+
ij(3))

= [3]−1
q T −1

j (EiE
+
ij(2)− q−1E+

ij(2)Ei)

= [3]−1
q (E−ij (1)T −1

j (E+
ij(2))− q−1T −1

j (E+
ij(2))E−ij (1))

= [3]−1
q (E−ij (1)E−ij (2)− q−1E−ij (2)E−ij (1)).

We thus obtain

T −1
i T

−1
j T

−1
i (Ej) = [3]−1

q T −1
i (E−ij (1)E−ij (2)− q−1E−ij (2)E−ij (1))

= [3]−1
q (E+

ij(2)E+
ij(1)− q−1E+

ij(1)E+
ij(2))

= TjTi(Ej),

or equivalently, TiTjTiTjTi(Ej) = Ej .
We also have

TiTj(Ei) = Ti(E+
ij(1)) = E−ij (2)

and

T −1
i T

−1
j (Ei) = T −1

i (E−ij (1)) = E+
ij(2).

Therefore

TjTiTj(Ei) = Tj(E−ij (2)) = E+
ij(2) = T −1

i T
−1
j (Ei),

and hence TjTiTjTiTj(Ei) = Ei.
In a completely analogous fashion one calculates

TiTjTiTjTi(Fj) = Fj , TjTiTjTiTj(Fi) = Fi.

Let us now verify TiTjTiTjTiTj(X) = TjTiTjTiTjTi(X) for X = Ek, Fk
where k = 1, . . . , N . Since

sjsisjsisj(αi) = sjsisjsi(αi − ajiαj)
= sjsisj(−αi + αj − aijαi)
= sjsisj(2αi + αj)

= sj(4αi + 2αj − αj + aijαi)

= sj(αi + αj) = αi + αj − αj = αi

we have TjTiTjTiTj(Ki) = Ki, and hence our above computations imply

TiTjTiTjTiTj(Ei) = Ti(Ei) = −KiFi

= −TjTiTjTiTj(Ki)TjTiTjTiTj(Fi)
= TjTiTjTiTj(−KiFi)

= TjTiTjTiTjTi(Ei).

In a similar way one obtains the assertion for X = Ej and X = Fi, Fj .
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Consider now k 6= i, j. Then we have (α∨i , αk) = 0 or (α∨j , αk) = 0. If
(α∨j , αk) = 0 we obtain [Ek, Ej ] = 0 = [Ek, Fj ] and hence Tj(Ek) = Ek.
Moreover, our above computations yield

[TiTjTiTjTi(Ek), Ej ] = TiTjTiTjTi([Ek, Ej ]) = 0,

[TiTjTiTjTi(Ek), Fj ] = TiTjTiTjTi([Ek, Fj ]) = 0.

This implies TjTiTjTiTjTi(Ek) = TiTjTiTjTi(Ek), and thus

TjTiTjTiTjTi(Ek) = TiTjTiTjTi(Ek) = TiTjTiTjTiTj(Ek).

Replacing Ek by Fk in this argument yields the claim for X = Fk. Finally,
if (α∨i , αk) = 0 we swap i and j in the above computations and obtain the
assertion in the same way.

This finishes the proof. �

We remark that the algebra automorphisms Ti in Theorem 2.59 are not coalgebra
automorphisms.

The action of the braid group Bg on Uq(g) does not descend to an action of the
Weyl group W , since T 2

i 6= id. Nevertheless, there is a standard way to associate
to each w ∈W an automorphism Tw, as we now explain.

If w = si1 · · · sik is a reduced expression of w ∈ W , then any other reduced
expression is obtained by applying a sequence of elementary moves to si1 · · · sik .
Here an elementary move is the replacement of a substring sisjsi · · · of length mij

in the given expression by the string sjsisj · · · of the same length. We refer to
Section 8.1 in [36] for the details. As a consequence, according to Theorem 2.59 the
automorphism

Tw = Ti1 · · · Tik
of Uq(g) depends only on w and not on the reduced expression for w.

Note that we have Tw(Kµ) = Kwµ for all µ ∈ P by Theorem 2.58.

2.7.4. The Poincaré-Birkhoff-Witt Theorem. Let w ∈ W and let us fix a reduced
expression w = si1 · · · sit . If w 6= e then the roots βr = si1 · · · sir−1

αir for 1 ≤ r ≤ t
are pairwise distinct and positive, see 5.6 in [36]. We define the root vectors of
Uq(g) associated to the reduced expression w = si1 · · · sit by

Eβr = Ti1 · · · Tir−1
(Eir ), Fβr = Ti1 · · · Tir−1

(Fir )

for 1 ≤ r ≤ t; in the special case w = e we declare 1 to be the unique associated
root vector. Let us point out that these vectors do depend on the choice of the
reduced expression for w in general, see for instance the discussion in Section 8.15
of [39].

Our first aim is to show that the root vectors Eβr associated to a reduced ex-
pression for w are contained in Uq(n+). For this we need some preparations.

Lemma 2.60. Let i 6= j and assume w is contained in the subgroup of W generated
by si and sj. If wαi ∈ ∆+ then Tw(Ei) is contained in the subalgebra of Uq(n+)
generated by Ei and Ej, and if wαi = αk for some 1 ≤ k ≤ N then Tw(Ei) = Ek.

Proof. Let us remark first that wαi = αk can only happen for k = i, j.
Without loss of generality we may assume w 6= e. The proof will proceed case-by-
case depending on the order m of sisj in W . Let us write 〈si, sj〉 for the subgroup
of W generated by si, sj .

m = 2: In this case si and sj commute, and the only nontrivial element w ∈ 〈si, sj〉
satisfying wαi ∈ ∆+ is w = sj ; note that sjαi = αi. The formula in
Theorem 2.58 gives Tsj (Ei) = Tj(Ei) = Ei.
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m = 3: In this case we have sisjsi = sjsisj , and the nontrivial elements w ∈ 〈si, sj〉
satisfying wαi ∈ ∆+ are w = sj and w = sisj ; note that in this case
〈si, sj〉 ∼= S3. Using the computations in the proof of Theorem 2.59 we
obtain Tsj (Ei) = Tj(Ei) = EiEj − qiEjEi and Tsisj (Ei) = TiTj(Ei) = Ej .

m = 4: In this case we have sisjsisj = sjsisjsi, and the nontrivial elements w ∈
〈si, sj〉 satisfying wαi ∈ ∆+ are w = sj , w = sisj , w = sjsisj ; in fact
applying these elements to αi yields two distinct positive roots. Note that
we have here 〈si, sj〉 ∼= D4 = S2 o S2, the dihedral group of order 8. This is
the Weyl group of type B2.

If (αi, αi) < (αj , αj), then as in the proof of Theorem 2.59 we obtain

Tsj (Ei) = Tj(Ei) = EiEj − q2EjEi,

Tsisj (Ei) = TiTj(Ei) = T −1
j (Ei) = EjEi − q2EiEj ,

Tsjsisj (Ei) = TjTiTj(Ei) = Ei

If (αi, αi) > (αj , αj), we have to swap the roles of i and j in the proof of
Theorem 2.59 and obtain

Tsj (Ei) = Tj(Ei) = EiE
(2)
j − qEjEiEj + q2E

(2)
j Ei,

Tsisj (Ei) = TiTj(Ei) = T −1
j (Ei) = E

(2)
j Ei − qEjEiEj + q2EiE

(2)
j ,

Tsjsisj (Ei) = TjTiTj(Ei) = Ei

In both cases the required properties hold.
m = 6: In this case we have sisjsisjsisj = sjsisjsisjsi, and for the nontrivial

elements w ∈ 〈si, sj〉 satisfying wαi ∈ ∆+ one finds w = sj , w = sisj , w =
sjsisj , w = sisjsisj , w = sjsisjsisj ; in fact applying these elements to αi
yields three distinct positive roots. Note that we have 〈si, sj〉 ∼= D6, the
dihedral group of order 12. This is the Weyl group of type G2.

If (αi, αi) < (αj , αj), then using the notation in the proof of Theorem
2.59 we obtain

Tsj (Ei) = Tj(Ei) = E+
ij(1),

Tsisj (Ei) = TiTj(Ei) = E−ij (2),

Tsjsisj (Ei) = TjTiTj(Ei) = E+
ij(2),

Tsisjsisj (Ei) = TiTjTiTj(Ei) = T −1
j (Ei) = E−ij (1),

Tsjsisjsisj (Ei) = TjTiTjTiTj(Ei) = Ei.

If (αi, αi) > (αj , αj), we have to swap the roles of i and j in the proof of
Theorem 2.59 and obtain

Tsj (Ei) = Tj(Ei) = E−ji(3),

Tsisj (Ei) = TiTj(Ei) = [3]−1
q (E+

ji(2)E+
ji(1)− q−1E+

ji(1)E+
ji(2)),

Tsjsisj (Ei) = TjTiTj(Ei) = [3]−1
q (E−ji(1)E−ji(2)− q−1E−ji(2)E−ji(1))

Tsisjsisj (Ei) = TiTjTiTj(Ei) = T −1
j (Ei) = E+

ji(3)

Tsjsisjsisj (Ei) = TjTiTjTiTj(Ei) = Ei.

In both cases the required properties hold.

This finishes the proof. �

Lemma 2.61. Let w ∈ W . If wαi ∈ ∆+ then Tw(Ei) ∈ Uq(n+), and if wαi = αk
for some 1 ≤ k ≤ N then Tw(Ei) = Ek.
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Proof. We use induction on the length l(w) of w, the case l(w) = 0 being trivial.
Hence suppose l(w) > 0. Then according to Section 10.2 in [35] there exists 1 ≤ j ≤
N such that wαj ∈ ∆−, note in particular that we must have i 6= j. Let us write
again 〈si, sj〉 ⊂ W for the subgroup generated by si and sj . According to Section
1.10 in [36] we find u ∈ W and v ∈ 〈si, sj〉 such that w = uv and uαi, uαj ∈ ∆+,
with lengths satisfying l(w) = l(u) + l(v). In particular, since u maps both αi and
αj into ∆+ we have u 6= w, and we conclude l(u) < l(w). Applying the inductive
hypothesis to u we get Tu(Ei) ∈ Uq(n+) and Tu(Ej) ∈ Uq(n+). A similar reasoning
as above shows vαi ∈∆+ since wαi ∈∆+. Hence Lemma 2.60 implies that Tv(Ei)
is contained in the subalgebra of Uq(n+) generated by Ei and Ej . We conclude
Tw(Ei) = TuTv(Ei) ∈ Uq(n+) as desired.

For the second claim we proceed again by induction on l(w). Using the above
considerations, it suffices to show in the inductive step that vαi is a simple root.
Indeed, the second part of Lemma 2.60 will then yield the claim. However, if vαi
is not simple we can write vαi = mαi + nαj with m,n ∈ N because v ∈ 〈si, sj〉
and vαi ∈ ∆+. Then wαi = muαi + nuαj is a sum of positive roots because
uαi, uαj ∈ ∆+. This contradicts the assumption that wαi = αk is simple. Hence
vαi is simple, and this finishes the proof. �

If w ∈ W and w = si1 · · · sit is a reduced expression of w then we shall call the
vectors Ea1β1

· · ·Eatβt with aj ∈ N0 for all j the associated PBW-vectors. We will

show next that these vectors are always contained in Uq(n+).

Proposition 2.62. Let w ∈ W and w = si1 · · · sit be a reduced expression of w.
Then the associated PBW-vectors Ea1β1

· · ·Eatβt are contained in Uq(n+).

Proof. Since Uq(n+) is a subalgebra of Uq(g) it suffices to show that Eβr is contained
in Uq(n+) for all 1 ≤ r ≤ t. As indicated earlier on, si1 · · · sir−1

αir is a positive
root. Considering the element si1 · · · sir−1

∈ W and i = ir in Lemma 2.61 we see
that Tsi1 ···sir−1

(Eir ) is contained in Uq(n+). Moreover, observe that si1 · · · sir−1

is a reduced expression since it is part of a reduced expression. It follows that
Tsi1 ···sir−1

= Tsi1 · · · Tsir−1
, and hence Tsi1 ···sir−1

(Eir ) = Eβr . This finishes the

proof. �

Next we discuss linear independence.

Proposition 2.63. Let w ∈ W and w = si1 · · · sit be a reduced expression of w.
Then the associated PBW-vectors Ea1β1

· · ·Eatβt are linearly independent.

Proof. As a preparation, assume first that X1, . . . , Xm ∈ Uq(n+) satisfy T −1
i (Xj) ∈

Uq(n+) for all j and
∑
j XjE

j
i = 0 or

∑
j E

j
iXj = 0. We claim that Xj = 0 for

j = 1, . . . ,m.
In order to verify this consider the case

∑
j E

j
iXj = 0. Applying T −1

i yields

0 = T −1
i

( m∑
j=1

EjiXj

)
=

m∑
j=1

T −1
i (Ei)

jT −1
i (Xj) =

m∑
j=1

(−FiK−1
i )jT −1

i (Xj).

The vectors (−FiK−1
i )j ∈ Uq(b−) have pairwise distinct weights and T −1

i (Xj) ∈
Uq(n+) by assumption. Hence the triangular decomposition of Proposition 2.14

yields the claim. The case
∑
j XjE

j
i = 0 is analogous.

Let us now use induction on t to prove the Proposition. For t = 0, there is only
one PBW-vector, namely the element 1, corresponding to the empty word. The
assertion clearly holds in this case. Assume now that t > 0. Then the PBW-vectors
have the form Eki1Ti1(Xkl) where k ∈ N0 and Xkl is a PBW-vector for the reduced

expression si2 · · · sit of si1w. If ckl are scalars with
∑
k,l cklE

k
i1
Ti1(Xkl) = 0, then
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the first part of our proof combined with Proposition 2.62 implies
∑
l cklXkl = 0

for all k. By the inductive hypothesis we get ckl = 0 for all k, l, and this finishes
the proof. �

Let w ∈W and w = si1 · · · sit be a reduced expression of w. We show next that
the subspace of Uq(n+) spanned by the associated PBW-vectors is independent of
the reduced expression of w.

Lemma 2.64. If i 6= j and w is the longest element in the subgroup of W generated
by si and sj, then the PBW-vectors associated to a reduced expression of w span
the subalgebra of Uq(n+) generated by Ei and Ej.

Proof. Note that there are precisely two reduced expressions for w, namely w =
sisjsi · · · and w = sjsisj · · · . Both consist of m factors, where m is the order of
sisj . We shall proceed case-by-case depending on m.

m = 2: In this case we have Tj(Ei) = Ei, Ti(Ej) = Ej , the two reduced expressions

for w have associated PBW-vectors Er1i E
r2
j and Et1j E

t2
i , respectively, with

rk, tk ∈ N0. Since Ei and Ej commute, the span is in both cases equal to
the subalgebra of Uq(n+) generated by Ei and Ej .

m = 3: In this case the situation is symmetric in i and j. Hence it suffices to show
that the PBW-vectors associated with sjsisj span the subalgebra generated
by Ei and Ej . From the proof of Theorem 2.59 we have Tsj (Ei) = Tj(Ei) =
EiEj − qiEjEi and Tsjsi(Ej) = TjTi(Ej) = Ei. Then the claim is that the
vectors Er1j Tj(Ei)r2E

r3
i with rk ∈ N0 span the subalgebra generated by Ei

and Ej .
It suffices to show that the linear span of these vectors is closed under

left multiplication by Ei and Ej . For Ej this is trivial, so let us consider
Ei. Using the quantum Serre relations we get

EiTj(Ei) = E2
i Ej − qiEiEjEi

= q−1
i EiEjEi − EjE2

i = q−1
i Tj(Ei)Ei,

and we have

EiEj = qiEjEi + Tj(Ei)

by definition. Applying these relations iteratively we see that any term of
the form EiE

r1
j Tj(Ei)r2E

r3
i can again be written as a linear combination of

such terms.
m = 4: As in the proof of Theorem 2.59 we shall use the convention aij = −2, aji =

−1. We have qi = q and qj = q2 in this case.
For the reduced expression w = sjsisjsi we obtain the associated root

vectors Ej , Tj(Ei), TjTi(Ej) = T −1
i (Ej), TjTiTj(Ei) = Ei. As before, it

suffices to check that left multiplication by Ei preserves the linear span of
all terms of the form

Er1j Tj(E
r2
i )T −1

i (Er3j )Er4i

with rk ∈ N0.
To this end we observe

EiEj = q2EjEi + Tj(Ei),

and

EiTj(Ei) = Tj(Ei)Ei + [2]qT −1
i (Ej).
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The quantum Serre relations give

[2]qEiT −1
i (Ej) = E3

i Ej − (q + q−1)qE2
i EjEi + q2EiEjE

2
i

= q−2E2
i EjEi − (q + q−1)q−1EiEjE

2
i + EjE

3
i

= q−2[2]qT −1
i (Ej)Ei.

Moreover we have

EiT −1
j (Ej) = −EiFjK−1

j = −qajij FjK
−1
j Ei = q−2T −1

j (Ej)Ei

and hence
Tj(Ei)Ej = q−2EjTj(Ei).

Finally, the quantum Serre relations give

[2]qTi(Ej)Ei = EjE
3
i − (q + q−1)qEiEjE

2
i + q2E2

i EjEi

= q−2EiEjE
2
i − (q + q−1)q−1E2

i EjEi + E3
i Ej

= q−2[2]qEiTi(Ej)

and hence using T −1
j T

−1
i (Ej) = Ti(Ej) we get

T −1
i (Ej)Tj(Ei) = q−2Tj(Ei)T −1

i (Ej).

Combining these commutation relations yields the assertion for w = sjsisjsi.
For the reduced expression w = sisjsisj we obtain the associated root

vectors Ei, Ti(Ej), TiTj(Ei) = T −1
j (Ei), TiTjTi(Ej) = Ej . We check that

right multiplication by Ei preserves the linear span of all terms of the form

Er1i Ti(E
r2
j )T −1

j (Er3i )Er4j

with rk ∈ N0.
To this end we observe

EjEi = q2EiEj + T −1
j (Ei),

and

T −1
j (Ei)Ei = EiT −1

j (Ei) + [2]qTi(Ej).
As above, the quantum Serre relations give

[2]qTi(Ej)Ei = q−2[2]qEiTi(Ej)
and

[2]qEiT −1
i (Ej) = q−2[2]qT −1

i (Ej)Ei,

the second of which implies

T −1
j (Ei)Ti(Ej) = q−2Ti(Ej)T −1

j (Ei).

Finally, we have the relation

Tj(Ej)Ei = −FjKjEi = −qajij EiFjKj = q−2EiTj(Ej)
which implies

EjT −1
j (Ei) = q−2T −1

j (Ei)Ej .

Again, combining these relations yields the assertion.
m = 6: As in the proof of Theorem 2.59 we shall use the convention aij = −3, aji =

−1. We have qi = q and qj = q3 in this case.
Consider first the reduced expression w = sisjsisjsisj . We obtain the as-

sociated root vectors Ei, Ti(Ej) = E−ij (3), TiTj(Ei) = E−ij (2), TiTjTi(Ej) =

T −1
j T

−1
i (Ej), TiTjTiTj(Ei) = T −1

j (Ei) = E−ij (1), Ej . We check that right
multiplication by Ei preserves the linear span of the vectors

Er1i E
−
ij (3)r2E−ij (2)r4T −1

j T
−1
i (Ej)E

−
ij (1)r5Er6j
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with rj ∈ N0.
We first note

EjEi = q3EiEj + E−ij (1)

and

E−ij (1)Ei = qEiE
−
ij (1) + [2]qE

−
ij (2).

Using

[2]qEjE
−
ij (2) = EjE

−
ij (1)Ei − qEjEiE−ij (1)

= q−3E−ij (1)EjEi − qE−ij (1)2 − q4EiEjE
−
ij (1)

= q−3E−ij (1)2 + E−ij (1)EiEj − qE−ij (1)2 − qEiE−ij (1)Ej

= (q−3 − q)E−ij (1)2 + E−ij (1)EiEj − qEiE−ij (1)Ej

= (q−3 − q)E−ij (1)2 + [2]qE
−
ij (2)Ej

and T −1
j T

−1
i (E−ij (1)) = T −1

j (E+
ij(2)) = E−ij (2) we get

[2]qT −1
j T

−1
i (Ej)Ei = (q−3 − q)E−ij (2)2 + [2]qEiT −1

j T
−1
i (Ej).

In addition,

E−ij (2)Ei−q−1EiE
−
ij (2)

= [3]qEjE
(3)
i − q

2[2]qEiEjE
(2)
i + q4E

(2)
i EjEi

− q−1EiEjE
(2)
i + q[2]qE

(2)
i EjEi − q3[3]qE

(3)
i Ej

= [3]qE
−
ij (3),

using q[3]q = q−1 +q+q3 = q2[2]q+q−1 and q2[3]q = 1+q2 +q4 = q4 +q[2]q.
Finally, we recall E−ij (3)Ei = −q−3EiE

−
ij (3).

Moreover EjE
−
ij (1) = q−3E−ij (1)Ej and

E−ij (1)E−ij (2) = qE−ij (2)E−ij (1) + [3]qT −1
j T

−1
i (Ej).

We have EiT −1
i (Ej) = EiE

+
ij(3) = −q−3E+

ij(3)Ei, and since T −1
j (Ei) =

E−ij (1) we get

E−ij (1)T −1
j T

−1
i (Ej) = −q−3T −1

j T
−1
i (Ej)E

−
ij (1).

In addition, E+
ij(3)E+

ij(2) = q−3E+
ij(2)E+

ij(3) implies

T −1
j T

−1
i (Ej)E

−
ij (2) = q−3E−ij (2)T −1

j T
−1
i (Ej).

Finally, we recall EjE
+
ij(1) = q3E+

ij(1)Ej , which gives

E−ij (3)E−ij (2) = q3E−ij (2)E−ij (3).

Now consider the reduced expression w = sjsisjsisjsi. The associated root

vectors areEj , Tj(Ei) = E+
ij(1), TjTi(Ej) = T −1

i T
−1
j T

−1
i (Ej), TjTiTj(Ei) =

E+
ij(2), TjTiTjTi(Ej) = T −1

i (Ej) = E+
ij(3), Ei. We have to check that left

multiplication by Ei preserves the linear span of all terms of the form

Er1j E
+
ij(1)r2T −1

i T
−1
j T

−1
i (Er3j )E+

ij(2)r4E+
ij(3)r5Er6i

with rj ∈ N0.
To this end we observe

EiEj = q3EjEi + E+
ij(1),

and

EiE
+
ij(1) = qE+

ij(1)Ei + [2]qE
+
ij(2),
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Next observe that T −1
i T

−1
j (Ei) = T −1

i (E−ij (1)) = E+
ij(2) and TiTjTiTjTi(Ej) =

Ej . We obtain

[2]qE
+
ij(2)Ej = EiE

+
ij(1)Ej − qE+

ij(1)EiEj

= q−3EiEjE
+
ij(1)− qE+

ij(1)2 + q4E+
ij(1)EjEi

= q−3E+
ij(1)2 − EjEiE+

ij(1)− qE+
ij(1)2 + qEjE

+
ij(1)Ei

= (q−3 − q)E+
ij(1)2 − EjEiE+

ij(1) + qEjE
+
ij(1)Ei

= (q−3 − q)E+
ij(1)2 − [2]qEjE

+
ij(2)

Using TjTi(E+
ij(1)) = E+

ij(2) we get

[2]qEiT −1
i T

−1
j T

−1
i (Ej) = (q + q−3)E+

ij(2)2 − [2]qT −1
i T

−1
j T

−1
i (Ej)Ei.

In addition,

EiE
+
ij(2)−q−1E+

ij(2)Ei

= [3]qE
(3)
i Ej − q2[2]qE

(2)
i EjEi + q4EiEjE

(2)
i

− q−1E
(2)
i EjEi + q[2]qEiEjE

(2)
i − q

3[3]qEjE
(3)
i

= [3]qE
+
ij(3),

using q[3]q = q−1 +q+q3 = q2[2]q+q−1 and q2[3]q = 1+q2 +q4 = q4 +q[2]q.
Using the quantum Serre relations we obtain

[3]q!EiE
+
ij(3)

= E4
i Ej − q[3]qE

3
i EjEi + q2[3]qE

2
i EjE

2
i − q3EiEjE

3
i

= −q−3E3
i EjEi + q−2[3]qE

2
i EjE

2
i − q−1[3]qEiEjE

3
i + EjE

4
i

= −q−3[3]q!E
+
ij(3)Ei,

taking into account [4]q = q−3+q[3]q = q3+q−1[3]q and [4]q = (q2+q−2)[2]q.
Moreover,

E+
ij(1)Ej = EiE

2
j − q3EjEiEj

= q−3EjEiEj − E2
jEi

= q−3EjE
+
ij(1)

using the quantum Serre relation

EiE
2
j − (q3 + q−3)EjEiEj + E2

jEi = 0.

We have

E+
ij(2)E+

ij(1) = [3]qT −1
i T

−1
j T

−1
i (Ej) + q−1E+

ij(1)E+
ij(2),

and from E+
ij(1)Ej = q−3EjE

+
ij(1) we get

E+
ij(2)T −1

i T
−1
j T

−1
i (Ej) = TjTi(E+

ij(1)Ej)

= q−3TjTi(EjE+
ij(1)) = q−3T −1

i T
−1
j T

−1
i (Ej)E

+
ij(2).

Using again the quantum Serre relations we compute

[3]q!E
−
ij (3)Ei

= EjE
4
i − q[3]qEiEjE

3
i + q2[3]qE

2
i EjE

2
i − q3E3

i EjEi

= −q−3EiEjE
3
i + q−2[3]qE

2
i EjE

2
i − q−1[3]qE

3
i EjEi + E4

i Ej

= −q−3[3]q!EiE
−
ij (3),
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taking into account [4]q = q−3+q[3]q = q3+q−1[3]q and [4]q = (q2+q−2)[2]q.
This yields

T −1
i T

−1
j T

−1
i (Ej)E

+
ij(1) = Tj(E−ij (3)Ei)

= −q−3Tj(EiE−ij (3)) = −q−3E+
ij(1)T −1

i T
−1
j T

−1
i (Ej).

We have

EjE
−
ij (1) = E2

jEi − q3EjEiEj

= q−3EjEiEj − EiE2
j

= q−3E−ij (1)Ej ,

whence

E+
ij(3)E+

ij(2) = T −1
i (EjE

−
ij (1))

= q−3T −1
i (E−ij (1)Ej) = q−3E+

ij(2)E+
ij(3).

Combining these relations yields the assertion.

This finishes the proof. �

Proposition 2.65. Let w ∈ W and w = si1 · · · sit be a reduced expression of w.
The linear subspace of Uq(n+) spanned by the associated PBW-vectors Ea1β1

· · ·Eatβt
depends on w, but not on the choice of the reduced expression for w.

Proof. We use induction on l(w), the cases l(w) = 0 and l(w) = 1 being trivial. Now
assume l(w) > 1 and let w = si1 · · · sir be a reduced expression. Any other reduced
expression sj1 · · · sjr is obtained from a sequence of elementary moves applied to
si1 · · · sir , so it suffices to show that the subspace spanned by the associated PBW-
vectors does not change if sj1 · · · sjr is obtained by applying a single elementary
move to si1 · · · sir . Set α = αi1 and β = αj1 .

Assume first α = β write u = si1w = sj1w. The the inductive hypothesis
applied to u shows that the subspace U associated to u is the same for the reduced
expressions si2 · · · sir and sj2 · · · sjr of u. It follows from the definitions that the
space spanned by the PBW-vectors associated to both si1 · · · sir and sj1 · · · sjr is
the sum of the subspaces Eki1Tαi(U) for k ∈ N0. In particular, these spaces agree
for both reduced expressions of w.

Assume now α 6= β. Then the elementary move changes the first letter of the
expression si1 · · · sir , and therefore the corresponding elementary move has to take
place at the beginning of the expression. Let u be the longest word in the subgroup
of W generated by si1 and sj1 . Then si1 · · · sir and sj1 · · · sjr start with the two
distinct reduced expressions for u and agree after that. Let us write w = uv with
l(w) = l(u) + l(v). According to Lemma 2.64 the subspace U spanned by the
PBW-vectors associated to u is independent of the two expressions. Let us write V
for the span of PBW-vectors associated to the reduced expression of v induced by
si1 · · · sir , or equivalently sj1 · · · sjr . Then the span of the PBW-vectors associated
to the given expressions for w is equal to the UTu(V ), in particular, it does not
depend on the reduced expressions. �

In the sequel we will write Uq(n+)[w] ⊂ Uq(n+) for the subspace spanned by the
PBW-vectors associated with any reduced expression of w.

Let us fix a reduced expression w0 = si1 · · · sin for the longest element w0 of W .
Then the positive roots of g can be uniquely written in the form βr = si1 · · · sir−1αir
for 1 ≤ r ≤ n.
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Definition 2.66. Fix a reduced expression w0 = si1 · · · sin for the longest element
of W . We define the quantum root vectors of Uq(g) to be the associated PBW-
vectors

Eβr = Ti1 · · · Tir−1
(Eir ), Fβr = Ti1 · · · Tir−1

(Fir ).

Let us now formulate and prove the Poincaré-Birkhoff-Witt Theorem for Uq(g).

Theorem 2.67 (PBW-basis - Non-root of unity case). Assume q ∈ K× is not a
root of unity. Then the elements

F b1β1
· · ·F bnβnKλE

a1
β1
· · ·Eanβn

where bj , aj ∈ N0 for all j, λ ∈ P and β1, . . . , βn are the positive roots of g, form a
vector space basis of Uq(g) over K.

Proof. According to the triangular decomposition of Uq(g), see Proposition 2.14, it
suffices to show that the vectors Ea1β1

· · ·Eanβn with aj ∈ N0 form a basis of Uq(n+).

The corresponding claim for Uq(n−) can then be obtained by applying the automor-
phism ω. Indeed, one checks that Ti(ω(Ej)) and ω(Ti(Ej)) agree up to invertible
elements in K, for every 1 ≤ i, j ≤ N .

Firstly, according to Proposition 2.63 the PBW-vectors Ea1β1
· · ·Eanβn with aj ∈ N0

are linearly independent. To show that these vectors span Uq(n+) we need an
auxiliary consideration. If w ∈ W and αi ∈ Σ satisfy w−1αi ∈ ∆− then we have
EiUq(n+)[w] ⊂ Uq(n+)[w]. Indeed, in this case we find a reduced decomposition
w = si1 · · · sit with i1 = i, hence the PBW-vectors start with powers of Ei. Clearly,
the resulting space is invariant under left multiplication by Ei.

Let us now show that the PBW-vectors span Uq(n+). By definition, these vectors

span the subspace Uq(n+)[w0]. Since w0 is the longest word of W we have w−1
0 (αi) ∈

∆− and thus EiUq(n+)[w0] ⊂ Uq(n+)[w0] for all i. Hence Uq(n+)[w0] is closed
under left multiplication by the generators E1, . . . , EN . By construction, the space
Uq(n+)[w0] also contains 1. It follows that Uq(n+)[w0] = Uq(n+) as desired. �

We point out that one can reverse the ordering in the basis obtained in Theorem
2.67. That is, the vectors

F bnβn · · ·F
b1
β1
KλE

an
βn
· · ·Ea1β1

where bj , aj ∈ N0 for all j, λ ∈ P and β1, . . . , βn are the positive roots of g, form
again a vector space basis of Uq(g). This can be seen using the anti-automorphism δ
of Uq(g) which preserves all generators but exchanges q with q−1. One checks that

the automorphisms T −1
i δTiδ act by certain scalars on the generators, and hence

diagonally on weight spaces of Uq(g). Hence we have for all 1 ≤ j ≤ n that δ(Eβj )
is equal to Eβj up to a scalar, and since δ is anti-multiplicative it follows from
Theorem 2.67 that the vectors Eanβn · · ·E

a1
β1

form indeed a basis. We will frequently

make use of this fact in the sequel, and refer to the vectors Eanβn · · ·E
a1
β1

again as

PBW-vectors. In a similar way we proceed for F bnβn · · ·F
b1
β1

of course.
Let us also remark that the rank 1 case of Theorem 2.67 follows immediately

from Proposition 2.14.
As a consequence of the PBW-basis Theorem, we see that the dimension of the

weight spaces Uq(n±)ν for ν ∈ Q± coincide with their classical counterparts. Here
we are writing Q− = −Q+. These dimensions can be described in terms of the
Kostant partition function P : Q→ N0, defined by

P (ν) = |{(r1, . . . , rn) ∈ Nn0 | r1β1 + · · ·+ rnβn = ν}| .

Proposition 2.68. For all ν ∈ Q+ we have dimUq(n±)±ν = P (ν), where P
denotes Kostant’s partition function.
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Proof. Let us only consider the case of Uq(n+). According to Theorem 2.67, a linear
basis for Uq(n+)ν for ν ∈ Q+ is given by all PBW-vectors Ea1β1

· · ·Eanβn such that

a1β1 + · · · anβN = ν. The number of these vectors is precisely P (ν). �

Let us finish this subsection by the following result, originally due to Leven-
dorskii, which will help us to analyze the structure of Uq(n±) further below.

Proposition 2.69. If 0 ≤ r < s ≤ n then we have

EβrEβs − q(βr,βs)EβsEβr =

∞∑
tr+1,...ts−1=0

ctr+1,...,ts−1E
ts−1

βs−1
· · ·Etr+1

βr+1
,

with only finitely many coefficients ctr+1,...,ts−1
∈ K in the sum on the right hand

side being nonzero. Likewise,

FβrFβs − q(βr,βs)FβsFβr =

∞∑
tr+1,...ts−1=0

dtr+1,...,ts−1F
ts−1

βs−1
· · ·F tr+1

βr+1
,

with only finitely many dtr+1,...,ts−1
∈ K nonzero.

Proof. According to the PBW-Theorem 2.67 we can write

EβrEβs =
∑

t1,...tn∈N0

ct1,...,tnE
tn
βn
· · ·Et1β1

,

with only finitely many nonzero terms on the right hand side. Assume that there
exists a < r such that some c0,...,0,ta,...tn 6= 0 with ta > 0, and without loss of

generality pick the smallest such a. If we apply T −1
ia
· · · T −1

i1
to both sides of the

above equation then the left hand side, and all terms on the right hand side with
ta = 0 are contained in Uq(n+). Indeed, all these terms are products of root vectors
of the form Tia+1

· · · Til−1
(Eil) such that a+1 ≤ l, recall that Eβl = Ti1 · · · Til−1

(Eil).
The word sia+1

· · · sil is a reduced expression and hence sia+1
· · · sil−1

αil is a positive
root. According to Lemma 2.61 this implies Eβl = Ti1 · · · Til−1

(Eil) ∈ Uq(n+).

The terms with ta > 0 are of the form XT −1
ia

(Eia)ta for X ∈ Uq(n+). Since

T −1
ia

(Eia) = −FiaK−1
ia

this is a contradiction to the PBW-Theorem 2.67.
In a similar way one checks that ct1,...,tb,0,...,0 6= 0 for b > s is impossible. Indeed,

assume that a nonzero coefficient of this form exists and pick b maximal with this
property. Applying T −1

ib−1
· · · T −1

i1
to both sides of the equation leads to expressions

in Uq(n−), except for the terms with tb 6= 0.
Next, consider the nonzero coefficients c0,...,0,tr,...,ts,0,... with tr or ts nonzero. In

a similar way as above we apply T −1
ir
· · · T −1

i1
and T −1

is−1
· · · T −1

i1
, respectively, and

compare both sides of the equation. The highest powers of Fir or Eis appearing in
the resulting expressions must have the same degree on both sides, and this forces
tr = 1 and ts = 1, respectively. As a consequence, for any nonzero coefficient of
this form we obtain tj = 0 for all r < j < s by comparing weights.

It follows that we can write

EβrEβs − cEβsEβr =

∞∑
tr+1,...ts−1=0

ctr+1,...,ts−1
E
ts−1

βs−1
· · ·Etr+1

βr+1
,

with an as yet unspecified constant c. In order to compute c we apply T −1
ir
· · · T −1

i1
to both sides of the previous equation. Then the left hand side becomes

−FirK−1
ir
E + cEFirK

−1
ir

where E = Tir+1
· · · Tis−1

(Eis). Since E has weight sir · · · si1(βs) we get K−1
ir
E =

q−(αir ,sir ···si1 (βs))EK−1
ir

. Moreover

−(αir , sir · · · si1(βs)) = (si1 · · · sir−1
(αir ), βs) = (βr, βs),
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using that sir (αir ) = −αir . Accordingly, we obtain

−FirK−1
ir
E + cEFirK

−1
ir

= (−q(βr,βs)FirE + cEFir )K
−1
ir
.

Writing E as a sum of monomials in the generators E1, . . . , EN we get FirE−EFir ∈
Uq(b+). Comparing with the right hand side of the formula and using once more

the PBW-Theorem 2.67 yields c = q(βr,βs) as desired.
The claim for the PBW-vectors of Uq(n−) follows by applying the automorphism

ω to the formula in Uq(n+) and using the fact that Ti(ω(Ej)) and ω(Ti(Ej)) agree
up to an invertible element in K, for every i, j. �

2.7.5. The integral PBW-basis. Recall that the integral version UAq (g) of the quan-

tized universal enveloping algebra is defined over A = Z[s, s−1] where q = sL. Let
us fix a reduced expression w0 = wi1 · · ·win for the longest element w0 of W . We
define the restricted PBW-elements for Uq(n+) by

E
(a1)
β1
· · ·E(an)

βn
,

where

E
(ar)
βr

=
1

[ar]qβr !
Earβ

and qβr = qir if Eβr = Ti1 · · · Tir−1(Eir ). That is, the difference to the ordinary
PBW-elements is that we multiply by the inverse of [a1]qβ1 ! · · · [an]qβn !. In a similar

way one obtains restricted PBW-elements for Uq(n−).
Before we can state the integral version of the PBW-Theorem we need a refine-

ment of Proposition 2.54.

Lemma 2.70. Let V be an integrable Uq(g)-module. For any n ∈ N we have

Ti(E(n)
j · v) = (−qi)−naij (E(n)

j ← Ŝ−1(E
(−naij)
i )) · Ti(v)

Ti(F (n)
j · v) = (F

(−naij)
i → F

(n)
j ) · Ti(v)

for all v ∈ V .

Proof. Let us first consider the second formula. According to Proposition 2.54 we
have the claim for n = 1. In order to prove the assertion for general n it suffices to

show (F
(−aij)
i → Fj)

n = F
(−naij)
i → (Fnj ) by induction. Assuming that the claim

holds for n− 1, we compute, using Lemma 2.6,

F
(−naij)
i → (Fnj ) =

(
(F

(−naij)
i )(1) → Fn−1

j

)(
(F

(−naij)
i )(2) → Fj

)
=

−naij∑
k=0

q
k(−naij−k)
i (F

(−naij−k)
i K−ki → Fn−1

j )(F
(k)
i → Fj).

Using that F
(−aij+1)
i → Fj = 0 and the inductive hypothesis, all of the terms in

this sum vanish except when k = −aij , leaving

F
(−naij)
i → (Fnj ) = q

−aij(−(n−1)aij)
i (F

(−(n−1)aij)
i K

aij
i → Fn−1

j )(F
(−aij)
j → Fj)

= (F
(−(n−1)aij)
i → Fn−1

j )(F
(−aij)
j → Fj)

= (F
(−aij)
j → Fj)

n−1(F
(−aij)
j → Fj) = (F

(−aij)
j → Fj)

n

as desired.
Using this result, one obtains the first formula in the same way as in the proof

of Proposition 2.54. �

Let us now present an integral version of the PBW Theorem 2.67. Recall that

UAq (n±) ⊂ UAq (g) is the subalgebra generated by all divided powers E
(ai)
i and F

(bj)
j ,

respectively.
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Theorem 2.71 (PBW-basis - Integral Case). The elements

E
(a1)
β1
· · ·E(an)

βn

where aj ∈ N0 and β1, . . . , βn are the positive roots of g, form a free basis of UAq (n+).
Similarly, the elements

F
(b1)
β1
· · ·F (bn)

βn

where bj ∈ N0 and β1, . . . , βn are the positive roots of g, form a free basis of UAq (n−).

Proof. Recall that we can view UAq (g) as a subring of the quantized universal en-
veloping algebra Uq(g) defined over K = Q(s). Using the formulas in Theorem 2.58
and Lemma 2.70 we see that the operators Ti map UAq (g) into itself. It follows in

particular that the PBW-vectors are indeed contained in UAq (g).
In the same way as in the proof of Theorem 2.67 one checks that left multipli-

cation with E
(r)
i preserves the A-span of the PBW-basis vectors E

(a1)
β1
· · ·E(an)

βn
for

all 1 ≤ i ≤ N and r ∈ N0. We point out in particular that the commutation rela-
tions obtained in Lemma 2.64 only involve coefficients from A, so that the integral
version of Proposition 2.65 holds true. That is, the A-linear span of the restricted

PBW-vectors E
(a1)
β1
· · ·E(an)

βn
inside Uq(n+) is independent of the reduced expression

of w0. Linear independence of the restricted PBW-elements over A follows from
linear independence over Q(s).

The assertion for Uq(n−) is obtained in an analogous way. �

Using Theorem 2.71 we see that the triangular decomposition of Uq(g) carries
over to the integral form as well. Recall that UAq (h) denotes the intersection of

UAq (g) with Uq(h).

Proposition 2.72. Multiplication in UAq (g) induces an isomorphism

UAq (n−)⊗A UAq (h)⊗A UAq (n+) ∼= UAq (g)

of A-modules, and we have

Q(s)⊗A UAq (g) ∼= Uq(g),

where Uq(g) is the quantized universal enveloping algebra over Q(s).

Proof. It is easy to see that the image in UAq (g) under the multiplication map is a

subalgebra containing all generators, and therefore yields all of UAq (g). According

to Theorem 2.71 and Theorem 2.67 we have Q(s) ⊗A UAq (n±) ∼= Uq(n±). From

Proposition 2.24 we know Q(s)⊗A UAq (h) ∼= Uq(h). Hence the multiplication map

UAq (n−) ⊗A UAq (h) ⊗A UAq (n+) → UAq (g) is injective. The remaining claim then
follows taking into account Proposition 2.14. �

Proposition 2.72 shows in particular that UAq (g) is indeed an integral version of
Uq(g) in a natural sense.

2.8. The Drinfeld pairing and the quantum Killing form. In this section we
discuss the Drinfeld pairing and the quantum Killing form, compare [71].

2.8.1. Drinfeld pairing. Let us start by defining the Drinfeld pairing. We assume
that K is a field and that q = sL ∈ K× is not a root of unity.

We recall that a skew-pairing of Hopf algebras L and K means a bilinear map
ρ : L×K → K such that

ρ(xy, f) = ρ(x, f(1))ρ(y, f(2)), ρ(x, fg) = ρ(x(1), g)ρ(x(2), f),

ρ(1, f) = εK(f), ρ(x, 1) = εL(x).
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Proposition 2.73. There exists a unique skew-pairing ρ : Uq(b−) ⊗ Uq(b+) → K
determined by

ρ(Kα,Kβ) = q(α,β), ρ(Kα, Ei) = 0 = ρ(Fj ,Kβ), ρ(Fj , Ei) =
δij

qi − q−1
i

for all α, β ∈ P and i, j = 1, . . . , N .

Proof. Uniqueness of the form is clear since the elementsKα, Ei andKβ , Fj generate
Uq(b+) and Uq(b−), respectively.

We define linear functionals κλ, φi ∈ Uq(b+)∗ for λ ∈ P and i = 1, . . . , N by

κλ(KβX) = q(λ,β)ε̂(X)

for X ∈ Uq(n+) and

φi(KβEi) =
1

qi − q−1
i

, φi(KβX) = 0 if X ∈ Uq(n+)γ , γ 6= αi.

Consider the convolution product on Uq(b+)∗ dual to comultiplication on Uq(b+),
namely

ϕϕ′ = (ϕ⊗ ϕ′) ◦ ∆̂, for ϕ,ϕ′ ∈ Uq(b+)∗.

With this product, κλ is convolution invertible with inverse κ−1
λ = κ−λ. Moreover,

we claim that

κλφj = q−(αj ,λ)φjκλ.

Indeed, for X ∈ Uq(n+) we have (κλφjκ
−1
λ )(KµX) = 0 = φj(KµX) if X ∈ Uq(n+)β

for β 6= αj and

(κλφj)(KµEj) = κλ(Kµ)φj(KµEj) + κλ(KµEj)φj(KµKj)

= q(λ,µ)φj(KµEj)

= q−(αj ,λ)(φj(Kµ)κλ(KµEj) + φj(KµEj)κλ(KµKj))

= q−(αj ,λ)(φjκλ)(KµEj).

It follows that we obtain an algebra homomorphism γ̃ : Ũq(b−) → Uq(b+)∗ by

setting γ̃(Kλ) = κλ and γ̃(Fj) = φj . Here Ũq(b−) denotes the algebra without
Serre relations discussed in Section 2.2.

We define ρ̃(Y,X) = γ̃(Y )(X). Then we have ρ̃(Y Z,X) = ρ̃(Y,X(1))ρ̃(Z,X(2))
by construction. In order to show ρ̃(Y,WX) = ρ̃(Y(2),W )ρ̃(Y(1), X) it suffices to
consider generators in the first variable, since the relation holds for ρ̃(Y1Y2,WX)
for arbitrary W,X iff it holds for all ρ̃(Y1,WX) and ρ̃(Y2,WX), for arbitrary W,X.

Let Ei = Ei1 · · ·Eik , Ej = Ej1 · · ·Ejl and µ, ν ∈ P be given, and consider
ρ̃(Kλ,KµEiKνEj). If either one of Ei or Ej is different from 1 we get

ρ̃(Kλ,KµEiKνEj) = 0 = ρ̃(Kλ,KνEj)ρ̃(Kλ,KµEi).

Otherwise we get

ρ̃(Kλ,KµKν) = κλ(KµKν) = q(λ,µ+ν) = κλ(Kν)κλ(Kµ) = ρ̃(Kλ,Kν)ρ̃(Kλ,Kµ).

Moreover we have

ρ̃(Fk,KµEiKνEj) = φk(KµEiKνEj) = 0 = (φk ⊗ 1 + κ−1
k ⊗ φk)(KνEj ⊗KµEi)
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unless precisely one of the terms Ei or Ej has length one. In these cases we obtain

ρ̃(Fk,KµEiKν) = φk(KµEiKν) = q−(αi,ν)φk(KµKνEi)

= q−(αi,ν)δik
1

qi − q−1
i

= (φk ⊗ 1 + κ−1
k ⊗ φk)(Kν ⊗KµEi)

= ρ̃((Fk)(1),Kν)ρ̃((Fk)(2),KµEi)

and

ρ̃(Fk,KµKνEj) = φk(KµKνEj)

= δjk
1

qj − q−1
j

= (φk ⊗ 1 + κ−1
k ⊗ φk)(KνEj ⊗Kµ)

= ρ̃((Fk)(1),KνEj)ρ̃((Fk)(2),Kµ),

respectively.
Next we claim that

γ̃(u−ij) =

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

φ
1−aij−k
i φjφ

k
i = 0,

where we recall that the Serre elements u−ij were introduced in Subsection 2.2.3.
For this, notice that the individual summands vanish on all monomials in the Ek
except on terms of the form KνE

r
iEjE

1−aij−r
i . According to Proposition 2.10 and

the relation ρ̃(Y,WX) = ρ̃(Y(2),W )ρ̃(Y(1), X) for all W,X ∈ Uq(b+) established
above we have

ρ̃(u−ij ,WX) = ρ̃(u−ij ,W )ρ̃(κ
−(1−aij)
i κ−1

j , X) + ρ̃(1,W )ρ̃(u−ij , X)

for all W,X ∈ Uq(b+), therefore the claim follows from degree considerations. We
conclude that the map γ̃ factorises to an algebra homomorphism γ : Uq(b−) →
Uq(b+)∗ such that γ(Kλ) = κλ and γ(Fj) = φj . We define ρ(Y,X) = γ(Y )(X).

By construction, we have ρ(Y Z,X) = ρ(Y,X(1))ρ(Z,X(2)) for all Y,Z ∈ Uq(b−)
and X ∈ Uq(b+), and the relation ρ(Y,WX) = ρ(Y(2),W )ρ(Y(1), X) for Y ∈ Uq(b−)
and W,X ∈ Uq(b+) is inherited from ρ̃. Moreover, we notice that ρ(1, X) = ε̂(X)
because γ is an algebra homomorphism. Finally, ρ(Kλ, 1) = κλ(1) = 1 = ε̂(Kλ)
and ρ(Fi, 1) = φi(1) = 0 = ε̂(Fi), which implies ρ(Y, 1) = ε̂(Y ) for all Y ∈ Uq(b−).
This finishes the proof. �

Note that the form ρ satisfies

ρ(Y,X) = 0 for X ∈ Uq(n+)α, Y ∈ Uq(n−)β , α 6= −β.

In the sequel we will work both with ρ and the closely related form τ defined as
follows.

Definition 2.74. We shall refer to the skew-pairing τ : Uq(b+) ⊗ Uq(b−) → K
given by

τ(X,Y ) = ρ(Ŝ(Y ), X).

as the Drinfeld pairing.

Lemma 2.75. The Drinfeld pairing τ satisfies

τ(Kα,Kβ) = q−(α,β), τ(Ei,Kα) = 0 = τ(Kβ , Fj), τ(Ei, Fj) = − δij

qi − q−1
i
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for all α, β ∈ P and i, j = 1, . . . , N . Moreover

τ(XKµ, Y Kν) = q−(µ,ν)τ(X,Y ) for X ∈ Uq(n+), Y ∈ Uq(n−).

Proof. The formulas in the first part of the Lemma are verified by direct computa-
tion from the definition of ρ.

For Y = 1 ∈ Uq(n−) the second claim follows immediately from τ(XKµ,Kν) =
ρ(K−1

ν , XKµ). For Y = Fj we see that τ(XKµ, Fj) and τ(X,Fj) vanish unless X
is a multiple of Ej , and we compute

τ(EjKµ, Fj) = τ(Ej , Fj)τ(Kµ, 1) + τ(Ej ,K
−1
j )τ(Kµ, Fj)

= − 1

qj − q−1
j

= τ(Ej , Fj).

We get the formula for general Y by induction, using

τ(XKµ, FjY Kν) = τ(X(1)Kµ, Y Kν)τ(X(2)Kµ, Fj)

= q−(µ,ν)τ(X(1), Y )τ(X(2), Fj)

= q−(µ,ν)τ(X,FjY ),

in the inductive step. Notice here that ∆̂(X) is contained in Uq(n+)⊗Uq(b+). �

A crucial property of the pairings ρ and τ is that they can be used to exhibit
Uq(g) as a quotient of the Drinfeld double Uq(b−) ./ Uq(b+).

Lemma 2.76. For all X ∈ Uq(b+) and Y ∈ Uq(b−) we have

XY = ρ(Y(1), X(1))Y(2)X(2)ρ(Ŝ(Y(3)), X(3))

= τ(Ŝ(X(1)), Y(1))Y(2)X(2)τ(X(3), Y(3))

in Uq(g).

Proof. It suffices to check this on generators. We compute

KµKν = KνKµ = q(µ,ν)KνKµq
−(µ,ν),

EiKµ = q−(µ,αi)KµEi

= ρ(Kµ, 1)KµEiρ(Ŝ(Kµ),Ki)

= ρ(Kµ, 1)KµEiρ(Ŝ(Kµ),Ki) + ρ(Kµ, Ei)KµKiρ(Ŝ(Kµ),Ki)

+ ρ(Kµ, 1)Kµρ(Ŝ(Kµ), Ei),

EiFj = FjEi − δij
K−1
i

qi − q−1
i

+ δij
Ki

qi − q−1
i

= ρ(K−1
j , 1)FjEiρ(Ŝ(1),Ki) + ρ(K−1

j , 1)K−1
j ρ(Ŝ(Fj), Ei)

+ ρ(Fj , Ei)Kiρ(Ŝ(1),Ki).

This yields the claim. �

We note that we can rephrase the commutation relation of Lemma 2.76 as

X(1)Y(1)ρ(Y(2), X(2)) = ρ(Y(1), X(1))Y(2)X(2)

for X ∈ Uq(b+) and Y ∈ Uq(b−).
In the double Uq(b−) ./ Uq(b+) we shall denote the Cartan generators of Uq(b+)

by K+
λ and the Cartan generators of Uq(b−) by K−λ .
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Corollary 2.77. The two-sided ideal I of the Drinfeld double Uq(b−) ./ Uq(b+)
generated by the elements K−λ − K+

λ for λ ∈ P is a Hopf ideal, and there is a
canonical isomorphism

(Uq(b−) ./ Uq(b+))/I ∼= Uq(g)

of Hopf algebras.

Proof. The canonical embedding maps Uq(b+) → Uq(g) and Uq(b−) → Uq(g) de-
fine a Hopf algebra homomorphism f : (Uq(b−) ./ Uq(b+))/I → Uq(g) according
to Lemma 2.76. Conversely, we obtain an algebra homomorphism g : Uq(g) →
(Uq(b−) ./ Uq(b+))/I by setting

g(Kλ) = K−λ = K+
λ , g(Ei) = 1 ./ Ei, g(Fj) = Fj ./ 1,

since the defining relations of Uq(g) are satisfied by these elements. It is evident
that f and g define inverse isomorphisms. �

2.8.2. The quantum Killing form. Using the above constructions we can define the
quantum Killing form on Uq(g) in terms of the Rosso form for the Drinfeld double.
In this subsection, we will need a slightly stronger assumption on q, namely q =
s2L ∈ K×, again not a root of unity.

According to Definition 1.18, the Rosso form on the double Uq(b−) ./ Uq(b+) is
given by

κ(Y1 ./ X1, Y2 ./ X2) = τ(Ŝ(X1), Y2)τ(X2, Ŝ(Y1)),

for X1, X2 ∈ Uq(b+), Y1, Y2 ∈ Uq(b−), or equivalently

κ(Y1 ./ Ŝ
−1(X1), Y2 ./ Ŝ(X2)) = τ(X1, Y2)τ(X2, Y1).

These formulas inspire the following definition.

Definition 2.78. Assume that q = s2L ∈ K×. The quantum Killing form for Uq(g)
is the bilinear form κ : Uq(g)× Uq(g)→ K given by

κ(Y1KµŜ
−1(X1), Y2Kν Ŝ(X2)) = q(µ,ν)/2τ(X1, Y2)τ(X2, Y1).

for X1, X2 ∈ Uq(n+), Y1, Y2 ∈ Uq(n−), µ, ν ∈ P.

We remark that we need here a slightly stronger requirement on q than usual
in order for the terms q(λ,µ)/2 to be well-defined. The factor of 1

2 is needed to
compensate for the doubling of the Cartan part in Uq(b−) ./ Uq(b+), see also the
remarks further below.

Heuristically, the formula in Definition 2.78 can be explained by formally writing

κ(Y1Kµ/2 ./ Kµ/2Ŝ
−1(X1), Y2Kν/2 ./ Kν/2Ŝ(X2))

= κ(Y1Kµ/2 ./ Ŝ
−1(X1K−µ/2), Y2Kν/2 ./ Ŝ(X2K−ν/2))

= q(µ,ν)/2τ(X1, Y2)τ(X2, Y1),

in the Rosso form. This amounts to “splitting up” the Cartan part of Uq(g) evenly
among Uq(b+) and Uq(b−).

Proposition 2.79. The quantum Killing form κ : Uq(g) × Uq(g) → K is ad-
invariant, that is,

κ(Z → X,Y ) = κ(X, Ŝ(Z)→ Y )

for all X,Y, Z ∈ Uq(g).
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Proof. Let us consider X = Y1KµŜ
−1(X1) and Y = Y2Kν Ŝ(X2). For Z = Kλ and

Xj ∈ Uq(n+)βj and Yj ∈ Uq(n−)γj we get

κ(Kλ → (Y1KµŜ
−1(X1)),Kλ → (Y2KβŜ(X2)))

= q(λ,β1+γ1)q(λ,β2+γ2)κ(Y1KµŜ
−1(X1), Y2Kν Ŝ(X2))

= δβ1,−γ2δβ2,−γ1κ(Y1KµŜ
−1(X1), Y2Kν Ŝ(X2))

= κ(Y1KαŜ
−1(X1), Y2KβŜ(X2)).

Now consider Z = Ŝ−1(Ei). We compute

Ei → (Y2Kν Ŝ(X2)) = EiY2Kν Ŝ(X2)Ŝ(Ki) + Y2Kν Ŝ(X2)Ŝ(Ei)

= q(αi,β2)EiY2Kν−αi Ŝ(X2) + Y2Kν Ŝ(EiX2)

= q(αi,β2)

(
τ(Ŝ(Ei), (Y2)(1))(Y2)(2)Kiτ(Ki, (Y2)(3))Kν−αi Ŝ(X2)

+ τ(1, (Y2)(1))(Y2)(2)Eiτ(Ki, (Y2)(3))Kν−αi Ŝ(X2)

+ τ(1, (Y2)(1))(Y2)(2)τ(Ei, (Y2)(3))Kν−αi Ŝ(X2)

)
+ Y2Kν Ŝ(EiX2)

= q(αi,β2)

(
τ(Ŝ(Ei), (Y2)(1))(Y2)(2)Kν Ŝ(X2)

+ Y2EiKν−αi Ŝ(X2) + τ(Ei, (Y2)(2))(Y2)(1)Kν−αi Ŝ(X2)

)
+ Y2Kν Ŝ(EiX2)

= q(αi,β2)τ(Ŝ(Ei), (Y2)(1))(Y2)(2)Kν Ŝ(X2)− q(αi,β2)Y2Ŝ(Ei)Kν Ŝ(X2)

+ q(αi,β2)τ(Ei, (Y2)(2))(Y2)(1)Kν−αi Ŝ(X2) + Y2Kν Ŝ(EiX2)

= −q(αi,β2)τ(EiK
−1
i , (Y2)(1))(Y2)(2)Kν Ŝ(X2)

− q(αi,β2)q−(αi,ν)Y2Kν Ŝ(X2Ei)

+ q(αi,β2)τ(Ei, (Y2)(2))(Y2)(1)Kν−αi Ŝ(X2)

+ Y2Kν Ŝ(EiX2).

In the third term, note that τ(Ei, ·) annihilates all PBW vectors in Uq(b−) except
those of the form FiKλ for some λ ∈ P. We therefore obtain

κ(Y1KµŜ
−1(X1), Ei → (Y2Kν Ŝ(X2)))

= −q(αi,β2)q(µ,ν)/2τ(EiK
−1
i , (Y2)(1))τ(X1, (Y2)(2))τ(X2, Y1)

− q(αi,β2)q−(αi,ν)q(µ,ν)/2τ(X1, Y2)τ(X2Ei, Y1)

+ q(αi,β2)q(µ,−αi)/2q(µ,ν−αi)/2τ(Ei, (Y2)(2))τ(X1, (Y2)(1))τ(X2, Y1)

+ q(µ,ν)/2τ(X1, Y2)τ(EiX2, Y1)

= −q(αi,β2−β1)q(µ,ν)/2τ(EiX1, Y2)τ(X2, Y1)

− q(αi,β2)q−(αi,ν)q(µ,ν)/2τ(X1, Y2)τ(X2Ei, Y1)

+ q(αi,β2)q−(µ,αi)q(µ,ν)/2τ(X1Ei, Y2)τ(X2, Y1)

+ q(µ,ν)/2τ(X1, Y2)τ(EiX2, Y1).



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 85

On the other hand, using

Ei → (Y1KµŜ
−1(X1)) = EiY1KµŜ

−1(X1)Ŝ(Ki) + Y1KµŜ
−1(X1)Ŝ(Ei)

= q(αi,β1)EiY1Kµ−αi Ŝ
−1(X1) + q(αi,αi)Y1KµŜ

−1(Xi)Ŝ
−1(Ei)

= q(αi,β1)

(
τ(Ŝ(Ei), (Y1)(1))(Y1)(2)Kiτ(Ki, (Y1)(3))Kµ−αi Ŝ

−1(X1)

+ τ(1, (Y1)(1))(Y1)(2)Eiτ(Ki, (Y1)(3))Kµ−αi Ŝ
−1(X1)

+ τ(1, (Y1)(1))(Y1)(2)τ(Ei, (Y1)(3))Kµ−αi Ŝ
−1(X1)

)
+ q(αi,αi)Y1KµŜ

−1(EiX1)

= q(αi,β1)

(
τ(Ŝ(Ei), (Y1)(1))(Y1)(2)KµŜ

−1(X1)

+ Y1EiKµ−αi Ŝ
−1(X1) + τ(Ei, (Y1)(2))(Y1)(1)Kµ−αi Ŝ

−1(X1)

)
+ q(αi,αi)Y1KµŜ

−1(EiX1)

= q(αi,β1)τ(Ŝ(Ei), (Y1)(1))(Y1)(2)KµŜ
−1(X1)− q(αi,β1+αi)Y1Ŝ

−1(Ei)KµŜ
−1(X1)

+ q(αi,β1)τ(Ei, (Y1)(2))(Y1)(1)Kµ−αi Ŝ
−1(X1) + q(αi,αi)Y1KµŜ

−1(EiX1)

= −q(αi,β1)τ(EiK
−1
i , (Y1)(1))(Y1)(2)KµŜ

−1(X1)

− q(αi,β1+αi)q−(αi,µ)Y1KµŜ
−1(X1Ei)

+ q(αi,β1)τ(Ei, (Y1)(2))(Y1)(1)Kµ−αi Ŝ
−1(X1)

+ q(αi,αi)Y1KµŜ
−1(EiX1).

we calculate

κ(Ŝ−1(Ei)→ (Y1KµŜ
−1(X1)), Y2Kν Ŝ(X2))

= −κ(Ei → (Y1KµŜ
−1(X1)),Ki → (Y2Kν Ŝ(X2)))

= −q(αi,γ2+β2)κ(Ei → (Y1KµŜ
−1(X1)), Y2Kν Ŝ(X2))

= −q(αi,γ2+β2)

(
−q(αi,β1)q(µ,ν)/2τ(EiK

−1
i , (Y1)(1))τ(X2, (Y1)(2))τ(X1, Y2)

− q(αi,β1+αi)q−(αi,µ)q(µ,ν)/2τ(X2, Y1)τ(X1Ei, Y2)

+ q(αi,β1)q(ν,−αi)/2q(µ−αi,ν)/2τ(Ei, (Y1)(2))τ(X2, (Y1)(1))τ(X1, Y2)

+ q(αi,αi)q(µ,ν)/2τ(X2, Y1)τ(EiX1, Y2)

)
= −q(αi,γ2+β2)

(
−q(αi,β1)q(µ,ν)/2τ(EiK

−1
i X2, Y1)τ(X1, Y2)

− q(αi,β1+αi)q−(αi,µ)q(µ,ν)/2τ(X2, Y1)τ(X1Ei, Y2)

+ q(αi,β1)q−(ν,αi)q(µ,ν)/2τ(X2Ei, Y1)τ(X1, Y2)

+ q(αi,αi)q(µ,ν)/2τ(X2, Y1)τ(EiX1, Y2)

)
= q(µ,ν)/2τ(EiX2, Y1)τ(X1, Y2)

+ q(αi,β2)q−(αi,µ)q(µ,ν)/2τ(X2, Y1)τ(X1Ei, Y2)

− q(αi,β2)q(ν,−αi)q(µ,ν)/2τ(X2Ei, Y1)τ(X1, Y2)

− q(αi,β2−β1)q(µ,ν)/2τ(X2, Y1)τ(EiX1, Y2),

where in the first term of the last equality we are using the fact that τ(EiX2, Y1)τ(X1, Y2)
is zero unless −γ1 = αi+β2 and −γ2 = β1, and similarly for each of the other terms.
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In a similar way one proceeds for Z = Ŝ−1(Fi). This yields the claim. �

Consider also the bilinear form

(X1KµŜ(Y1), Y2Kν Ŝ(X2)) = q−(µ,ν)/2τ(X1, Y2)τ(X2, Y1)

= κ(Ŝ−1(X1KµŜ(Y1)), Y2Kν Ŝ(X2)).

on Uq(g). Using

Ŝ(X)← Ŝ(Z) = Ŝ2(Z(2))Ŝ(X)Ŝ(Z(1)) = Ŝ(Z(1)XŜ(Z(2))) = Ŝ(Z → X)

and Proposition 2.79 we get

(X ← Z, Y ) = (X,Z → Y )

for all X,Y, Z ∈ Uq(g). This will be crucial when we use the quantum Killing form
to express the locally finite part of Uq(g) in terms of O(Gq) in Theorem 2.113.

2.8.3. Computation of the Drinfeld pairing. In this subsection we use the PBW-
basis to compute the Drinfeld pairing. For the main part of the arguments we
follow the approach of Tanisaki [72].

Let us start with some preliminaries. The q-exponential function expq is defined
by

expq(x) =

∞∑
n=0

qn(n−1)/2

[n]q!
xn.

Here x is a formal variable, and the expression on the right hand side can be viewed
as an element of Q(q)[[x]].

Lemma 2.80. The formal series expq(x) is invertible, with inverse

expq(x)−1 =

∞∑
n=0

q−n(n−1)/2

[n]q!
(−x)n = expq−1(−x).

Proof. We formally multiply and collect terms of common powers in x, explicitly,

expq(x) expq−1(−x) =

( ∞∑
m=0

qm(m−1)/2

[m]q!
xm
)( ∞∑

n=0

q−n(n−1)/2

[n]q!
(−x)n

)

=

∞∑
k=0

k∑
l=0

(−1)k−l
ql(l−1)/2q−(k−l)(k−l−1)/2

[l]q!

1

[k − l]q!
xk

=

∞∑
k=0

(−1)kq(−k2+k)/2

( k∑
l=0

(−1)l
q(l2−l+kl+lk−l2−l)/2

[k]q!

[
k
l

]
q

)
xk

=

∞∑
k=0

(−1)k
q(−k2+k)/2

[k]q!

( k∑
l=0

(−1)lqkl−l
[
k
l

]
q

)
xk.

Hence the claim follows from Lemma 2.2. �

For 1 ≤ i ≤ N and integrable Uq(g)-modules V,W , define a linear operator Zi
on V ⊗W by

Zi = expqi((qi − q
−1
i )(Ei ⊗ Fi)).

According to Lemma 2.80 the operator Zi is invertible with inverse

Z−1
i = expq−1

i
(−(qi − q−1

i )(Ei ⊗ Fi)).

Recall moreover the definition of the operators Ti acting on integrable Uq(g)-
modules from Section 2.7.
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Proposition 2.81. Let V,W be finite dimensional integrable Uq(g)-modules and
1 ≤ i ≤ N . Then we have

Ti(v ⊗ w) = (Ti ⊗ Ti)Zi(v ⊗ w)

for all v ⊗ w ∈ V ⊗W .

Proof. Since the operators Ti and Zi are defined in terms of Uqi(gi) ⊂ Uq(g) it
suffices to consider the case g = sl(2,K). We shall therefore restrict to this case in
the sequel, writing Z = expq(−(q − q−1)(E ⊗ F )).

Let us first show that both T and (T ⊗T )Z commute in the same way with the
diagonal action of E and F . By Lemma 2.51 we have

T (E · (v ⊗ w)) = −K2F · T (v ⊗ w)

= (−K2F ⊗K2 − 1⊗K2F ) · T (v ⊗ w).

On the other hand,

(T ⊗ T )Z(E · (v ⊗ w)) = (T ⊗ T )Z(E · v ⊗K2 · w + v ⊗ E · w)

= (T ⊗ T )((E ⊗K2) · expq((q − q−1)q2(E ⊗ F ))(v ⊗ w))

+ (T ⊗ T )Z((1⊗ E) · (v ⊗ w))

= −(K2F ⊗K−2)(T ⊗ T )(expq((q − q−1)q2(E ⊗ F ))(v ⊗ w))

+ (T ⊗ T )Z((1⊗ E) · (v ⊗ w)).

In order to compute (T ⊗ T )Z((1 ⊗ E) · (v ⊗ w)) consider x = (q − q−1)(E ⊗ F ).
Let us prove by induction that

[xn, 1⊗ E] =

n−1∑
r=0

(E ⊗ (K−2q−2r −K2q2r))xn−1

= (q−n+1[n]q(E ⊗K−2)− qn−1[n]q(E ⊗K2))xn−1

for all n ∈ N. Indeed, for n = 1 one checks

[x, 1⊗ E] = (q − q−1)(E ⊗ [F,E]) = E ⊗ (K−2 −K2),

and for the inductive step we compute

[xn, 1⊗ E] = x[xn−1, 1⊗ E] + [x, 1⊗ E]xn−1

= x

n−2∑
r=0

(E ⊗ (K−2q−2r −K2q2r))xn−2 + (E ⊗ (K−2 −K2))xn−1

=

n−2∑
r=0

(E ⊗K−2q−2r−2 − E ⊗K2q2r+2)xn−1 + (E ⊗ (K−2 −K2))xn−1

=

n−1∑
r=0

(E ⊗ (K−2q−2r −K2q2r))xn−1.
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Therefore we formally obtain

Z(1⊗ E) =

∞∑
n=0

qn(n−1)/2

[n]q!
xn(1⊗ E)

= (1⊗ E) expq(x) +

∞∑
n=1

qn(n−1)/2

[n]q!
q−n+1[n]q(E ⊗K−2)xn−1

−
∞∑
n=1

qn(n−1)/2

[n]q!
qn−1[n]q(E ⊗K2)xn−1

= (1⊗ E) expq(x) + (E ⊗K−2)

∞∑
n=1

q(n−1)(n−2)/2

[n− 1]q!
xn−1

− (E ⊗K2)

∞∑
n=1

q(n−1)(n−2)/2

[n− 1]q!
q2(n−1)xn−1

= (1⊗ E) expq(x) + (E ⊗K−2) expq(x)− (E ⊗K2) expq(q
2x).

Summarizing the above calculations we get

(T ⊗ T )Z(1⊗ E) = −(1⊗K2F )(T ⊗ T )Z − (K2F ⊗K2)(T ⊗ T )Z

+ (K2F ⊗K−2)(T ⊗ T ) expq(q
2x),

and hence

(T ⊗ T )Z(E · (v ⊗ w))

= −(K2F ⊗K−2)(T ⊗ T )(expq((q − q−1)q2(E ⊗ F ))(v ⊗ w))

− (1⊗K2F )(T ⊗ T )Z(v ⊗ w)− (K2F ⊗K2)(T ⊗ T )Z(v ⊗ w)

+ (K2F ⊗K−2)(T ⊗ T ) expq((q − q−1)q2(E ⊗ F ))(v ⊗ w))

= −(1⊗K2F )(T ⊗ T )Z(v ⊗ w)− (K2F ⊗K2)(T ⊗ T )Z(v ⊗ w).

This shows that both operators commute in the same way with the diagonal action
of E. In a similar way we compute

T (F · (v ⊗ w)) = −EK−2 · T (v ⊗ w)

= (−EK−2 ⊗ 1−K−2 ⊗ EK−2) · T (v ⊗ w).

On the other hand,

(T ⊗ T )Z(F · (v ⊗ w)) = (T ⊗ T )Z(F · v ⊗ w +K−2 · v ⊗ F · w)

= (T ⊗ T )Z((F ⊗ 1) · (v ⊗ w))

+ (T ⊗ T )((K−2 ⊗ F ) · expq((q − q−1)q2(E ⊗ F ))(v ⊗ w))

= (T ⊗ T )Z((F ⊗ 1) · (v ⊗ w))

− (K2 ⊗ EK−2)(T ⊗ T )(expq((q − q−1)q2(E ⊗ F ))(v ⊗ w)).

If x = (q − q−1)(E ⊗ F ), then we obtain

[xn, F ⊗ 1] =

n−1∑
r=0

((K2q−2r −K−2q2r)⊗ F )xn−1

= (q−n+1[n]qK
2 ⊗ F − qn−1[n]qK

−2 ⊗ F )xn−1

for all n ∈ N by induction. Indeed, for n = 1 one checks

[x, F ⊗ 1] = (q − q−1)([E,F ]⊗ F ) = (K2 −K−2)⊗ F,
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and for the inductive step we compute

[xn, F ⊗ 1] = x[xn−1, F ⊗ 1] + [x, F ⊗ 1]xn−1

= x

n−2∑
r=0

((K2q−2r −K−2q2r)⊗ F )xn−2 + ((K2 −K−2)⊗ F )xn−1

=

n−2∑
r=0

((K2q−2r−2 −K−2q2r+2)⊗ F )xn−2 + ((K2 −K−2)⊗ F )xn−1

=

n−1∑
r=0

((K2q−2r −K−2q2r)⊗ F )xn−1.

We formally obtain

Z(F ⊗ 1) =

∞∑
n=0

qn(n−1)/2

[n]q!
xn(F ⊗ 1)

= (F ⊗ 1) expq(x) +

∞∑
n=1

qn(n−1)/2

[n]q!
q−n+1[n]q(K

2 ⊗ F )xn−1

−
∞∑
n=1

qn(n−1)/2

[n]q!
qn−1[n]q(K

−2 ⊗ F )xn−1

= (F ⊗ 1) expq(x) + (K2 ⊗ F )

∞∑
n=1

q(n−1)(n−2)/2

[n− 1]q!
xn−1

− (K−2 ⊗ F )

∞∑
n=1

q(n−1)(n−2)/2

[n]q!
q2(n−1)xn−1

= (F ⊗ 1) expq(x) + (K2 ⊗ F ) expq(x)− (K−2 ⊗ F ) expq(q
2x).

Summarising the above calculations we get

(T ⊗ T )Z(F ⊗ 1) = −(EK−2 ⊗ 1)(T ⊗ T )Z − (K−2 ⊗ EK−2)(T ⊗ T )Z

+ (K2 ⊗ EK−2)(T ⊗ T ) expq(q
2x),

and hence

(T ⊗ T )Z(F · (v ⊗ w))

= −(EK−2 ⊗ 1)(T ⊗ T )Z(v ⊗ w)− (K−2 ⊗ EK−2)(T ⊗ T )Z(v ⊗ w)

+ (K2 ⊗ EK−2)(T ⊗ T ) expq(q
2(q − q−1)(E ⊗ F )(v ⊗ w))

− (K2 ⊗ EK−2)(T ⊗ T )(expq((q − q−1)q2(E ⊗ F ))(v ⊗ w))

= −(EK−2 ⊗ 1)(T ⊗ T )Z(v ⊗ w)− (K−2 ⊗ EK−2)(T ⊗ T )Z(v ⊗ w).

That is, both operators commute in the same way with the diagonal action of F .
Let us point out that T and (T ⊗ T )Z commute also in the same way with the
diagonal action of Kµ for µ ∈ P, as one checks easily by weight considerations.

We show next that T and (T ⊗ T )Z agree on V (m)⊗ V (1/2) for all m ∈ 1
2N0.

For m = 0 there is nothing to prove. Hence assume that m ≥ 1
2 and consider the

tensor product decomposition

V (m)⊗ V (1/2) ∼= V (m+ 1/2)⊕ V (m− 1/2).

Since both operators commute in the same way with the diagonal action of Uq(g)
it suffices to show that T and (T ⊗ T )Z agree on the lowest weight vectors in the
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irreducible components V (m+ 1/2) and V (m− 1/2) of the tensor product. Up to
a scalar, these lowest weight vectors are given by

v(−m−1/2) = v(−m) ⊗ v(−1/2),

v(−m+1/2) = [2m]qv(−m) ⊗ v(1/2) − q2mv(−m+1) ⊗ v(−1/2),

as can be checked by computing the diagonal action of F on each.
For the case of v(−m−1/2), note that Z fixes v(−m) ⊗ v(−1/2), and so Proposition

2.49 gives

(T ⊗ T )Z(v(−m) ⊗ v(−1/2)) = (−1)2mq2mv(m) ⊗−qv(1/2),

while
T (v(−m−1/2)) = (−1)2m+1q2m+1v(m+1/2).

For v(−m+1/2), we have

Z(v(−m+1/2)) = v(−m+1/2) + (q − q−1)(E ⊗ F ) · v(−m+1/2)

= [2m]qv(−m) ⊗ v(1/2) − q2mv(−m+1) ⊗ v(−1/2)

+ (q − q−1)[2m]qv(−m+1) ⊗ v(−1/2)

= [2m]qv(−m) ⊗ v(1/2) − q−2mv(−m+1) ⊗ v(−1/2).

Using the formulas from Proposition 2.49 we get

(T ⊗ T )Z(v(−m+1/2))

= (T ⊗ T )([2m]qv(−m) ⊗ v(1/2) − q−2mv(−m+1) ⊗ v(−1/2))

= (−1)2mq2m[2m]qv(m) ⊗ v(−1/2) − (−1)2m−1q−2mq(2m−1)2v(m−1) ⊗ (−qv(1/2))

= (−1)2mq2m[2m]qv(m) ⊗ v(−1/2) − (−1)2mq2m−1v(m−1) ⊗ v(1/2).

On the other hand, from the definition of T and Lemma 2.6 we obtain

T (v(−m+1/2)) = (−1)2m−1q2m−1E(2m−1) · v(−m+1/2)

= (−1)2m−1q2m−1E(2m−1) · ([2m]qv(−m) ⊗ v(1/2) − q2mv(−m+1) ⊗ v(−1/2))

= (−1)2m−1q2m−1([2m]qE
(2m−1) · v(−m) ⊗K2(2m−1) · v(1/2)

− q2mE(2m−1) · v(−m+1) ⊗K2(2m−1) · v(−1/2)

− q2mq2m−2E(2m−2) · v(−m+1) ⊗ EK2(2m−2) · v(−1/2))

= (−1)2m−1q2m−1[2m]qq
2m−1v(m−1) ⊗ v(1/2)

+ (−1)2mq2m−1q2m[2m]qv(m) ⊗ q−(2m−1)v(−1/2)

+ (−1)2mq2m−1q2mq2m−2q−(2m−2)[2m− 1]qv(m−1) ⊗ v(1/2)

= (−1)2m−1q4m−2[2m]qv(m−1) ⊗ v(1/2)

+ (−1)2mq2m[2m]qv(m) ⊗ v(−1/2)

+ (−1)2mq4m−1[2m− 1]qv(m−1) ⊗ v(1/2)

= (−1)2m−1q2m−1v(m−1) ⊗ v(1/2) + (−1)2mq2m[2m]qv(m) ⊗ v(−1/2),

using
q4m−2[2m]q − q4m−1[2m− 1]q = q2m−1

in the last step.
Now we want to show that T and (T ⊗ T )Z agree on V (m) ⊗ V (n) for all

n ∈ 1
2N0. Since both operators commute in the same way with the diagonal action

of Uq(g) it suffices to show that they agree on V (m) ⊗ v(−n), where v(−n) ∈ V (n)
is a lowest weight vector. The case n = 0 is trivial, and the case n = 1/2 follows
from our above calculations. Let n > 1/2 and assume that the assertion is proved
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for all m and all k < n. Since Z(v ⊗ v(−n)) = v ⊗ v(−n) for all v ∈ V (m) we
have to show T (v ⊗ v(−n)) = T (v) ⊗ T (v(−n)). To this end consider the inclusion
V (n) ⊂ V (n− 1/2)⊗V (1/2). Then, up to a scalar, the vector v(−n) identifies with
v(−n+1/2) ⊗ v(−1/2), and we obtain

T (v ⊗ v(−n+1/2) ⊗ v(−1/2)) = T (v ⊗ v(−n+1/2))⊗ T (v(−1/2))

= T (v)⊗ T (v(−n+1/2))⊗ T (v(−1/2))

= T (v)⊗ T (v(−n+1/2) ⊗ v(−1/2))

by our induction hypothesis. This finishes the proof. �

Recall that the automorphism Ti : Uq(g)→ Uq(g) is induced by conjugation with
the operators Ti on integrable Uq(g)-modules. As a consequence of Proposition 2.81
we obtain

∆̂(T −1
i (X)) = Z−1

i (T −1
i ⊗ T −1

i )∆̂(X)(Ti ⊗ Ti)Zi = Z−1
i (T −1

i ⊗ T −1
i )(∆̂(X))Zi

for all X ∈ Uq(g).

Lemma 2.82. We have

∆̂(Ti(Uq(b+))) ⊂ Ti(Uq(b+))⊗ Uq(g),

∆̂(Ti(Uq(b−))) ⊂ Uq(g)⊗ Ti(Uq(b−))

and

Uq(n+) ∩ Ti(Uq(b+)) = Uq(n+) ∩ Ti(Uq(n+)),

Uq(n−) ∩ Ti(Uq(b−)) = Uq(n−) ∩ Ti(Uq(n−)).

Proof. For the first formula we compute

∆̂(Ti(X))) = (Ti ⊗ Ti)(Zi∆̂(X)Z−1
i )(T −1

i ⊗ T −1
i )

= (Ti ⊗ Ti)(Zi∆̂(X)Z−1
i ),

and if X ∈ Uq(b+) the term on the right hand side is contained in Ti(Uq(b+))⊗Uq(g)
by the explicit formula for Zi. The second formula is obtained in exactly the same
way.

For the third formula it clearly suffices to show that the space on the left hand
side is contained in the space on the right hand side. Let X ∈ Uq(n+)∩Ti(Uq(b+)).
Moreover let V be an integrable Uq(g)-module and v ∈ V . If λ ∈ P+ and vλ ∈ V (λ)
is a highest weight vector we have Zi(vλ ⊗ v) = vλ ⊗ v, hence the formula after
Proposition 2.81 yields

T −1
i (X) · (vλ ⊗ v) = Z−1

i (T −1
i ⊗ T −1

i )(∆̂(X)) · (vλ ⊗ v).

Since X ∈ Uq(n+) we have

∆̂(X)− 1⊗X ∈
⊕

µ∈Q+\{0}

Uq(n+)µ ⊗ Uq(b+),

and combining this with X ∈ Ti(Uq(b+)), the first formula of the present Lemma
yields

∆̂(X)− 1⊗X ∈
⊕

µ∈Q+\{0}

(Uq(n+)µ ∩ Ti(Uq(b+)))⊗ Uq(b+).

Hence

(T −1
i ⊗ T −1

i )(∆̂(X))− 1⊗ T −1
i (X) ∈ Uq(h)

( ⊕
µ∈Q+\{0}

Uq(n+)µ

)
⊗ Uq(g),
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observing that the automorphism T −1
i preserves the sum of all nonzero weight

spaces in Uq(g). We conclude

T −1
i (X) · (vλ ⊗ v) = Z−1

i (vλ ⊗ T −1
i (X) · v) = vλ ⊗ T −1

i (X) · v.

Since T −1
i (X) ∈ Uq(b+) we can write

T −1
i (X) =

∑
ν∈Q+

XνKν

for elements Xν ∈ Uq(n+). Then

T −1
i (X) · (vλ ⊗ v) =

∑
ν∈Q+

Xν · (Kν · vλ ⊗Kν · v) =
∑
ν∈Q+

q(ν,λ)vλ ⊗XνKν · v.

On the other hand,

vλ ⊗ (T −1
i (X) · v) = vλ ⊗

∑
ν∈Q+

XνKν · v,

and thus ∑
ν∈Q+

q(ν,λ)vλ ⊗XνKν · v = vλ ⊗
∑
ν∈Q+

XνKν · v.

This holds for all v ∈ V , where V is an arbitrary integrable Uq(g)-module. Therefore
we get ∑

ν∈Q+

(1− q(ν,λ))XνKν = 0

for all λ ∈ P+. This implies Xν = 0 for ν 6= 0, and thus T −1
i (X) ∈ Uq(n+). In

other words, we obtain X ∈ Ti(Uq(n+)) as desired.
The final formula is obtained in a similar way. �

Lemma 2.83. We have

∆̂(Uq(n+) ∩ Ti(Uq(n+))) ⊂ (Uq(n+) ∩ Ti(Uq(n+)))⊗ Uq(b+),

∆̂(Uq(n−) ∩ Ti(Uq(n−))) ⊂ Uq(b−)⊗ (Uq(n−) ∩ Ti(Uq(n−)))

for 1 ≤ i ≤ N .

Proof. According to the first formula of Lemma 2.82 we obtain

∆̂(Uq(n+) ∩ Ti(Uq(n+))) ⊂ (Uq(n+) ∩ Ti(Uq(b+)))⊗ Uq(b+).

Hence the third formula of Lemma 2.82 yields the first claim. The second assertion
is proved in the same way using the second and fourth formulas of Lemma 2.82. �

Lemma 2.84. We have

Uq(n+) ∩ Ti(Uq(n+)) = {X ∈ Uq(n+) | τ(X,Uq(n−)Fi) = 0},
Uq(n−) ∩ Ti(Uq(n−)) = {Y ∈ Uq(n−) | τ(Uq(n+)Ei, Y ) = 0}

for 1 ≤ i ≤ N .

Proof. Assume first X ∈ Uq(n+)∩Ti(Uq(n+)). Using the skew-pairing property we
have

τ(X,Y Fi) = τ(X(1), Fi)τ(X(2), Y )

for any Y ∈ Uq(n−). According to the first part of Lemma 2.83, the first tensor

factors of ∆̂(X) consist of sums of terms Zγ ∈ Uq(n+)∩ Ti(Uq(n+)) of weight γ for
some γ ∈ (Q+ ∩ siQ+) \ {0}. Since γ 6= αi, we must have ρ(Zγ , Fi) = 0 for any
such Zγ , and thus τ(X,Y Fi) = 0.
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Assume conversely that X ∈ Uq(n+) satisfies τ(X,Uq(n−)Fi) = 0, and let us

show X ∈ Ti(Uq(n+)). According to Lemma 2.82 it suffices to prove T −1
i (X) ∈

Uq(b+), and for this it is enough to verify

T −1
i (X)(vλ ⊗ V ) ⊂ vλ ⊗ V

for all integrable modules V and vλ ∈ V (λ) for λ ∈ P+. Let us define Xr ∈ Uq(b+)
for r ∈ N by

∆̂(X)−
∑
r∈N

Eri ⊗XrK
r
i ∈

( ⊕
µ∈Q+\Nαi

Uq(n+)µ

)
⊗ Uq(b+).

For Y ∈ Uq(n−) and m ∈ N we get

0 = τ(X,Y Fmi ) = τ(X(1), F
m
i )τ(X(2), Y )

=
∑
r∈N

τ(Eri , F
m
i )τ(XrK

r
i , Y ) =

∑
r∈N

τ(Eri , F
m
i )τ(Xr, Y ).

Since τ(Eri , F
m
i ) = 0 for m 6= r we deduce Xm = 0 for all m ∈ N, using the

nondegeneracy of τ obtained in Proposition 2.92. Hence

∆̂(X) ∈
( ⊕
µ∈Q+\Nαi

Uq(n+)µ

)
⊗ Uq(b+).

On the other hand, we have Uq(n+)γF
m
i ⊂

∑m
r=0 Uq(h)F ri Uq(n+)γ−rαi . If γ ∈

Q+ \ N0αi we thus get Uq(n+)γF
m
i · vλ = 0.

We now compute

T −1
i (X) · (vλ ⊗ V ) = Z−1

i · (T
−1
i ⊗ T −1

i )(∆̂(X) · (Ti(vλ)⊗ V ))

= Z−1
i · (T

−1
i ⊗ T −1

i )(∆̂(X) · (F (α∨i ,λ)
i · vλ ⊗ V ))

using the formula for the coproduct of T −1
i (X) obtained after Proposition 2.81

and the definition of the action of Ti on a highest weight vector. From our above
considerations we get

∆̂(X) · (F (α∨i ,λ)
i · vλ ⊗ V ) = (1⊗X) · (F (α∨i ,λ)

i · vλ ⊗ V ) ⊂ F (α∨i ,λ)
i · vλ ⊗ V.

Hence

T −1
i (X) · (vλ ⊗ V ) ⊂ Z−1

i · (T
−1
i (F

(α∨i ,λ)
i · vλ)⊗ V ) = Z−1

i · (vλ ⊗ V ) = vλ ⊗ V
as desired.
The second assertion is proved in a similar way. �

Lemma 2.85. The multiplication of Uq(g) induces linear isomorphisms

Uq(n+) ∼=
∞⊕
r=0

KEri ⊗ (Uq(n+) ∩ Ti(Uq(n+)))

Uq(n−) ∼=
∞⊕
r=0

KF ri ⊗ (Uq(n−) ∩ Ti(Uq(n−)))

for each 1 ≤ i ≤ N .

Proof. Let w0 = si1 · · · sit be a reduced expression of the longest word of W be-
ginning with i1 = i. Then according to Theorem 2.67 the vectors Ea1i E

a2
β2
· · ·Eanβn

form a basis of Uq(n+). By construction, the linear span of Ea2β2
· · ·Eanβn is contained

in Uq(n+)∩ Ti(Uq(n+)). Moreover, the multiplication map
⊕∞

r=0 KEri ⊗ (Uq(n+)∩
Ti(Uq(n+))) → Uq(n+) is injective because T −1

i (Ei) ∈ Uq(b−) by the definition of

Ti and T −1
i (Uq(n+) ∩ Ti(Uq(n+))) ⊂ Uq(n+). This yields the first claim.

The second isomorphism is obtained in a similar way. �
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Using the notation Uq(n±)[w] which we introduced before Definition 2.66, we
may rephrase the assertion of Lemma 2.85 as

Uq(n+) ∩ Ti(Uq(n+)) = Ti(Uq(n+)[siw0]),

Uq(n−) ∩ Ti(Uq(n−)) = Ti(Uq(n−)[siw0])

for all 1 ≤ i ≤ N , where w0 ∈W is the longest element of W .

Definition 2.86. The Harish-Chandra map is the linear map P : Uq(g) → Uq(h)
given by ε̂ ⊗ id⊗ε̂ under the triangular isomorphism Uq(g) ∼= Uq(n−) ⊗ Uq(h) ⊗
Uq(n+).

Proposition 2.87. Let γ ∈ Q+ and assume X ∈ Uq(n+)γ , Y ∈ Uq(n−)−γ . Then

P(XY )− τ(X,Y )K−γ ∈
∑

ν∈Q+\{0}

KK2ν−γ .

Proof. Let us write

∆̂(X) =
∑
r

X [1]
r ⊗X [2]

r Kγr , ∆̂(Y ) =
∑
s

K−δsY
[1]
s ⊗ Y [2]

s

where γr, δs ∈ Q+ and X
[1]
r ∈ Uq(n+)γr , X

[2]
r ∈ Uq(n+)γ−γr , and similarly Y

[1]
s ∈

Uq(n−)−γ+δs , Y
[2]
s ∈ Uq(n−)−δs . From the structure of the comultiplication we see

that

(id⊗∆̂)∆̂(X)−
∑
r

X [1]
r ⊗Kγr ⊗X [2]

r Kγr

is contained in Uq(n+)⊗ Uq(h)(Uq(n+) ∩ ker(ε̂))⊗ Uq(b+). Similarly,

(∆̂⊗ id)∆̂(Y )−
∑
s

K−δsY
[1]
s ⊗K−δs ⊗ Y [2]

s

is contained in Uq(b−)⊗ (Uq(n+) ∩ ker(ε̂))Uq(h)⊗ Uq(n−). Hence according to the
commutation relations in Uq(g) from Lemma 2.76 and the definition of P we obtain

P(XY ) = τ(X(1), Ŝ
−1(Y(1)))P(Y(2)X(2))τ(X(3), Y(3))

=
∑
r,s

τ(X [1]
r , Ŝ−1(K−δsY

[1]
s ))Kγr−δsτ(X [2]

r Kγr , Y
[2]
s )

=
∑
r,s

τ(X [1]
r , Ŝ−1(K−δsY

[1]
s ))τ(X [2]

r Kγr , Y
[2]
s )K2γr−γ ;

here we note that only summands r, s such that γr + δs = γ contribute. The term
for γr = 0 is ∑

s

τ(1,K−δsY
[1]
s )τ(X,Y [2]

s ) = τ(X,Y ).

This yields the claim. �

We prove now that the Drinfeld pairing is invariant in a suitable sense.

Theorem 2.88. Let X ∈ Uq(n+)∩Ti(Uq(n+)) and Y ∈ Uq(n−)∩Ti(Uq(n−)). Then

τ(T −1
i (X), T −1

i (Y )) = τ(X,Y ).

Proof. We may assume X ∈ Uq(n+)γ ∩ Ti(Uq(n+)), Y ∈ Uq(n−)−γ ∩ Ti(Uq(n−))

for some γ ∈ Q+. Applying Proposition 2.87 to T −1
i (X), T −1

i (Y ), we see that it
suffices to show

P(T −1
i (XY ))− τ(X,Y )K−siγ ∈

∑
ν∈Q+\{0}

KK2ν−siγ ,

since we then obtain the claim by comparing the coefficients of K−siγ .
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As in the proof of Proposition 2.87 we may write

∆̂(X) =
∑
r

X [1]
r ⊗X [2]

r Kγr , ∆̂(Y ) =
∑
s

K−δsY
[1]
s ⊗ Y [2]

s

where γr, δs ∈ Q+ ∩ siQ+ and X
[1]
r ∈ Uq(n+)γr , Y

[2]
s ∈ Uq(n−)−δs . According to

Lemma 2.83 we have in fact X
[1]
r ∈ Uq(n+)γr ∩ Ti(Uq(n+)), X

[2]
r ∈ Uq(n+)γ−γr , and

similarly Y
[1]
s ∈ Uq(n−)−γ+δs , Y

[2]
s ∈ Uq(n−)−δs ∩ Ti(Uq(n−)). Using again Lemma

2.83 and Lemma 2.85 we find elements X
[1]
rm ∈ Uq(n+)γr−mαi ∩ Ti(Uq(n+)) such

that

∆̂(X [1]
r )−

∑
m∈N0

X [1]
rm ⊗ E

(m)
i Kγr−mαi

is contained in Uq(n+)⊗ Uq(b+)(Uq(n+) ∩ Ti(Uq(n+)) ∩ ker(ε̂)). Then

(∆̂⊗ id)∆̂(X)−
∑
r

∑
m∈N0

X [1]
rm ⊗ E

(m)
i Kγr−mαi ⊗X [2]

r Kγr

is contained in Uq(n+)⊗ Uq(b+)(Uq(n+) ∩ Ti(Uq(n+)) ∩ ker(ε̂))⊗ Uq(b+).

Similarly, we find Y
[2]
sm ∈ Uq(n−)−δs+mαi ∩ Ti(Uq(n−)) such that

∆̂(Y [2]
s )−

∑
m∈N0

K−δs+mαiF
(m)
i ⊗ Y [2]

sm

is contained in (Uq(n−) ∩ Ti(Uq(n−)) ∩ ker(ε̂))Uq(b−)⊗ Uq(n−), and then

(id⊗∆̂)∆̂(Y )−
∑
s

∑
m∈N0

K−δsY
[1]
s ⊗K−δs+mαiF

(m)
i ⊗ Y [2]

sm

is contained in Uq(b−)⊗ (Uq(n−) ∩ Ti(Uq(n−)) ∩ ker(ε̂))Uq(b−)⊗ Uq(n−).
Due to the commutation relations from Lemma 2.76 and the invariance properties

of τ we get

XY −
∑
m∈N0

∑
γr+δs=γ+mαi

τ(X [1]
rm, Ŝ

−1(Y [1]
s ))K−δs+mαiF

(m)
i E

(m)
i Kγr−mαiτ(X [2]

r , Y [2]
sm)

∈ (Uq(n−) ∩ Ti(Uq(n−)) ∩ ker(ε̂))Uq(g) + Uq(g)(Uq(n+) ∩ Ti(Uq(n+)) ∩ ker(ε̂)).

In the sequel, this relation will be evaluated in two ways.
Firstly, by the definition of P we obtain

P(XY ) =
∑

γr+δs=γ

τ(X
[1]
r0 , Ŝ

−1(Y [1]
s ))K−γ+2γrτ(X [2]

r , Y
[2]
s0 ).

Therefore

τ(X,Y ) =
∑

γr=0,δs=γ

τ(X
[1]
r0 , Ŝ

−1(Y [1]
s ))τ(X [2]

r , Y
[2]
s0 )

according to Proposition 2.87.
Secondly, applying T −1

i to the above formula gives

T −1
i (XY )−

∑
m∈N0

∑
γr+δs=γ+mαi

τ(X [1]
rm, Ŝ

−1(Y [1]
s ))τ(X [2]

r , Y [2]
sm)×

Ksi(−δs+mαi)E
(m)
i F

(m)
i Ksi(γr−mαi)

∈ (Uq(n−) ∩ ker(ε̂))Uq(g) + Uq(g)(Uq(n+) ∩ ker(ε̂)),

taking into account

T −1
i (F

(m)
i E

(m)
i ) =

1

[m]q!2
(−KiEi)

m(−FiK−1
i )m =

1

[m]q!2
Emi F

m
i = E

(m)
i F

(m)
i
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by the definition of Ti. According to the commutation relations in Proposition 2.23
we obtain

E
(m)
i F

(m)
i −

[
Ki; 0
m

]
qi

∈ Uq(g)(Uq(n+) ∩ ker(ε̂)) + (Uq(n−) ∩ ker(ε̂))Uq(g)

where we recall that [
Ki; 0
m

]
qi

=

m∏
j=1

q1−j
i Ki − q−(1−j)

i K−1
i

qji − q
−j
i

.

Hence,

T −1
i (XY )−

∑
m∈N0

∑
γr+δs=γ+mαi

τ(X [1]
rm, Ŝ

−1(Y [1]
s ))τ(X [2]

r , Y [2]
sm)

[
Ki; 0
m

]
qi

Ksi(γr−δs)

∈ (Uq(n−) ∩ ker(ε̂))Uq(g) + Uq(g)(Uq(n+) ∩ ker(ε̂)),

and therefore

P(T −1
i (XY )) =

∑
m∈N0

∑
γr+δs=γ+mαi

τ(X [1]
rm, Ŝ

−1(Y [1]
s ))τ(X [2]

r , Y [2]
sm)

[
Ki; 0
m

]
qi

Ksi(γr−δs).

Observe that [
Ki; 0
m

]
qi

∈ K−mαi
(
K× +

∑
l∈N

KK2lαi

)
.

We may therefore write P(T −1
i (XY )) as a linear combination of elements of the

form Ksi(γr−δs)−mαiK2lαi where l ∈ N0.

Let us recall that γr ∈ Q+ ∩ siQ+ by assumption, which implies siγr ∈ Q+.
Now γr + δs = γ +mαi yields

γr − δs +mαi = −γ + 2γr,

and thus

si(γr − δs)−mαi = −siγ + 2siγr.

Recall also that X
[1]
rm ∈ Uq(n+)γr−mαi . Hence if γr = 0 then X

[1]
rm = 0 unless m = 0.

Combining these considerations we obtain

P(T −1
i (XY )) ∈ K−siγ

( ∑
γr=0,δs=γ

τ(X
[1]
r0 , Ŝ

−1(Y [1]
s ))τ(X [2]

r , Y
[2]
s0 ) +

∑
ν∈Q+\{0}

KK2ν

)

= K−siγ

(
τ(X,Y ) +

∑
ν∈Q+\{0}

KK2ν

)
,

using our previous formula for τ(X,Y ). This finishes the proof. �

Lemma 2.89. If X ∈ Uq(n+)[siw0], Y ∈ Uq(n−)[siw0] and r, s ∈ N0, then

τ(Ti(X)Eri , Ti(Y )F si ) = δrsτ(Ti(X), Ti(Y ))τ(Eri , F
r
i )

for any 1 ≤ i ≤ N .

Proof. Let us first show

τ(Eri , F
r
i ) = q

r(r−1)/2
i [r]qi ! τ(Ei, Fi)

r =

(
r∏

k=1

q2k
i − 1

q2
i − 1

)
τ(Ei, Fi)

r
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for r ∈ N. For r = 1 this claim is trivially true. Assume that it holds for r, then
using Lemma 2.6 we obtain

τ(Er+1
i , F r+1

i ) = τ(Eri , (F
r+1
i )(1))τ(Ei, (F

r+1
i )(2))

= qri [r + 1]qiτ(Eri , F
r
i K
−1
i )τ(Ei, Fi)

= q
(r+1)r/2
i [r + 1]qi ! τ(Ei, Fi)

r+1.

This proves the first equality, and the second is elementary.
In order to prove the Lemma we use induction on r + s. For r + s = 0, that is,

r = s = 0, the claim trivially holds.
Assume now r + s = k > 0, and that the claim holds for k − 1. Recall from

the remark after Lemma 2.85 that Ti(Uq(n+)[siw0]) = Uq(n+) ∩ Ti(Uq(n+)) and
Ti(Uq(n−)[siw0]) = Uq(n−)∩Ti(Uq(n−)), so that Ti(X) ∈ Uq(n+)∩Ti(Uq(n+)) and
Ti(Y ) ∈ Uq(n−)∩Ti(Uq(n−)). If r = 0 then Lemma 2.84 yields τ(Ti(X), Ti(Y )F si ) =
0, and similarly we get τ(Ti(X)Eri , Ti(Y )) = 0 if s = 0.

Let us therefore assume that both r, s are positive, and let us consider the case
s ≥ r. Lemma 2.6 yields

τ(Ti(X)Eri , Ti(Y )F si ) = τ(Ti(X)(2)(E
r
i )(2), Ti(Y )F s−1

i )τ(Ti(X)(1)(E
r
i )(1), Fi)

=

r∑
l=0

q
l(r−l)
i

[
r
l

]
qi

τ(Ti(X)(2)E
r−l
i Kl

i , Ti(Y )F s−1
i )τ(Ti(X)(1)E

l
i, Fi).

According to Lemma 2.83 we know ∆̂(Ti(X)) ∈ (Ti(Uq(n+)) ∩ Uq(n+)) ⊗ Uq(b+),
and so the above terms are all zero except when l = 1. Therefore,

τ(Ti(X)Eri , Ti(Y )F si )

= qr−1
i [r]qiτ(Ti(X)(2)E

r−1
i Ki, Ti(Y )F s−1

i )τ(Ti(X)(1)Ei, Fi)

= qr−1
i [r]qiτ(Ti(X)(2)E

r−1
i Ki, Ti(Y )F s−1

i )×
(τ(Ti(X)(1), Fi)τ(Ei, 1) + τ(Ti(X)(1),K

−1
i )τ(Ei, Fi))

= qr−1
i [r]qiτ(Ti(X)(2)E

r−1
i Ki, Ti(Y )F s−1

i )τ(Ti(X)(1), 1)τ(Ei, Fi)

= qr−1
i [r]qiτ(Ti(X)Er−1

i Ki, Ti(Y )F s−1
i )τ(Ei, Fi)

= qr−1
i [r]qiτ(Ti(X)Er−1

i , Ti(Y )F s−1
i )τ(Ei, Fi).

Now the inductive hypothesis and our considerations at the beginning imply

qr−1
i [r]qiτ(Ti(X)Er−1

i , Ti(Y )F s−1
i )τ(Ei, Fi)

= δr,sq
r−1
i [r]qiτ(Ti(X), Ti(Y ))τ(Er−1

i , F s−1
i )τ(Ei, Fi)

= δr,sq
r−1
i [r]qiq

(r−1)(r−2)/2
i [r − 1]qi !τ(Ti(X), Ti(Y ))τ(Ei, Fi)

r−1τ(Ei, Fi)

= δr,sτ(Ti(X), Ti(Y ))τ(Eri , F
r
i ).

This yields the claim. �

Theorem 2.90. The PBW-basis vectors are orthogonal with respect to the Drinfeld
pairing. More precisely, we have

τ(Eanβn · · ·E
a1
β1
, F bnβn · · ·F

b1
β1

) =

n∏
k=1

δak,bkτ(Eakβk , F
bk
βk

).

Proof. We shall prove more generally that the PBW-vectors associated to any re-
duced expression w = si1 · · · sit of w ∈W satisfy the above orthogonality relations.
This clearly implies the desired statement.
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We use induction on the length of w. For l(w) = 0 the claim is trivial, and for
l(w) = 1 it follows immediately from the construction of the pairing. Assume that
l(w) > 1 and write

X = (Ti2 · · · Tit−1
)(Eatit ) · · · Ti2(Ea3i3 )Ea2i2

Y = (Ti2 · · · Tin−1)(F stit ) · · · Ti2(F s3i3 )F s2i2 .

Since Ti1(X) ∈ Uq(n+) the remark after Lemma 2.85 shows that X ∈ Uq(n+)[si1w0]
where w0 is the longest element of W . Similarly we obtain Y ∈ Uq(n−)[si1w0].

Hence by Lemma 2.89 and Theorem 2.88 we calculate

τ(Ti1(X)Ea1i1 , Ti1(Y )F b1i1 ) = τ(Ti1(X), Ti1(Y ))τ(Ea1i1 , F
b1
i1

)

= τ(X,Y )τ(Ea1i1 , F
b1
i1

) = δa1,b1τ(Ea1i1 , F
b1
i1

)τ(X,Y ).

Now we can apply the induction hypothesis to si1w = si2 · · · sit . This yields the
claim. �

To conclude this subsection we complete the description obtained in Theorem
2.90 with the following formula. We use the notation

qβ = q(β,β)/2

for any root β ∈∆.

Lemma 2.91. For any 1 ≤ k ≤ n and r ≥ 0 we have

τ(Erβk , F
r
βk

) = (−1)rq
r(r−1)/2
βk

[r]qβk !

(qβk − q
−1
βk

)r
,

and therefore

τ(Eanβn · · ·E
a1
β1
, F bnβn · · ·F

b1
β1

) =

n∏
k=1

δak,bk(−1)akq
ak(ak−1)/2
βk

[ak]qβk !

(qβk − q
−1
βk

)ak
.

Proof. According to Theorem 2.88 it suffices to prove the first assertion in the case
that βk = αi is a simple root. In this case, the computation in the proof of Lemma
2.89 combined with Lemma 2.75 yields

τ(Eri , F
r
i ) = q

r(r−1)/2
i [r]qi ! τ(Ei, Fi)

r = (−1)rq
r(r−1)/2
i [r]qi !

1

(qi − q−1
i )r

as desired. �

2.8.4. Nondegeneracy of the Drinfeld pairing. The computations of the previous
subsection are key to proving nondegeneracy of the Drinfeld pairing and the quan-
tum Killing form. We keep the assumptions and notation from above.

Theorem 2.92. The Drinfeld pairing τ : Uq(b+)× Uq(b−)→ K and the quantum
Killing form κ : Uq(g)× Uq(g)→ K are nondegenerate.

Proof. For the first claim it suffices to show that the restriction of τ to Uq(b+)β ×
Uq(b−)−β is nondegenerate. From Lemma 2.75 we know that τ is diagonal with
respect to the tensor product decomposition Uq(b±)±β ∼= Uq(n±)±β ⊗ Uq(h).

Since q is not a root of unity the characters χµ of Uq(h) given by χµ(Kλ) = q(µ,λ)

for µ ∈ P are pairwise distinct, and hence linearly independent by Artin’s Theorem.
It follows that the restriction of τ to Uq(h) is nondegenerate. Hence the claim follows
from Theorem 2.90 combined with the PBW-Theorem 2.67.

The second assertion is verified in a similar way using the triangular decomposi-
tion of Uq(g) and nondegeneracy of τ . �
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We remark that Theorem 2.92 shows also that the Rosso form on Uq(b−) ./
Uq(b+) is nondegenerate. In particular, this form does not pass to the quotient
Uq(g). Therefore the quantum Killing cannot be obtained directly from the Rosso
form on the double.

2.9. The quantum Casimir element and simple modules. In this section
we resume our study of finite dimensional weight modules for Uq(g). We define
a Casimir element Ω in a certain algebraic completion of Uq(g) in order to prove
irreducibility of the modules L(µ) constructed in Theorem 2.43. Throughout we
assume that q = sL ∈ K× is not a root of unity.

According to Theorem 2.92 the restriction of the Drinfeld pairing τ to Uq(n+)γ×
Uq(n−)−γ is nondegenerate for every γ ∈ Q+. Therefore, we can choose bases
consisting of bγj ∈ Uq(n+)γ and aγk ∈ Uq(n−)−γ such that τ(bγi , a

γ
j ) = δij . For

γ ∈ Q+ we define

Cγ =
∑
j

aγj ⊗ b
γ
j , Ωγ =

∑
j

Ŝ−1(aγj )bγj ,

in particular we obtain Cγ = 1 ⊗ 1 and Ωγ = 1 for γ = 0. By definition, the
quantum Casimir element is the formal sum

Ω =
∑
γ∈Q+

Ωγ ,

which is not an element of Uq(g), but rather of a suitable completion of this algebra.
We shall not discuss any completions here, instead we will only consider the“image”
of Ω in End(V ) for representations V of Uq(g) in which for any v ∈ V all but finitely
many terms Ωα for α ∈ Q+ act by zero. Note that this applies in particular to all
Verma modules, and hence also all quotients of Verma modules. Indeed, if v ∈M(λ)
for some λ ∈ h∗q then we have Uq(n+)γ · v = 0 for all γ ∈ Q+ sufficiently large.
Hence the Casimir operator Ω yields a well-defined endomorphism of M(λ).

Lemma 2.93. Let γ ∈ Q+. Then we have

(1⊗ Fi)Cγ − Cγ(1⊗ Fi) = Cγ−αi(Fi ⊗Ki)− (Fi ⊗K−1
i )Cγ−αi

for all 1 ≤ i ≤ N , where we interpret Cγ−αi = 0 if γ − αi /∈ Q+.

Proof. For γ − αi /∈ Q+ the element Fi commutes with all bγj since the latter must
be sums of monomials in E1, . . . , EN not containing any powers of Ei. Hence the
equality holds in this case.

Consider now the case that γ = β + αi for some β ∈ Q+. Since the pairing
τ is nondegenerate it is enough to compare the pairing of both sides against X ∈
Uq(n+)αi+β with respect to τ in the first tensor factor. For the left hand side this
yields ∑

j

τ(X, aβ+αi
j )[Fi, b

β+αi
j ] = [Fi, X] = FiX −XFi.

To compute the right hand side let us write ∆̂(X) =
∑
γ cγX

[1]
γ ⊗ X

[2]
β+αi−γKγ

with monomials X
[1]
γ , X

[2]
β+αi−γ in the generators Fk of weight γ and β + αi − γ,
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respectively, and coefficients cγ . We obtain∑
j

τ(X, aβj Fi)b
β
jKi − τ(X,Fia

β
j )K−1

i bβj

=
∑
j,γ

cγτ(X [1]
γ , Fi)τ(X

[2]
β+αi−γKγ , a

β
j )bβjKi − cγτ(X [1]

γ , aβj )τ(X
[2]
β+αi−γKγ , Fi)K

−1
i bβj

=
∑
j

−cαi
1

qi − q−1
i

τ(X
[2]
β , aβj )bβjKi + cβ

1

qi − q−1
i

τ(X
[1]
β , aβj )K−1

i bβj

= − 1

qi − q−1
i

(cαiX
[2]
β Ki − cβK−1

i X
[1]
β ),

using Lemma 2.75 in the second step. Moreover, combining

(∆̂⊗ id)∆̂(Fi) = Fi ⊗ 1⊗ 1 +K−1
i ⊗ Fi ⊗ 1 +K−1

i ⊗K
−1
i ⊗ Fi,

with the commutation relations from Lemma 2.76 gives

XFi = cαiτ(Ŝ(X [1]
αi ), Fi)X

[2]
β Ki + FiX + cβτ(X [2]

αiKβ , Fi)K
−1
i X

[1]
β

= −cαiτ(X [1]
αi , Fi)X

[2]
β Ki + FiX + cβτ(X [2]

αi , Fi)K
−1
i X

[1]
β

= cαi
1

qi − q−1
i

X
[2]
β Ki + FiX − cβ

1

qi − q−1
i

K−1
i X

[1]
β ,

taking into account that X
[1]
αi = Ei = X

[2]
αi in the last step. Comparing the above

expressions yields the claim. �

Lemma 2.94. Let λ ∈ h∗q . Then for all β ∈ Q+ and Y ∈ Uq(n−)−β we have

ΩY = q2(ρ,β)−(β,β)Y ΩK2β

in End(M(λ)).

Proof. Assume that Y1 ∈ Uq(n−)−β1
, Y2 ∈ Uq(n−)−β2

for β1, β2 ∈ Q+ satisfy the
above relation. Then

ΩY1Y2 = q2(ρ,β1)−(β1,β1)Y1ΩK2β1Y2

= q2(ρ,β1)−(β1,β1)q−(2β1,β2)Y1ΩY2K2β1

= q2(ρ,β1)−(β1,β1)q−(2β1,β2)q2(ρ,β2)−(β2,β2)Y1Y2ΩK2(β1+β2)

= q2(ρ,β1+β2)−(β1+β2,β1+β2)Y ΩK2(β1+β2).

Hence using induction on the length of β it suffices to consider the case Y = Fi for
some 1 ≤ i ≤ N . Notice that in this case β = αi and 2(ρ, αi) = (αi, αi). Hence the
desired relation reduces to

ΩFi = FiΩK
2
i .

This in turn is a consequence of Lemma 2.93. Indeed, if we apply Ŝ−1 ⊗ id to the
relation from Lemma 2.93 and multiply the tensor factors, we obtain∑

j

Ŝ−1(aγj )Fib
γ
j − Ŝ

−1(aγj )bγjFi

=
∑
j

Ŝ−1(Fi)Ŝ
−1(aγ−αij )bγ−αij Ki − Ŝ−1(aγ−αij )Ŝ−1(Fi)K

−1
i bγ−αij

for all γ ∈ Q+. Summing over γ this yields∑
γ∈Q+

∑
j

Ŝ−1(aγj )bγjFi =
∑
γ∈Q+

∑
j

FiKiŜ
−1(aγ−αij )bγ−αij Ki,

which implies ΩFi = FiΩK
2
i as desired. �
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Let us say that γ ∈ h∗q is a primitive weight of a weight module M if there exists
a primitive vector v ∈M of weight γ.

Lemma 2.95. Let λ ∈ h∗q . If γ is a primitive weight of M(λ) then γ = λ − β for

some β ∈ Q+ satisfying

q2(ρ+λ,β)−(β,β) = 1.

Proof. If v ∈ M(λ) is a primitive vector then Ω · v = v since all the terms Ωα for
α 6= 0 act on v by zero in this case. At the same time we have v = Y · vλ for some
Y ∈ Uq(n−)−β . Hence

v = Ω · v = ΩY · vλ = q2(ρ,β)−(β,β)Y ΩK2β · vλ = q2(ρ+λ,β)−(β,β)v

by Lemma 2.94. This yields the claim. �

Lemma 2.96. Let λ ∈ P+ and assume γ = λ− β for some β ∈ Q+ satisfies

(γ + ρ, γ + ρ) = (λ+ ρ, λ+ ρ).

If γ + ρ ∈ P+ then γ = λ.

Proof. The given relation can be rewritten as

(λ− γ, λ+ ρ) + (γ + ρ, λ− γ) = (λ+ ρ, λ+ ρ) + (γ + ρ, λ− γ − λ− ρ) = 0.

Note that we have λ+ ρ ∈ P+. If γ+ ρ ∈ P+ then since λ− γ ∈ Q+ it follows that
both terms on the left hand side are positive, and therefore vanish separately. The
equality (λ− γ, λ+ ρ) = 0 implies λ− γ = 0, since λ+ ρ is a linear combination of
fundamental weights with all coefficients being strictly positive. �

Theorem 2.97. Let µ ∈ P+. Then the largest integrable quotient module L(µ) of
M(µ) is irreducible, and hence L(µ) ∼= V (µ).

Proof. If L(µ) is not simple then it must contain a proper submodule V . Inside
V we can find a primitive vector v of highest weight γ = µ − β for some β ∈ Q+.
Note that γ ∈ P+ by Theorem 2.43.

Then Lemma 2.95 implies 2(β, µ+ ρ)− (β, β) = 0 and thus

(γ + ρ, γ + ρ) = (µ+ ρ− β, µ+ ρ− β)

= (µ+ ρ, µ+ ρ)− 2(β, µ+ ρ) + (β, β) = (µ+ ρ, µ+ ρ).

According to Lemma 2.96 we conclude γ = µ. This means V = L(µ), contradicting
our assumption that V is a proper submodule. Hence L(µ) is indeed simple, and
therefore the canonical quotient map L(µ)→ V (µ) is an isomorphism. �

We write πµ : Uq(g)→ End(V (µ)) for the algebra homomorphism corresponding
to the module structure on V (µ).

Lemma 2.98. For every µ ∈ P+ we have πµ(Uq(g)) = End(V (µ)).

Proof. Assume that C ∈ End(V (µ)) is contained in the commutant of πµ(Uq(g)), or
equivalently, C is an intertwiner of V (µ) with itself. Then C must map the highest
weight vector vµ to a multiple of itself. It follows that C acts as a scalar on all of
V (µ) because vµ is cyclic. Now the Jacobson density theorem yields the claim. �

2.9.1. Complete reducibility. Having determined the irreducible finite dimensional
weight modules over Uq(g), we obtain the following complete reducibility result in
analogy to the situation for classical universal enveloping algebras, compare also
the proof of Proposition 2.40.

Theorem 2.99. Every finite dimensional integrable module over Uq(g) decomposes
into a direct sum of irreducible highest weight modules V (µ) for weights µ ∈ P+.
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Proof. We show that every extension 0 → K → E → Q → 0 of finite dimensional
integrable modules splits. Notice that the extension automatically admits a Uq(h)-
linear splitting since all the modules involved are weight modules.

In the first step consider the case that K = V (µ) and Q = V (λ) are simple. If
µ = λ then we can lift the highest weight vector of V (λ) to a primitive vector in
E, which induces a splitting of the sequence by the characterisation of V (λ) as the
largest integrable quotient of M(λ) from Theorem 2.97.

Assume now µ 6= λ. If λ 6< µ, that is, we do not have λ = µ − ν for a nonzero
element ν ∈ Q+ then λ does not appear as a weight in V (µ). Again we can lift
the highest weight vector of V (λ) to a primitive vector in E and obtain a splitting.
Finally, assume µ 6< λ, that is we do not have λ = µ+ ν for some nonzero element
ν ∈ Q+. We consider the dual sequence 0 → V (λ)∨ → E → V (µ)∨ → 0. Since
V (µ)∨ ∼= V (µ) and V (λ)∨ ∼= V (λ) we obtain a splitting by our previous argument.
Applying duality again shows that the original sequence is split as well.

In the second step we consider arbitrary K and Q and show the existence of a
splitting by induction on the dimension of E. For dim(E) = 0 the assertion is clear.
Assume that every extension of dimension less than n splits and let dim(E) = n.
If K = 0 or Q = 0 there is nothing to prove. Otherwise both K and Q have
dimension < n and hence are direct sums of simple modules. Considering each
simple block in Q and its preimage in E independently we see that we can restrict
to the case that Q is simple. If K is simple then the claim follows from our above
considerations. Otherwise there exists a proper simple submodule L ⊂ K. Then
0 → K/L → E/L → Q → 0 is an extension, and since dim(E/L) < n it is split.
That is, Q is a direct summand in E/L. Considering 0→ L→ E → E/L→ 0, we
thus obtain a splitting Q → E according to the first part of the proof. This map
splits the sequence 0→ K → E → Q→ 0, which finishes the proof. �

As a consequence of Lemma 2.41, we immediately obtain the analogous result
for finite dimensional weight modules.

Corollary 2.100. Every finite dimensional weight module over Uq(g) decomposes
into a direct sum of irreducible highest weight modules V (λ) for weights λ ∈ P+

q .

Using Theorem 2.99 we can also strengthen Theorem 2.46.

Theorem 2.101. The representations V (µ) of Uq(g) for µ ∈ P+ separate points.
More precisely, if X ∈ Uq(g) satisfies πµ(X) = 0 in End(V (µ)) for all µ ∈ P+ then
X = 0.

Proof. According to Theorem 2.46 the finite dimensional integrable representations
separate the points of Uq(g). However, every such representation is a finite direct
sum of representations V (µ) by Theorem 2.99. This yields the claim. �

2.10. Quantized algebras of functions. We define quantized algebras of func-
tions and discuss their duality with quantized universal enveloping algebras. It is
assumed throughout that q = sL ∈ K× is not a root of unity.

Definition 2.102. Let g be a semisimple Lie algebra. The quantized algebra of
functions O(Gq) consists of all matrix coefficients of finite dimensional integrable
Uq(g)-modules, that is,

O(Gq) =
⊕
µ∈P+

End(V (µ))∗,

with the direct sum on the right hand side being an algebraic direct sum.

The direct sum decomposition of O(Gq) in Definition 2.102 is called the Peter-
Weyl decomposition.
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By construction, there exists a bilinear pairing between Uq(g) and O(Gq) given
by evaluation of linear functionals. We will write (X, f) for the value of this pairing
on X ∈ Uq(g) and f ∈ O(Gq), and we point out that this pairing is nondegenerate.
Indeed, (X, f) = 0 for all X ∈ Uq(g) implies f = 0 by Lemma 2.98. On the other
hand, (X, f) = 0 for all f ∈ O(Gq) implies X = 0 by Theorem 2.101.

We define the product and coproduct of O(Gq) such that

(XY, f) = (X, f(1))(Y, f(2)), (X, fg) = (X(2), f)(X(1), g),

and the antipode S, unit 1 and counit ε of O(Gq) are determined by

(Ŝ(X), f) = (X,S−1(f)), (Ŝ−1(X), f) = (X,S(f))

and

ε̂(X) = (X, 1), ε(f) = (1, f)

for X,Y ∈ Uq(g) and f, g ∈ O(Gq). We shall write ∆ for the coproduct of O(Gq),
and in the above formulas we have used the Sweedler notation ∆(f) = f(1) ⊗ f(2)

for f ∈ O(Gq). With the above structure maps, the quantized algebra of functions
becomes a Hopf algebra.

Using the transpose of the canonical isomorphism End(V (µ)) ∼= V (µ) ⊗ V (µ)∗

we obtain an isomorphism

O(Gq) ∼=
⊕
µ∈P+

V (µ)∗ ⊗ V (µ).

More precisely, if v ∈ V (µ) and v∗ ∈ V (µ)∗ we shall write 〈v∗|•|v〉 ∈ V (µ)∗⊗V (µ) ⊂
O(Gq) for the matrix coefficient determined by

(X, 〈v∗| • |v〉) = v∗(πµ(X)(v)).

The right regular action of Uq(g) on O(Gq) given by X⇀f = f(1)(X, f(2)) corre-
sponds to X⇀〈v∗| • |v〉 = 〈v∗| • |X ·v〉 in this picture. The left regular action given

by X · f = f↼Ŝ(X) = (Ŝ(X), f(1))f(2) corresponds to X · 〈v∗| • |v〉 = 〈X · v∗| • |v〉.
Here we work with the action (X · v∗)(v) = v∗(Ŝ(X) · v) on the dual space V (µ)∗

as usual.
If eµ1 , . . . , e

µ
n is a basis of V (µ) with dual basis e1

µ, . . . , e
n
µ ∈ V (µ)∗, so that

eiµ(eµj ) = δij , then the matrix coefficients uµij = 〈eiµ|•|e
µ
j 〉 form a basis of End(V (µ))∗.

Notice that we have

∆(uµij) =

n∑
k=1

uµik ⊗ u
µ
kj

for all µ ∈ P+ and 1 ≤ i, j ≤ n = dim(V (µ)). By the remarks preceding Definition
1.1, this shows that O(Gq) is a cosemisimple Hopf algebra. By Proposition 1.10, it
admits a left and right invariant integral φ : O(Gq)→ K, specifically

φ(uµij) =

{
1 if µ = 0

0 else.

Since O(Gq) is a cosemisimple Hopf algebra, and hence in particular a regular
multiplier Hopf algebra with integrals, it admits a dual multiplier Hopf algebra
D(Gq), compare Subsection 1.3.2. Explicitly, we have

D(Gq) =
⊕
µ∈P+

End(V (µ)),

such that the canonical skew-pairing (x, f) for x ∈ D(Gq) and f ∈ O(Gq) corre-
sponds to the obvious pairing between End(V (µ)) and End(V (µ))∗ in each block.
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The product and coproduct of D(Gq) are fixed such that

(xy, f) = (x, f(1))(y, f(2)), (x, fg) = (x(2), f)(x(1), g),

and the antipode Ŝ, counit ε̂ of D(Gq) and unit 1 ∈M(D(Gq)) are determined by

(Ŝ(x), f) = (x, S−1(f)), (Ŝ−1(x), f) = (x, S(f))

and

ε̂(x) = (x, 1), ε(f) = (1, f)

for x, y ∈ D(Gq) and f, g ∈ O(Gq). We shall write ∆̂ for the coproduct of D(Gq),

and use the Sweedler notation ∆̂(x) = x(1) ⊗ x(2) for x ∈ D(Gq).
It follows immediately from the construction that there is a canonical homomor-

phism Uq(g)→M(D(Gq)) of multiplier Hopf algebras, namely

X 7→
∏
µ∈P+

πµ(X).

This homomorphism is injective according to Theorem 2.101. In the sequel it will
often be useful to view elements of Uq(g) as multipliers of D(Gq).

Given a basis of matrix coefficients uµij as above, the algebra D(Gq) admits a

linear basis ωµij such that

(ωµij , u
ν
kl) = δµνδikδjl.

Note that with respect to the algebra structure of D(Gq) we have

ωµijω
ν
kl = δµνδjkω

µ
il

that is, the elements ωµij are matrix units for D(Gq).

We note that the algebra O(Gq) can be viewed as a deformation of the coordinate
ring of the affine algebraic variety associated with the group G corresponding to g.

2.11. The universal R-matrix. In this subsection we discuss universalR-matrices
and the dual concept of universal r-forms. We derive an explicit formula for the
universal r-form of O(Gq) in terms of the PBW-basis of Uq(g).

2.11.1. Universal R-matrices. Let us first define what it means for a regular mul-
tiplier Hopf algebra to be quasitriangular.

Definition 2.103. Let H be a regular multiplier Hopf algebra. Then H is called
called quasitriangular if there exists an invertible element R ∈ M(H ⊗H), called
a universal R-matrix, such that

∆cop(x) = R∆(x)R−1

for all x ∈ H and

(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12.

Here ∆cop denotes the opposite comultiplication on H, given by ∆cop = σ∆,
where σ : H ⊗H → H ⊗H, σ(x ⊗ y) = y ⊗ x is the flip map. Also, we are using
the standard leg-numbering notation, whereby R12 = R ⊗ 1, R23 = 1 ⊗ R and
R13 = (σ ⊗ id)R23 in M(H ⊗H ⊗H).

Notice that the final two relations in Definition 2.103 imply

(ε⊗ id)(R) = 1 = (id⊗ε)(R).

Moreover we record the formulas

(S ⊗ id)(R) = R−1 = (id⊗S−1)(R),

obtained using the antipode property applied to the final two relations in Definition
2.103 and the previous formulas.
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From a technical point of view it is sometimes easier to view the R-matrix as
a linear functional on the dual side. If H is a Hopf algebra and l, k : H → K are
linear functionals on H we define the convolution l ∗ k to be the linear functional
on H defined by

(l ∗ k)(f) = l(f(1))k(f(2))

for f ∈ H. It is straightforward to check that the counit ε is a neutral element
with respect to convolution. Accordingly, we say that l : H → K is convolution
invertible if there exists a linear functional k : H → K such that

l(f(1))k(f(2)) = ε(f) = k(f(1))l(f(2))

for all f ∈ H. In this case the functional k is uniquely determined and we write
k = l−1.

Definition 2.104. Let H be a Hopf algebra. Then H is called coquasitriangular
if there exists a linear functional r : H ⊗H → K, called a universal r-form, which
is invertible with respect to the convolution multiplication and satisfies

a) r(f ⊗ gh) = r(f(1) ⊗ g)r(f(2) ⊗ h)
b) r(fg ⊗ h) = r(f ⊗ h(2))r(g ⊗ h(1))
c) r(f(1) ⊗ g(1))f(2)g(2) = g(1)f(1)r(f(2) ⊗ g(2))

for all f, g, h ∈ H.

If H is a cosemisimple Hopf algebra then it is in particular a regular multiplier
Hopf algebra with integrals. Moreover, the linear dual space H∗ identifies with
M(Ĥ) in a natural way, and similarly (H ⊗ H)∗ ∼= M(Ĥ ⊗ Ĥ). In particular, a

linear map r : H ⊗H → K corresponds to a unique element R ∈M(Ĥ ⊗ Ĥ) such
that (R, f ⊗ g) = r(f ⊗ g). With these observations in mind, the relation between
universal r-forms and universal R-matrices is as follows.

Lemma 2.105. Let H be a cosemisimple Hopf algebra and let r : H ⊗H → K be
a linear form, and let R be the corresponding element of M(Ĥ ⊗ Ĥ) as explained
above. Then

a) r is convolution invertible iff R is invertible.

b) r(f ⊗ gh) = r(f(1) ⊗ g)r(f(2) ⊗ h) for all f, g, h ∈ H iff (id⊗∆̂)(R) = R13R12.

c) r(fg⊗ h) = r(f ⊗ h(2))r(g⊗ h(1)) for all f, g, h ∈ H iff (∆̂⊗ id)(R) = R13R23.

d) r(f(1) ⊗ g(1))g(2)f(2) = f(1)g(1)r(f(2) ⊗ g(2)) for all f, g, h ∈ H iff ∆̂cop(x) =

R∆̂(x)R−1 for all x ∈ Ĥ.

In particular, r is a universal r-form for H iff R is a universal R-matrix for Ĥ.

Proof. a) This follows immediately from the definition of convolution. The convo-
lution inverse r−1 of r corresponds to the inverse R−1 of R.
b) Using nondegeneracy of the pairing between H ⊗H and Ĥ ⊗ Ĥ, this follows

from

r(f ⊗ gh) = (R, f ⊗ gh) = ((id⊗∆̂)(R), f ⊗ h⊗ g)

and

r(f(1) ⊗ g)r(f(2) ⊗ h) = (R, f(1) ⊗ g)(R, f(2) ⊗ h) = (R13R12, f ⊗ h⊗ g)

for f, g, h ∈ H.
c) This follows from

r(fg ⊗ h) = (R, fg ⊗ h) = ((∆̂⊗ id)(R), g ⊗ f ⊗ h)

and

r(f ⊗ h(2))r(g ⊗ h(1)) = (R, f ⊗ h(2))(R, g ⊗ h(1)) = (R13R23, g ⊗ f ⊗ h)
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for all f, g, h ∈ H.
d) For any y ∈ Ĥ and f, g, h we compute

r(f(1) ⊗ g(1))(y, g(2)f(2)) = (R, f(1) ⊗ g(1))(∆̂(y), f(2) ⊗ g(2)) = (R∆̂(y), f ⊗ g)

and

(y, f(1)g(1))r(f(2) ⊗ g(2)) = (∆̂(y), g(1) ⊗ f(1))(R, f(2) ⊗ g(2)) = (∆̂cop(y)R, f ⊗ g).

Since the pairing between Ĥ and H is nondegenerate, the relation R∆̂(x) =

∆̂cop(x)R for all x ∈ Ĥ is equivalent to

r(f(1) ⊗ g(1))g(2)f(2) = f(1)g(1)r(f(2) ⊗ g(2))

for all f, g, h ∈ H. �

2.11.2. The R-matrix for Uq(g). The quantized universal enveloping algebra Uq(g)
is not quite quasitriangular in the sense of Definition 2.103, but the multiplier Hopf
algebra D(Gq) is. We assume that q = sL ∈ K× is not a root of unity.

Define O(B±q ) to be the image of O(Gq) under the natural projection Uq(g)∗ →
Uq(b±)∗. Then there is a unique Hopf algebra structure on O(B±q ) such that the

projection maps O(Gq)→ O(B±q ) are Hopf algebra homomorphisms.
Recall the definition of the Drinfeld pairing from Definition 2.74.

Proposition 2.106. The Drinfeld pairing τ induces isomorphisms ι± : Uq(b±)→
O(B∓q ) of Hopf algebras, such that

ι+(X)(Y ) = τ(Ŝ(X), Y ), ι−(Y )(X) = τ(X,Y ),

for all X ∈ Uq(b+), Y ∈ Uq(b−).

Proof. By Theorem 2.92 τ is a nondegenerate skew-pairing, so the maps ι± :
Uq(b±)→ Uq(b∓)∗ are injective algebra homomorphisms.

To show that ι+ is an isomorphism, we consider the direct sum decompositions

Uq(b+) =
⊕

β∈P+, µ∈P

Aβ,µ,

O(B−q ) =
⊕

β∈P+, µ∈P

Bβ,µ,

where

Aβ,µ = Ŝ−1(Uq(n+)βKµ) = {Ŝ−1(XKµ) | X ∈ Uq(n+)β}
and

Bβ,µ = {〈v+| • |w+〉 | w+ ∈ V (λ)−µ, v
+ ∈ V (λ)∗µ+β for some λ ∈ P+}.

We claim that ι+ restricts to an isomorphism between the finite dimensional sub-
spaces Aβ,µ and Bβ,µ for each β ∈ P+, µ ∈ P.

Let X ∈ Uq(n+)β . Using Lemma 2.75 we see that for every Y ∈ Uq(n−) and
ν ∈ P,

ι+(Ŝ−1(XKµ))(Y Kν) = τ(XKµ, Y Kν) = q−(µ,ν)τ(X,Y )

= q−(µ,ν)τ(XKµ, Y )

= q−(µ,ν)ι+(Ŝ−1(XKµ))(Y )

Therefore, by the orthogonality of the PBW basis (Theorem 2.90), the functional

ϕ = ι+(Ŝ−1(XKµ)) ∈ Uq(b−)∗ satisfies

ϕ(Y Kν) = δβγq
−(µ,ν)ϕ(Y ) for every Y ∈ Uq(n−)−γ , γ ∈ P+, ν ∈ P. (2.1)
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Conversely, any linear functional ϕ ∈ Uq(b−)∗ satisfying the property (2.1) is com-
pletely determined by its restriction to Uq(n−)−β , so the orthogonality of the PBW

basis implies that it is the image of a unique element Ŝ−1(XKµ) ∈ Aβ,µ.
Therefore, it suffices to show that the set of ϕ satisfying (2.1) agrees with the

subspace of matrix coefficients 〈v+| • |w+〉 with w+ ∈ V (λ)−µ, v+ ∈ V (λ)∗µ+β , as
claimed. For such a matrix coefficient, we have

(Y Kν , 〈v+| • |w+〉) = v+(Y Kν · w+)

= q−(ν,µ)v+(Y · w+) = q−(ν,µ)(Y, 〈v+| • |w+〉),

so that it satisfies (2.1). Conversely, let ϕ ∈ Uq(b−)∗ satisfy (2.1). By Lemma 2.45
we can choose λ ∈ P+ sufficiently large such that, after fixing an arbitrary nonzero
w+ ∈ V (λ)−µ, the map

Uq(n−)−β → V (λ)−µ−β , Y 7→ Y · w+

is injective. Therefore we can find v+ ∈ V (λ)∗µ+β such that

(Y, 〈v+| • |w+〉) = ϕ(Y )

for every Y ∈ Uq(n−)−β . Since 〈v+| • |w+〉 vanishes on Uq(n−)−γ for all γ 6= β by
weight considerations, it follows that 〈v+| • |w+〉 = ϕ as an element of Uq(b−)∗.
This completes the proof for ι+.

A similar argument shows that ι− is an isomorphism.
Finally, using again the skew-pairing property of τ it is straightforward to check

that the maps ι± are compatible with the comultiplications. �

Since Uq(b±) ∼= O(B∓q ), the Drinfeld pairing τ : Uq(b+) ⊗ Uq(b−) → K induces
a pairing O(Gq)⊗O(Gq)→ K as follows, compare [29].

Proposition 2.107. The linear map r : O(Gq)⊗O(Gq)→ K given by

O(Gq)⊗O(Gq) // O(B−q )⊗O(B+
q ) ∼= Uq(b+)⊗ Uq(b−)

τ // K

is a universal r-form for O(Gq). Here the first arrow is the flip map composed with
the canonical projection, and τ is the Drinfeld pairing. That is

r(f ⊗ g) = τ(ι−1
+ (g), ι−1

− (f))

where, by slight abuse of notation, we identify f and g with their images in O(B+
q )

and O(B−q ), respectively.

Proof. Since τ is a skew-pairing we see that r is a convolution invertible linear map
satisfying conditions a) and b) of Definition 2.104.

It remains to verify condition c) of Definition 2.104. That is, we have to check

r(f(1) ⊗ g(1))g(2)f(2) = f(1)g(1)r(f(2) ⊗ g(2))

for all f, g ∈ O(Gq). Since the canonical pairing between Uq(g) and O(Gq) is
nondegenerate, it suffices to show

r(f(1) ⊗ g(1))(X, g(2)f(2)) = (X, f(1)g(1))r(f(2) ⊗ g(2))

for all X ∈ Uq(g). Moreover, since Uq(g) is generated as a Hopf algebra by Uq(b+)

and Uq(b−), it suffices to consider X ∈ Uq(b±). Abbreviating Z = ι−1
− (f) ∈ Uq(b−)
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and taking X ∈ Uq(b+), we indeed compute

r(f(1) ⊗ g(1))(X, g(2)f(2)) = τ(ι−1
+ (g(1)), ι

−1
− (f(1)))τ(X, ι−1

− (g(2)f(2)))

= τ(ι−1
+ (g(1)), ι

−1
− (f(1)))τ(X(1), ι

−1
− (f(2)))τ(X(2), ι

−1
− (g(2)))

= τ(ι−1
+ (g(1)), Z(1))τ(X(1), Z(2))τ(X(2), ι

−1
− (g(2)))

= (Ŝ(Z(1)), g(1))τ(X(1), Z(2))(X(2), g(2))

= ρ(Ŝ(Z(2)), X(1))(Ŝ(Z(1))X(2), g)

= (X(1)Ŝ(Z(2)), g)ρ(Ŝ(Z(1)), X(2))

= τ(X(2), Z(1))(X(1), g(1))(Ŝ(Z(2)), g(2))

= τ(X(2), Z(1))τ(X(1), ι
−1
− (g(1)))τ(ι−1

+ (g(2)), Z(2))

= τ(X(2), ι
−1
− (f(1)))τ(X(1), ι

−1
− (g(1)))τ(ι−1

+ (g(2)), ι
−1
− (f(2)))

= τ(X, ι−1
− (f(1)g(1)))τ(ι−1

+ (g(2)), ι
−1
− (f(2)))

= (X, f(1)g(1))r(f(2) ⊗ g(2)),

using Lemma 2.76. A similar argument works for X ∈ Uq(b−). This finishes the
proof. �

Let us now give an explicit formula for the universal r-form of O(Gq). We will
use the notation Hi ∈ h (1 ≤ i ≤ N) for the simple coroots of g, identified with
α∨i ∈ Q∨ via the pairing:

λ(Hi) = (λ, α∨i )

for all λ ∈ P. We also fix quantum root vectors Eβ1 , . . . , Eβn , Fβ1 , . . . , Fβn associ-
ated to a reduced expression of w0 ∈W , as in Definition 2.66.

Theorem 2.108. The multiplier Hopf algebra D(Gq) has a universal R-matrix
given by

R = q
∑N
i,j=1 Bij(Hi⊗Hj)

∏
α∈∆+

expqα((qα − q−1
α )(Eα ⊗ Fα))

where H1, . . . ,HN are the simple coroots of g, the matrix (Bij) is the inverse of

(Cij) = (d−1
j aij), and qα = qi if α and αi lie on the same W -orbit. Moreover the

factors on the right hand side appear in the order β1, . . . , βn.
Equivalently, the above formula determines a universal r-form for O(Gq).

Proof. The formula requires a little explanation. Note that Cij = (α∨i , α
∨
j ) =

(Hi, Hj), so that

N∑
i,j=1

Bij(Hi ⊗Hj) =

N∑
i=1

Hi ⊗$i =

N∑
i=1

$i ⊗Hi,

where we recall that the fundamental weights $i form the dual basis to the simple

coroots Hi. The term q
∑N
i,j=1 Bij(Hi⊗Hj) should thus be interpreted as the element

in M(D(Gq)⊗D(Gq)) such that

q
∑N
i,j=1 Bij(Hi⊗Hj) · (v ⊗ w) = q(µ,ν)v ⊗ w,

whenever V and W are integrable Uq(g)-modules and v ∈ V , w ∈ W have weight
µ and ν respectively,

We shall show that the universal r-form obtained in Proposition 2.107 is given
by the stated formula. It is technically more convenient however, to compute the
inverse r−1, given by

r−1(f ⊗ g) = τ(Ŝ(ι−1
+ (g)), ι−1

− (f)) = ρ(ι−1
− (f)), ι−1

+ (g)).
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Note that according to Lemma 2.80 the inverse of the element R above is given by

R−1 =

( ∏
α∈∆+

expq−1
α

(−(qα − q−1
α )(Eα ⊗ Fα))

)
q−

∑N
i,j=1 Bij(Hi⊗Hj),

where now the ordering of the positive roots in the product is reversed to βn, . . . , β1.
To compute r−1 it is sufficient to consider r−1(f ⊗ g) for elements of the form

f = ι−(F tnβn · · ·F
t1
β1
Kν), g = ι+(Ŝ−1(Esnβn · · ·E

s1
β1
Kµ)).

Using the orthogonality relations for the Drinfeld pairing in Lemma 2.91, we cal-
culate

r−1(f ⊗ g) = τ(Esnβn · · ·E
s1
β1
, F tnβn · · ·F

t1
β1

)q−(µ,ν)

=

∞∑
a1,...,an=0

τ(Eanβn · · ·E
a1
β1
, F anβn · · ·F

a1
β1

)−1

× τ(Esnβn · · ·E
s1
β1
, F anβn · · ·F

a1
β1

) τ(Eanβn · · ·E
a1
β1
, F tnβn · · ·F

t1
β1

)q−(µ,ν)

=

∞∑
a1,...,an=0

n∏
k=1

(−1)ak
q
−ak(ak−1)/2
βk

[ak]qβk !
(qβk − q

−1
βk

)ak

× (F anβn · · ·F
a1
β1
, g) (Eanβn · · ·E

a1
β1
, f)q−(µ,ν)

= (
∏

α∈∆+

expq−1
α

(−(qα − q−1
α )(Eα ⊗ Fα)), f ⊗ g)q−(µ,ν).

Now, according to the proof of Proposition 2.106, we have

f = 〈v−| • |w−〉, g = 〈v+| • |w+〉
where w− has weight −ν and w+ has weight −µ. Therefore

f(1) ⊗ g(1)(q
−

∑N
i,j=1 Bij(Hi⊗Hj), f(2) ⊗ g(2)) = q−(µ,ν)f ⊗ g,

and we conclude that
r−1(f ⊗ g) = (R−1, f ⊗ g).

This completes the proof. �

According to Theorem 2.108, we have in particular ∆̂cop(X) = R∆̂(X)R−1 for
all X ∈ Uq(g) ⊂ M(D(Gq)). Since M(D(Gq)) can be viewed as an algebraic
completion of Uq(g) this makes the latter share most properties of Hopf algebras
which are quasitriangular in the precise sense of definition 2.103. In the literature
this is often phrased by saying that Uq(g) is quasitriangular, however note that the
universal R-matrix R from Theorem 2.108 is not contained in Uq(g)⊗ Uq(g).

Let us next introduce l-functionals.

Definition 2.109. For f ∈ O(Gq), we define the l-functionals l±(f) on O(Gq) by

(l+(f), h) = (R, h⊗ f), (l−(f), h) = (R−1, f ⊗ h).

Since R is contained in M(D(Gq) ⊗ D(Gq)) these functionals can be naturally
viewed as elements of M(D(Gq)). We can strengthen this observation as follows.

Lemma 2.110. For any f ∈ O(Gq) the l-functionals l±(f) are contained in
Uq(g) ⊂M(D(Gq)).

Proof. Consider the case where g = 〈v| • |w〉, h = 〈v′| • |w′〉 are matrix coefficients
with v ∈ V (λ)∗, w ∈ V (λ), v′ ∈ V (λ′)∗, w′ ∈ V (λ′) for some λ, λ′ ∈ P+. Suppose
moreover that w and w′ have weight µ and ν, respectively. As in the proof of
Theorem 2.108, we calculate

(q
∑
i,j Bij(Hi⊗Hj), h⊗ g) = q(µ,ν)ε(h)ε(g) = (ε(g)Kµ, h).
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From this we easily deduce l+(f) ∈ Uq(g) for any f ∈ O(Gq).
The proof for l−(f) is analogous. �

The conclusion of Lemma 2.110 is one of the reasons to work with the simply
connected version of Uq(g) with generators Kµ for all µ ∈ P. The corresponding
assertion fails if one considers the version of the quantized universal enveloping
algebra with Cartan part containing only elements Kµ for µ ∈ Q.

We record the following basic properties of l-functionals.

Lemma 2.111. The maps l± : O(Gq)→ Uq(g) are Hopf algebra homomorphisms.
Explicitly, we have

l±(fg) = l±(f)l±(g)

∆̂(l±(f)) = l±(f(1))⊗ l±(f(2))

Ŝ(l±(f)) = l±(S(f))

for all f, g ∈ O(Gq).

Proof. For h ∈ O(Gq) we compute

(l+(fg), h) = (R, h⊗ fg)

= ((id⊗∆̂)(R), h⊗ g ⊗ f)

= (R13R12, h⊗ g ⊗ f)

= (R, h(1) ⊗ f)(R, h(2) ⊗ g)

= (l+(f)l+(g), h),

and similarly

(∆̂(l+(f)), g ⊗ h) = ((∆̂⊗ id)(R), g ⊗ h⊗ f)

= (R13R23, g ⊗ h⊗ f)

= (R, g ⊗ f(1))(R, h⊗ f(2))

= (l+(f(1))⊗ l+(f(2)), g ⊗ h).

The relation concerning the antipodes follows from these two formulas; explicitly
we calculate

(Ŝ(l+(f)), h) = ((Ŝ ⊗ id)(R), h⊗ f) = ((id⊗Ŝ−1)(R), h⊗ f) = (l+(S(f)), h).

The assertions for l− are obtained in a similar way. �

2.12. The locally finite part of Uq(g). In this subsection we discuss some results
on the locally finite part of Uq(g). For more details we refer to Section 5.3 in [41]
and [8], [16]. Throughout we assume that q = s2L ∈ K× is not a root of unity.

Recall that Uq(g) is a left module over itself with respect to the adjoint action
given by

ad(X)(Y ) = X → Y = X(1)Y Ŝ(X(2))

for X,Y ∈ Uq(g). The space of invariant elements of Uq(g) with respect to the
adjoint action is the centre ZUq(g) of Uq(g).

The locally finite part FUq(g) is the sum of all finite dimensional Uq(g)-submodules
of Uq(g) with respect to the adjoint action. In contrast to the classical case it turns
out that FUq(g) is a proper subspace of Uq(g).

Lemma 2.112. The locally finite part FUq(g) is a subalgebra and a left coideal of
Uq(g), that is, ∆(FUq(g)) ⊂ Uq(g)⊗ FUq(g).
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Proof. The fact that FUq(g) is a subalgebra follows from the fact that the adjoint
action is compatible with multiplication. Now let Y ∈ FUq(g) and X ∈ Uq(g).
Note that

Y(1) ⊗ (X → Y(2)) = S(X(1))X(2)Y(1)S(X(5))X(6) ⊗X(3)Y(2)S(X(4))

= (S(X(1))⊗ 1)∆(X(2) → Y )(X(3) ⊗ 1).

Since Uq(g)→ Y is finite dimensional it follows that ∆(Y ) ∈ Uq(g)⊗ FUq(g). �

Recall that the anti-automorphism τ of Uq(g) defined in Lemma 2.16 satisfies

τ(X → Y ) = τ(X(1)Y Ŝ(X(2)))

= τ(Ŝ(X(2)))τ(Y )τ(X(1))

= τ(Ŝ(X(2)))τ(Y )Ŝ(τ(Ŝ(X(1))))

= τ(Ŝ(X))→ τ(Y )

for all X,Y ∈ Uq(g). In particular, the involution τ preserves the locally finite part
FUq(g) of Uq(g).

More generally, for an arbitrary Uq(g)-module M we shall denote by FM ⊂ M
its locally finite part, that is, the subspace consisting of all elements m such that
Uq(g) ·m is finite dimensional. We shall say that the action of Uq(g) on M is locally
finite if FM = M . Of course, this is the case in particular if M = V (µ) for µ ∈ P+.

Let us also define the coadjoint action of Uq(g) on Uq(g)∗ by

(X → f)(Y ) = f(Ŝ(X(1))Y X(2))

for X,Y ∈ Uq(g) and f ∈ Uq(g)∗. If f = 〈v| • |w〉 ∈ O(Gq) is a matrix coefficient,
then

X → 〈v| • |w〉 = 〈X(1) · v| • |X(2) · w〉.
Therefore the coadjoint action preserves O(Gq) and is locally finite on O(Gq). Note
that for f ∈ O(Gq),

(X → f)(Y ) = (Y,X → f)

for all X,Y ∈ Uq(g).
We define a linear map J : Uq(g)→ Uq(g)∗ by

J(X)(Y ) = κ(Ŝ−1(Y ), X)

where κ is the quantum Killing form, see Definition 2.78. Using J we can determine
the structure of FUq(g), compare Section 7.1 in [41] and [8].

Theorem 2.113. The linear map J defines an isomorphism from FUq(g) onto
O(Gq) compatible with the adjoint and coadjoint actions, respectively. Moreover

FUq(g) =
⊕
µ∈P+

Uq(g)→ K2µ

as a subspace of Uq(g).

Proof. We follow the discussion in [16]. According to Theorem 2.92 the map J :
Uq(g) → Uq(g)∗ is injective. Moreover J intertwines the adjoint and coadjoint
actions since by the ad-invariance of κ from Proposition 2.79 we obtain

(X → J(Y ))(Z) = J(Y )(Ŝ(X(1))ZX(2))

= κ(Ŝ−1(X(2))Ŝ
−1(Z)X(1), Y )

= κ(Ŝ−1(X)→ Ŝ−1(Z), Y )

= κ(Ŝ−1(Z), X → Y )

= J(X → Y )(Z)
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for all X,Y, Z ∈ Uq(g).
Let µ ∈ P+ and let w0 ∈ W be the longest element of the Weyl group. Using

the definition of the quantum Killing form we check that J(K−2w0µ) vanishes on

monomials XKν Ŝ(Y ) for which X ∈ Uq(n+) or Y ∈ Uq(n−) is contained in the
kernel of ε̂. With this in mind, if vµ is a lowest weight vector of V (µ) and vµ∗ is the
highest weight vector in V (µ)∗ such that vµ∗ (vµ) = 1, one can confirm that

J(K−2w0µ) = 〈vµ∗ | • |vµ〉

by comparing both sides on Uq(h).
Since V (µ) is irreducible, the vector 〈vµ∗ | • |vµ〉 is cyclic for the coadjoint action.

We conclude that J induces an isomorphism Uq(g)→ K−2w0µ
∼= End(V (µ))∗. Since

the spaces End(V (µ))∗ form a direct sum in O(Gq) ⊂ Uq(g)∗ it follows that the
sum of the spaces Uq(g) → K−2w0µ is a direct sum, and the resulting subspace of
FUq(g) is isomorphic to O(Gq) via J .

To finish the proof it suffices to show that J(FUq(g)) is contained in O(Gq). For
this let f ∈ J(FUq(g)) be arbitrary. Consider the left and right regular actions of
Uq(g) on Uq(g)∗ given by

(X · f)(Y ) = f(Y X), (f ·X)(Y ) = f(XY )

for X,Y ∈ Uq(g). Inspecting the definition of the quantum Killing form shows that
Uq(b−) · f and f ·Uq(b+) are finite dimensional subspaces of Uq(g)∗. Moreover f is
contained in the locally finite part of Uq(g)∗ with respect to the coadjoint action,
so the relation X · f = X(2) → (f ·X(1)) shows that Uq(b+) · f is finite dimensional
as well. Hence Uq(g) · f is finite dimensional.

From the definition of the quantum Killing form κ it follows that the linear
functional J(Y KλŜ(X)) ∈ Uq(g)∗ for X ∈ Uq(n+)ν , Y ∈ Uq(n−) has weight ν −
1
2λ ∈

1
2P ⊂ h∗q with respect to the left regular action. In particular, J(Uq(g)) is

a weight module with respect to the left regular action, and therefore the same
holds for Uq(g) · f . According to Corollary 2.100, we conclude that Uq(g) · f is
isomorphic to a finite direct sum of modules V (µj) for µ1, . . . , µr ∈ P+

q , and since

P+
q ∩ 1

2P = P+, we have in fact µ1, . . . , µr ∈ P+. In particular, we get X · f = 0
for any X ∈ I(µ1) ∩ · · · ∩ I(µr), the intersection of the kernels of the irreducible
representations corresponding to µ1, . . . , µr. Therefore 0 = (X · f)(1) = f(X) for
all such X, which means that f can be viewed as a linear functional on the quotient
Uq(g)/(I(µ1) ∩ · · · ∩ I(µr)) ∼= End(V (µ1))⊕ · · · ⊕ End(V (µr)). In other words, we
have f ∈ O(Gq) as desired. This finishes the proof. �

As a consequence of Theorem 2.113 we obtain the following properties of FUq(g).

Proposition 2.114. The intersection of Uq(h) and FUq(g) is linearly spanned by
the elements Kλ for λ ∈ 2P+.

Proof. Let us first show

Erj → Kλ =

r∏
k=1

(1− q(λ−(k−1)αj ,αj))ErjKλ−rαj ,

using induction on r ∈ N. We have

Ej → Kλ = [Ej ,Kλ]K−1
j = (Ej −KλEjK−λ)Kλ−αj = (1− q(λ,αj))EjKλ−αj ,
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and in the inductive step we compute

Erj → Kλ = [Ej , E
r−1
j → Kλ]K−1

j

=

r−1∏
k=1

(1− q(λ−(k−1)αj ,αj))(EjE
r−1
j Kλ−(r−1)αjK−αj − E

r−1
j Kλ−(r−1)αjEjK−αj )

=

r−1∏
k=1

(1− q(λ−(k−1)αj ,αj))(ErjKλ−rαj − q(λ−(r−1)αj ,αj)ErjKλ−rαj )

=

r∏
k=1

(1− q(λ−(k−1)αj ,αj))ErjKλ−rαj ,

so that the formula indeed holds.
Since q is not a root of unity it follows that Erj → Kλ = 0 for some r ∈ N iff

(αj , λ) = nj(αj , αj) for some integer nj ≥ 0. Writing λ = λ1$1 + · · ·+ λN$N this
amounts to

λj = (α∨j , λ) =
2

(αj , αj)
(αj , λ) = 2nj .

We conclude that Kλ ∈ FUq(g) implies λ ∈ 2P+. In fact, the argument shows
more generally that an element of Uq(h) which is contained in FUq(g) is necessarily
a linear combination of elements Kλ with λ ∈ 2P.

Conversely, according to Theorem 2.113 the elements Kλ for λ ∈ 2P+ are indeed
contained in FUq(g). This finishes the proof. �

Observe that Proposition 2.114 shows in particular that FUq(g) in not a Hopf
subalgebra of Uq(g).

The following result illustrates that the subalgebra FUq(g) ⊂ Uq(g) is reasonably
large. For more precise information in this direction see Section 7.1 in [41].

Lemma 2.115. We have Uq(g) = FUq(g)Uq(h) = Uq(h)FUq(g).

Proof. We first note that KµFUq(g)K−µ = ad(Kµ)(FUq(g)) = FUq(g) for all
µ ∈ P, and hence FUq(g)Uq(h) = Uq(h)FUq(g). It follows that the latter is a
subalgebra.

In order to finish the proof it therefore suffices to show that the generators Ei, Fi
are contained in FUq(g)Uq(h) = Uq(h)FUq(g). From the computation in the proof
of Proposition 2.114 we conclude that

Ej → K2ρ = (1− q(2ρ,αj))EjK2ρ−αj = (1− q2
j )EjK2ρ−αj

is contained in FUq(g), and hence Ej ∈ FUq(g)Uq(h). In the same way we see that

Fj → K2ρ = −K2ρFj + FjK2ρ = (1− q−(2ρ,αj))EjK2ρ = (1− q−2
j )EjK2ρ

is contained in FUq(g), and hence Fj ∈ FUq(g)Uq(h). �

Recall next the definition of the l-functionals l±(f) for f ∈ O(Gq) from Definition
2.109. We define a linear map I : O(Gq)→ Uq(g) by

I(f) = l−(f(1))l
+(S(f(2))).

For the following result compare [8].

Proposition 2.116. The map I induces an isomorphism O(Gq) → FUq(g), and
this isomorphism is the inverse of the isomorphism J : FUq(g) → O(Gq) con-
structed above.
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Proof. By the definition of the l-functionals we have

(I(f), g) = (R−1
12 R

−1
21 , f ⊗ g)

for f, g ∈ O(Gq). Here we write R12 = R and R21 = σ(R) where σ is the flip map.
Using

∆̂(X)R−1
12 R

−1
21 = R−1

12 ∆̂cop(X)R−1
21 = R−1

12 R
−1
21 ∆̂(X)

for all X ∈ Uq(g) we compute

(I(X → f), g) = (Ŝ(X(1)), f(1))(I(f(2)), g)(X(2), f(3))

= (Ŝ(X(1)), f(1))(R−1
12 R

−1
21 , f(2) ⊗ g)(X(2), f(3))

= (Ŝ(X(1)), f(1))(R−1
12 R

−1
21 ∆̂(X(2)), f(2) ⊗ g(1))(Ŝ(X(3)), g(2))

= (Ŝ(X(1)), f(1))(∆̂(X(2))R−1
12 R

−1
21 , f(2) ⊗ g(1))(Ŝ(X(3)), g(2))

= (X(1), g(1))(R−1
12 R

−1
21 , f ⊗ g(2))(Ŝ(X(2)), g(3))

= (X(1), g(1))(I(f), g(2))(Ŝ(X(2)), g(3)) = (X → I(f), g)

for f, g ∈ O(Gq). Hence I is Uq(g)-linear with respect to the coadjoint and adjoint
actions, respectively. This means in particular that the image of I is contained in
FUq(g) since the coadjoint action on O(Gq) is locally finite.

Let vµ ∈ V (µ) be a lowest weight vector and vµ∗ ∈ V (µ)∗ a highest weight vector
such that vµ∗ (vµ) = 1. From the explicit description of the R-matrix in Theorem
2.108 we see that l−(〈vµ∗ | • |v〉) = (vµ∗ , v)K−w0µ for all v ∈ V (µ). Similarly, we
obtain l+(〈v∗| • |vµ〉) = (v∗, vµ)Kw0µ for all v∗ ∈ V (µ)∗. Taking a basis v1, . . . , vn
of V (µ) with dual basis v∗1 , . . . , v

∗
n ∈ V (µ)∗ this shows

I(〈vµ∗ | • |vµ〉) =

n∑
j=1

l−(〈vµ∗ | • |vj〉)l+(S(〈v∗j | • |vµ〉))

=

n∑
j=1

(vµ∗ , vj)(v
∗
j , v

µ)K−2w0µ = K−2w0µ.

Combining this with the results from Theorem 2.113 we conclude that I is indeed
the inverse of J . In particular I is an isomorphism. �

Let g, f ∈ O(Gq). Using that I is compatible with the adjoint and coadjoint
actions and properties of l-functionals we compute

I(g)I(f) = I(g)l−(f(1))l
+(S(f(2)))

= l−(f(2))(Ŝ
−1(l−(f(1)))→ I(g))l+(S(f(3)))

= l−(f(2))I(Ŝ−1(l−(f(1)))→ g)l+(S(f(3)))

= l−(f(2))l
−((Ŝ−1(l−(f(1)))→ g)(1))l

+(S((Ŝ−1(l−(f(1)))→ g)(2)))l
+(S(f(3)))

= l−(f(2)(Ŝ
−1(l−(f(1)))→ g)(1))l

+(S(f(3)(Ŝ
−1(l−(f(1)))→ g)(2)))

= I(f(2)Ŝ
−1(l−(f(1)))→ g).
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In a similar way we obtain

I(f)I(g) = l−(f(1))l
+(S(f(2)))I(g)

= l−(f(1))(l
+(S(f(3)))→ I(g))l+(S(f(2)))

= l−(f(1))I(l+(S(f(3)))→ g)l+(S(f(2)))

= l−(f(1))l
−((l+(S(f(3)))→ g)(1))l

+(S(l+(S(f(3)))→ g)(2))l
+(S(f(2)))

= l−(f(1)(l
+(S(f(3)))→ g)(1))l

+(S(f(2)(l
+(S(f(3)))→ g)(2)))

= I(f(1)Ŝ
−1(l+(f(2)))→ g).

for all f, g ∈ O(Gq).
In particular, the map I : O(Gq) → FUq(g) is not an algebra homomorphism.

However, assume that g is an element of the invariant part O(Gq)
Gq of O(Gq) with

respect to the coadjoint action. Then the computation above shows that I satisfies
the multiplicativity property

I(fg) = I(f)I(g) = I(g)I(f)

for all f ∈ O(Gq). In particular, we obtain the following.

Proposition 2.117. The map I induces an algebra isomorphism between O(Gq)
Gq

and ZUq(g).

2.13. The centre of Uq(g) and the Harish-Chandra homomorphism. In this
section we describe the structure of the centre ZUq(g) of Uq(g). For more details
we refer to [9]. Throughout we assume that q = sL ∈ K× is not a root of unity.

Recall from Proposition 2.117 that we have an algebra isomorphism O(Gq)
Gq ∼=

ZUq(g). Therefore, we start by studying the algebra O(Gq)
Gq .

Definition 2.118. Let V be a finite dimensional integrable Uq(g)-module V . The
quantum trace tV ∈ O(Gq) is defined by

tV (X) = trV (XK−2ρ)

for all X ∈ Uq(g), where trV denotes the unnormalized trace on End(V ). If V =
V (µ) for some µ ∈ P+, we will write tµ for tV (µ).

Lemma 2.119. The set of quantum traces tµ for µ ∈ P+ is a linear basis of
O(Gq)

Gq .

Proof. First, one checks that an element f ∈ O(Gq) is invariant for the coadjoint
action if and only if

(Ŝ2(X)Y, f) = (Y X, f)

for all X,Y ∈ Uq(g). Recall from Lemma 2.7, that Ŝ2(X) = K2ρXK−2ρ. Using
this, and f ·K2ρ = (K2ρ, f(1))f(2), we see that the above condition is equivalent to

(XY, f ·K2ρ) = (K2ρXY, f) = (K2ρY X, f) = (Y X, f ·K2ρ)

for all X,Y ∈ Uq(g). This holds if and only if f · K2ρ is a linear combination of
traces trV (µ). �

Note that the quantum traces satisfy

tV⊕W = tV + tW , tV⊗W = tV tW ,

for all finite dimensional integrable modules V , W . It follows that O(Gq)
Gq is

isomorphic to the polynomial algebra K[t$1
, . . . , t$N ].

For µ ∈ P+ let us define the Casimir element zµ ∈ Uq(g) by zµ = I(tµ). As a
direct consequence of Proposition 2.117 and Lemma 2.119 we obtain the following
result.
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Theorem 2.120. The centre ZUq(g) of Uq(g) is canonically isomorphic to the
polynomial ring K[z$1

, . . . , z$N ]. A linear basis of ZUq(g) is given by the Casimir
elements zµ for µ ∈ P+.

Recall that the Harish-Chandra map is the linear map P : Uq(g) → Uq(h)
defined by P = ε̂ ⊗ id⊗ε̂ with respect to the triangular decomposition Uq(g) ∼=
Uq(n−)⊗Uq(h)⊗Uq(n+). Our next goal is the quantum analogue of Harish Chan-
dra’s Theorem, which says that P restricts to an algebra isomorphism of ZUq(g)
onto a subalgebra of Uq(h).

In order to specify this subalgebra, we will need to introduce a shifted Weyl
group action on Uq(h). Note that there is a standard action of W on Uq(h) by
algebra automorphisms, defined by

w(Kµ) = Kwµ,

for w ∈W and µ ∈ P. The shifted version of this action is defined as follows.

Definition 2.121. Let γ be the algebra automorphism of Uq(h) defined by

γ(Kµ) = q(ρ,µ)Kµ (µ ∈ P).

The shifted action of W on Uq(h) is the conjugate of the standard action above by
γ. Specifically, the shifted action of w ∈W is given by

w.Kµ = q(ρ,wµ−µ)Kµ.

for w ∈W .

Note that the automorphism γ of Uq(h) induces a map γ∗ on the group of char-
acters of Uq(h) and hence on the parameter space h∗q . Specifically, for the character
χλ associated to λ ∈ h∗q we have

γ∗(χλ)(Kµ) = χλ(γ(Kµ)) = q(λ+ρ,µ)

for all µ ∈ P, so that γ∗ acts on h∗q by translation by ρ.
We also introduce the algebra homomorphism τ : K[P]→ Uq(h) defined by

τ(µ) = K2µ

for µ ∈ P. Note that the subalgebra im(τ) ⊂ Uq(h) is preserved by the shifted Weyl
group action.

The following result appears in various frameworks in [70, 19, 42], see also [67].

Theorem 2.122. The Harish-Chandra map P : Uq(g) → Uq(h) restricts to an
algebra isomorphism ZUq(g) ∼= im(τ)W , the fixed point subalgebra of im(τ) under
the shifted Weyl group action.

Proof. It is equivalent to prove the the map γ−1 ◦P defines an algebra isomorphism
of ZUq(g) onto the fixed point subalgebra of im(τ) under the standard action of
W .

Let µ ∈ P+ and consider the central element zµ. Fix a basis eµ1 , . . . , e
µ
n of weight

vectors for V (µ) with dual basis e1
µ, . . . , e

n
µ and put uµij = 〈eiµ| • |e

µ
j 〉 so that the

quantum trace is

tµ =

n∑
j=1

(K−2ρ, u
µ
jj)u

µ
jj .

Then

zµ = I(tµ) =
∑
j,k

(K−2ρ, u
µ
jj)l
−(uµjk)l+(S(uµkj)).
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Note that l−(uµrs) is contained in Uq(b−), and similarly l+(S(uµrs)) is contained in
Uq(b+). Inspecting the explicit form of the universal R-matrix in Theorem 2.108
we get

P(zµ) =
∑

ν∈P(V (µ))

q(−2ρ,ν)K−νK−ν =
∑

ν∈P(V (µ))

q(ρ,−2ν)K−2ν ,

where ν runs over the set of weights P(V (µ)) of V (µ), counted with multiplicities.
We obtain

γ−1 ◦ P(zµ) =
∑

ν∈P(V (µ))

K−2ν ,

which is obviously in im(τ) and invariant under the standard action ofW . Moreover,
for any λ, µ ∈ P+ we have

(γ−1 ◦ P(zµ))(γ−1 ◦ P(zλ)) =
∑

ν′∈P(V (µ)),
ν′′∈P(V (λ))

K−2ν′K−2ν′′

=
∑

ν∈P(V (µ)⊗V (λ))

K−2ν

= γ−1 ◦ P(zµzλ),

so γ ⊗ P is an algebra homomorphism.
Using an induction argument with respect to the partial ordering on P+, one

checks that the elements γ−1 ◦ P(zµ) for µ ∈ P+ form a basis of the fixed point
subalgebra of im(τ) with respect to the standard action. Combining this with
Theorem 2.120 finishes the proof. �

Let us illustrate these considerations in the case of Uq(sl(2,K)). In this case one
can check directly that the Casimir element z1/2 associated with the fundamental
representation V (1/2) is, up to a scalar multiple, given by

C = FE +
qK2 + q−1K−2

(q − q−1)2
.

Let us verify that C is in the centre of Uq(sl(2,K)). We compute

EC = [E,F ]E + FEE +
q−1K2E + qK−2E

(q − q−1)2

= FEE +
(q − q−1)K2E + (q−1 − q)K−2E

(q − q−1)2
+
q−1K2E + qK−2E

(q − q−1)2

= FEE +
qK2E + q−1K−2E

(q − q−1)2
= CE,

similarly we get

CF = F [E,F ] + FFE +
q−1FK2 + qFK−2

(q − q−1)2

= FFE +
(q − q−1)FK2 + (q−1 − q)FK−2

(q − q−1)2
+
q−1FK2 + qFK−2

(q − q−1)2

= FFE +
qFK2 + q−1FK−2

(q − q−1)2
= FC,

and the relation CK = KC is obvious.
Let us now return to the general theory. Consider a Verma module M(λ) for

λ ∈ h∗q . If Z ∈ ZUq(g) and vλ ∈ M(λ) is the highest weight vector, then Z · vλ is
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again a highest weight vector, and therefore must be of the form ξλ(Z)vλ, for some
linear map ξλ : ZUq(g)→ K. Note that

Z · vλ = P(Z) · vλ = χλ(P(Z))vλ,

where χλ is the character given by χλ(Kν) = q(λ,ν) for all ν ∈ P, and therefore

ξλ = χλ ◦ P.

Moreover, since vλ is a cyclic vector for M(λ) it follows that Z acts by multiplication
by ξλ(Z) on all of M(λ). It is easy to check that ξλ(Y Z) = ξλ(Y )ξλ(Z) for all
Y,Z ∈ ZUq(g), which means that ξλ is a character.

Definition 2.123. Let λ ∈ h∗q . The character ξλ : ZUq(g) → K defined above is
called the central character associated with λ.

From the previous considerations it follows that if M(µ) ⊂M(λ) is a submodule
then ξµ = ξλ.

We shall now introduce the notion of linkage, which is designed to analyze the
structure of Verma modules. For a classical complex semisimple Lie algebra g, two
Verma modules M(λ) and M(µ) with highest weights λ, µ ∈ h∗ have the same
central character if and only if λ and µ are in the same orbit of the shifted Weyl
group action, in which case they are called W -linked, see [37]. For Uq(g) the group
W needs to be enlarged slightly to take into account the existence of elements in
h∗q of order 2.

Definition 2.124. We define Yq = {ζ ∈ h∗q | 2ζ = 0}.

If characteristic of the ground field K is not equal to 2, there is a canonical
isomorphism

Yq
∼= Q∨/2Q∨

which associates to the class of α∨ ∈ Q∨ the character ζα∨ ∈ h∗q defined by

q(ζα∨ ,µ) = (−1)(α∨,µ),

for µ ∈ Q. Here we are using the q-exponential notation for h∗q from Definition
2.26. This formula is well-defined since the character ζα∨ is trivial if α∨ ∈ 2Q∨.
Moreover, if ζ ∈ h∗q is any element of order two then we have q(ζ,µ) = ±1 for all
µ ∈ P, which implies that there exists α∨ ∈ Q∨ such that ζ = ζα∨ , as given by the
above formula.

In the case where the ground field is C, where we make the identification h∗q =

h∗/i~−1Q∨, the natural identification is Yq
∼= 1

2 i~
−1Q∨/i~−1Q∨.

Note that if K is an exponential field and if there exists z ∈ K such that qz = −1
then we have ζα∨ = zα∨. Here we are using the canonical map h∗ → h∗q described
in Subsection 2.3.1.

Now we define the extended Weyl group, see Section 8.3.2 in [41]. Note that the
action of the Weyl group W on h∗q restricts to Yq.

Definition 2.125. The extended Weyl group Ŵ is defined as the semidirect prod-
uct

Ŵ = Yq oW

with respect to the action of W on Yq.

Observe that the extended Weyl group is a finite group. Explicitly, the group
structure of Ŵ is

(ζ, v)(η, w) = (ζ + vη, vw)

for all ζ, η ∈ Yq and v, w ∈W .
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We define two actions of Ŵ on h∗q by

(ζ, w)λ = wλ+ ζ

and

(ζ, w).λ = w.λ+ ζ = w(λ+ ρ)− ρ+ ζ,

for λ ∈ h∗q . The latter is called the shifted action of Ŵ on h∗q .

Definition 2.126. We say that µ, λ ∈ h∗q are Ŵ -linked if ŵ.λ = µ for some ŵ ∈ Ŵ .

Notice that Ŵ -linkage is an equivalence relation on h∗q . This should be compared
to the usual notion of W -linkage, see [37]. Indeed, the two notions coincide if we
restrict our attention to integral weights.

Lemma 2.127. Two integral weights µ, λ ∈ P ⊂ h∗q are Ŵ -linked iff they are
W -linked.

Proof. If µ, λ ∈ P with (ζ, w).λ = w.λ + ζ = µ then ζ ∈ P ⊂ h∗q . But then for all

ν ∈ P, we have q(ζ,ν) ∈ sZ and also q(ζ,ν) = ±1. Since q is not a root of unity, this
implies that ζ = 0. �

We shall now state and prove the following analogue of Harish-Chandra’s Theo-
rem, compare Section 1.10 in [37].

Theorem 2.128. Two elements µ, λ ∈ h∗q are Ŵ -linked iff ξµ = ξλ.

Proof. Assume first that λ and µ = ŵ.λ are linked, where ŵ = (ζ, w) ∈ Ŵ . In
order to show ξŵ.λ = ξλ it suffices due to Theorem 2.122 to show χŵ.λ = χλ, where
both sides are viewed as characters on the fixed point subalgebra im(τ)W under the
shifted Weyl group action. If

K =
∑
ν∈P

cνK2ν =
∑
ν∈P

cνq
(ρ,2wν−2ν)K2wν

is contained in im(τ)W then we obtain

χµ(K) = χw.λ+ζ(K) =
∑
ν∈P

cνq
(ρ,2wν−2ν)q(w.λ+ζ,2wν)

=
∑
ν∈P

cνq
(ρ,2wν−2ν)q(w.λ,2wν)

=
∑
ν∈P

cνq
(ρ,2wν−2ν)q(w(λ+ρ)−ρ,2wν)

=
∑
ν∈P

cνq
(ρ,−2ν)q(w(λ+ρ),2wν)

=
∑
ν∈P

cνq
(ρ,−2ν)q(λ+ρ,2ν)

=
∑
ν∈P

cνq
(λ,2ν) = χλ(K)

as desired.
Let us now assume that µ and λ are not Ŵ -linked. This implies that the shifted

Weyl group orbits W.(2µ) and W.(2λ) are disjoint. Let us write 2W.µ ∪ 2W.λ =
{2η1, . . . , 2ηn} ⊂ h∗q . Each element of this set corresponds to a character P→ K×

sending ν ∈ P to q(2ηi,ν). Therefore Artin’s Theorem on linear independence of



120 CHRISTIAN VOIGT AND ROBERT YUNCKEN

characters allows us to find elements ν1, . . . , νn ∈ P such that the matrix (q(2ηi,νj))
is invertible, and hence scalars c1, . . . , cn ∈ K such that

n∑
j=1

cjq
(ηi,2νj) =

{
1 if ηi ∈W.µ
0 if ηi ∈W.λ.

If we write K =
∑
j cjK2νj then L = 1

|W |
∑
w∈W w.K is contained in im(τ)W .

Moreover, since

χηi(w.K) =
∑
j

cjχηi(w.K2νj )

=
∑
j

cjq
(ρ,2wνj−2νj)q(ηi,2wνj)

=
∑
j

cjq
(w−1(ηi+ρ)−ρ,2νj) =

∑
j

cjq
(w−1.ηi,2νj) = χw−1.ηi(K)

we have χηi(L) = 1 for ηi ∈W.µ and χηi(L) = 0 for ηi ∈W.λ. Taking the preimage
Z ∈ ZUq(g) of L ∈ im(τ)W under the Harish-Chandra isomorphism therefore gives
ξλ(Z) = 1 and ξµ(Z) = 0. Hence ξµ 6= ξλ. �

Let us conclude this subsection with the following result on the structure of
characters of ZUq(g).

Proposition 2.129. Assume that K is an algebraically closed field. Then any
character χ : ZUq(g)→ K is of the form ξλ for some λ ∈ h∗q .

Proof. Using Theorem 2.122 we can identify ZUq(g) with the W -invariant part AW

of the Laurent polynomial ring A = im τ = K[K±1
2$1

, . . . ,K±1
2$N

], where W is acting

by the shifted Weyl group action. It suffices to show that any character χ : AW → K
is of the form χ = χλ for λ ∈ h∗q .

Since W is a finite group the ring extension AW ⊂ A is integral, that is, each
element of A is the root of a monic polynomial with coefficients in AW . In fact,
given f ∈ A we may consider p(x) =

∏
w∈W (x− w.f).

To proceed further we need to invoke some commutative algebra for integral ring
extensions. More precisely, due to Theorem 5.10 in [4] the maximal ideal ker(χ) is
of the form ker(χ) = AW ∩ p for some prime ideal p of A, and Corollary 5.8 in [4]
implies that p is a maximal ideal. Since K is algebraically closed we conclude that
p = ker(η) for some character η : A→ K extending χ.

Using once again that K is algebraically closed, we can find λ ∈ h∗q such that

η(Kµ) = q(µ,λ) = χλ(Kµ) for all elements Kµ ∈ A. Clearly this yields χ = χλ as
desired. �

2.14. Noetherianity. In this section we show that Uq(g) and some related algebras
are Noetherian. We assume throughout that q = sL ∈ K× is not a root of unity.

2.14.1. Noetherian algebras. Recall that an algebra A is called left (right) Noether-
ian if it satisfies the ascending chain condition (ACC) for left (right) ideals. The
ACC says that any ascending chain I1 ⊂ I2 ⊂ I3 ⊂ · · · of left (right) ideals of A
becomes eventually constant, that is, satisfies In = In+1 = In+2 = · · · for some
n ∈ N. The algebra A is called Noetherian if it is both left and right Noetherian.

We will have to work with graded and filtered algebras. Let A be an algebra
and P an additive abelian semigroup, and assume that there exists a direct sum
decomposition

A =
⊕
µ∈P

Aµ
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into linear subspaces Aµ such that 1 ∈ A0 and AµAν ⊂ Aµ+ν for all µ, ν ∈ P . In
this case we call A a graded algebra. A left (right) ideal I of a graded algebra A is
called graded if I =

⊕
µ∈P Iµ where Iµ = Aµ ∩ I.

Assume now in addition that the abelian semigroup P is ordered, that is, equipped
with an order relation ≤ such that µ ≤ ν implies µ+ λ ≤ ν + λ for all µ, ν, λ ∈ P .
We shall also assume that P has cancellation, so that µ + λ = ν + λ for some
λ ∈ P implies µ = ν. A P -filtration on an algebra A is a family of linear subspaces
Fµ(A) ⊂ A indexed by µ ∈ P such that 1 ∈ F0(A), Fµ(A) ⊂ Fν(A) if µ ≤ ν,⋃

µ∈P
Fµ(A) = A,

and Fµ(A)Fν(A) ⊂ Fµ+ν(A) for all µ, ν ∈ P . In this case we also say that A is a
filtered algebra. If A is a filtered algebra, then the associated graded algebra is

grF (A) =
⊕
µ∈P
Fµ(A)/F<µ(A),

where

F<µ(A) =
∑
ν<µ

Fν(A),

and we write ν < µ if ν ≤ µ and ν 6= µ. The associated graded algebra is indeed a
graded algebra in a natural way with graded subspaces grF (A)µ = Fµ(A)/F<µ(A)
labelled by P .

Recall that P is called well-founded if every subset of P contains a minimal
element. This is equivalent to the descending chain condition: any infinite sequence
µ1 ≥ µ2 ≥ · · · in P is eventually constant.

We say that a filtration Fµ(A) of an algebra A is locally bounded below if for
each nonzero element a ∈ A the set of all µ ∈ P with a ∈ Fµ(A) has a minimal
element. Recall also that an algebra A is called a domain if it has no zero-divisors,
that is, if ab = 0 in A implies a = 0 or b = 0.

Let us record the following basic fact, compare Appendix I.12 in [15] and Chapter
V in [38].

Lemma 2.130. Let A be a filtered algebra with a filtration (Fµ(A))µ∈P with respect
to an abelian semigroup P . Then the following holds.

a) Suppose P is well-founded. If the associated graded algebra grF (A) is left (right)
Noetherian then A is left (right) Noetherian.

b) Suppose P is totally ordered and the filtration is locally bounded below. If grF (A)
is a domain then A is a domain.

Proof. a) We shall consider left ideals only, the proof for right ideals is completely
analogous.

Note that if I ⊂ A is a left ideal then setting Fµ(I) = I ∩ Fµ(A) for µ ∈ P
defines a filtration of I, with associated graded

grF (I) =
⊕
µ∈P

grF (I)µ =
⊕
µ∈P
Fµ(I)/F<µ(I).

There is a canonical inclusion of Fµ(I)/F<µ(I) into Fµ(A)/F<µ(A), and in this
way grF (I) becomes a graded left ideal of grF (A).

Assume now that I1 ⊂ I2 ⊂ · · · is an increasing chain of left ideals in A. Then the
associated graded left ideals fit into an ascending chain grF (I1) ⊂ grF (I2) ⊂ · · · .
By assumption, this chain stabilizes eventually, so that grF (In) = grF (In+1) = · · ·
for some n ∈ N.
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We shall show that in general if I ⊂ J are left ideals of A such that grF (I) =
grF (J) then I = J . This will clearly imply that our original chain I1 ⊂ I2 ⊂ · · · is
eventually constant.

Suppose I 6= J . Since P is well-founded, we can find µ ∈ P minimal such that
Fµ(I) 6= Fµ(J). Choose a ∈ Fµ(J) \ Fµ(I). Since grF (I) = grF (J), there exists
b ∈ Fµ(I) such that b− a ∈ F<µ(J) = F<µ(I). But then a = b+ (a− b) ∈ Fµ(I),
contradicting the choice of a. Therefore I = J as claimed.
b) Assume a, b ∈ A are nonzero elements such that ab = 0. Since P is locally

bounded below we may pick µ, ν ∈ P minimal such that a ∈ Fµ(A) and b ∈ Fν(A).
The corresponding cosets in grF (A) multiply to zero, so that a + F<µ(A) = 0 or
b + F<ν(A) = 0 in grF (A). This means a ∈ F<µ(A) or b ∈ F<ν(A). Since P
is totally ordered this implies a ∈ Fλ(A) for some λ < µ or b ∈ Fη(A) for some
η < ν, contradicting the choice of µ and ν. Hence A is a domain. �

We remark that in the proof of part a) it suffices to assume that grF (A) is
Noetherian for graded ideals. It follows that a graded algebra A is Noetherian if
and only if it is Noetherian for graded ideals. For we may equip A with the filtration
F given by

Fµ(A) =
⊕
ν≤µ

Aν ,

so that A ∼= grF (A) as graded algebras. Then the proof of Lemma 2.130 a) im-
plies that A is left Noetherian if grF (A) = A is Noetherian for graded left ideals.
Conversely, if A is left Noetherian then it is clearly also Noetherian for graded left
ideals.

Let A be an algebra and let θ ∈ Aut(A) be an algebra automorphism. Given θ we
can form the semigroup crossed product Aoθ N0, which has A⊗K[t] as underlying
vector space, with elements written as a⊗ tm = ao tm, and multiplication given by

(ao tm)(bo tn) = aθm(b) o tm+n

for a, b ∈ A and m,n ∈ N0.

Lemma 2.131. Let A be an algebra, let θ ∈ Aut(A) and let A oθ N0 be the
associated semigroup crossed product.

a) If A is left (right) Noetherian then Aoθ N0 is left (right) Noetherian.
b) If A is a domain then Aoθ N0 is a domain.

Proof. a) The argument is a variant of the Hilbert Basis Theorem, for a proof see
Theorem 1.2.9 in [59].
b) Let a =

∑m
i=0 ai o ti, b =

∑n
j=0 bj o tj be nonzero elements of A oθ N0, and

assume without loss of generality that am and bn are nonzero. Observe that

ab =

m∑
i=0

n∑
j=0

aiθ
i(bj) o ti+j .

Since θ is an automorphism we have θk(bn) 6= 0 for all k ∈ N0. However, ab = 0
implies amθ

m(bn) = 0, contradicting our assumption that A is a domain. It follows
that Aoθ N0 is a domain. �

Let us call an algebra A a skew-polynomial algebra if it is generated by finitely
many elements y1, . . . , ym and relations

yiyj = qijyjyi,

where qij ∈ K× are invertible scalars for all 1 ≤ i, j ≤ m with qij = q−1
ji and qii = 1

for all i, j.

Lemma 2.132. Any skew-polynomial algebra is a Noetherian domain.
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Proof. We use induction on the number of generators. For m = 0 we have that
A = K, so that the assertion is obvious. Assume now that the claim has been proved
if k < m for some m ∈ N, and let y1, . . . , ym be generators of A as above. Then
the subalgebra B ⊂ A generated by y1, . . . , ym−1 is a skew-polynomial algebra and
hence a Noetherian domain by the inductive hypothesis. Moreover, it is easy to
see that θ(yj) = qmjyj defines an algebra automorphism of B. one checks that the
corresponding semigroup crossed B oθ N0 is isomorphic to A. Hence the assertion
follows from Lemma 2.131. �

The following result is Proposition I.8.17 in [15], which we reproduce here for
the convenience of the reader.

Proposition 2.133. Let A be an algebra generated by elements u1, . . . , um, and
assume that there are scalars qij ∈ K× and αstij , β

st
ij ∈ K such that

uiuj − qijujui =

j−1∑
s=1

m∑
t=1

αstijusut + βstijutus

for all 1 ≤ j < i ≤ m. Then A is a Noetherian.

Proof. The idea is to construct a filtration Fn(A) for n ∈ N0 of A such that grF (A)
is generated by elements y1, . . . , ym such that yiyj = qijyjyi for all 1 ≤ i, j ≤ m.

To this end let
di = 2m − 2m−i

for i = 1, . . . ,m, so that d1 < d2 < · · · < dm. For 1 < j < m we have

2m−j−1 + 2m−j = (1 + 2) · 2m−j−1 < 4 · 2m−j−1 < 2m−j+1 + 1,

and hence

dj−1 + dm = 2m − 2m−j+1 + 2m − 1

= 2m+1 − (2m−j+1 + 1) < 2m+1 − (2m−j−1 + 2m−j) = dj+1 + dj .

We thus get for i > j > s and any t the relation

ds + dt ≤ dj−1 + dm < dj+1 + dj ≤ di + dj ,

using the fact that ds ≤ dj−1 and dt ≤ dm in the first step.
Define F0(A) = K1 and let Fd(A) for d > 0 be the linear subspace spanned

by all monomials ui1 · · ·uir such that di1 + · · · + dir ≤ d. It is straightforward to
check that this defines an N0-filtration on A. Let yi be the coset of ui in grF (A).
Each nonzero homogeneous component of grF (A) is spanned by the cosets of those
monomials ui1 · · ·uir such that di1 + · · · + dir = d. In particular, the elements
y1, . . . , ym generate grF (A) as an algebra. Since uiuj − qijujui for i > j is a linear
combination of monomials usut and utus with s < j, and all such monomials have
filtration degree strictly smaller that di + dj , we see that

yiyj − qijyjyi = 0

in grF (A). That is, grF (A) is a quotient of a skew-polynomial algebra, and accord-
ing to Lemma 2.132 this means that grF (A) is Noetherian. Due to Lemma 2.130
this implies that A itself is a Noetherian. �

2.14.2. Noetherianity of Uq(g). In this subsection we use the PBW-basis to show
that Uq(g) and a few other algebras we have encountered in our study of quantized
universal enveloping algebras so far are Noetherian. These results are originally
due to de Concini-Kac, see Section 1 in [20].

Proposition 2.134. The algebras Uq(n±), Uq(b±) and Uq(g) are Noetherian do-
mains.
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Proof. We will prove the claim for A = Uq(g), reproducing the argument in I.6
of [15]. The other cases are treated in a similar manner. Let us remark that the
characteristic zero assumption made in [15] is not needed.

We have the PBW-basis vectors

X(t, µ, s) = F tnβn · · ·F
t1
β1
KµE

sn
βn
· · ·Es1β1

where t = (t1, . . . , tn), s = (s1, . . . , sn) ∈ Nn0 . If ν =
∑
νiαi ∈ Q then we define

the height of ν by ht(ν) = ν1 + · · ·+ νN ∈ Z. Let us define moreover the height of
X(t, µ, s) by

ht(X(t, µ, s)) = (t1 + s1)ht(β1) + · · ·+ (tN + sN )ht(βN ),

so that the height of this vector is the difference of the heights of its graded pieces
in Uq(n±). We define the total degree of a PBW-basis vector by

d(X(t, µ, s)) = (sn, . . . , s1, tn, . . . , t1, ht(X(t, µ, s))) ∈ N2n+1
0 .

Let us give the additive semigroup P = N2n+1
0 the lexicographical ordering from

right to left, so that e1 < e2 < · · · < e2n+1, where ej ∈ N2n+1
0 denotes the j-

th standard basis vector. This turns P into a well-ordered abelian semigroup, in
particular P is totally ordered and well-founded. Moreover let Fm(A) ⊂ A for
m ∈ N2n+1

0 be the linear span of all PBW-basis vectors such that d(X(t, µ, s)) ≤
(m1, . . . ,m2n+1) = m with respect to the lexicographical ordering.

We claim that the spaces Fm(A) for m ∈ P define a locally bounded below
filtration of A. Most of the required properties are straightforward, except that
Y ∈ Fm(A), Z ∈ Fn(A) implies Y Z ∈ Fm+n(A). The main point to check here
is what happens when monomials in the Eβj or Fβj need to be reordered. Note

that the formula obtained in Proposition 2.69 shows that EβiEβj − q(βi,βj)EβjEβi
for i < j is a sum of monomials of the same height as EβiEβj . According to the
definition of the order in P , all these monomials have strictly smaller total degree
than EβjEβi .

Using this observation we see that the associated graded algebra grF (A) is the
algebra with generators Eβ1 , . . . , Eβn ,Kµ, Fβ1 , . . . , Fβn and relations

KµKν = KνKµ,

KµEβi = q(µ,βi)EβiKµ,

KµFβi = q−(µ,βi)FβiKµ,

EβiFβj = FβjEβi ,

EβiEβj = q(βi,βj)EβjEβi ,

FβiFβj = q(βi,βj)FβjFβi

for all µ, ν ∈ P and 1 ≤ i ≤ n or 1 ≤ i < j ≤ n, respectively. Therefore
grF (A) is a skew-polynomial ring in the generators Eβ1 , . . . , Eβn , Fβ1 , . . . , Fβn and
K$1 , . . . ,K$N . As such it is a Noetherian domain by Lemma 2.132, and hence the
same holds for A by Lemma 2.130. �

2.14.3. Noetherianity of O(Gq). We show here that the coordinate algebra O(Gq)
is Noetherian, again following the proof in Section I.8 of [15]. The techniques de-
veloped in this context will be used again in the next subsection to obtain Noethe-
rianity of FUq(g).

We need some preparations. For any λ ∈ P+ we fix a linear basis of weight
vectors eλ1 , . . . , e

λ
m for V (λ) with dual basis e1

λ, . . . , e
m
λ ∈ V (λ)∗. We write εj for

the weight of eλj , and we may assume without loss of generality that the vectors are
ordered in a non-ascending order, so that εi > εj implies i < j. Let us denote by
uλij = 〈eiλ| • |eλj 〉 the corresponding matrix coefficients.
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Proposition 2.135. Let µ, ν ∈ P+ and 1 ≤ i, j ≤ m, 1 ≤ k, l ≤ n. With the
notations as above, there are scalars αijklrs , βijkluv ∈ K such that

q−(εj ,εl)uµiju
ν
kl +

j−1∑
r=1

m∑
s=l+1

αijklrs uµiru
ν
ks = q−(εi,εk)uνklu

µ
ij +

m∑
u=i+1

k−1∑
v=1

βijkluv uνvlu
µ
uj

in O(Gq). Moreover αijklrs = 0 unless εr > εj and εs < εl. Similarly βijkluv = 0 unless
εu < εi and εv > εk.

Proof. From general properties of the universal R-matrix we obtain

f(1)g(1)(R, f(2) ⊗ g(2)) = (R, f(1) ⊗ g(1))g(2)f(2)

for all f, g ∈ O(Gq). Inspecting the description of the universal R-matrix in Theo-
rem 2.108 for f = uµij and g = uνkl yields the desired formula. �

Theorem 2.136. The algebra O(Gq) is Noetherian.

Proof. Note that the modules V ($1), . . . , V ($N ) generate all irreducible finite di-
mensional weight modules of Uq(g) in the sense that any V (µ) for µ ∈ P+ is a
submodule of a suitable tensor product of the V ($j). Let us pick bases of weight
vectors ek1 , . . . , e

k
nk

for each V ($k) with dual bases e1
k, . . . , e

nk
k , and write εj for

the weight of ekj . The matrix elements ukij = 〈eik| • |ekj 〉 for k = 1, . . . , N and
1 ≤ i, j ≤ nk generate O(Gq) as an algebra.

Let X be the collection of all these matrix elements ukij . We shall order the
elements of X in a list u1, . . . , um such that the following condition holds: For
ua = urij , ub = uskl we have b < a if either εk < εi, or εk = εi and εl > εj . According

to Proposition 2.135 we then obtain scalars qij ∈ K× and αstij , β
st
ij ∈ K such that

uiuj = qijujui +

j−1∑
s=1

m∑
t=1

αstijusut + βstijutus

for all 1 ≤ j < i ≤ m. Therefore Lemma 2.133 yields the claim. �

2.14.4. Noetherianity of FUq(g). In this subsection we discuss Noetherianity of the
locally finite part of Uq(g). Joseph [41] relies on tricky filtration arguments for this,
we shall instead give a proof based on the link between FUq(g) and O(Gq) obtained
in Theorem 2.113.

Theorem 2.137. The algebra FUq(g) is Noetherian.

Proof. From the calculations after Proposition 2.116 it follows that we can identify
the opposite algebra of FUq(g) with O(Gq) = A, if the latter is equipped with the
multiplication

f • g = f(2)Ŝ
−1(l−(f(1)))→ g

where

X → g = (Ŝ(X(1)), g(1))g(2)(X(2), g(3))

is the coadjoint action of Uq(g) on O(Gq). Equivalently, according to Lemma 2.111
and the definition of the l-functionals we can write

f • g = (l−(f(2)), g(1))f(3)g(2)(Ŝ
−1(l−(f(1))), g(3))

= (R−1, f(2) ⊗ g(1))f(3)g(2)(R−1, f(1) ⊗ S(g(3)))

= g(1)f(2)(R−1, f(3) ⊗ g(2))(R−1, f(1) ⊗ S(g(3))),

using properties of the universal R-matrix in the final step.
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We shall construct a certain filtration of A as follows. The ordered semigroup
will be

P = {(µ, λ) ∈ P+ ×P | λ is a weight of V (µ)}
with the product ordering, namely

(µ, λ) ≤ (µ′, λ′) iff µ ≤ µ′ and λ ≤ λ′.
Note that this partial order is well-founded.

To define the filtration, we begin with a P -grading on the underlying vector
space of A. Let us write C(µ) = End(V (µ))∗ ⊂ O(Gq) for the space of matrix
coefficients of V (µ). Thus, as a linear space we have

A = O(Gq) =
⊕
µ∈P+

C(µ)

and this determines a P+-grading on A. At the same time we have a P-grading on
the underlying vector space of A given by the right regular action of Uq(h), namely,
f ∈ O(Gq) has weight λ with respect to this grading if

Kν⇀f = f(1)(Kν , f(2)) = q(ν,λ)f

for all ν ∈ P. Let us write O(Gq)λ for the subspace of all vectors of weight λ and
C(µ)λ = C(µ) ∩ O(Gq)λ. We therefore obtain a direct sum decomposition

A ∼=
⊕

(µ,λ)∈P

C(µ)λ,

and the P -filtration of A is defined by

F (µ,λ)(A) =
⊕

(µ′,λ′)≤(µ,λ)

C(µ′)λ′ .

We claim that this is an algebra filtration of A. Suppose f ∈ C(µ1)λ1 and
g ∈ C(µ2)λ2

. Note that f • g ∈ C(µ1)C(µ2). Since the irreducible components of
V (µ1)⊗ V (µ2) have highest weights less than or equal to µ1 + µ2, we see that

f • g ∈
⊕

µ≤µ1+µ2

C(µ).

Moreover, the description of R−1 in the proof of Theorem 2.108 shows that

f • g = (R−1, f(2) ⊗ g(1))f(3)g(2)(R−1, f(1) ⊗ S(g(3)))

is a sum of terms whose weights with respect to the right regular action of Uq(h)
are of the form λ1 + λ2 − γ with γ ∈ Q+.

Therefore
f • g ∈

⊕
(µ,λ)≤(µ1+µ2,λ1+λ2)

C(µ)λ = F (µ1+µ2,λ1+λ2)(A)

as required.
We write B = grF (A) for the associated graded algebra. We again have B ∼=⊕
(µ,λ)∈P C(µ)λ = O(Gq) as a vector space, and we write f ◦ g for the product in

B of f, g ∈ O(Gq). Then for f ∈ C(µ1)λ1 and g ∈ C(µ2)λ2 , we have that f ◦ g is
the projection onto C(µ1 + µ2)λ1+λ2

of f • g. In order to give an explicit formula
for this multiplication, we introduce the notation f ·g ∈ C(µ+ν) for the projection
of the usual O(Gq)-product fg onto the component C(µ+ ν), where f ∈ C(µ) and
g ∈ C(ν). Using the above formula for f • g and again considering the formula for
R−1 from Theorem 2.108 we obtain

f ◦ g = (R−1, f(2) ⊗ g(1))f(3) · g(2)(q
∑N
i,j=1 Bij(Hi⊗Hj), f(1) ⊗ g(3))

= g(1) · f(2)(R−1, f(3) ⊗ g(2))(q
∑N
i,j=1 Bij(Hi⊗Hj), f(1) ⊗ g(3)).
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Let us calculate this product in terms of matrix coefficients. Let eµ1 , . . . , e
µ
m be

a basis of weight vectors for V (µ) with dual basis e1
µ, . . . , e

m
µ ∈ V (µ)∗. We write εj

for the weight of eµj , and assume that the vectors are ordered in a non-ascending

order, so that εi > εj implies i < j. Write uµij = 〈eiµ| • |e
µ
j 〉 for the corresponding

matrix coefficients. Similarly, for ν ∈ P+ we fix a basis eν1 , . . . , e
ν
n of V (ν) with dual

basis e1
ν , . . . , e

n
ν ∈ V (ν)∗ with the same properties. Using this notation one obtains

uµij ◦ u
ν
kl = q(εi,εl−εk)uµij · u

ν
kl +

m∑
r=i+1

k−1∑
s=1

αijklrs uµrj · u
ν
sl

= q(εl,εi−εj)uνkl · u
µ
ij +

j−1∑
u=1

n∑
v=l+1

βijkluv uνkv · u
µ
iu

with certain scalars αijklrs , βijkluv ∈ K. Moreover αijklrs = 0 unless εr < εi and εs > εk.
Similarly βijkluv = 0 unless εu > εj and εv < εl.

The above formulas show in particular that the space C(µ) ◦ C(ν) is contained
in C(µ) ·C(ν). Using an induction argument on the first of these formulas, we also
obtain

uµij ◦ u
ν
kl = q(εi,εl−εk)uµij · u

ν
kl +

m∑
r=i+1

k−1∑
s=1

γijklrs uµrj ◦ u
ν
sl

for certain coefficients γijklrs ∈ K with γijklrs = 0 unless εr < εi and εs > εk. This
implies C(µ) ·C(ν) ⊂ C(µ) ◦C(ν) and thus C(µ) ◦C(ν) = C(µ) ·C(ν) = C(µ+ ν).

In a similar way, the second formula for the product ◦ from above, with the roles
of uµij and uνkl swapped, yields

uνkl ◦ u
µ
ij = q(εj ,εk−εl)uµij · u

ν
kl +

m∑
r=i

k∑
s=1

l−1∑
u=1

m∑
v=j+1

δijklrsuvu
µ
rv ◦ uνsu

for certain coefficients δijklrsuv ∈ K with δijklrsuv = 0 unless εu > εl, εv < εj , εr ≤ εi and

εs ≥ εk. Setting qijkl = q(εj+εi,εk−εl) this yields

uνkl ◦ u
µ
ij − qijklu

µ
ij ◦ u

ν
kl =

m∑
r=i

k∑
s=1

l−1∑
u=1

m∑
v=j+1

δijklrsuvu
µ
rv ◦ uνsu

−
m∑

r=i+1

k−1∑
s=1

qijklγ
ijkl
rs uµrj ◦ u

ν
sl.

We now wish to show that B satisfies the hypotheses of Proposition 2.133. Con-
sider the matrix coefficients ukij = 〈ei$k | • |e

$k
j 〉 for k = 1, . . . , N and 1 ≤ i, j ≤ nk.

From the relation C(µ) ◦ C(ν) = C(µ + ν) for all µ, ν ∈ P+ one sees immediately
that these elements generate B as an algebra.

Let X be the collection of all the elements ukij . We list the elements of X
in an ordered sequence u1, . . . , um such that the following condition holds: For
ua = urij , ub = uskl we have b < a if either εk < εi, or εk = εi and εl < εj . According

to our above considerations we obtain elements qij ∈ K× and αstij ∈ K such that

ui ◦ uj = qijui ◦ uj +

j−1∑
s=1

m∑
t=1

αstijus ◦ ut

for all 1 ≤ j < i ≤ m. Therefore Proposition 2.133 shows that B is Noetherian.
According to Lemma 2.130 it follows that A is Noetherian. �
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Since FUq(g) ⊂ Uq(g) is a subalgebra it is immediate from Proposition 2.134
that FUq(g) is a domain as well.

Let us remark that Noetherianity of Uq(g) can be deduced from Theorem 2.137
as follows, independently of Proposition 2.134. Firstly, extend FUq(g) with abstract
Cartan generators Lµ for µ ∈ P, commuting with the elements of FUq(g) like the
Cartan generators Kµ of Uq(g). The resulting algebra B is Noetherian by Theorem
2.137 and Lemma 2.131, and hence Noetherianity of Uq(g) follows by observing
that Uq(g) is naturally a quotient of B.

2.15. Canonical bases. In this section we give a brief summary of the theory
of canonical bases. This theory, due to Lusztig [55] and Kashiwara [46], [45], is
devoted to studying the q → 0 limit of the quantized universal enveloping algebra
Uq(g). For our purposes we only need relatively basic aspects of the theory. A
thorough exposition can be found in [57], see also [34].

In the literature on canonical bases the deformation parameter q is usually taken
to be a transcendental variable over Q. We will also be interested in the specializa-
tion to non-root of unity invertible elements in an arbitrary ground field K.

2.15.1. Crystal bases. In this subsection we discuss without proofs the existence
and uniqueness of crystal bases for integrable Uq(g)-modules.

We shall work with the following definition of an abstract crystal.

Definition 2.138. Let I = {1, . . . , N} be a finite set. A crystal is a set B together

with maps ẽi, f̃i : Bt{0} → Bt{0} for all i ∈ I such that the following conditions
hold.

a) ẽi(0) = 0 = f̃i(0) for all i ∈ I.

b) For any i ∈ I and b ∈ B there exists n ∈ N such that ẽni (b) = 0 = f̃ni (b).

c) For any i ∈ I and b, c ∈ B we have c = f̃i(b) iff ẽi(c) = b.

Given crystals B1, B2, a (strict) morphism from B1 to B2 is a map g : B1 t {0} →
B2 t {0} such that g(0) = 0 and g commutes with all operators ẽi, f̃i.

In the above definition, the symbol t stands for disjoint union. For an element
b ∈ B one sets

εi(b) = max{n ≥ 0 | ẽni (b) 6= 0}, ϕi(b) = max{n ≥ 0 | f̃ni (b) 6= 0}.
Let P be the free abelian group abstractly generated by elements $1, . . . , $N . If
B is a crystal we define a map wt : B → P by

wt(b) =
∑
i∈I

(ϕi(b)− εi(b))$i,

and refer to wt(b) as the weight of b.
If B1, B2 are crystals then the direct sum B1⊕B2 is the crystal with underlying

set B1 tB2, with the operators ẽi, f̃i : B1 tB2 t {0} → B1 tB2 t {0} induced by
the corresponding operators for B1 and B2.

If B1, B2 are crystals then the tensor product B1 ⊗ B2 is the crystal with un-
derlying set B1 ×B2, and elements written as (b1, b2) = b1 ⊗ b2, together with the
action

ẽi(b1 ⊗ b2) =

{
ẽi(b1)⊗ b2 if ϕi(b1) ≥ εi(b2)

b1 ⊗ ẽi(b2) if ϕi(b1) < εi(b2)

f̃i(b1 ⊗ b2) =

{
f̃i(b1)⊗ b2 if ϕi(b1) > εi(b2)

b1 ⊗ f̃i(b2) if ϕi(b1) ≤ εi(b2)

where we interpret b1⊗ 0 = 0 = 0⊗ b2 for all b1 ∈ B1, b2 ∈ B2. The tensor product
B1⊗B2 is again a crystal, and the operation of taking tensor products is associative.
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Given a crystal B, an element b ∈ B is called a highest weight vector if ẽi(b) = 0

for all i. Similarly, b ∈ B is called a lowest weight vector if f̃i(b) = 0 for all i.
For the rest of this subsection we work over the field K = Q(s) where s is an

indeterminate and q = sL as before, deviating slightly from most of the literature
in which Q(q) is taken as base field. We fix the semisimple Lie algebra g associated
with a finite Cartan matrix A = (aij). Our choice of Q(s) is necessary because we
work with the simply connected version of Uq(g); however this does not affect the
constructions and arguments in a serious way.

Given an integrable Uq(g)-module M and 1 ≤ i ≤ N , one can write every element
m ∈M of weight λ ∈ P uniquely in the form

m =
∑
n≥0

F
(n)
i ·mn

where mn ∈Mλ+nαi satisfies Ei ·mn = 0, and we recall that F
(n)
i = Fni /[n]qi !. On

a vector m ∈ Mλ written in the above form, the Kashiwara operators are defined
by

ẽi(m) =
∑
n≥1

F
(n−1)
i ·mn

f̃i(m) =
∑
n≥0

F
(n+1)
i ·mn,

and this is extended linearly to all of M . Hence we obtain linear operators ẽi, f̃i :
M →M for i = 1, . . . , N in this way.

Consider the algebra A0 obtained by localizing the polynomial ring Q[s] at the
maximal ideal generated by s, corresponding to the point s = 0 on the affine
line. Explicitly, the elements of A0 can be written in the form f(s)/g(s) where
f(s), g(s) ∈ Q[s] and g(0) 6= 0.

Let us also recall that β denotes the field automorphism of Q(s) which maps s
to s−1, and define A∞ = β(A0) ⊂ Q(s). This can be viewed as a localization at
∞, which will be more convenient for us than localization at 0.

The following definition of crystal bases corresponds to the notion of basis at ∞
in the sense of Chapter 20 in [57].

Definition 2.139. Let M be an integrable Uq(g)-module. A crystal basis (L,B)
for M is a free A∞-module L ⊂ M such that Q(s) ⊗A∞ L = M , together with a
basis B of the vector space L/s−1L over Q such that the following conditions hold.

a) For any µ ∈ P, the space Lµ = Mµ ∩ L satisfies Q(s) ⊗A∞ Lµ = Mµ, and
Bµ = B ∩ Lµ/s−1Lµ is a basis of Lµ/s−1Lµ over Q.

b) The Kashiwara operators ẽi, f̃i on M leave L invariant and induce on L/s−1L
operators which leave B t {0} invariant, such that B becomes a crystal.

Consider the simple module M = V (λ) for λ ∈ P+ and let L(λ) be the A∞-

submodule of V (λ) spanned by all vectors of the form f̃i1 · · · f̃il(vλ) where i1, . . . , il ∈
I and f̃1, . . . , f̃N denote the Kashiwara operators. Moreover let B(λ) be the col-

lection of all nonzero cosets in L(λ)/s−1L(λ) of the form f̃i1 · · · f̃il(vλ). The fact
that (L(λ),B(λ)) is a crystal basis for V (λ) is crucial in the proof of the following
foundational result due to Lusztig and Kashiwara, see [45].

Theorem 2.140. For every integrable Uq(g)-module M there exists a crystal basis
(L,B). Moreover, if (L1,B1), (L2,B2) are crystal bases of M then there exists an
automorphism f : M → M of Uq(g)-modules which restricts to an isomorphism of
crystals f : B1 → B2.
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The proof of Theorem 2.140 relies on the grand loop argument. We refer to [45]
for the details, see also [34] and Chapter 5 in [41]. At the same time, one can
construct suitable crystal bases for Uq(n−) and for all Verma modules.

2.15.2. Global bases. In this subsection we describe how to use crystal bases to ob-
tain global bases for Uq(g)-modules in the case of an arbitrary base field K provided
that q = sL ∈ K× is not a root of unity. We follow the exposition in Chapter 6 of
[34].

Initially, we shall work over K = Q(s) and consider several subrings of this
field. Note that we may view Q(s) as the ring of all fractions f(s)/g(s) with
f(s), g(s) ∈ Z[s] and g(s) 6= 0. Note also that the localization A0 of Q[s] at
s = 0 can be identified with the localization Z[s]0 of the ring Z[s] of polynomial
functions with integer coefficients at s = 0. That is, elements of A0 can be written
as fractions f(s)/g(s) where f(s), g(s) ∈ Z[s] such that g(0) 6= 0. Let us also define
A∞ = β(A0), where we recall that β : Q(s)→ Q(s) denotes the field automorphism
determined by β(s) = s−1. The ring A∞ can be thought of as localization of Q[s−1]
at s =∞. We shall write A = Z[s, s−1] as before. Note that A0,A∞,A ⊂ Q(s) are
naturally subrings.

In the sequel we shall consider various lattices in the sense of the following
definition.

Definition 2.141. If R ⊂ S is a subring and V is a free S-module, then a free
R-submodule L ⊂ V is called a free R-lattice of V if the canonical map S⊗RL → V
is an isomorphism.

Assume that V is a finite dimensional Q(s)-vector space, and let L0,L∞ and VA
be free A0-, A∞- and A-lattices of V , respectively. Even if no compatibility between
these lattices is assumed a priori, we automatically have the following properties,
compare Section 6.1 in [34].

Lemma 2.142. In the above situation, the canonical map A0⊗Z[s] (VA∩L0)→ L0

is an isomorphism of A0-modules. Similarly, the canonical map A∞ ⊗Z[s−1] (VA ∩
L∞)→ L∞ is an isomorphism of A∞-modules.

Proof. We shall only prove the assertion for L0, the proof for L∞ is analogous. Since
A0 and A are localizations of Z[s], we see that the inclusion map VA ∩ L0 → L0

induces injective maps A ⊗Z[s] (VA ∩ L0) → A⊗Z[s] L0 and A0 ⊗Z[s] (VA ∩ L0) →
A0 ⊗Z[s] L0. The latter identifies with the canonical map A0 ⊗Z[s] (VA ∩ L0)→ L0

since A0 ⊗Z[s] L0
∼= A0 ⊗A0

L0
∼= L0.

Hence it suffices to show that the map A0 ⊗Z[s] (VA ∩ L0) → L0 is surjective.
Since VA ⊂ V is an A-lattice any element of V , in particular any element v ∈ L0,

can be written in the form f(s)
g(s)u where f(s), g(s) ∈ Z[s], g(s) 6= 0 and u ∈ VA. That

is, there exists a nonzero element g(s) ∈ Z[s] such that g(s)v ∈ VA. Since VA is an
A-module, upon dividing by a suitable power of s we may assume without loss of
generality that g(0) 6= 0. Hence we have

1

g(s)
⊗ g(s)v ∈ A0 ⊗Z[s] (VA ∩ L0),

and this element maps to v under the canonical map as desired. �

Let us introduce the notion of a balanced triple.

Definition 2.143. Let V be a finite dimensional Q(s)-vector space. Moreover
let L0 ⊂ V be a free A0-lattice, VA ⊂ V a free A-lattice, and L∞ ⊂ V a free
A∞-lattice. If we define

L = L0 ∩ VA ∩ L∞
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then (L0, VA,L∞) is called a balanced triple for V provided the following conditions
hold.

a) L is a free Z-lattice for the A0-module L0.
b) L is a free Z-lattice for the A-module VA.
c) L is a free Z-lattice for the A∞-module L∞.

The conditions for (L0, VA,L∞) to be a balanced triple mean that L has finite
rank, and that the canonical multiplication maps induce isomorphisms

A0 ⊗Z L ∼= L0, A⊗Z L ∼= VA, A∞ ⊗Z L ∼= L∞.

Proposition 2.144. Let V be a finite dimensional Q(s)-vector space. Moreover
let L0 ⊂ V be a free A0-lattice, VA ⊂ V a free A-lattice, and L∞ ⊂ V a free
A∞-lattice. Then the following conditions are equivalent.

a) (L0, VA,L∞) is a balanced triple for V .
b) The canonical map L → L0/sL0 is an isomorphism.
c) The canonical map L → L∞/s−1L∞ is an isomorphism.

Proof. a)⇒ b) We have canonical isomorphisms

L ∼= Z⊗Z L ∼= Z⊗A0
A0 ⊗Z L ∼= Z⊗A0

L0
∼= A0/sA0 ⊗A0

L0
∼= L0/sL0.

This yields the claim.
b) ⇒ a) We shall first prove by induction that the canonical map mk : L →

L0 ∩ VA ∩ skL∞ given by mk(v) = skv induces an isomorphism( n⊕
k=0

Zsk
)
⊗Z L ∼= L0 ∩ VA ∩ snL∞

for any n ∈ N0. For n = 0 this is obvious, so assume that the assertion holds for
n− 1 for some n > 0. Then we have a canonical isomorphism( n⊕

k=1

Zsk
)
⊗Z L ∼= sL0 ∩ VA ∩ snL∞

and a commutative diagram

0 //

(⊕n
k=1 Zsk

)
⊗Z L //

∼=

��

(⊕n
k=0 Zsk

)
⊗Z L

��

// L

∼=

��

// 0

0 // sL0 ∩ VA ∩ snL∞ // L0 ∩ VA ∩ snL∞ // L0/sL0

with exact rows. Hence the 5-Lemma shows that the middle vertical arrow is an
isomorphism, which yields the inductive step.

As a consequence, we have(b−a⊕
k=0

Zsk
)
⊗Z L ∼= L0 ∩ VA ∩ sb−aL∞

for all b ≥ a, which implies( b⊕
k=a

Zsk
)
⊗Z L ∼= saL0 ∩ VA ∩ sbL∞
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under the canonical map. Since L∞ is an A∞-lattice in V we have
⋃∞
n=0 s

nL∞ = V ,
and hence the above yields

Z[s]⊗Z L ∼= VA ∩ L0,

Z[s, s−1]⊗Z L ∼= VA,

Z[s−1]⊗Z L ∼= VA ∩ L∞.
The first of these isomorphisms implies

A0 ⊗Z L ∼= A0 ⊗Z[s] Z[s]⊗Z L ∼= A0 ⊗Z[s] (VA ∩ L0) ∼= L0,

using Lemma 2.142 in the last step. In the same way one obtains

A∞ ⊗Z L ∼= A∞ ⊗Z[s−1] Z[s−1]⊗Z L ∼= A∞ ⊗Z[s−1] (VA ∩ L∞) ∼= L∞,
and we conclude that (L0, VA,L∞) is a balanced triple.
a)⇔ c) is proved in the same way. �

Assume that (L0, VA,L∞) is a balanced triple for the finite dimensional Q(s)-
vector space V , and let G : L∞/s−1L∞ → L be the inverse of the isomorphism
L ∼= L∞/s−1L∞ obtained in Proposition 2.144. If B is a Z-basis of L∞/s−1L∞
then the vectors G(b) for b ∈ B form an A-basis G(B) of VA and a Q(s)-basis of V .
Indeed, writing L =

⊕
b∈B ZG(b) we obtain

VA = A⊗Z L = A⊗Z
⊕
b∈B

ZG(b) =
⊕
b∈B

AG(b),

and the claim for V follows similarly from V ∼= Q(s) ⊗A VA. One calls G(B) the
global basis associated to the local basis B.

We continue to work over K = Q(s). Recall the definition of the integral form
UAq (g) of Uq(g) from Definition 2.17 and that UAq (n−) is the A-subalgebra of Uq(n−)

generated by the divided powers F
(m)
i for i = 1, . . . , N and m ∈ N0. The automor-

phism β of Uq(g) defined in Lemma 2.19 restricts to an automorphism of UAq (g)

preserving UAq (n−). Moreover, for λ ∈ P+ we obtain a well-defined Q-linear au-
tomorphism βV (λ) : V (λ) → V (λ) by setting βV (λ)(Y · vλ) = β(Y ) · vλ, for any
Y ∈ Uq(g). Indeed, view V (λ) as a module over Uq(g) with action X ·β v = β(X) ·v,
and write V (λ)β for this module. Then V (λ)β is irreducible and of highest weight
λ, and hence must be isomorphic to V (λ) as Uq(g)-module. The corresponding
intertwiner is precisely the desired map βV (λ).

Let (L(λ),B(λ)) be the crystal basis of V (λ) as discussed before Theorem 2.140,
and let us also write L(λ) = L∞(λ). If we define L0(λ) = βV (λ)(L(λ)), then L0(λ)
is a free A0-lattice of V (λ). Moreover set

V (λ)A = UAq (g) · vλ = UAq (n−) · vλ.
Then we have βV (λ)(V (λ)A) = V (λ)A.

Theorem 2.145. Let λ ∈ P+. With the notation as above, (L0(λ), V (λ)A,L∞(λ))
is a balanced triple for V (λ).

The proof of Theorem 2.145 can be found in [45], see also Chapter 6 of [34] and
Section 6.2 in [41]. According to the discussion after Proposition 2.144 we obtain
global basis elements G(b) for b ∈ B(λ) such that

V (λ)A =
⊕
b∈B(λ)

AG(b),

and the elements G(b) also form a basis of V (λ) as a Q(s)-vector space.
Let us now consider the case where K is arbitrary and q = sL ∈ K× is not a

root of unity. We write Uq(g) for the quantized universal enveloping algebra over
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K. Then the canonical ring homomorphism A = Z[s, s−1]→ K induces an A-linear
map from the A-module V (λ)A as defined above into the K-vector space V (λ), the
irreducible highest weight module of Uq(g) corresponding to λ ∈ P+. The image of
the resulting K-linear map ιλ : K⊗AV (λ)A → V (λ) is a nonzero submodule of V (λ),
and hence ιλ is surjective by the irreducibility of V (λ). Conversely, K⊗A V (λ)A is
clearly an integrable Uq(g)-module, and hence a quotient of V (λ) by Theorem 2.43
and Theorem 2.97. It follows that ιλ is in fact an isomorphism.

We thus obtain the following result.

Theorem 2.146. Let K be a field and assume q = sL ∈ K× is not a root of unity.
For any λ ∈ P+ the elements G(b) for b ∈ B(λ) form a basis of V (λ) as a K-vector
space.

2.16. Separation of Variables. In this section we prove a key result on the struc-
ture of the locally finite part of Uq(g), originally due to Joseph and Letzter [43], see
also Section 7.3 in [41]. We follow the approach developed by Baumann [8], [10].
Throughout this section we assume that q = sL ∈ K× is not a root of unity.

2.16.1. Based modules. The key part of the proof of separation of variables further
below relies on some results involving canonical bases. We shall collect these facts
here, and refer to [57] for the proofs. In this subsection we work over K = Q(s)
with q = sL as before.

Let us first introduce the notion of a based module, see Section 27.1 in [57].
By definition, an involution on a Uq(g)-module M is a Q-linear automorphism
βM : M →M such that

βM (X ·m) = β(X) · βM (m)

for all X ∈ Uq(g) and m ∈M , where β is the bar involution of Uq(g) as in Lemma
2.19. For instance, if M = V (λ) for λ ∈ P+ and vλ ∈ V (λ) is a highest weight
vector then the map βM defined by βM (X · vλ) = β(X) · vλ for X ∈ Uq(g), as
discussed before Theorem 2.145, defines an involution of M .

Definition 2.147. An integrable Uq(g)-module M with involution βM together
with a Q(s)-basis B is called a based module if the following conditions hold.

a) B ∩Mµ is a basis of Mµ for any µ ∈ P.
b) The A-submodule MA generated by B is stable under UAq (g).
c) We have βM (b) = b for all b ∈ B.
d) The A∞-submodule LM generated by B together with the image B of B in
LM/s−1LM forms a crystal basis for M .

A morphism of based modules from (M,BM ) to (N,BN ) is a Uq(g)-linear map
f : M → N such that f(b) ∈ BN ∪ {0} for all b ∈ BM and B ∩ ker(f) is a basis of
the kernel ker(f). In this case the kernel of f naturally inherits the structure of a
based module.

For any λ ∈ P+, the simple module V (λ), equipped with the involution fixing vλ,
together with the corresponding global basis as in Theorem 2.146 is a based module.
In this way simple integrable Uq(g)-modules can be viewed as based modules.

Let us now sketch the construction of a suitable based module structure on the
tensor product M ⊗N of two based modules M,N , see Chapter 27.3 in [57]. One
first defines an involution βM⊗N on M ⊗ N out of the involutions βM and βN
and the quasi-R-matrix for Uq(g). Note here that the ordinary tensor product of
the involutions βM and βN is not compatible with the Uq(g)-module structure on
M ⊗ N in general. The construction of an appropriate basis for M ⊗ N is then
characterized by the following result, see Theorem 24.3.3 in [57].
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Theorem 2.148. Let (M,B) and (N,C) be based modules. Moreover let L be the
Z[s−1]-submodule of M ⊗ N generated by all elements b ⊗ c for (b, c) ∈ B × C.
Then for any (b, c) ∈ B × C there exists a unique element b � c ∈ L such that
βM⊗N (b � c) = b � c and b � c − b ⊗ c ∈ s−1L. Moreover, the elements b � c form
a basis B � C of M ⊗N which turn the latter into a based module with involution
βM⊗N .

The basis of the tensor product M ⊗N as in Theorem 2.148 will also be referred
to as the canonical basis.

Recall that if M is a finite dimensional Uq(g)-module then the dual module is the

dual space M∗ with the Uq(g)-module structure defined by (X ·f)(m) = f(Ŝ(X)·m)
for all m ∈ M . We have (M ⊗ N)∗ ∼= N∗ ⊗ M∗ naturally if M,N are finite
dimensional.

Assume that N = V (µ) for some µ ∈ P+ with highest weight vector vµ. Then
M = V (µ)∗ is an irreducible Uq(g)-module with lowest weight −µ, and we denote by
vµ ∈ V (µ)∗ the lowest weight vector satisfying vµ(vµ) = 1. Since V (µ) is a simple
Uq(g)-module there exists a unique Uq(g)-linear map evµ : V (µ)∗⊗V (µ)→ K such
that evµ(vµ ⊗ vµ) = 1.

For µ, λ ∈ P+ let pµλ : V (µ) ⊗ V (λ) → V (µ + λ) be the unique Uq(g)-linear
map satisfying pµλ(vµ ⊗ vλ) = vµ+λ. Similarly, let iµλ : V (µ + λ) → V (µ) ⊗ V (λ)
be the unique Uq(g)-linear map satisfying iµλ(vµ+λ) = vµ ⊗ vλ. By construction
we then have pµλiµλ = id. The transpose of pµλ determines a Uq(g)-linear map
p∗µλ : V (µ+λ)∗ → (V (µ)⊗V (λ))∗ ∼= V (λ)∗⊗V (µ)∗ satisfying p∗µλ(vµ+λ) = vλ⊗vµ.

Similarly, the transpose of iµλ determines a Uq(g)-linear map i∗µλ : V (λ)∗⊗V (µ)∗ ∼=
(V (µ)⊗ V (λ))∗ → V (µ+ λ)∗ satisfying i∗µλ(vλ ⊗ vµ) = vµ+λ.

Let us define Tλ : V (µ+ λ)∗ ⊗ V (µ+ λ)→ V (µ)∗ ⊗ V (µ) as the composition

V (µ+ λ)∗ ⊗ V (µ+ λ)
p∗λµ⊗iλµ

// V (µ)∗ ⊗ V (λ)∗ ⊗ V (λ)⊗ V (µ)
evλ // V (µ)∗ ⊗ V (µ).

Notice that Tλ maps vµ+λ ⊗ vµ+λ to vµ ⊗ vµ. Since the vector vµ ⊗ vµ generates
V (µ)∗⊗V (µ) as a Uq(g)-module we see that Tλ is surjective. We also observe that
Tλ ◦ Tλ′ = Tλ+λ′ for any λ, λ′ ∈ P+, as a map from V (µ+ λ+ λ′)∗⊗ V (µ+ λ+ λ′)
to V (µ)∗ ⊗ V (µ).

The following result is a translation of Proposition 27.3.5 in [57].

Proposition 2.149. The map Tλ is a morphism of based modules.

For any ν ∈ P+ we shall identify V (ν) ∼= V (ν)∗∗ such that vν is mapped to the
linear form which evaluates vν to 1, and consider the corresponding Uq(g)-linear
isomorphism

(V (ν)∗ ⊗ V (ν))∗ ∼= V (ν)∗ ⊗ V (ν)∗∗ ∼= V (ν)∗ ⊗ V (ν).

Then the transpose of Tλ identifies with a Uq(g)-linear map δλ : V (µ)∗ ⊗ V (µ) →
V (µ+ λ)∗ ⊗ V (µ+ λ) satisfying

δλ(vµ ⊗ vµ)(vµ+λ ⊗ vµ+λ) = 1.

More precisely, we have

δλ(vµ ⊗ vµ) = vµ+λ ⊗ vµ+λ

= i∗λµ(vµ ⊗ vλ)⊗ pλµ(vλ ⊗ vµ)

= (i∗λµ ⊗ pλµ)(id⊗ev∗λ ⊗ id)(vµ ⊗ vµ)

with these conventions.
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Consider the partial order on P+ given by declaring µ � ν if ν − µ ∈ P+. Note
that P+ with this partial order is a lattice, in particular, every pair µ, ν ∈ P+ has
a least upper bound.

The following Lemma is a reformulation of Lemma 5 in [10], which is based in
turn on Proposition 25.1.10 in [57].

Lemma 2.150. Let µ ∈ P+. For each vector y in the canonical basis of the based
module V (µ)∗ ⊗ V (µ) there exists a greatest element λ(y) in the lattice P+ with
respect to the partial order � such that Tλ(y)(y) 6= 0.

Note that the weight λ(y) in Lemma 2.150 is uniquely determined by y, due to
the fact that greatest elements in partially ordered sets are necessarily unique.

2.16.2. Further preliminaries. In this subsection we collect some additional prepa-
rations for the proof of the main theorem presented in the next subsection. Through-
out this subsection the ground field K is arbitrary and q = sL ∈ K× is not a root
of unity.

Let us first discuss a certain filtration of O(Gq). We define

ht(µ) = µ1 + · · ·+ µN

if µ = µ1α1 + · · ·+µNαN ∈ P. For µ ∈ Q this agrees with the height as in the proof
of Proposition 2.134, however, we allow here arbitrary µ ∈ P. It can be shown that
ht(µ) ∈ 1

2N0 for all µ ∈ P+, compare Table 1 in Section 13.2 of [35].

We obtain an algebra filtration of A = O(Gq) indexed by 1
2N0 by setting

Fm(A) =
⊕

ht(µ)≤m

V (µ)∗ ⊗ V (µ)

for m ∈ 1
2N0. We call this filtration the height filtration of O(Gq).

The associated graded algebra E = grF (O(Gq)) is canonically isomorphic to
O(Gq) as a left and right Uq(g)-module, and thus also as a Uq(g)-module with
the coadjoint action from Section 2.12. We will always view O(Gq) and E as a
Uq(g)-module with this action in the sequel.

Let us write

E =
⊕
µ∈P+

E(µ)

with E(µ) = V (µ)∗⊗V (µ). Using the maps pµλ, iµλ introduced before Proposition
2.149 we can write the product x · y ∈ E of elements x, y ∈ E as follows.

Lemma 2.151. With the notation as above, the multiplication of E restricts to
linear maps E(µ)⊗E(λ)→ E(µ+λ) for µ, λ ∈ P+, explicitly given by the formula

〈f | • |v〉 · 〈g| • |w〉 = 〈i∗λµ(f ⊗ g)| • |pλµ(w ⊗ v)〉
for f ∈ V (µ)∗, v ∈ V (µ), g ∈ V (λ)∗, w ∈ V (λ).
Moreover, right multiplication with the quantum trace tλ ∈ E(λ) identifies with the
map δλ defined above, up to multiplication by q(2ρ,λ).

Proof. Using the identification of E with O(Gq) as vector spaces and the pairing
between Uq(g) and O(Gq) we have

(X, 〈f | • |v〉 · 〈g| • |w〉) = (g ⊗ f)(iλµ(X · pλµ(w ⊗ v)))

= (X, 〈i∗λµ(f ⊗ g)| • |pλµ(w ⊗ v)〉)

for X ∈ Uq(g), since multiplication in E only takes into account the highest weight
component of the product in O(Gq).

Next, recall that in our present conventions we identify V (λ)∗∗ with V (λ) such
that highest weight vector vλ ∈ V (λ) pairs with vλ ∈ V (λ)∗ to give 1. This
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means, more generally, that a vector v ∈ V (λ) corresponds to the form on V (λ)∗

given by evaluation on q(−2ρ,λ)K2ρ · v. It follows that the quantum trace tλ ∈
V (λ)∗⊗V (λ) from Definition 2.118 evaluates on f⊗v ∈ V (λ)∗⊗V (λ) as tλ(f⊗v) =
q(−2ρ,λ)evλ(f ⊗ v). That is, we have ev∗λ(1) = q(2ρ,λ)tλ, and combining this with
the computations at the end of the previous subsection yields the claim. �

Let us next review some facts about graded vector spaces. Recall that if A,B
are vector spaces filtered by N0 then a linear map f : A→ B is called a morphism
of filtered vector spaces if f(Fn(A)) ⊂ Fn(B) for all n. In this case f induces a
map gr(f) : gr(A)→ gr(B) of the associated graded vector spaces. Moreover, f is
an isomorphism provided gr(f) is an isomorphism.

If A,B are vector spaces filtered by N0 we obtain a filtration of A⊗B by setting

Fn(A⊗B) =
∑
k+l=n

Fk(A)⊗F l(B).

Moreover, the canonical map gr(A)⊗gr(B)→ gr(A⊗B) is an isomorphism in this
case.

Combining these observations we obtain the following basic fact.

Lemma 2.152. Let H,Z and A be N0-filtered vector spaces and let m : H⊗Z → A
be a morphism of filtered vector spaces. If the induced map gr(m) : gr(H)⊗gr(Z)→
gr(A) is an isomorphism, then m is an isomorphism as well.

Finally, we need a result on the structure of certain mapping spaces.

Lemma 2.153. Let µ, ν, λ ∈ P+. Then the linear map

φ : HomUq(g)(V (λ)⊗ V (ν)∗, V (µ))→ V (µ)λ−ν

given by φ(f) = f(vλ ⊗ vν) is injective and

im(φ) = {v ∈ V (µ)λ−ν | E
(ν,α∨i )+1
i · v = 0 for all i = 1, . . . , N}.

Proof. From weight considerations we see that φ is well-defined, that is, f(vλ⊗vν) is
indeed contained in V (µ)λ−ν for f ∈ HomUq(g)(V (λ)⊗V (ν)∗, V (µ)). Since vλ⊗ vν
is a cyclic vector for V (λ)⊗ V (ν)∗ it follows that φ is injective.

In order to determine the image of φ let us abbreviate

U = {v ∈ V (µ)λ−ν | E
(ν,α∨i )+1
i · v = 0 for all i = 1, . . . , N}.

We observe that Eki · (vλ ⊗ vν) = vλ ⊗ Eki · vν for all k ∈ N0, hence the smallest
power of Ei killing vλ ⊗ vν agrees with the smallest power of Ei killing vν . This is

determined by the weight of ν with respect to Uqi(gi) ⊂ Uq(g), and equals E
(ν,α∨i )+1
i .

It follows that im(φ) is indeed contained in U .
To prove the reverse inclusion U ⊂ im(φ) we construct a linear map

ψ : U → HomUq(g)(V (λ)⊗ V (ν)∗, V (µ)) ∼= HomUq(g)(V (λ),Hom(V (ν)∗, V (µ)))

as follows. Let u ∈ U be given and define a Uq(n+)-linear map T (u) : N(−ν) →
V (µ) by T (u)(X ·v−ν) = X ·u for X ∈ Uq(n+). Here N(−ν) is the universal lowest
weight module with lowest weight −ν generated by the lowest weight vector v−ν .

Since E
(ν,α∨i )+1
i · u = 0 for all i = 1, . . . , N , it follows from Theorem 2.97 that T (u)

factorizes through V (ν)∗. Moreover, for any v ∈ V (ν)∗ we have

(Kη → T (u))(v) = q(η,ν)+(η,λ−ν)T (u)(v) = q(η,λ)T (u)(v),

(Ei → T (u))(v) = Ei · T (u)(K−1
i · v)− T (u)(EiK

−1
i · v) = 0

for η ∈ P and i = 1, . . . , N . We conclude that T (u) ∈ Hom(V (ν)∗, V (µ)) is a
highest weight vector of weight λ. Since Hom(V (ν)∗, V (µ)) is integrable, Theo-
rem 2.97 shows that setting ψ(u)(vλ) = T (u) determines a well-defined element
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ψ(u) of HomUq(g)(V (λ),Hom(V (ν)∗, V (µ))). Using the canonical identification
with HomUq(g)(V (λ)⊗V (ν)∗, V (µ)) it is straightforward to check that φ(ψ(u)) = u,
and we thus conclude im(φ) = U as desired. �

As a consequence of Lemma 2.153 we see that HomUq(g)(End(V (λ)), V (µ)) for

µ, λ ∈ P+ can be identified with the subspace of V (µ)0 consisting of all vectors

v satisfying E
(λ,α∨i )+1
i · v = 0 for i = 1, . . . , N . If the coefficients m1, . . . ,mN

in λ =
∑N
i=1mi$i are sufficiently large the latter condition becomes vacuous. In

particular, we have [End(V (λ)) : V (µ)] = dim(V (µ))0 for all λ of the form λ = µ+η
for η ∈ P+.

2.16.3. Separation of Variables. We shall now prove the main result of this section,
originally due to Joseph and Letzter [43]. As mentioned above, we follow closely
the approach by Baumann [8], [10].

Theorem 2.154 (Separation of Variables). Assume q ∈ K× is not a root of unity.
There exists a linear subspace H ⊂ FUq(g), invariant under the adjoint action, such
that the multiplication map H ⊗ ZUq(g) → FUq(g) is an isomorphism. Moreover,
for any µ ∈ P+ we have [H : V (µ)] = dim(V (µ)0) for the multiplicity of the
isotypical component of type µ of H.

Proof. Due to Theorem 2.116 and the remarks following it, it suffices to find a
linear subspace H ⊂ O(Gq), invariant under the coadjoint action, such that the
multiplication map H ⊗O(Gq)

Gq → O(Gq) is an isomorphism.
As explained in the proof of Theorem 2.120, the algebra Z = O(Gq)

Gq has a
linear basis consisting of the quantum traces tλ for λ ∈ P+, and can be identified
with the polynomial algebra K[t$1 , . . . , t$N ]. In view of Lemma 2.151 it will be
convenient to rescale tλ and work with θλ = q(2ρ,λ)tλ instead, and to identify
Z ∼= K[θ$1

, . . . , θ$N ]. If F denotes the height filtration of O(Gq) discussed in
the previous subsection, then each θλ can also be viewed as an element of the
associated graded algebra E = grF (O(Gq)) in a natural way. We have θλθη = θλ+η

in grF (O(Gq)) for all λ, η ∈ P+, and Z = grF (O(Gq)
Gq ) can be identified with the

polynomial algebra K[θ$1
, . . . , θ$N ] as well.

Let µ ∈ P+ and recall the notation E(µ) = V (µ)∗ ⊗ V (µ) ⊂ E introduced
before Lemma 2.151. According to Lemma 2.151, the map δλ : V (µ)∗ ⊗ V (µ) →
V (λ+ µ)∗ ⊗ V (λ+ µ) obtained by the transposition of Tλ identifies with the map
mλ : E(µ)→ E(λ+ µ) given by mλ(x) = x · θλ for any λ ∈ P+. We note that mλ

is injective since Tλ is surjective.
Let us momentarily work over K = Q(s). With the identification E(µ) ∼= V (µ)∗⊗

V (µ)∗∗ ∼= (V (µ)∗⊗V (µ))∗ used in the discussion after Proposition 2.149, we obtain
a linear basis B(µ) of E(µ) dual to the canonical basis of V (µ)∗ ⊗ V (µ). If we set

B =
⋃

µ∈P+

B(µ),

then Proposition 2.149 shows that mλ restricts to an injective map mλ : B → B
for all λ ∈ P+.

If x is an element of the canonical basis of V (µ)∗ ⊗ V (µ) let us write x∨ for the
dual element of B, determined by the relation x∨(y) = δxy for all canonical basis
elements y. We define a map ε : B → B by stipulating ε(x∨) = Tλ(x)(x)∨, where

λ(x) ∈ P+ is the weight determined in Lemma 2.150. Then we have

x∨(y) = δxy = δTλ(x)(x),Tλ(x)(y) = Tλ(x)(x)∨(Tλ(x)(y)) = mλ(x)(Tλ(x)(x)∨)(y)
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for any y, so that x∨ = mλ(x)(ε(x
∨)) = ε(x∨) · θλ(x). Let us define

BH = {ε(b) | b ∈ B}
BZ = {θλ | λ ∈ P+}.

Note that since ε(ε(b)) = ε(b) for all b ∈ B we can write BH = {b ∈ B | ε(b) = b}.
Now assume x∨ = y∨ · θλ for some y∨ ∈ BH and θλ ∈ BZ . Then 1 = x∨(x) =
mλ(y∨)(x) = y∨(Tλ(x)) implies that Tλ(x) = y is nonzero. Due to Lemma 2.150
we thus have λ � λ(x). Since y∨ ∈ BH we also get Tλ+µ(x) = Tµ(y) = 0 for any
nonzero element µ ∈ P+. This implies λ = λ(x) and hence y = Tλ(x)(x), or equiv-
alently y∨ = ε(x∨). Summarizing this discussion, we conclude that multiplication
in E induces a bijection m : BH ×BZ → B.

Let EA ⊂ E be the A-linear span of the basis B. Similarly, let HA ⊂ EA the
A-linear span of BH, and let ZA ⊂ E be the A-linear span of BZ . From our above
considerations we conclude that multiplication in E induces an isomorphism

HA ⊗A ZA → EA

of A-modules.
Now let K be again an arbitrary field and q = sL ∈ K× not a root of unity. We

write O(Gq) for the K-algebra of matrix coefficients, and let Z = O(Gq)
Gq ⊂ O(Gq)

be the invariant subspace with respect to the coadjoint action. As before we denote
by E = grF (O(Gq)) the associated graded algebra for the height filtration ofO(Gq).
The canonical bases from Theorem 2.148 determine K-bases for the Uq(g)-modules
V (µ)∗⊗V (µ), and we write BK for the dual K-basis of O(Gq), and hence of E, which
is obtained in this way. Mapping the elements b ∈ B ⊂ EA to the corresponding
basis vectors of BK in E yields a K-algebra isomorphism EA ⊗A K ∼= E by Lemma
2.151.

Let H ⊂ O(Gq) be the K-linear span of the image of BH in O(Gq). If H =
grF (H) ⊂ E denotes the associated graded of H and Z = grF (Z) ⊂ E the as-
sociated graded of Z, then we have ZA ⊗A K ∼= Z and HA ⊗A K ∼= H under
the identification EA ⊗A K ∼= E. Hence the isomorphism HA ⊗A ZA → EA of
A-modules induces an isomorphism

H⊗Z → E

of K-vector spaces, given by multiplication in E. Therefore, we may apply Lemma
2.152 to conclude that multiplication in O(Gq) induces an isomorphism

H ⊗O(Gq)
Gq = H ⊗ Z → O(Gq)

as required.
In order to determine the multiplicity of V (µ) inside H observe that [H : V (µ)] =

[grF (H) : V (µ)] = [H : V (µ)]. Thanks to the decomposition BH × BZ ∼= B
described above, for any λ ∈ P+ the canonical basis vectors b ∈ B(λ) which belong
to submodules of E(λ) of highest weight µ ∈ P+ can all be written in the form
b = ε(b) · θν for some ν ∈ P+, where ε(b) ∈ BH belongs to a submodule of H of
highest weight µ. It follows that the multiplicity [H : V (µ)] is given by the maximal
value of [End(V (λ)) : V (µ)] as λ runs through P+. According to the remarks after
Lemma 2.153, we thus obtain [H : V (µ)] = dim(V (µ))0. This finishes the proof. �

We remark that each basis element of the space H ⊂ FUq(g) corresponding to
H ⊂ O(Gq) constructed in the proof of Theorem 2.154 is contained in a subspace
of the form Uq(g) → K2λ for some λ ∈ P+. Note finally that since ZUq(g) ⊂
FUq(g) commutes pointwise with all elements of FUq(g), Theorem 2.154 shows
that multiplication also induces a Uq(g)-linear isomorphism ZUq(g)⊗H ∼= FUq(g).
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3. Complex semisimple quantum groups

In this chapter we introduce our main object of study, namely complex semisim-
ple quantum groups. We complement the discussion with some background material
on locally compact quantum groups in general, and on compact quantum groups
arising from q-deformations in particular.

Throughout this chapter we work over the complex numbers C. If H is a Hilbert
space we write L(H) for the algebra of bounded operators on H, and denote by
K(H) the algebra of compact operators. If A is a C∗-algebra we write M(A) for the
multiplier algebra of A in the sense of C∗-algebras; this needs to be distinguished
from the algebraic multiplier algebra M(A) in chapter 1. By slight abuse of nota-
tion, we use the symbol ⊗ to denote algebraic tensor products, tensor products of
Hilbert spaces, minimal tensor products of C∗-algebras, or spatial tensor products
of von Neumann algebras. It should always be clear from the context which tensor
product is used. If X is a subset of a Banach space B we write [X] ⊂ B for the
closed linear span of X. For general background on C∗-algebras and von Neumann
algebras we refer to [61].

3.1. Locally compact quantum groups. In this section we review some basic
definitions and facts from the theory of locally compact quantum groups [54].

3.1.1. Hopf C∗-algebras. Let us start with basic definitions and constructions re-
lated to Hopf C∗-algebras.

Definition 3.1. A Hopf C∗-algebra is a C∗-algebra H together with an injective
nondegenerate ∗-homomorphism ∆ : H →M(H ⊗H) such that the diagram

H
∆ //

��

M(H ⊗H)

id⊗∆

��

M(H ⊗H)
∆⊗id

// M(H ⊗H ⊗H)

is commutative and [∆(H)(1⊗H)] = H ⊗H = [(H ⊗ 1)∆(H)].

Comparing Definition 3.1 with the algebraic definition of a multiplier Hopf al-
gebra in Definition 1.6, we note that the density conditions in the former can be
thought of as a replacement of the requirement that the Galois maps are isomor-
phisms in the latter.

If H is a Hopf C∗-algebra we write Hcop for the Hopf-C∗-algebra obtained by
equipping H with the opposite comultiplication ∆cop = σ∆.

A unitary corepresentation of a Hopf-C∗-algebra H on a Hilbert space E is a
unitary X ∈M(H ⊗K(E)) satisfying

(∆⊗ id)(X) = X13X23

in M(H⊗H⊗K(E)), where we are using leg-numbering notation as described after
Definition 2.103. More generally, we may define a corepresentation of H with values
in a C∗-algebra A as a unitary X ∈M(H ⊗A) satisfying (∆⊗ id)(X) = X13X23.

A universal dual of H is a Hopf-C∗-algebra Ĥ together with a unitary corep-
resentation X ∈ M(H ⊗ Ĥ) of H with values in Ĥ satisfying the following uni-
versal property: for every Hilbert space E and every unitary corepresentation X ∈
M(H⊗K(E)) there exists a unique nondegenerate ∗-homomorphism πX : Ĥ → L(E)
such that (id⊗πX)(X ) = X.

We shall be exclusively interested in Hopf C∗-algebras arising from locally com-
pact quantum groups.
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3.1.2. The definition of locally compact quantum groups. The theory of locally com-
pact quantum groups has been axiomatized by Kustermans and Vaes [54].

Let φ be a normal, semifinite and faithful weight on a von Neumann algebra M .
We use the standard notation

M+
φ = {x ∈M+|φ(x) <∞}, Nφ = {x ∈M |φ(x∗x) <∞}

and write M+
∗ for the space of positive normal linear functionals on M . Assume

that ∆ : M →M ⊗M is a normal unital ∗-homomorphism. The weight φ is called
left invariant with respect to ∆ if

φ((ω ⊗ id)∆(x)) = φ(x)ω(1)

for all x ∈ M+
φ and ω ∈ M+

∗ . Similarly, a normal semifinite faithful weight ψ is
right-invariant if

ψ((id⊗ω)∆(x)) = ψ(x)ω(1)

for all x ∈M+
φ and ω ∈M+

∗ .

Definition 3.2. A locally compact quantum group G is given by a von Neumann
algebra L∞(G) together with a normal unital ∗-homomorphism ∆ : L∞(G) →
L∞(G)⊗ L∞(G) satisfying the coassociativity relation

(∆⊗ id)∆ = (id⊗∆)∆,

and normal semifinite faithful weights φ and ψ on L∞(G) which are left and right
invariant, respectively. The weights φ and ψ are called the left and right Haar
weights of G.

Our notation for locally compact quantum groups is intended to make clear how
ordinary locally compact groups can be viewed as quantum groups. Indeed, if G is a
locally compact group, then the algebra L∞(G) of essentially bounded measurable
functions on G together with the comultiplication ∆ : L∞(G)→ L∞(G)⊗ L∞(G)
given by

∆(f)(s, t) = f(st)

defines a locally compact quantum group. The weights φ and ψ are given by
integration with respect to left and right Haar measures, respectively.

For a general locally compact quantum group G the notation L∞(G) is purely
formal. Similar remarks apply to the C∗-algebras C∗f (G), C∗r (G) and C f

0(G), Cr
0(G)

associated to G that we discuss below. It is convenient to view all of them as
different incarnations of the quantum group G.

Let G be a locally compact quantum group and let Λ : Nφ → L2(G) be the GNS-
construction for the weight φ. Throughout we shall only consider quantum groups
for which L2(G) is a separable Hilbert space. One obtains a unitary WG = W on
L2(G)⊗ L2(G) such that

W ∗(Λ(x)⊗ Λ(y)) = (Λ⊗ Λ)(∆(y)(x⊗ 1))

for all x, y ∈ Nφ. This unitary is multiplicative, which means that W satisfies the
pentagonal equation

W12W13W23 = W23W12.

From W one can recover the von Neumann algebra L∞(G) as the strong closure
of the algebra (id⊗L(L2(G))∗)(W ) where L(L2(G))∗ denotes the space of normal
linear functionals on L(L2(G)). Moreover one has

∆(x) = W ∗(1⊗ x)W

for all x ∈ M . The algebra L∞(G) has an antipode which is an unbounded,
σ-strong* closed linear map S given by S(id⊗ω)(W ) = (id⊗ω)(W ∗) for ω ∈
L(L2(G))∗. Moreover there is a polar decomposition S = Rτ−i/2 where R is an
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antiautomorphism of L∞(G) called the unitary antipode and (τt) is a strongly con-
tinuous one-parameter group of automorphisms of L∞(G) called the scaling group.
The unitary antipode satisfies σ(R⊗R)∆ = ∆R.

The group-von Neumann algebra L(G) of the quantum group G is the strong

closure of the algebra (L(L2(G))∗ ⊗ id)(W ) with the comultiplication ∆̂ : L(G)→
L(G)⊗ L(G) given by

∆̂(y) = Ŵ ∗(1⊗ y)Ŵ ,

where Ŵ = ΣW ∗Σ and Σ ∈ L(L2(G)⊗ L2(G)) is the flip map. It defines a locally

compact quantum group Ĝ which is called the dual of G. The GNS construction

for the left invariant weight φ̂ of the dual quantum group can be identified with a
map Λ̂ : Nφ̂ → L2(G) such that we have L(G) = L∞(Ĝ).

We will mainly work with the C∗-algebras associated to the locally compact
quantum group G. The algebra [(id⊗L(L2(G))∗)(W )] is a strongly dense C∗-
subalgebra of L∞(G) which we denote by Cr

0(G). Dually, the algebra [(L(L2(G))∗⊗
id)(W )] is a strongly dense C∗-subalgebra of L(G) which we denote by C∗r (G).
These algebras are called the reduced algebra of continuous functions vanishing
at infinity on G and the reduced group C∗-algebra of G, respectively. One has
W ∈M(Cr

0(G)⊗C∗r (G)). Restriction of the comultiplications on L∞(G) and L(G)
turns Cr

0(G) and C∗r (G) into Hopf C∗-algebras.
For every locally compact quantum group G there exists a universal dual C∗f (G)

of Cr
0(G) and a universal dual C f

0(G) of C∗r (G), respectively [52]. We call C∗f (G)
the maximal group C∗-algebra of G and C f

0(G) the maximal algebra of continuous
functions on G vanishing at infinity. Since L2(G) is assumed to be separable the
C∗-algebras C f

0(G), Cr
0(G) and C∗f (G), C∗r (G) are separable. The quantum group

G is called compact if C f
0(G) is unital, and it is called discrete if C∗f (G) is unital.

In the compact case we also write C f(G) and Cr(G) instead of C f
0(G) and Cr

0(G),
respectively.

In general, we have a surjective morphism π̂ : C∗f (G) → C∗r (G) of Hopf-C∗-
algebras associated to the left regular corepresentation W ∈ M(C0(G) ⊗ C∗r (G)).
Similarly, there is a surjective morphism π : C f

0(G) → Cr
0(G). We will call the

quantum group G amenable if π̂ : C∗f (G) → C∗r (G) is an isomorphism and coa-
menable if π : C f

0(G)→ Cr
0(G) is an isomorphism. If G is amenable or coamenable,

respectively, we also write C∗(G) or C0(G) for the corresponding C∗-algebras. For
more information on amenability for locally compact quantum groups see [11].

3.2. Algebraic quantum groups. The analytical theory of locally compact quan-
tum groups simplifies considerably if one restricts attention to examples that are
essentially determined algebraically. This is the case for the class of algebraic quan-
tum group in the sense of van Daele [74]. The concept of an algebraic quantum
group is a variant of the notion of a regular multiplier Hopf algebra with integrals
in which one adds ∗-structures.

3.2.1. The definition of algebraic quantum groups. Recall the notion of a regular
multiplier Hopf algebra with integrals from Definitions 1.6 and 1.9. Let us now
introduce the notion of a multiplier Hopf ∗-algebra [74].

Definition 3.3. A multiplier Hopf ∗-algebra is a regular multiplier Hopf algebra
H which is equipped with a ∗-structure such that ∆ : H → M(H ⊗ H) is a ∗-
homomorphism.

Let H be a multiplier Hopf ∗-algebra. Then the counit ε : H → C is a ∗-
homomorphism and the antipode S : H → H satisfies

S(S(f∗)∗) = f
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for all f ∈ H, see Section 5 in [73]. Let us remark that the regularity condition
in the definition of a regular multiplier Hopf algebra is in fact automatic in the
∗-algebraic situation.

Definition 3.4. An algebraic quantum group is a multiplier Hopf ∗-algebra H =
C∞c (G) such that there exists a positive left invariant integral φ : H → C and a
positive right invariant integral ψ : H → C. We will also refer to the virtual object
G as an algebraic quantum group.

Here a linear functional ω : H → C is called positive if ω(f∗f) ≥ 0 for all f ∈ H.
We note that (positive) left/right invariant integrals are always unique up to a
(positive) scalar, see Section 3 in [74].

In a similar way as in the definition of a locally compact quantum group, our
notation H = C∞c (G) is meant to suggest that H should be thought of as an algebra
of compactly supported smooth functions on an underlying object G, and by slight
abuse of language which we will sometimes also refer to the latter as an algebraic
quantum group. In contrast to the situation for locally compact quantum groups
the situation is not quite as clean here; for instance, if G is a Lie group then the
algebra C∞c (G) is typically not a multiplier Hopf algebra.

The duality theory for a regular multiplier Hopf algebra with integrals H dis-
cussed in Section 1.3 is compatible with the positivity requirement for Haar func-
tionals, see [74]. In particular, if H is an algebraic quantum group and we consider

the ∗-structure on Ĥ defined by

(x∗, f) = (x, S(f)∗)

for f ∈ H and x ∈ Ĥ, then the dual Ĥ is an algebraic quantum group as well.
When using the notation H = C∞c (G) we will write either Ĥ = D(G), which we

refer to as the group algebra of G, or Ĥ = C∞c (Ĝ), where Ĝ is called the Pontrjagin
dual of G.

One has the following version of Theorem 1.14.

Theorem 3.5 (Biduality Theorem for algebraic quantum groups). Let H be an

algebraic quantum group. Then the dual of Ĥ is isomorphic to H as an algebraic
quantum group.

Let us note that for an algebraic quantum group H, the modular element δ ∈
M(H) of Subsection 1.3.1, is a positive element, see [53]. We write δ̂ ∈ M(Ĥ) for

the modular element of the dual Ĥ.

3.2.2. Algebraic quantum groups on the Hilbert space level. In this subsection we
explain how to associate a locally compact quantum group to any algebraic quan-
tum group. A detailed exposition of this is material can be found in the work of
Kustermans and van Daele [51], [53].

Let G be an algebraic quantum group and let φ : C∞c (G)→ C be a left invariant
integral. We write L2(G) for the Hilbert space completion of C∞c (G) with respect
to the scalar product

〈f, g〉 = φ(f∗g),

and we let Λ : C∞c (G) → L2(G) be the GNS map. Then one can define a unitary
operator W on L2(G)⊗ L2(G) by

W (Λ(f)⊗ Λ(g)) = Λ(S−1(g(1))f)⊗ Λ(g(2)),

using the inverse of the antipode S of C∞c (G). The inverse of W is given by

W ∗(Λ(f)⊗ Λ(g)) = Λ(g(1)f)⊗ Λ(g(2)),
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which formally agrees with the definition given in the case of locally compact quan-
tum groups. It is straightforward to check that W is multiplicative, that is, we have
the pentagon relation W12W13W23 = W23W12 as in Section 3.1.

Note that the action of C∞c (G) on itself by left multiplication induces a ∗-
homomorphism λ : C∞c (G)→ L(L2(G)), explicitly given by

λ(f)(Λ(g)) = Λ(fg)

for f, g ∈ C∞c (G). To see this we first claim that the left regular action of C∞c (G)
on C∞c (G) ⊂ L2(G) can be written in the form

λ(f) = (id⊗ωf∗
(1)
,S(f(2))χ)(W ),

where χ ∈ C∞c (G) is any element satisfying φ(χ) = 1, and ωh,k(T ) = 〈Λ(h), TΛ(k)〉
for all h, k ∈ C∞c (G). Indeed, we have

(id⊗ωf∗
(1)
,S(f(2))χ)(W )Λ(h) = Λ(S−1(S(f(3))χ(1))h)〈f∗(1), S(f(2))χ(2)〉

= Λ(S−1(S(f(3))χ(1))h)φ(f(1)S(f(2))χ(2))

= Λ(S−1(χ(1))fh)φ(χ(2))

= Λ(fh)φ(χ) = λ(f)Λ(h)

for all h ∈ C∞c (G). In particular, λ(f) extends naturally to a bounded operator
on L2(G). It is then straightforward to check that λ yields in fact a faithful ∗-
representation of C∞c (G) on L2(G).

Moreover we have
∆(f) = W ∗(1⊗ f)W

for all f ∈ C∞c (G), where we identify f with λ(f) ∈ L(L2(G)). Indeed, one computes

(W ∗(1⊗ f)W )(Λ(g)⊗ Λ(h)) = (W ∗(1⊗ f))(Λ(S−1(h(1)g)⊗ Λ(h(2)))

= W ∗(Λ(S−1(h(1)g))⊗ Λ(fh(2)))

= Λ(f(1)g)⊗ Λ(f(2)h)

= ∆(f)(Λ(g)⊗ Λ(h))

for all g, h ∈ C∞c (G).
We shall next identify the dual multiplier Hopf algebra D(G) inside L(L2(G)).

Recall from Section 1.3 that C∞c (G) is linked with its dual D(G) by Fourier trans-

form. We will also write D(G) = C∞c (Ĝ) for the dual. We shall sometimes refer to
D(G) as the group algebra of the algebraic quantum group G.

Lemma 3.6. Let G be an algebraic quantum group. The Fourier transform F :
C∞c (G)→ D(G) given by F(f)(h) = φ(hf) induces an isometric linear isomorphism

L2(G)→ L2(Ĝ).

Proof. For f, g, h ∈ C∞c (G) we have

(F(f)∗F(g), h) = (F(f)∗, h(1))φ(h(2)g)

= (F(f)∗, h(1)g(2)S
−1(g(1)))φ(h(2)g(3))

= (F(f)∗, S−1(g(1)))φ(hg(2))

= φ(g∗(1)f)φ(hg(2))

= φ(f∗g(1))(F(g(2)), h).

Hence we obtain

φ̂(F(f)∗F(g)) = φ(f∗g(1))φ̂(F(g(2))) = φ(f∗g)

for all f, g ∈ C∞c (G). This shows that F extends to an isometric isomorphism with
respect to the canonical scalar products. �
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Using the Fourier transform from Lemma 3.6 we can transport the left regular
representation of C∞c (Ĝ) = D(G) on L2(Ĝ) to L2(G) as follows. Define a linear

map λ̂ from D(G) to the space of linear endomorphisms of C∞c (G), viewed as a
subspace of L2(G), by the formula

λ̂(x)Λ(f) = (Ŝ(x), f(1))Λ(f(2)) = (x, S−1(f(1)))Λ(f(2)),

for x ∈ D(G), f ∈ C∞c (G). Then for all h ∈ C∞c (G) we have

(F(λ̂(x)Λ(f)), h) = (x, S−1(f(1)))φ(hf(2))

= (x, S−1(S(h(1))h(2)f(1)))φ(h(3)f(2))

= (x, h(1))φ(h(2)f)

= (x, h(1))(F(f), h(2))

= (xF(f), h),

which means that F λ̂(x)F−1 corresponds to the GNS-representation of C∞c (Ĝ) on

L2(Ĝ). In particular, we obtain a faithful ∗-representation λ̂ : D(G) → L(L2(G))
using the above construction.

In terms of the multiplicative unitary W , the comultiplication ∆̂ for D(G) is
determined by the formula

∆̂(x) = Ŵ ∗(1⊗ x)Ŵ

where Ŵ = ΣW ∗Σ, and we identify x with λ̂(x) ∈ L(L2(G)).
Inspecting the above formulas we see that we obtain Hopf C∗-algebras Cr

0(G) and

C∗r (G) = Cr
0(Ĝ) inside L(L2(G)) by taking the closures of λ(C∞c (G)) and λ̂(D(G)).

These algebras identify with the legs of the multiplicative unitary W . Moreover,
these constructions are compatible with the multiplier Hopf algebra structures of
C∞c (G) and D(G), respectively. In a similar way one obtains von Neumann algebras
L∞(G) and L(G) with comultiplications by taking the weak closures of λ(C∞c (G))

and λ̂(D(G)), compare the constructions in Section 3.1.
The key result due to Kustermans and van Daele is that these operator algebras

define a locally compact quantum group with multiplicative unitary W , see Section
6 in [51]. Let us phrase this as follows.

Theorem 3.7. Let G be an algebraic quantum group. With the notation as above,
the left/right invariant integrals on C∞c (G) extend to left/right invariant weights on
L∞(G). In particular, G canonically defines a locally compact quantum group.

To conclude this subsection, let us verify that the unitary Ŵ = ΣW ∗Σ indeed
corresponds to the fundamental multiplicative unitary for Ĝ under Fourier trans-
form. For any f, g ∈ C∞c (G), we have

(F ⊗ F)(ΣW ∗Σ)(Λ(f)⊗ Λ(g)) = (F ⊗ F)(Λ(f(2))⊗ Λ(f(1)g))

= Λ̂(F(f(2)))⊗ Λ̂(F(f(1)g)).

Now, for any h, k ∈ C∞c (G) we can compute

(F(f(2))⊗F(f(1)g), h⊗ k) = φ(hf(2))φ(kf(1)g)

= φ(h(3)f(2))φ(kS(h(1))h(2)f(1)g)

= φ(kS(h(1))g)φ(h(2)f)

= (F(g), kS(h(1)))(F(f), h(2))

= (F(g)(1), S(h(1)))(F(f), h(2))(F(g)(2), k)

= (Ŝ−1(F(g)(1))F(f)⊗F(g)(2), h⊗ k),
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and therefore the previous calculation gives

(F ⊗ F)(ΣW ∗Σ)(Λ(f)⊗ Λ(g)) = Λ̂(F(f(2)))⊗ Λ̂(F(f(1)g))

= (Λ̂⊗ Λ̂)(Ŝ−1(F(g)(1))F(f)⊗F(g)(2))

= Ŵ (Λ̂(F(f))⊗ Λ̂(F(g))).

This yields the claim.

3.2.3. Compact quantum groups. In this subsection we briefly sketch the theory of
compact quantum groups. For more information we refer to [76], [58] and [48].

There are various ways in which the concept of a compact quantum group can
be defined. In our set-up, it is convenient to consider compact quantum groups as
a special case of algebraic quantum groups as in Definition 3.4. Historically, the
development took place in the opposite order, in fact, the invention of algebraic
quantum groups was strongly motivated by the theory of compact quantum groups
and attempts to generalize it, see [74].

Definition 3.8. A compact quantum group is an algebraic quantum group H such
that the underlying algebra of H is unital.

We shall also write H = C∞(K) in this case and refer to K as a compact quantum
group. Note that the comultiplication is a ∗-homomorphism ∆ : H → H ⊗H, so
that H is in particular a Hopf ∗-algebra.

Moreover, by definition there exists a positive left invariant integral φ : C∞(K)→
C and a positive right invariant integral ψ : C∞(K)→ C such that φ(1) = 1 = ψ(1).
We have

φ(f) = φ(f)ψ(1) = ψ((id⊗φ)∆(f)) = (ψ ⊗ φ)∆(f) = ψ(f)φ(1) = ψ(f)

for all f ∈ H, so that in fact φ = ψ. We refer to this left and right invariant
functional as the Haar state of C∞(K).

In particular, due to Proposition 1.10 the Hopf algebra C∞(K) is cosemisimple.
That is, we can write

C∞(K) ∼=
⊕
λ∈Λ

Mnλ(C)∗

as a direct sum of simple matrix coalgebras. Moreover, this isomorphism can be
chosen so that the standard matrix coefficient functionals uλij ∈ Mnλ(C)∗ satisfy

(uλij)
∗ = S(uλji) for all λ ∈ Λ. Equivalently, the matrix uλ = (uλij) ∈ Mnλ(C∞(K))

is unitary for all λ ∈ Λ.
For each λ ∈ Λ there exists a unique positive invertible matrix Fλ ∈ Mnλ(C)

such that S2(uλ) = Fλu
λF−1

λ and tr(Fλ) = tr(F−1
λ ). Here we write S2(uλ) for the

matrix obtained by applying S2 entrywise to uλ, and we consider the unnormalized
standard trace tr on Mnλ(C).

If we fix matrix coefficients uλij as above then we have the Schur orthogonality
relations

φ(uβij(u
γ
kl)
∗) = δβγδik

(Fβ)lj
tr(Fβ)

, φ((uβij)
∗uγkl) = δβγδjl

(F−1
β )ki

tr(Fβ)
,

compare for instance Chapter 11 in [48].
The Schur orthogonality relations imply that the dual algebraic quantum group

D(K) can be written as a direct sum

D(K) =
⊕
λ∈Λ

Mnλ(C)

of matrix algebras, such that the pairing (x, f) for x ∈ D(K), f ∈ C∞(K) is given
by evaluation in each component. As usual, we write X ⇀h = (X,h(2))h(1) and
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h↼X = (X,h(1))h(2) for the natural left and right actions of D(K) on C∞c (K). If
we define the element

F =
⊕
λ∈Λ

Fλ ∈ D(K),

where the matrices Fλ are those from the Schur orthogonality formulas above, then
the Haar state satisfies

φ(fg) = φ(g(F ⇀f↼F )) = φ((F−1⇀g↼F−1)f)

for all f, g ∈ C∞(K).
We obtain a basis of D(K) consisting of the functionals ωµij defined by

(ωµij , u
η
kl) = δµηδikδjl.

With this notation, the multiplicative unitary W ∈ M(C∞(K) ⊗ D(K)) can be
written as

W =
∑
µ,i,j

uµij ⊗ ω
µ
ij .

Indeed, we compute∑
µ,i,j

(λ(uµij)⊗ λ̂(ωµij))(Λ(f)⊗ Λ(g)) =
∑
µ,i,j

(ωµij , S
−1(g(1)))Λ(uµijf)⊗ Λ(g(2))

= Λ(S−1(g(1))f)⊗ Λ(g(2))

for all f, g ∈ C∞(K). In a similar way one obtains

W−1 =
∑
µ,i,j

S(uµij)⊗ ω
µ
ij =

∑
µ,i,j

uµij ⊗ Ŝ
−1(ωµij)

for the inverse of W .
Positive left and right invariant Haar functionals for D(K) are given by

φ̂(x) =
∑
µ∈Λ

tr(Fµ) tr(F−1
µ x), ψ̂(x) =

∑
µ∈Λ

tr(Fµ) tr(Fµx),

respectively. Note here that the positive matrices Fλ ∈ Mnλ(C) are naturally
elements of D(K), and that F±1

λ x is contained in Mnλ(C) ⊂ D(K) for any x ∈
D(K). We note the formulas

φ̂(xy) = φ̂(FyF−1x), ψ̂(xy) = ψ̂(F−1yFx),

for all x, y ∈ D(K). We remark finally that δ̂ = F 2 is the modular element of the
dual quantum group D(K). In particular, D(K) is unimodular iff F = 1.

3.2.4. The Drinfeld double of algebraic quantum groups. In this subsection we dis-
cuss the Drinfeld double construction in the framework of algebraic quantum groups.
The Drinfeld double of regular multiplier Hopf algebras was already treated in Sec-
tion 1.4. Here we shall explain how to incorporate ∗-structures in the construction,
and also approach it from the dual point of view.

Let K and L be algebraic quantum groups with group algebras D(K) and D(L),
respectively. Recall from Section 1.4 that in order to form the Drinfeld double
D(K) ./ D(L) one needs a skew-pairing τ : D(K)×D(L)→ C. We shall say that
the skew-pairing τ is unitary if

τ(x∗, y∗) = τ−1(x, y)

for all x ∈ D(K), y ∈ D(L), where τ−1 denotes the convolution inverse of τ as in
Section 1.4.

Let us also introduce the notion of a unitary bicharacter.
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Definition 3.9. Let K and L be algebraic quantum groups. A (unitary) bichar-
acter for K,L is a (unitary) invertible element U ∈ M(C∞c (K) ⊗ C∞c (L)) such
that

(∆K ⊗ id)(U) = U13U23, (id⊗∆L)(U) = U13U12

and
(εK ⊗ id)(U) = 1, (id⊗εL)(U) = 1.

In the same way as in the discussion of universal R-matrices in Section 2.11 one
checks that a bicharacter U satisfies

(SK ⊗ id)(U) = U−1 = (id⊗S−1
L )(U).

The notion of a bicharacter is dual to the concept of a skew-pairing in the fol-
lowing sense.

Proposition 3.10. Assume that K and L are algebraic quantum groups. If U ∈
M(C∞c (K)⊗ C∞c (L)) is a bicharacter then τU : D(K)×D(L)→ C given by

τU (x, y) = (x⊗ y, U−1)

is a skew-pairing. Every skew-pairing D(K)×D(L)→ C arises in this way from a
bicharacter. Moreover U is unitary iff the skew-pairing τU is unitary.

Proof. Let us sketch the argument. If U is a bicharacter then one can check in the
same way as in the proof of Lemma 2.105 that τU yields a skew-pairing.

To see that every skew-pairing arises from a bicharacter let τ : D(K)×D(L)→ C
be given. Using regularity one checks that the formulas

(x⊗ y, U−1
τ (f ⊗ g)) = τ(x(2), y(2))(x(1), f)(y(1), g)

(x⊗ y, (f ⊗ g)U−1
τ ) = (x(2), f)(y(2), g)τ(x(1), y(1))

determine an invertible multiplier Uτ ∈M(C∞c (K)⊗C∞c (L)). Moreover, one checks
that this multiplier satisfies the conditions in Definition 3.9. The skew-pairing τ is
reobtained by applying the above construction to Uτ .

For the last claim use the relation (SK ⊗ SL)(U) = U to compute

τU (x∗, y∗) = (x∗ ⊗ y∗, U−1) = (x⊗ y, (SK ⊗ SL)(U−1)∗) = (x⊗ y, (U−1)∗)

and
τ−1
U (x, y) = (x⊗ y, U).

Comparing these expressions yields the assertion. �

Let K and L be algebraic quantum groups and assume U ∈M(C∞c (K)⊗C∞c (L))
is a bicharacter. As in Section 1.4 we can then construct the Drinfeld double
D(K) ./ D(L) using the skew-pairing τU from Proposition 3.10. Recall that this is
the regular multiplier Hopf algebra

D(K ./ L) = D(K) ./ D(L),

equipped with the tensor product comultiplication and the multiplication given by

(x ./ f)(y ./ g) = x τU (y(1), f(1))y(2) ./ f(2)τU (ŜK(y(3)), f(3))g

= x τU (y(1), f(1))y(2) ./ f(2)τU (y(3), Ŝ
−1
L (f(3)))g.

The counit of D(K ./ L) is given by

ε̂K./L(x ./ f) = ε̂K(x)ε̂L(f)

for x ∈ D(K), f ∈ D(L). The antipode of D(K ./ L) is defined by

ŜK./L(x ./ f) = (1 ./ ŜL(f))(ŜK(x) ./ 1)

= τU (Ŝ(x(3)), ŜL(f(3)))ŜK(x(2)) ./ ŜL(f(2))τU (ŜK(x(1)), f(1)).
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If U is unitary we can define a ∗-structure on D(K ./ L) by

(x ./ f)∗ = τU (x∗(1), f
∗
(1))x

∗
(2) ./ f

∗
(2)τ

−1
U (x∗(3), f

∗
(3)) = (1 ./ f∗)(x∗ ./ 1).

To check antimultiplicativity of this ∗-structure one computes

((x ./ f)(y ./ g))∗ = (xτU (y(1), f(1))y(2) ./ f(2)τ
−1
U (y(3), f(3))g)∗

= τU (y(1), f(1))(xy(2) ./ f(2)g)∗τ−1
U (y(3), f(3))

= τ−1
U (y∗(1), f

∗
(1))(xy(2) ./ f(2)g)∗τU (y∗(3), f

∗
(3))

= τ−1
U (y∗(1), f

∗
(1))(1 ./ g

∗)τU (y∗(2), f
∗
(2))(y

∗
(3) ./ f

∗
(3))

× τ−1
U (y∗(4), f

∗
(4))(x

∗ ./ 1)τU (y∗(5), f
∗
(5))

= (1 ./ g∗)(y∗ ./ f∗)(x∗ ./ 1)

= (1 ./ g∗)(y∗ ./ 1)(1 ./ f∗)(x∗ ./ 1)

= (y ./ g)∗(x ./ f)∗,

where we use
τU (x, f) = τ−1

U (x∗ ⊗ f∗).
For involutivity note that

(x ./ f)∗∗ = ((1 ./ f∗)(x∗ ./ 1))∗ = x ./ f

using that ∗ is antimultiplicative. Similarly, to check that ∆̂K./L is a ∗-homomorphism
one calculates

∆̂K./L((x ./ f)∗) = ((1 ./ f∗(1))⊗ (1 ./ f∗(2)))((x
∗
(1) ./ 1)⊗ (x∗(2) ./ 1))

= (x∗(1) ./ f
∗
(1))⊗ (x∗(2) ./ f

∗
(2))

= ∆̂K./L(x ./ f)∗.

Finally, a left Haar integral for D(K ./ L) is given by

φ̂K./L(x ./ f) = φ̂K(x)φ̂L(f),

where φ̂K and φ̂L are left Haar integrals for D(K) and D(L), respectively. Similarly,
a right Haar integral for D(K ./ L) is given by the tensor product of right Haar
integrals for D(K) and D(L).

If L is a discrete quantum group then it is not hard to check that the resulting
functionals are positive provided one starts from positive integrals for K and L,
respectively. For the question of positivity in general see [21].

From general theory, we obtain the dual multiplier Hopf algebra C∞c (K ./ L) of
D(K ./ L). Sometimes this is referred to as the Drinfeld codouble, but we shall call
C∞c (K ./ L) the algebra of functions on the Drinfeld double K ./ L. Explicitly, the
structure of C∞c (K ./ L) looks as follows.

Proposition 3.11. Let K and L be algebraic quantum groups and assume that
U ∈M(C∞c (K)⊗ C∞c (L)) is a unitary bicharacter. Then the algebra

C∞c (K ./ L) = C∞c (K)⊗ C∞c (L),

equipped with the comultiplication

∆K./L = (id⊗σ ⊗ id)(id⊗ad(U)⊗ id)(∆K ⊗∆L)

is an algebraic quantum group. Moreover, the counit of C∞(K ./ L) is the tensor
product counit εK./L = εK ⊗ εL, and the antipode is given by

SK./L(f ⊗ x) = U−1(SK(f)⊗ SL(x))U = (SK ⊗ SL)(U(f ⊗ x)U−1)

The algebraic quantum group C∞c (K ./ L) is dual to the double D(K) ./ D(L), the
latter being constructed with respect to the skew-pairing τU corresponding to U .
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Proof. Note first that ad(U) is conjugation with the bicharacter U and σ denotes
the flip map in the above formula for the comultiplication.

Let us abbreviate G = K ./ L. In order to prove the Proposition we shall show
that the dual of D(G) = D(K) ./ D(L) can be identified as stated.

Firstly, using φ̂G(x ./ f) = φ̂K(x)φ̂L(f) we compute

F̂G(y ./ g)(x ./ f) = φ̂G(xτU (y(1), f(1))y(2) ./ f(2)τ
−1
U (y(3), f(3))g)

= τU (y(1), f(1))φ̂K(xy(2))φ̂L(f(2)g)τU (ŜK(y(3)), f(3))

= τU (y(1), Ŝ
−1
L (g(1)))φ̂K(xy(2))φ̂L(f(1)g(2))τU (ŜK(y(3)), f(2))

= τU (y(1), Ŝ
−1
L (g(1)))φ̂K(xy(2))φ̂L(f(1)g(2))τU (y(3), S

−1
L (f(2)g(3)SL(g(4))))

= τU (y(1), Ŝ
−1
L (g(1)))φ̂K(xy(2))φ̂L(fg(2))τU (y(3), g(3)δ̂

−1
L )

= (x⊗ f, τ−1
U (y(1), g(1))F̂K(y(2))⊗ F̂L(g(2))τU (y(3), g(3)δ̂

−1
L ))

for all x, y ∈ D(K), f, g,∈ D(L). Here δ̂L denotes the modular element of D(L).
This implies

F̂G(τU (y(1), g(1))y(2) ./ g(2)τ
−1
U (y(3), g(3)δ̂

−1
L )) = F̂K(y)⊗ F̂L(g).

In particular, we can identify the underlying vector space of the dual quantum
group of D(G) with the space C∞c (G) = C∞c (K) ⊗ C∞c (L) such that the canonical
pairing between D(G) and C∞c (G) becomes

(y ./ g, f ⊗ x) = (y, f)(g, x)

for all y ∈ D(K), f ∈ C∞c (K), g ∈ D(L), x ∈ C∞c (L). Moreover, from the definition
of the comultiplication in D(G) it is clear that the algebra structure of the dual
multiplier Hopf algebra C∞c (G) = C∞c (K) ⊗ C∞c (L) is the tensor product algebra
structure.

Let us next identify the comultiplication of C∞c (G). By general theory, this is
determined by

((y ./ g)⊗ (z ./ h),∆G(f ⊗ x)) = (yτU (z(1), g(1))z(2) ./ g(2)τ
−1
U (z(3), g(3))h, f ⊗ x)

= (y ⊗ τU (z(1), g(1))z(2) ./ g(2) ⊗ τ−1
U (z(3), g(3))h, (∆K ⊗∆L)(f ⊗ x))

= (y ⊗ (z(1) ⊗ g(1), U
−1)z(2) ./ g(2) ⊗ (z(3) ⊗ g(3), U)h, (∆K ⊗∆L)(f ⊗ x))

= (y ⊗ z ⊗ g ⊗ h, (id⊗ad(U)⊗ id)(∆K ⊗∆L)(f ⊗ x))

= ((y ./ g)⊗ (z ./ h), (id⊗σ ⊗ id)(id⊗ad(U)⊗ id)(∆K ⊗∆L)(f ⊗ x)),

so that we obtain

∆G = (id⊗σ ⊗ id)(id⊗ad(U)⊗ id)(∆K ⊗∆L)

as claimed. Remark that it is immediate from unitarity of U that ∆G : C∞c (G) →
M(C∞c (G)⊗ C∞c (G)) is indeed an essential ∗-algebra homomorphism.

The formula εG = εK ⊗ εL for the counit of C∞c (G) can also be deduced from
duality. Alternatively, we may check the counit property of εG directly and compute

(εG ⊗ id)∆G = (εK ⊗ εL ⊗ id⊗ id)(id⊗σ ⊗ id)(id⊗ad(U)⊗ id)(∆K ⊗∆L)

= (εK ⊗ id⊗εL ⊗ id)(id⊗ad((id⊗εL)(U))⊗ id)(∆K ⊗∆L)

= (εK ⊗ id⊗εL ⊗ id)(∆K ⊗∆L)

= (id⊗εK ⊗ id⊗εL)(∆K ⊗∆L)

= (id⊗εK ⊗ id⊗εL)(id⊗ad((εK ⊗ id)(U))⊗ id)(∆K ⊗∆L)

= (id⊗ id⊗εK ⊗ εL)(id⊗σ ⊗ id)(id⊗ad(U)⊗ id)(∆K ⊗∆L)

= (id⊗εG)∆G,
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using the relations (εK ⊗ id)(U) = id and (id⊗εL)(U) = id.
To verify the formula for the antipode we check

mG(SG ⊗ id)∆G = mG(SG ⊗ id)(id⊗σ ⊗ id)(id⊗ad(U)⊗ id)(∆K ⊗∆L)

= (mK ⊗mL)(SK ⊗ id⊗SL ⊗ id)ad(U13U23)(∆K ⊗∆L)

= (mK ⊗mL)(SK ⊗ id⊗SL ⊗ id)ad((∆K ⊗ id)(U)123)(∆K ⊗∆L)

= mL(SL ⊗ id)(εK ⊗∆L)

= εK ⊗ εL,

using the antipode axioms for K and L, respectively. A similar computation shows

mG(id⊗SG)∆G = mG(id⊗SG)(id⊗σ ⊗ id)(id⊗ad(U)⊗ id)(∆K ⊗∆L)

= (mK ⊗mL)(id⊗SK ⊗ id⊗SL)ad(U24U23)(∆K ⊗∆L)

= (mK ⊗mL)(id⊗SK ⊗ id⊗SL)ad((id⊗∆L)(U)234)(∆K ⊗∆L)

= mK(id⊗SK)(∆K ⊗ εL)

= εK ⊗ εL.

According to [21] and the duality theory for algebraic quantum groups, there
exists a positive left invariant functional and a positive right invariant functional
on C∞c (G). Hence C∞c (G) is again an algebraic quantum group. �

Explicitly, the left Haar functional for G = K ./ L are obtained by combining
the left Haar functional for K and a twisted version of the left Haar functional for
L, depending on the modular properties of the quantum groups and the pairing
involved. We refer to [6] for a detailed analysis.

In the special case of the Drinfeld double of a compact quantum group we will
write down an explicit formula for a (left and right) invariant integral further below.

3.3. Compact semisimple quantum groups. Let g be a semisimple Lie algebra.
In order to pass from the algebraic theory of quantized universal enveloping algebras
developed in Chapter 2 to the analytical setting one has to introduce a ∗-structure
on Uq(g) and O(Gq).

In the case of Uq(g) we shall work with the ∗-structure defined as follows.

Lemma 3.12. Assume q ∈ C× is real and q 6= ±1. Then there is a unique ∗-
structure on Uq(g) satisfying

E∗i = KiFi, F ∗i = EiK
−1
i , K∗λ = Kλ

for i = 1, . . . , N and λ ∈ P. The comultiplication ∆ is a ∗-homomorphism for this
∗-structure.

Proof. This is done in the same way as for the definition of the algebra antiauto-
morphism τ in Lemma 2.16, note that ∗ acts in the same way on generators. The
only difference is that ∗ is extended anti-linearly, whereas τ is extended linearly to
general elements. �

Definition 3.13. We will write UR
q (k) to signify Uq(g) with the Hopf ∗-structure

of the lemma above.

Here, UR
q (k) should be viewed as the universal enveloping algebra of the complex-

ification of the Lie algebra k of the compact real form K of the simply connected
group G corresponding to g.

We have the following compatibility of the R-matrix with the ∗-structure.
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Lemma 3.14. The universal R-matrix of Uq(g) = UR
q (k) satisfies

(Ŝ ⊗ Ŝ)(R∗) = R21,

where R21 is obtained from R by flipping the tensor factors.

Proof. Due to Theorem 2.108 the universal R-matrix is the product of the Cartan

part q
∑N
i,j=1 Bij(Hi⊗Hj) and the nilpotent part

∏
α∈∆+ expqα((qα− q−1

α )(Eα⊗Fα)).
Since the antipode and the ∗-structure are both antimultiplicative, it suffices to
show that applying the ∗-structure followed by Ŝ ⊗ Ŝ to each individual factor
of these elements switches legs in the tensor product. For the Cartan part this is
obvious since Ŝ⊗Ŝ introduces two minus signs which cancel out, and the ∗-structure
leaves the Cartan generators Hk fixed.

For the nilpotent factors note that

(Ŝ ⊗ Ŝ)((Ei ⊗ Fi)∗) = (Ŝ ⊗ Ŝ)(KiFi ⊗ EiK−1
i )

= (−KiFiK
−1
i )⊗ (−KiEiK

−1
i )

= Fi ⊗ Ei

for all i = 1, . . . , N . This yields the claim for all factors corresponding to simple
roots.

For the factors corresponding to arbitrary positive roots we use Theorem 2.58
and the relations

Ŝ(E∗i ) = Ŝ(KiFi) = (−KiFi)K
−1
i = −q−(αi,αi)Fi = −q−2

i Fi

Ŝ(F ∗i ) = Ŝ(EiK
−1
i ) = Ki(−EiK−1

i ) = −q(αi,αi)Ei = −q2
iEi.

More precisely, we compute

q2
i Ti(Ŝ(E∗i )) = −Ti(Fi) = EiK

−1
i = q2

iK
−1
i Ei = −Ŝ((KiFi)

∗) = Ŝ(Ti(Ei)∗)

and

qaijTi(Ŝ(E∗j )) = −qaiji q−2
j Ti(Fj)

= −qaiji q−2
j

−aij∑
k=0

(−1)kq−ki F
(−aij−k)
i FjF

(k)
i

=

−aij∑
k=0

(−1)−aij−kq
−aij−k
i (−1)−aij+1q

2aij
i q−2

j F
(−aij−k)
i FjF

(k)
i

=

−aij∑
k=0

(−1)−aij−kq
−aij−k
i Ŝ((E

(−aij−k)
i EjE

(k)
i )∗)

=

−aij∑
k=0

(−1)kqki Ŝ((E
(k)
i EjE

(−aij−k)
i )∗) = Ŝ(Ti(Ej)∗)

for i 6= j. Similarly, one obtains

q−aijTi(Ŝ(F ∗j )) = Ŝ(Ti(Fj)∗)

for all i, j. An induction argument then yields

(Ŝ ⊗ Ŝ)((Eα ⊗ Fα)∗) = Fα ⊗ Eα

for all positive roots α. �
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Recall the definition of O(Gq) from Section 2.10. By construction, there exists
a canonical bilinear pairing between UR

q (k) and O(Gq). We shall introduce a ∗-
structure on O(Gq) by stipulating

(x, f∗) = (Ŝ−1(x)∗, f)

for all x ∈ UR
q (k). In this way O(Gq) becomes a Hopf ∗-algebra.

Definition 3.15. We write C∞(Kq) to denote O(Gq) with the above ∗-structure.

The canonical pairing between UR
q (k) and C∞(Kq) satisfies

(xy, f) = (x, f(1))(y, f(2)), (x, fg) = (x(2), f)(x(1), g)

and

(Ŝ(x), f) = (x, S−1(f)), (Ŝ−1(x), f) = (x, S(f))

for f, g ∈ C∞(Kq), x, y ∈ UR
q (k), and the compatibility with the ∗-structures is given

by

(x, f∗) = (Ŝ−1(x)∗, f), (x∗, f) = (x, S(f)∗).

In addition,

(x, 1) = ε̂(x), (1, f) = ε(f),

for f ∈ C∞(Kq) and x ∈ UR
q (k). We may summarize this by saying that the

canonical pairing is a skew-pairing of the Hopf ∗-algebras UR
q (k) and C∞(Kq).

We will also need to make use of the skew-pairing between C∞(Kq) and UR
q (k)

defined by

(f, x) = (Ŝ(x), f) = (x, S−1(f))

for f ∈ C∞(Kq) and x ∈ UR
q (k). Then

(f∗, x) = (Ŝ(x), f∗) = (x∗, f) = (Ŝ(Ŝ(x)∗), f) = (f, Ŝ(x)∗),

so that this pairing is again compatible with the ∗-structures. As in Subsection 1.3.2,
we stress that our skew-pairings UR

q (k) × C∞(Kq) → C and C∞(Kq) × UR
q (k) → C

need to be distinguished, and in particular (f, x) 6= (x, f) in general.
Recall from Definition 2.102 that the Hopf algebra C∞(Kq) is defined as the span

of the matrix coefficients of the irreducible integrable representations V (µ) of UR
q (k)

for µ ∈ P+. In particular, it is cosemisimple and so admits a left and right invariant
integral φ given by projection onto the coefficient of the trivial corepresentation, see
Proposition 1.10. In order to see that C∞(Kq) defines a compact quantum group
Kq it remains to check that φ is positive.

Following the discussion in Section 11.3 of [48], this is equivalent to proving that
the irreducible integrable representations V (µ) of UR

q (k) are all unitarizable. Here,
a representation V is called unitarizable if it admits a positive definite sesquilinear
form which is invariant in the sense that

〈X · v, w〉 = 〈v,X∗ · w〉
for all X ∈ UR

q (k) and all v, w ∈ V .
Let us explain how this can be done. First, we claim that each module V (µ)

for µ ∈ P+ can be equipped with an essentially unique invariant sesquilinear form
〈 , 〉. Indeed, let V (µ)∗ be the Uq(g)-module defined on the conjugate vector space

of the dual V (µ)∗ by setting (X · f)(v) = f(X∗ · v) for all v ∈ V (µ). Then V (µ)∗ is

an irreducible highest weight module of highest weight µ, and hence V (µ)∗ ∼= V (µ).
In particular, there exists a unique hermitian sesquilinear form 〈 , 〉 on V (µ) such
that 〈vµ, vµ〉 = 1.
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Proposition 3.16. Let q 6= 1 be a strictly positive real number. For each µ ∈ P+

the hermitian form 〈 , 〉 on V (µ) constructed above is positive definite.

Proof. We shall use a continuity argument in the parameter q. In order to emphasize
the dependence on q we write V (µ)q for the irreducible highest weight module of
highest weight µ associated with q. Then V (µ)q = V (µ)A ⊗A C where V (µ)A is
the integral form of V (µ) and s ∈ A acts on C such that sL = q. Let us write
〈 , 〉 = 〈 , 〉q for the hermitian sesquilinear form on V (µ)q satisfying 〈vµ, vµ〉q = 1.

Choosing a free A-basis of V (µ)A we see that the forms 〈 , 〉q can be viewed as
a continuous family of hermitian forms depending on q ∈ (0,∞) on a fixed vector
space.

Recall from Proposition 2.25 that the specialisation U1(g) of UAq (g) at 1 maps
onto the classical universal enveloping algebra U(g) of g over C. This map is
compatible with ∗-structures if we consider the ∗-structure on U(g) given by

E∗i = Fi, F ∗i = Ei, H∗i = Hi

for i = 1, . . . , N , corresponding to the compact real form or g.
The representation V (µ)1 of UAq (g) at q = 1 correspond to the irreducible highest

weight representation of weight µ of the classical Lie algebra g. In particular, the
sesquilinear form 〈 , 〉1 is positive definite. By continuity, we conclude that 〈 , 〉q
is positive definite for all q ∈ (0,∞). �

Let us specify the element F ∈ D(Kq) which appears in the Schur orthogonality
relations, see Subsection 3.2.3.

Lemma 3.17. We have F = K−2ρ.

Proof. Let us fix an orthonormal weight basis (ei) for V (µ) and let M = (Mij)
denote the matrix of K−2ρ acting on this basis, so that Mij = 〈ei,K−2ρ · ej〉 =
(K−2ρ, u

µ
ij). We will show that M satisfies the defining properties of Fµ from

Subsection 3.2.3. Clearly, M is positive. If w0 ∈ W is the longest element of the
Weyl group then w0ρ = −ρ and so by the Weyl group invariance of the set of
weights of V (µ) we have

tr(M) =
∑

ν∈P(V (µ))

q(−2ρ,ν) =
∑

ν∈P(V (µ))

q(2ρ,w0ν) = tr(M−1),

where the sum is over all weights of V (µ) counted with multiplicities. Finally, using
Lemma 2.7 we have for any X ∈ UR

q (k),

(X,S2(uµij)) = (Ŝ−2(X), uµij)

= (K−2ρXK2ρ, u
µ
ij)

=

X,∑
k,l

(K−2ρ, u
µ
ik)uµkl(K2ρ, u

µ
lj)

 .

It follows that S2(uµ) = MuµM−1. This completes the proof. �

We shall write C(Kq) for the Hopf C∗-algebra of functions on Kq obtained as
the completion of C∞(Kq) in the GNS-representation of the left Haar weight. Let
us remark that Kq is coamenable, so that there is no need to distinguish between
maximal and reduced algebras of functions in this case, see Corollary 5.1 in [7].

To conclude this section, let us explain how the classical maximal torus T of
K appears also as a quantum subgroup of Kq. Let UR

q (t) be Hopf algebra Uq(h)

equipped with the ∗-structure induced from UR
q (k). Define C∞(T ) ⊂ UR

q (t)∗ to

be the restriction of elements of C∞(Kq) ⊂ UR
q (k)∗ to UR

q (t). In light of definition
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2.102, the image of this restriction map is the set of linear combination of characters
of the form

χλ(Kµ) = qµ,λ

with λ ∈ P. We therefore have a canonical isomorphism of C∞(T ) with the group
algebra C[P] which is isomorphic to the polynomials on the maximal torus T of K.

This homomorphism induces a surjection C(Kq)→ C(T ) on the C∗-level.

3.4. Complex semisimple quantum groups. In this section we define our main
objects of study, namely q-deformations of complex semisimple Lie groups. The
construction of these quantum groups relies one the Drinfeld double construction.
We also discuss some variants of the quantum groups we will be interested in,
related to connected components and certain central extensions. Throughout this
section we fix a positive deformation parameter q = eh different from 1.

3.4.1. The definition of complex quantum groups. The definition of complex semisim-
ple quantum groups is a special case of the Drinfeld double construction explained
in Section 3.2.

Definition 3.18. Let G be a simply connected semisimple complex Lie group and
let K be a maximal compact subgroup. The complex semisimple quantum group
Gq is the Drinfeld double

Gq = Kq ./ K̂q

of Kq and its Pontrjagin dual K̂q with respect to the canonical bicharacter W ∈
M(C∞(Kq)⊗D(Kq)) given by the multiplicative unitary of Kq.

Let us explicitly write down some of the structure maps underlying the quantum
group Gq, based on the general discussion in Section 3.2. By definition, Gq is the
algebraic quantum group with underlying algebra

C∞c (Gq) = C∞(Kq ./ K̂q) = C∞(Kq)⊗D(Kq),

equipped with the comultiplication

∆Gq = (id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂).

Note that we can identify

C∞c (Gq) =
⊕
µ∈P+

C∞(Kq)⊗ L(V (µ)),

so that the algebraic multiplier algebra of C∞c (Gq) is

C∞(Gq) =M(C∞c (Gq)) =
∏
µ∈P+

C∞(Kq)⊗ L(V (µ)).

The counit of C∞(Gq) is the tensor product counit εG = ε⊗ ε̂, and the antipode is
given by

SGq (f ⊗ x) = W−1(S(f)⊗ Ŝ(x))W = (S ⊗ Ŝ)(W (f ⊗ x)W−1).

Like its classical counterpart, the quantum group Gq is unimodular [63].

Proposition 3.19. A positive left and right invariant integral on C∞c (Gq) is given
by

φGq (f ⊗ x) = φ(f)ψ̂(x),

for f ∈ C∞(Kq), x ∈ D(Kq).
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Proof. It follows from the end of Subsection 3.2.3 that the right invariant Haar

integral ψ̂ on D(Kq) is given by

ψ̂(x) = φ̂(F 2x)

for all x ∈ D(Kq), where F = K−2ρ is the invertible element obtained from the
Schur orthogonality relations, see Lemma 3.17. Moreover, observe that∑

µ,i,j

(F−1⇀uµij↼F−1)⊗ FωµijF =
∑
µ,i,j

uµij ⊗ ω
µ
ij = W

due to the dual basis property of W . This implies

(φ⊗ φ̂)(W (f ⊗ x)) =
∑
µ,i,j

φ((F−1⇀uµij↼F−1)f)φ̂(FωµijFx)

=
∑
µ,i,j

φ(fuµij)φ̂(F 2xωµij)

=
∑
µ,i,j

φ(fuµij)ψ̂(xωµij)

= (φ⊗ ψ̂)((f ⊗ x)W )

for all f ∈ C∞(Kq), x ∈ D(Kq).

Since (id⊗∆̂)(W ) = W13W12 we thus obtain

(id⊗φG)∆G(f ⊗ x) = (id⊗φG)(id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂)(f ⊗ x)

= (id⊗φ⊗ id⊗ψ̂)ad(W23)(∆⊗ ∆̂)(f ⊗ x)

= (id⊗φ⊗ id⊗ψ̂)ad(W−1
24 (id⊗∆̂)(W )234)(∆⊗ ∆̂)(f ⊗ x)

= (id⊗φ⊗ id⊗φ̂)ad((id⊗∆̂)(W )234)(∆⊗ ∆̂)(f ⊗ x)

= (id⊗φ⊗ φ̂)ad(W23)(∆⊗ id)(f ⊗ x)

= (id⊗φ⊗ ψ̂)(∆⊗ id)(f ⊗ x)

= (φ⊗ ψ̂)(f ⊗ x) = φG(f ⊗ x)

for all f ∈ C∞c (Kq), x ∈ D(Kq) as desired. Hence φG is left invariant. Similarly,
since (∆⊗ id)(W ) = W13W23 we obtain

(φG ⊗ id)∆G(f ⊗ x) = (φG ⊗ id)(id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂)(f ⊗ x)

= (φ⊗ id⊗ψ̂ ⊗ id)ad(W23)(∆⊗ ∆̂)(f ⊗ x)

= (φ⊗ id⊗ψ̂ ⊗ id)ad(W−1
13 (∆⊗ id)(W )123)(∆⊗ ∆̂)(f ⊗ x)

= (φ⊗ id⊗φ̂⊗ id)ad((∆⊗ id)(W )123)(∆⊗ ∆̂)(f ⊗ x)

= (φ⊗ φ̂⊗ id)ad(W12)(id⊗∆̂)(f ⊗ x)

= (φ⊗ ψ̂ ⊗ id)(id⊗∆̂)(f ⊗ x)

= (φ⊗ ψ̂)(f ⊗ x) = φG(f ⊗ x),

which means that φG is also right invariant. �

The dual D(Gq) of C∞c (Gq) in the sense of algebraic quantum groups is given by

D(Gq) = D(Kq) ./ C
∞(Kq),

equipped with the tensor product comultiplication and the multiplication given by

(x ./ f)(y ./ g) = x(y(1), f(1))y(2) ./ f(2)(Ŝ(y(3)), f(3))g

= x(y(1), f(1))y(2) ./ f(2)(y(3), S
−1(f(3)))g,
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using the natural skew-pairing between D(Kq) and C∞(Kq).
It is important to note that when relating C∞c (Gq) with D(Gq) one should work

with the pairing

(f ⊗ x, y ./ g) = (f, y)(x, g),

for f, g ∈ C∞(Kq), x, y ∈ D(Kq), where we recall that we write (x, g) = (g, Ŝ(x)) for
x ∈ D(Kq) and g ∈ C∞(Kq). The appearance of the antipode in this context is due
to the fact that the comultiplication of D(Gq) is supposed to be the transpose of
the opposite multiplication on C∞c (Gq), so that one has to flip the roles of C∞(Kq)
and D(Kq) in the second tensor factor of the pairing.

The antipode of D(Gq) is defined by

S(x ./ f) = (1 ./ S(f))(Ŝ(x) ./ 1)

= (Ŝ(x(3)), S(f(3)))Ŝ(x(2)) ./ S(f(2))(Ŝ(x(1)), f(1)),

= (x(3), f(3))Ŝ(x(2)) ./ S(f(2))(Ŝ(x(1)), f(1)),

and the ∗-structure on D(Gq) is given by

(x ./ f)∗ = (1 ./ f∗)(x∗ ./ 1) = (x∗(1), f
∗
(1))x

∗
(2) ./ f

∗
(2)(Ŝ(x∗(3)), f

∗
(3)).

A left Haar integral for D(Gq) is given by

φ̂Gq (x ./ f) = φ̂(x)φ(f)

where φ̂ and φ are left Haar integrals for D(Kq) and C∞(Kq), respectively. Similarly,
a right Haar integral for D(Gq) is given by the tensor product of right Haar integrals
for D(Kq) and C∞(Kq).

Since Gq is an algebraic quantum group, the general theory outlined in Section
3.2 implies that it defines a locally compact quantum group. Explicitly, the Hopf
C∗-algebra of functions on Gq is given by

C0(Gq) = C(Kq)⊗ C∗(Kq).

Note that since the compact quantum group Kq is both amenable and coamenable
there is no need to distinguish between maximal and reduced versions of C(Kq)
and C∗(Kq) here. The quantum group Gq is coamenable as well because ε⊗ ε̂ is a
bounded counit for C0(Gq) = Cr

0(Gq), so that C f
0(Gq) ∼= Cr

0(Gq), compare Theorem
3.1 in [11].

The full and reduced Hopf C∗-algebras C∗f (Gq) and C∗r (Gq) may be constructed
using the general theory of locally compact quantum groups, or more directly as
completions of D(Gq). We remark that the maximal and reduced group C∗-algebras
of Gq are not isomorphic, that is, the quantum group Gq is not amenable.

It is not apparent from Definition 3.18 why Gq should be understood as a quan-
tum deformation of the complex Lie group G. Nevertheless, this is indeed the case,
and it is a basic instance of the quantum duality principle, see [25]. From this point

of view, the discrete part K̂q of the Drinfeld double corresponds to the subgroup
AN in the Iwasawa decomposition G = KAN of G. In fact, the group G can be
viewed as the classical double of the Poisson-Lie group K with its standard Poisson
structure, see [49]. As we shall discuss further below, the deformation aspect of
the theory of complex quantum groups is most visible if one works with algebras
of polynomial functions instead. This is in fact the starting point taken by Podleś
and Woronowicz in [63].

3.4.2. The connected component of the identity. Although the classical group G is
connected, the quantization Gq defined above behaves more like an almost con-
nected group. Specifically, we shall see here that each of the quantum groups Gq
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admits a quotient to a finite classical group. This has implications in the repre-
sentation theory of Gq. In particular, it leads to a finite group of one-dimensional
representations.

Recall that we are using G to denote the connected, simply connected Lie group
associated to the complex semisimple Lie algebra g. The centre Z of G is a finite
subgroup of the maximal compact torus T in K. As such, we can identify Z also as a
quantum subgroup of the compact quantum group Kq, via the surjective morphism
of Hopf ∗-algebras πZ : C∞(Kq)→ C∞(T )→ C∞(Z).

There is a canonical isomorphism between Z and the quotient group P∨/Q∨,
where

P∨ = {µ ∈ h∗ | (µ, α) ∈ Z for all α ∈ Q}
denotes the coweight lattice associated to the root system of g. We can explicitly
realize P∨/Q∨ as a central quantum subgroup of Kq as follows. Consider the finite
subgroup (i~−1P∨)/(i~−1Q∨) of h∗q . The corresponding algebra characters Ki~−1γ

with γ ∈ P∨/Q∨ have the property that if f = 〈v′| • |v〉 ∈ End(V (µ))∗ is a matrix
coefficient of any simple module V (µ), with v a vector of weight ν then

(Ki~−1γ , f) = qi~
−1(γ,ν)〈v′, v〉 = e2πi(γ,ν)ε(f) = e2πi(γ,µ)ε(f),

since µ − ν ∈ Q. That is to say, Ki~−1γ evaluates on any matrix coefficient in

End(V (µ))∗ as a constant multiple e2πi(γ,µ) of the counit. It follows that

Ki~−1γ⇀f = f(1)(Ki~−1γ , f(2)) = (Ki~−1γ , f(1))f(2) = f↼Ki~−1γ

for all f ∈ C∞(Kq), and thus that Ki~−1γ is a central group-like element in
M(D(Kq)). The subalgebra of M(D(Kq)) spanned by these elements is a Hopf
∗-algebra isomorphic to the group algebra D(P∨/Q∨) ∼= D(Z). The above calcu-
lation also implies that the projection πZ : C∞(Kq)→ C∞(Z) satisfies

πZ(f(1))⊗ f(2) = πZ(f(2))⊗ f(1)

for all f ∈ C∞(Kq).

Proposition 3.20. The linear map D(Gq)→ D(Ẑ) defined by

ε̂⊗ πZ : D(Gq) = D(Kq) ./ C
∞(Kq)→ C∞(Z) ∼= D(Ẑ)

is a surjective morphism of algebraic quantum groups.

Proof. Let x ./ f, y ./ g ∈ D(Kq) ./ C∞(Gq). Using the above property of πZ , we
have

(ε̂⊗ πZ)((x ./ f)(y ./ g)) = (y(1), f(1)) (Ŝ(y(3)), f(3)) ε̂(xy(2))πZ(f(2)g)

= (y(1), f(1)) (Ŝ(y(3)), f(2)) ε̂(x)ε̂(y(2))πZ(f(3))πZ(g)

= (y(1)Ŝ(y(2)), f(1))ε̂(x)πZ(f(2))πZ(g)

= ε̂(y)ε̂(x)πZ(f)πZ(g)

= (ε̂⊗ πZ)(x ./ f) (ε̂⊗ πZ)(y ./ g).

The map ε̂ ⊗ πZ clearly respects the coproduct, and is therefore a morphism of
multiplier Hopf-algebras. It is surjective since the quotient map C∞(Kq) → C(Z)
is surjective, and it respects the involution since

(ε̂⊗ πZ)((x ./ f)∗) = ((ε̂⊗ πZ)(1 ./ f∗))((ε̂⊗ πZ)(x∗ ./ 1)) = ε̂(x)πZ(f)∗

for all x ./ f ∈ D(Gq). �

Since the elements Ki~−1γ for γ ∈ P∨/Q∨ are group-like in D(Z) = C∞(Ẑ),
we can use the morphism of Proposition 3.20 to define a finite group of algebra
characters of D(Gq), indexed by Z ∼= P∨/Q∨, as follows.
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Definition 3.21. For each γ ∈ P∨/Q∨, we define a character ε̂γ : D(Gq)→ C by

ε̂γ(x ./ f) = (Ki~−1γ , (ε̂⊗ πZ)(x ./ f)) = ε̂(x)(Ki~−1γ , f).

These are non-degenerate ∗-characters, so they correspond to one-dimensional
unitary representations of the quantum group Gq. Note that we have (ε̂γ⊗ε̂γ′)◦∆̂ =
ε̂γγ′ for all γ, γ′ ∈ P∨/Q∨.

We shall denote by PKq the quotient quantum group PKq = Kq/Z. Explicitly,
PKq is defined via its algebra of functions

C∞(PKq) = {f ∈ C∞(Kq) | (id⊗πZ)∆(f) = f ⊗ 1}

=
⊕

µ∈P+∩Q

End(V (µ))∗.

Geometrically, this corresponds to the projective version of Kq, which is a quan-
tization of the group of adjoint type associated with k. The dual multiplier Hopf
algebra is

D(PKq) =
⊕

µ∈P+∩Q

End(V (µ)),

and the obvious projection π̂ : D(Kq) → D(PKq) defines a morphism of algebraic
quantum groups.

Let us define the “connected component” G0
q of Gq to be the quantum double

G0
q = Kq ./ P̂Kq. That is,

C∞c (G0
q) = C∞(Kq)⊗D(PKq)

with the coproduct twisted by the bicharacter U = (id⊗π̂)(WKq ), where WKq ∈
M(C∞(Kq) ⊗ D(Kq)) is the fundamental multiplicative unitary for Kq and π̂ :
D(Kq)→M(D(PKq)) is the projection homomorphism. The dual algebraic quan-
tum group D(G0

q) = D(Kq) ./ C
∞(PKq) satisfies

D(G0
q) = {u ∈ D(Gq) | ε̂γ(u) = ε̂Gq (u) for all γ ∈ P∨/Q∨},

which is to say that the one-dimensional representations of Gq from Definition 3.21
all become trivial upon restriction to the quantum subgroup G0

q.

3.5. Polynomial functions. Our next aim is to describe the Hopf ∗-algebra of
holomorphic and antiholomorphic polynomial functions on the complex quantum
group Gq. We keep our general assumptions from the previous section.

Using the universal R-matrix of Uq(g) we obtain a skew-pairing r−1 between
O(Gq) and O(Gq) given by

r−1(f, g) = (R−1, f ⊗ g),

see Section 2.11. We also set r(f, g) = (R, f ⊗ g) = r−1(S(f)⊗ g). The functional
r will be referred to as the universal r-form on O(Gq).

Starting from the universal r-form, we may form the Hopf algebraic quantum
double of O(Gq). More precisely, we shall consider the Hopf algebra

OR(Gq) = O(Gq) ./ O(Gq),

with underlying vector space O(Gq) ⊗ O(Gq) together with the tensor product
coalgebra structure and the multiplication

(f ./ g)(h ./ k) = (R−1, h(1) ⊗ g(1))fh(2) ./ g(2)k(R, h(3) ⊗ g(3)).

Lemma 3.22. The algebra OR(Gq) = O(Gq) ./ O(Gq) becomes a Hopf ∗-algebra
with the ∗-structure

(f ./ g)∗ = g∗ ./ f∗.
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Proof. Due to the relation (Ŝ⊗Ŝ)(R∗) = R21 obtained in Lemma 3.14 the universal
r-form on O(Gq) = OR(Kq) is real, that is,

(R, f∗ ⊗ g∗) = (R, g ⊗ f).

We compute

((f ./ g)(h ./ k))∗ = (R−1, h(1) ⊗ g(1))(k
∗g∗(2) ./ h

∗
(2)f

∗)(R, h(3) ⊗ g(3))

= (R−1, g∗(1) ⊗ h
∗
(1))(k

∗g∗(2) ./ h
∗
(2)f

∗)(R, g∗(3) ⊗ h
∗
(3))

= (k∗ ./ h∗)(g∗ ./ f∗)

= (h ./ k)∗(f ./ g)∗

using

(R−1, g∗ ⊗ h∗) = (R, S−1(g∗)⊗ h∗)
= (R, S(g)∗ ⊗ h∗)

= (R, h⊗ S(g)) = (R−1, h⊗ g).

Hence OR(Gq) is indeed a ∗-algebra with the above ∗-structure. It is clear that the
comultiplication on OR(Gq) is a ∗-homomorphism. �

The Hopf ∗-algebra OR(Gq) should be thought of as a quantum version of the
algebra of polynomial functions on the real Lie group underlying G. The two copies
of O(Gq) inside OR(Gq) may be interpreted as holomorphic and antiholomorphic
polynomials.

We recall from Lemma 2.111 that the l-functionals on O(Gq), given by

l+(f)(h) = (R, h⊗ f), l−(f)(h) = (R−1, f ⊗ h)

for f ∈ O(Gq), satisfy ∆̂(l±(f)) = l±(f(1))⊗ l±(f(2)) and l±(fg) = l±(f)l±(g) for
f, g ∈ O(Kq).

Lemma 3.23. For f ∈ C∞(Kq) we have

l±(f)∗ = l∓(f∗)

in UR
q (k).

Proof. We compute

(l+(f)∗, h) = (l+(f), S(h)∗)

= (R, S(h)∗ ⊗ f)

= (R, f∗ ⊗ S(h))

= (R−1, f∗ ⊗ h)

= (l−(f∗), h).

Similarly,

(l−(f)∗, h) = (l−(f), S(h)∗)

= (R−1, f ⊗ S(h)∗)

= (R, f ⊗ h∗)
= (R, h⊗ f∗)
= (l+(f∗), h)

as claimed. �
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The following result should be viewed as a quantum analogue of the fact that
complex-valued polynomial functions on the group G embed into the algebra of
smooth functions on G, compare [33].

Proposition 3.24. The linear map i : OR(Gq) → C∞(Gq) = M(C∞c (Gq)) given
by

i(f ./ g) = f(1)g(1) ⊗ l−(f(2))l
+(g(2))

is a nondegenerate homomorphism of multiplier Hopf ∗-algebras.

Proof. Let f, g, h, k ∈ O(Gq). Recall from Lemma 2.105 that we have the relation
(R, f(1) ⊗ g(1))g(2)f(2) = f(1)g(1)(R, f(2) ⊗ g(2)) and hence

(R−1, f(1) ⊗ g(1))f(2)g(2) = g(1)f(1)(R−1, f(2) ⊗ g(2)).

Moreover, from the calculation

(R, f(1) ⊗ g(1)) (l+(g(2))l
−(f(2)), k)

= (R, f(1) ⊗ g(1)) (R, k(1) ⊗ g(2)) (R−1, f(2) ⊗ k(2))

= (R, k(1)f(1) ⊗ g) (R−1, f(2) ⊗ k(2))

= (R−1, f(1) ⊗ k(1)) (R, f(2)k(2) ⊗ g)

= (R−1, f(1) ⊗ k(1)) (R, f(2) ⊗ g(2)) (R, k(2) ⊗ g(1))

= (l−(f(1))l
+(g(1)), k) (R, f(2) ⊗ g(2))

we obtain the exchange relation

(R, f(1) ⊗ g(1))l
+(g(2))l

−(f(2)) = l−(f(1))l
+(g(1))(R, f(2) ⊗ g(2)).

With these formulas, we compute

i((f ./ g)(h ./ k))

= (R−1, h(1) ⊗ g(1)) i(fh(2) ./ g(2)k) (R, h(3) ⊗ g(3))

= (R−1, h(1) ⊗ g(1)) f(1)h(2)g(2)k(1) ⊗ l−(f(2))l
−(h(3))l

+(g(3))l
+(k(2)) (R, h(4) ⊗ g(4))

= f(1)g(1)h(1)k(1) (R−1, h(2) ⊗ g(2))⊗ (R, h(3) ⊗ g(3)) l
−(f(2))l

+(g(4))l
−(h(4))l

+(k(2))

= f(1)g(1)h(1)k(1) ⊗ l−(f(2))l
+(g(2))l

−(h(2))l
+(k(2))

= i(f ./ g)i(h ./ k).

We conclude that i is an algebra homomorphism.
To check the coalgebra homomorphism property it is enough to consider elements

of the form f ./ 1 and 1 ./ g. Using Lemma 2.111 we compute

∆Gq i(f ./ 1) = ∆Gq (f(1) ⊗ l−(f(2)))

= (id⊗σ ⊗ id) (f(1) ⊗W (f(2) ⊗ l−(f(3)))W
−1 ⊗ l−(f(4))

= (f(1) ⊗ l−(f(2)))⊗ (f(3) ⊗ l−(f(4)))

= (i⊗ i)(f(1) ./ 1⊗ f(2) ./ 1)

= (i⊗ i)∆(f ./ 1)
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for f ∈ O(Gq), using

(W (f(1) ⊗ l−(f(2))), x⊗ h) = (W,x(1) ⊗ h(1))(f(1) ⊗ l−(f(2)), x(2) ⊗ h(2))

= (h(1), x(1))(f(1), x(2))(l
−(f(2)), h(2))

= (h(1)f(1), x)(R−1, f(2) ⊗ h(2))

= (R−1, f(1) ⊗ h(1))(f(2)h(2), x)

= (l−(f(1)), h(1))(f(2), x(1))(h(2), x(2))

= (f(2) ⊗ l−(f(1)), x(1) ⊗ h(1))(W,x(2) ⊗ h(2))

= ((f(2) ⊗ l−(f(1)))W,x⊗ h).

In the same way one checks ∆Gq i(1 ./ g) = (i⊗ i)∆(1 ./ g) for g ∈ O(Gq).
For the ∗-compatibility notice that we have

i((f ⊗ g)∗) = i(g∗ ⊗ f∗)
= g∗(1)f

∗
(1) ⊗ l

−(g∗(2))l
+(f∗(2))

= (f(1)g(1))
∗ ⊗ l+(g(2))

∗l−(f(2))
∗

= i(f ⊗ g)∗,

due to Lemma 3.23. �

3.6. The quantized universal enveloping algebra of a complex group. In
this section we introduce the quantized universal enveloping algebra of the complex
quantum group Gq and discuss some related constructions and results. We keep
our general assumptions from the previous section.

Recall that the group algebra D(Gq) can be identified with the Drinfeld double

D(Gq) = D(Kq) ./ C
∞(Kq)

with respect to the canonical pairing between D(Kq) and C∞(Kq).

Proposition 3.25. The linear map ι : D(Gq)→M(D(Kq)⊗D(Kq)) given by

ι(x ./ f) = ∆̂(x)(l−(f(1))⊗ l+(f(2)))

is an injective essential algebra homomorphism.

Proof. We compute

ι((x ./ f)(y ./ g)) = ι(x(y(1), f(1))y(2) ./ f(2)(Ŝ(y(3)), f(3))g)

= (y(1), f(1))∆̂(xy(2))(Ŝ(y(3)), f(4))(l
−(f(2)g(1))⊗ l+(f(3)g(2)))

= ∆̂(x)(y(1), f(1))∆̂(y(2))(Ŝ(y(3)), f(4))(l
−(f(2))l

−(g(1))⊗ l+(f(3))l
+(g(2)))

= ∆̂(x)(l−(f(1))⊗ l+(f(2)))∆̂(y)(l−(g(1))⊗ l+(g(2)))

= ι(x ./ f)ι(y ./ g)

for x ./ f, y ./ g ∈ D(Gq), using

((y(1), f(1))∆̂(y(2))(l
−(f(2))⊗ l+(f(3))), h⊗ k)

= (y(1), f(1))(y(2), k(1)h(1))(R−1, f(2) ⊗ h(2))(R, k(2) ⊗ f(3))

= (y, k(1)h(1)f(1))(R−1, f(2) ⊗ h(2))(R, k(2) ⊗ f(3))

= (R−1, f(1) ⊗ h(1))(R, k(1) ⊗ f(2))(y, f(3)k(2)h(2))

= (R−1, f(1) ⊗ h(1))(R, k(1) ⊗ f(2))(y(1), k(2)h(2))(y(2), f(3))

= ((l−(f(1))⊗ l+(f(2)))∆̂(y(1))(y(2), f(3)), h⊗ k).

Hence ι is an algebra homomorphism, and it is evident that ι is essential.
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We next show that ι is injective. For this, note that the image of ι belongs to
the space

M = {m ∈M(D(Kq)⊗D(Kq)) | (z ⊗ 1)m ∈D(Kq)⊗D(Kq) for all z ∈ D(Kq)}

Note that the Galois map on D(Kq)⊗D(Kq) defined by

x⊗ y 7→ xŜ(y(1))⊗ y(2)

extends to a linear isomorphism γ : M → M . It suffices therefore to prove the
injectivity of the composition

i : D(Gq)→ D(Gq)
ι−→M

γ−→M,

where the first map is the linear isomorphism sending x ./ f to (1 ./ f)(x ./ 1).
We calculate

i(x ./ f) = l−(f(1))l
+(S(f(2)))⊗ l+(f(3))x = I(f(1))⊗ l+(f(2))x.

where I : O(Gq)→ FUq(g) is the isomorphism of Proposition 2.116.
Consider then an element in the kernel of i. We can write it as a finite linear

combination ∑
µ∈P+

∑
j,k

xµjk ./ u
µ
jk,

where uµjk = 〈eµj | • |e
µ
k〉 are the matrix coefficients with respect to an orthonormal

weight basis (eµj ) of V (µ), and xµjk are some elements of D(Kq). Then by assumption
we have

i
( ∑
µ∈P+

∑
j,k

xµjk ./ u
µ
jk

)
=
∑
µ∈P+

∑
j,r,k

I(uµjr)⊗ l
+(uµrk)xµjk = 0.

Since I is an isomorphism and the uµjr are linearly independent, this implies that
for all fixed µ, j, r, ∑

k

l+(uµrk)xµjk = 0.

Let us write εk for the weight of eµk . From the form of the universal R-matrix,
see Theorem 2.108, we see that l+(uµk′k) = 0 unless εk ≥ εk′ . Moreover, l+(uµkk) is
invertible in Uq(g), while l+(uµk′k) = 0 if εk′ = εk but k′ 6= k.

Fix µ and j and suppose xµjk 6= 0 for some k. Choose k′ with εk′ maximal

amongst all εk where xµjk 6= 0. In this case we have l+(uµk′k)xµjk = 0 for all k except

k = k′ and hence xµjk′ = 0, a contradiction. It follows that xµjk = 0 for all µ, j, k, as
desired. �

Let us now give the definition of the quantized universal enveloping algebra of a
complex group.

Definition 3.26. The quantized universal enveloping algebra of the real Lie algebra
underlying g is

UR
q (g) = UR

q (k) ./ C∞(Kq),

equipped with the standard Hopf ∗-algebra structure.

Explicitly, the multiplication in UR
q (g) is given by

(X ./ f)(Y ./ g) = X(Y(1), f(1))Y(2) ./ f(2)(Ŝ(Y(3)), f(3))g,

for X,Y ∈ UR
q (k) and f, g ∈ C∞(Kq) and the ∗-structure is given by

(X ./ f)∗ = (1 ./ f∗)(X∗ ./ 1) = (X∗(1), f
∗
(1))X

∗
(2) ./ f

∗
(2) (Ŝ(X∗(3)), f

∗
(3)).

We view UR
q (g) as a substitute of the universal enveloping algebra of the real Lie

algebra g. Note that UR
q (g) ⊂M(D(Gq)) naturally.
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The following result is originally due to Krähmer [50] and Arano [3].

Lemma 3.27. The linear map ι : UR
q (g)→ Uq(g)⊗ Uq(g) given by

ι(X ./ f) = ∆̂(X)(l−(f(1))⊗ l+(f(2)))

is an injective algebra homomorphism, and its image is

ι(UR
q (g)) = (FUq(g)⊗ 1)∆̂(Uq(g))

= (1⊗ Ŝ−1(FUq(g)))∆̂(Uq(g))

= ∆̂(Uq(g))(FUq(g)⊗ 1)

= ∆̂(Uq(g))(1⊗ Ŝ−1(FUq(g))).

In particular, we have an algebra isomorphism

UR
q (g) ∼= FUq(g) o Uq(g)

where Uq(g) acts on FUq(g) via the adjoint action.

Proof. Since UR
q (g) ⊂M(D(Gq)) it follows from Proposition 3.25 that ι defines an

injective algebra homomorphism UR
q (g) → Uq(g) ⊗ Uq(g). This fact was proved in

a slightly different way in [50].
For the second claim compare Section 4 in [3]. We have

ι((1 ./ f)(X ./ 1)) = (l−(f(1))⊗ l+(f(2)))∆̂(X)

= (l−(f(1))l
+(S(f(2)))l

+(f(3))⊗ l+(f(4)))∆̂(X)

= (I(f(1))⊗ 1)∆̂(l+(f(2)))∆̂(X) ⊂ (FUq(g)⊗ 1)∆̂(Uq(g)),

where I is the isomorphism from Proposition 2.116. This proves the inclusion
ι(UR

q (g)) ⊂ (FUq(g) ⊗ 1)∆̂(Uq(g)). Conversely, for X = I(f) ∈ FUq(g) and Y ∈
Uq(g) we have

(I(f)⊗ 1)∆̂(Y ) = (l−(f(1))l
+(S(f(2)))⊗ 1)∆̂(Y )

= (l−(f(1))⊗ l+(f(2)))(l
+(S(f(4)))⊗ l+(S(f(3))))∆̂(X) ⊂ ι(UR

q (g)).

Using the relations X ⊗ 1 = (1 ⊗ Ŝ−1(X(3)))(X(1) ⊗ X(2)) and 1 ⊗ Ŝ−1(X) =

(X(3)⊗1)(Ŝ−1(X(2))⊗ Ŝ−1(X(1))), and the fact that FUq(g) satisfies ∆̂(FUq(g)) ⊂
Uq(g)⊗ FUq(g) we obtain

(FUq(g)⊗ 1)∆̂(Uq(g)) = (1⊗ Ŝ−1(FUq(g)))∆̂(Uq(g)).

The remaining equalities follow from the fact that ι(UR
q (g)) is an algebra, combined

with

(Y ⊗ 1)∆̂(X) = X(3)Ŝ
−1(X(2))Y X(1) ⊗X(4)

= X(2)Ŝ
−1(X(1))→ Y ⊗X(3) ⊂ ∆̂(Uq(g))(FUq(g)⊗ 1)

and

(1⊗ Ŝ−1(Y ))∆̂(Ŝ−1(X)) = Ŝ−1(X(4))⊗ Ŝ−1(X(3))X(2)Ŝ
−1(Y )Ŝ−1(X(1))

= Ŝ−1(X(3))⊗ Ŝ−1(X(2))Ŝ
−1(X(1) → Y )

⊂ ∆̂(Uq(g))(1⊗ Ŝ−1(FUq(g)))

for Y ∈ FUq(g) and X ∈ Uq(g).
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Finally, we have a linear isomorphism FUq(g) o Uq(g)→ (FUq(g)⊗ 1)∆̂(Uq(g))

given by γ(X o Y ) = (X ⊗ 1)∆̂(Y ), and since

γ((X o Y )(X ′ o Y ′)) = γ(XY(1)X
′Ŝ(Y(2)) o Y(3)Y

′)

= XY(1)X
′Y ′(1) ⊗ Y(2)Y

′
(2)

= (X ⊗ 1)∆̂(Y )(X ′ ⊗ 1)∆̂(Y ′) = γ(X o Y )γ(X ′ o Y ′)

the map γ is compatible with multiplication. �

We remark that ι is not a homomorphism of coalgebras; in fact there is no
bialgebra structure on Uq(g) ⊗ Uq(g) for which ι becomes a homomorphism of
coalgebras. Let us also point out that ι is not a ∗-homomorphism in a natural
way.

Using Lemma 3.27 we can determine the centre of UR
q (g).

Lemma 3.28. The centre ZUR
q (g) of UR

q (g) is isomorphic to ZUq(g)⊗ ZUq(g).

Proof. Lemma 3.27 shows that ZUq(g) ⊗ ZUq(g) ⊂ Z(im(ι)), where ι : UR
q (g) →

Uq(g)⊗ Uq(g) is as above.
Conversely, any elementX ∈ im(ι) which commutes with im(ι) must in particular

commute with the elements K2µ⊗1 and 1⊗K−2µ for µ ∈ P+. It follows that X has
weight 0 with respect to the diagonal action of Uq(h) on both left and right tensor
factors. Hence X commutes with Uq(h)FUq(g) = Uq(g) in both tensor factors, and
therefore is contained in ZUq(g)⊗ ZUq(g). �

We have a bilinear pairing between Uq(g)⊗Uq(g) and O(Gq) ./ O(Gq) given by

(X ⊗ Y, f ./ g) = (X, g)(Y, f).

Using this pairing, elements of Uq(g)⊗Uq(g) can be viewed as linear functionals on
O(Gq) ./ O(Gq). For X ./ f ∈ UR

q (g) and g ./ h ∈ OR(Gq) we compute

(ι(X ./ f),g ./ h) = (X(1)l
−(f(1))⊗X(2)l

+(f(2)), g ./ h)

= (X(1), h(1))(R−1, f(1) ⊗ h(2))(X(2), g(1))(R, g(2) ⊗ f(2))

= (X(2), g(1))(X(1), h(1))(R−1, g(2) ⊗ S−1(f(2)))(R, S−1(f(1))⊗ h(2))

= (X, g(1)h(1))(l
−(g(2))l

+(h(2)), S
−1(f))

= (X ./ f, g(1)h(1) ⊗ l−(g(2))l
+(h(2)))

= (X ./ f, ι(g ./ h))

for X ./ f ∈ UR
q (g) and g ./ h ∈ O(Gq) ./ O(Gq).

3.7. Parabolic quantum subgroups. In this section we describe briefly how to
obtain quantum analogues of parabolic subgroups in complex semisimple Lie groups.
We continue to use the notation introduced in previously.

Recall that Σ = {α1, . . . , αN} denotes the set of simple roots, and let S ⊂ Σ be
a subset. We obtain a corresponding Hopf ∗-subalgebra UR

q (kS) ⊂ UR
q (k) generated

by all Kλ for λ ∈ P together with the generators Ei, Fi for αi ∈ S. Notice that
UR
q (kΣ) = UR

q (k) and UR
q (k∅) = UR

q (t). The inclusion UR
q (kS) → UR

q (k) induces a

map UR
q (k)∗ → UR

q (kS)∗, and we denote by C∞(Kq,S) the Hopf ∗-algebra obtained
as the image of C∞(Kq) under this map. In this way, Kq,S is a closed quantum
subgroup of Kq. Notice that Kq,Σ = Kq, and that Kq,∅ = T is the classical maximal
torus inside Kq.

We define the parabolic quantum subgroup Pq ⊂ Gq associated to the set S as
the Drinfeld double

C∞c (Pq) = C∞c (Kq,S ./ K̂q) = C∞(Kq,S)⊗D(Kq)
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with the coproduct induced from C∞c (Gq). That is, in the formula for the comultipli-
cation of C∞c (Gq) one has to replace W by (πS⊗ id)(W ) ∈M(C∞(Kq,S)⊗D(Kq)),
where πS : C∞(Kq)→ C∞(Kq,S) is the canonical quotient map.

In a similar way we construct the quantized universal enveloping algebras of the
corresponding real Lie groups. More precisely, we define the Hopf ∗-algebra UR

q (p)
associated to the parabolic quantum subgroup Pq by

UR
q (p) = UR

q (kS) ./ C∞(Kq)

where the pairing between UR
q (kS) and C∞(Kq) used in the definition of the double

is induced from the canonical pairing between UR
q (k) and C∞(Kq). By construction,

we have a canonical inclusion homomorphism UR
q (p)→ UR

q (g).
The quantum Borel subgroup Bq ⊂ Gq is defined to be the parabolic subgroup

corresponding to S = ∅. Explicitly,

C∞c (Bq) = C∞c (T ./ K̂q) = C∞(T )⊗D(Kq)

with the comultiplication twisted by the bicharacter as explained above. The cor-
responding quantized universal enveloping algebra is

UR
q (b) = UR

q (t) ./ C∞(Kq).

In the study of principal series representations we will only work with the Borel
quantum subgroup and its quantized universal enveloping algebra.
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4. Category O

In this chapter we study some aspects of the representation theory of quantized
universal enveloping algebras with applications to the theory of Yetter-Drinfeld
modules and complex quantum groups. Our main goal is a proof of the Verma
module annihilator Theorem, following the work of Joseph and Letzter. We refer
to [28] for a survey of the ideas involved in the proof and background.

In this chapter, unless explicitly stated otherwise, we shall work over K = C and
assume that 1 6= q = eh is positive. We shall also use the notation ~ = h

2π . Recall

that in this situation, we have the identification h∗q = h∗/i~−1Q∨, see Subsection
2.3.1.

4.1. The definition of category O. In this section we introduce category O for
Uq(g), compare Section 4.1.4 in [41] and [1], [37].

We start with the following definition, compare [1].

Definition 4.1. A left module M over Uq(g) is said to belong to category O if

a) M is finitely generated as a Uq(g)-module.
b) M is a weight module, that is, a direct sum of its weight spaces Mλ for λ ∈ h∗q .
c) The action of Uq(n+) on M is locally nilpotent.

Morphisms in category O are all Uq(g)-linear maps.

Note that category O is closed under taking submodules and quotient mod-
ules. Specifically, finite generation passes to submodules by Noetherianity of Uq(g),
see Proposition 2.134, and submodules and quotients of weight modules are again
weight modules. Local nilpotency is obvious in either case.

Due to finite generation, any module M in category O satisfies dimMλ <∞ for
all λ ∈ h∗q . We define the formal character of M by setting

ch(M) =
∑
λ∈h∗q

dim(Mλ)eλ,

here the expression on the right hand side is interpreted as a formal sum.
More generally, we will consider formal sums of the form

∑
λ∈h∗q

f(λ)eλ where

f : h∗q → Z is any integer valued function whose support lies in a finite union of

sets of the form ν −Q+ with ν ∈ h∗q . For such formal sums, there is a well-defined
convolution product given by∑

λ∈h∗q

f(λ)eλ

∑
µ∈h∗q

g(µ)eµ

 =
∑

λ,µ∈h∗q

f(λ)g(µ)eλ+µ.

In particular, let us define

p =
∏

β∈∆+

( ∞∑
m=0

e−mβ

)
=
∑
ν∈Q+

P (ν)e−ν ,

where P is Kostant’s partition function,

P (ν) = |{(r1, . . . , rn) ∈ Nn0 | r1β1 + · · ·+ rnβn = ν}| .

If µ ∈ h∗q and M = M(µ) is the Verma module with highest weight µ then Propo-
sition 2.68 immediately shows that the character of M is given by

ch(M(µ)) = eµp.
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4.1.1. Category O is Artinian. In this subsection we discuss finiteness properties
of category O.

Let us first show that every module M in O admits a finite filtration by highest
weight modules, compare Section 1.2 in [37]. Recall that a Uq(g)-module M is
called a highest weight module of highest weight λ if there exists a primitive vector
vλ in M which generates M . Recall also that we have a partial order on h∗q defined

by λ ≤ µ if and only if µ− λ ∈ Q+, see Section 2.3.

Lemma 4.2. Let M be a nonzero module in O. Then M has a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such that each subquotient Mj/Mj−1 for 1 ≤ j ≤ n is a highest weight module.

Proof. According to condition a) in Definition 4.1 we see that M is generated by
finitely many weight vectors. Consider the Uq(n+)-module V generated by a finite
generating set of weight vectors, which by condition c) is finite dimensional.

We prove the claim by induction on dim(V ), the case dim(V ) = 1 being trivial.
For the inductive step pick a weight in h∗q which is maximal among the weights
appearing in V . Then we can find a corresponding primitive vector v ∈ M and
obtain an associated submodule M0 = Uq(g) · v ⊂ M . The quotient M/M0 is
again finitely generated by the Uq(n+)-module V/Cv. We can therefore apply our
inductive hypothesis to obtain a filtration of the desired type for M/M0, and pulling
this filtration back to M yields the assertion. �

Recall that a module M over a ring R is called Noetherian (Artinian) if every
ascending chain M1 ⊂ M2 ⊂ M3 ⊂ · · · of submodules (every descending chain
M1 ⊃ M2 ⊃ · · · of submodules) becomes stationary, that is, if there exists n ∈ N
such that Mn = Mn+1 = Mn+2 = · · · .

We show that every module in O is Artinian and Noetherian, compare Section
1.11 in [37].

Theorem 4.3. Every module M in category O is Artinian and Noetherian. More-
over dimUq(g)(M,N) <∞ for all M,N ∈ O.

Proof. According to Lemma 4.2, any nonzero module M in O has a finite filtration
with subquotients given by highest weight modules. Hence it suffices to treat the
case where M = M(λ) for λ ∈ h∗q is a Verma module.

Consider the finite dimensional subspace V =
⊕

ŵ∈Ŵ M(λ)ŵ.λ of M = M(λ),

where we recall that Ŵ is the extended Weyl group defined in Section 2.13. Assume
that N1 ⊂ N2 is a proper inclusion of submodules of M . Then ZUq(g) acts on
N1, N2 and N2/N1 by the central character ξλ. Since N2 ⊂ M the module N2/N1

contains a primitive vector vµ of some weight µ ≤ λ. Therefore ξµ = ξλ. According

to Theorem 2.128 this implies µ = w.λ for some w ∈ Ŵ . We conclude N2 ∩ V 6= 0
and dim(N2 ∩ V ) > dim(N1 ∩ V ). Since V is finite dimensional this means that
any strictly ascending or descending chain of submodules will have length at most
dim(V ). In particular, every module M in O is both Artinian and Noetherian.

Any Uq(g)-linear map M → N is determined by its values on a finite generat-
ing set of weight vectors. Since the weight spaces of N are finite dimensional we
conclude dimUq(g)(M,N) <∞ for all M,N ∈ O. �

Of course, Noetherianity of modules in O follows also from the fact that Uq(g)
is Noetherian, see Theorem 2.134.

Due to Theorem 4.3 one can apply Jordan-Hölder theory to category O. More
precisely, every module M ∈ O has a decomposition series 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mn = M such that all subquotients Mj+1/Mj are simple highest weight modules.
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Moreover, the number of subquotients isomorphic to V (λ) for λ ∈ h∗q is independent
of the decomposition series and will be denoted by [M : V (λ)]. Note that this gives
the formula

ch(M) =
∑
λ∈h∗q

[M : V (λ)] ch(V (λ))

for the character of M , with only finitely many nonzero terms on the right hand
side.

In particular, for any µ ∈ h∗q the character of the Verma module M(µ) can be
written as

ch(M(µ)) =
∑
λ∈h∗q

[M(µ) : V (λ)] ch(V (λ)).

Note that [M(µ) : V (µ)] = 1, and moreover [M(µ) : V (λ)] = 0 unless λ ≤ µ and λ

is Ŵ -linked to µ, due to Theorem 2.128. It follows that the character of the simple
module V (µ) can be expressed in the form

ch(V (µ)) =
∑
λ∈W.µ

mλ ch(M(λ))

for certain integers mλ. For µ ∈ P+ these coefficients are given as follows.

Proposition 4.4. Let µ ∈ P+. Then we have

ch(V (µ)) =
∑
w∈W

(−1)l(w) ch(M(w.µ)).

Proof. The above discussion shows that

ch(V (µ)) =
∑
w∈W

mw.µ ch(M(w.µ))

for some integers mw.µ. We need to show that mw.µ = (−1)l(w).
Recall that ch(M(µ)) = eµp where p =

∏
β∈∆+(1 + e−β + e−2β + · · · ). We

introduce the formal sum

q =
∏

β∈∆+

(eβ/2 − e−β/2) = eρ
∏

β∈∆+

(1− e−β),

and note that the right hand expression gives pq = eρ. Therefore, we obtain

ch(V (µ))q =
∑
w∈W

mw.µe
w.µpq =

∑
w∈W

mw.µe
wµ.

Consider the Weyl group action on finite formal sums defined by weλ = ewλ for
w ∈W and λ ∈ h∗q . Note that q is alternating with respect to this action, meaning

that wq = (−1)l(w)q for all w ∈ W . Moreover, ch(V (µ)) is W -invariant by Propo-
sition 2.42. Therefore, ch(V (µ))q is alternating, and hence mw.µ = (−1)l(w)mµ for
all w ∈W . Since mµ = 1, the result follows. �

As a consequence, the weight spaces of the irreducible module V (µ) for µ ∈ P+

have the same dimensions as in the classical case, and the dimension of V (µ) is
given by the Weyl dimension formula.

4.1.2. Duality. The appropriate duality operation in category O is different from
the usual duality for modules over Hopf algebras defined in terms of the antipode.

We define duals in category O in the same way as we did for general weight
modules in Section 2.3. Namely, if M is a module in category O we let the dual of
M be the Uq(g)-module

M∨ =
⊕
λ∈h∗q

Hom(Mλ,C),
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with the left Uq(g)-module structure given by

(X · f)(v) = f(τ(X) · v),

where τ is the involution from Definition 2.16. Notice that we have a canonical
isomorphism M∨∨ ∼= M since all weight spaces are finite dimensional and τ is
involutive. If 0 → K → M → Q → 0 is an exact sequence of modules in category
O then the dual sequence 0→ Q∨ →M∨ → K∨ → 0 is again exact.

Let us show that the dual M∨ of a module M in category O is again in category
O. It is clear that M∨ is a weight module such that (M∨)λ = Hom(Mλ,C). Local
nilpotency of the action of Uq(n+) follows from the fact that the elements in M∨

are supported on only finitely many weight spaces.
To see that M∨ is finitely generated we argue as follows, see [37]. Assume M∨

is not finitely generated. Then we can find a strictly increasing infinite sequence
0 = U0 ⊂ U1 ⊂ · · · ⊂ M∨ of finitely generated submodules Uk ⊂ M∨. Setting
Qj = M∨/Uj we obtain a corresponding infinite sequence M∨ = M∨/0 → Q1 →
Q2 → · · · of quotient modules of M∨ and surjective module maps. By exactness
of the duality functor this in turn leads to a strictly decreasing infinite sequence of
submodules of M . As we have seen in the proof of Theorem 4.3 this is impossible.

In summary, we conclude that sending M to M∨ defines a contravariant involu-
tive self-equivalence of category O.

4.1.3. Dominant and antidominant weights. In this subsection we discuss the no-
tion of dominant and antidominant weights in analogy to the classical theory, see
Chapter 10 in [37]. There are some new features in the quantum setting due to the
exponentiation in the Cartan part of the quantized universal enveloping algebra.

Recall from Definition 2.125 that the extended Weyl group is defined as Ŵ =
Yq o W , where Yq denotes the subgroup of elements of order at most 2 in h∗q .

Under the identification h∗q = h∗/i~−1Q∨ we have Yq = 1
2 i~
−1Q∨/i~−1Q∨. The

extended Weyl group acts on h∗q by

(ζ, w)λ = wλ+ ζ,

for ζ ∈ 1
2 i~
−1Q∨/i~−1Q∨, w ∈W and λ ∈ h∗q , and also by the shifted action

(ζ, w) . λ = w.λ+ ζ = w(λ+ ρ)− ρ+ ζ.

Two elements of h∗q are Ŵ -linked if they lie in the same orbit of the shifted Ŵ -action.
Following the notation in [37], we define

∆[λ] = {α ∈∆ | q(λ,α∨)
α ∈ ±qZα}.

Here we are writing q
(λ,µ)
α to denote q(λ,dαµ) for µ ∈ P. Note that ∆[µ] = ∆[λ] if

µ ∈ λ+ P, so we may equivalently characterize ∆[λ] by

∆[λ] = {α ∈∆ | q(λ+ρ,α∨)
α ∈ ±qZα}.

Next we define

Ŵ[λ] = {ŵ ∈ Ŵ | ŵλ− λ ∈ Q}.

Note that if µ = λ+ ν with ν ∈ P then for any ŵ = (ζ, w) ∈ Ŵ[λ] we have

(ζ, w)µ− µ = (wλ+ ζ − λ) + (wν − ν) = ((ζ, w)λ− λ) + (wν − ν) ∈ Q.

It follows that Ŵ[µ] = Ŵ[λ] whenever µ ∈ λ+ P, and therefore

Ŵ[λ] = {ŵ ∈W | ŵ . λ− λ ∈ Q}.
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We define W[λ] as the image of Ŵ[λ] under the canonical projection Ŵ →W . Note

that Ŵ[λ] ∩ ( 1
2 i~
−1Q∨/i~−1Q∨o {e}) is trivial, so the projection map Ŵ[λ] →W[λ]

is in fact an isomorphism. Explicitly, we have

W[λ] = {w ∈W | wλ− λ ∈ Q + 1
2 i~
−1Q∨/i~−1Q∨}

= {w ∈W | w . λ− λ ∈ Q + 1
2 i~
−1Q∨/i~−1Q∨}.

In the next proposition, we write E for the R-span of the root system ∆ ⊂ h∗.
For λ ∈ h∗ we write λ = Re(λ)+ iIm(λ) where Re(λ), Im(λ) belong to E. Similarly,
we decompose λ ∈ h∗q , under the understanding that Im(λ) is only defined modulo

~−1Q∨.

Proposition 4.5. Let λ ∈ h∗q . Then ∆[λ] is a root system in its R-span E(λ) ⊂ E,
where E(λ) is equipped with the inner product induced from E. Moreover W[λ] is
the Weyl group of ∆[λ].

Proof. In order to verify that ∆[λ] is a root system in E(λ) it is enough to check
sβ∆[λ] ⊂ ∆[λ] for all β ∈ ∆[λ]. So let α ∈ ∆[λ] and observe that (sβα)∨ = sβα

∨

since the action of sβ on E is isometric. Therefore

q
(λ,(sβα)∨)
α = q

(λ,sβα
∨)

α = q(λ,α∨)−(λ,β∨)(β,α∨)
α ∈ ±qZα

as desired, using that both α and β are contained in ∆[λ]. Since qα = qsβα this
shows sβα ∈∆[λ].

In order to prove that W[λ] is the Weyl group of ∆[λ] we proceed in a similar way
as in Section 3.4 in [37]. We show first that α ∈∆ satisfies α ∈∆[λ] iff sα ∈W[λ].

Indeed, we have sα.λ−λ = −(λ+ρ, α∨)α in h∗q , and the condition q
(λ+ρ,α∨)
α ∈ ±qZα

is equivalent to −(λ+ ρ, α∨)α ∈ Q in h∗q/
1
2 i~
−1Q∨. Thus, the Weyl group of ∆[λ]

is contained in W[λ], and to complete the proof it suffices to show that W[λ] is
generated by the reflections it contains.

We first consider the case λ ∈ E. We introduce the affine Weyl group Wa =
Q oW , where Q acts upon E by translations and W by the standard Weyl group
action. Note that an element w ∈W belongs to W[λ] if and only if (β,w)λ = λ for
some β ∈ Q. By Theorem 4.8 of [36] the subgroup of Wa which fixes any λ ∈ E is
generated by its reflections, and the result follows.

Now let λ ∈ h∗q = h∗/i~−1Q∨ be arbitrary, and lift it to an element λ0 + iλ1 ∈ h∗

with λ0, λ1 ∈ E. An element w ∈W belongs to W[λ] if and only if

wλ0 − λ0 ∈ Q and wλ1 − λ1 ∈ 1
2~
−1Q∨.

By the previous case, the first condition is equivalent to w ∈ W[λ0], which is the
Weyl group of the root system ∆[λ0] in the subspace E(λ0).

Consider the rescaled coroot system

∆′ = { 1
2~
−1α∨ | α ∈∆[λ0]} ⊂ E(λ0).

It is a root system with the same Weyl group W[λ0]. We write Q′ for the lattice
it generates and W ′a = Q′ o W[λ0] for the associated affine Weyl group. Let us
decompose λ1 as

λ1 = λ′1 + λ′′1 ∈ E(λ0)⊕ E(λ0)⊥.

Since W[λ0] fixes E(λ0)⊥, we see that if w ∈ W[λ0] then the above condition on λ1

is equivalent to

wλ1 − λ1 = wλ′1 − λ′1 ∈ 1
2~
−1Q∨ ∩ E(λ0) = Q′,

and therefore (γ,w)λ′1 = λ′1 for some γ ∈ Q′. As before, the subgroup of W ′a fixing
λ′1 is generated by its reflections. Thus W[λ] is generated by its reflections, and the
result follows. �
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Let us now introduce the concept of dominant and antidominant weights. We
recall that we use the convention N = {1, 2, . . . } and N0 = N ∪ {0}.

Definition 4.6. Let λ ∈ h∗q . Then

a) λ is dominant if q
(λ+ρ,α∨)
α /∈ ±q−Nα for all α ∈∆+.

b) λ is antidominant if q
(λ+ρ,α∨)
α /∈ ±qNα for all α ∈∆+.

We remark that −ρ is both dominant and antidominant. Note that λ ∈ h∗q is not

dominant iff there exists some α ∈∆+ such that q
(λ+ρ,α∨)
α ∈ ±q−Nα , or equivalently,

such that (λ + ρ, α∨) = −m + 1
2 i~
−1
α Z for some m ∈ N, where we are using the

notation ~α = dα~. Similarly, λ ∈ h∗q is not antidominant iff there exists some

α ∈ ∆+ such that q
(λ+ρ,α∨)
α ∈ ±q−Nα , or equivalently, such that (λ + ρ, α∨) =

m+ 1
2 i~
−1
α Z for some m ∈ N.

We remark that the terminology introduced in Definition 4.6 is in tension with
standard terminology used for dominant integral weights. More precisely, λ ∈ P is
dominant in the sense of Definition 4.6 iff (λ+ ρ, α∨) ≥ 0 for all α ∈∆+, whereas
λ is dominant integral if (λ, α∨) ≥ 0 for all α ∈ ∆+. We shall refer to weights in
P+ as dominant integral weights, which means that being dominant and integral
is not the same thing as being dominant integral.

Let us introduce some further notation for reflections in the extended Weyl group
Ŵ = YqoW , where we recall that Yq = 1

2 i~
−1Q∨/i~−1Q∨. If k ∈ Z and α ∈∆[λ],

we write sk,α = (k2 i~
−1α∨, sα) ∈ Ŵ . Explicitly, this element acts on ν ∈ h∗q by

sk,α.ν = sα.ν + k
2 i~
−1α∨.

Note that sk,α = sk+2m,α for all m ∈ Z, so we shall frequently parametrize sk,α by
k ∈ Z2.

In the sequel we will use the notation λ ≤ µ in h∗q/
1
2 i~
−1Q∨ to say that µ− λ is

congruent to an element of Q+ modulo 1
2 i~
−1Q∨. In other words, this corresponds

to the natural order relation in the quotient h∗q/
1
2 i~
−1Q∨ of h∗q .

Proposition 4.7. Let λ ∈ h∗q . Then λ is antidominant if and only if one of the
following equivalent conditions hold.

a) (λ+ ρ, α) ≤ 0 in C/ 1
2 i~
−1Z for all α ∈ ∆+

[λ], that is, the real part of (λ+ ρ, α)

is non-positive, and the imaginary part of (λ+ ρ, α) is contained in 1
2~
−1Z.

b) λ ≤ sα.λ in h∗q/
1
2 i~
−1Q∨ for all α ∈∆+

[λ].

c) λ ≤ w.λ in h∗q/
1
2 i~
−1Q∨ for all w ∈W[λ].

d) If ŵ ∈ Ŵ[λ] satisfies ŵ.λ ≤ λ in h∗q then ŵ = e.

Proof. Recall that α ∈ ∆[λ] if and only if q
(λ+ρ,α∨)
α ∈ ±qZα. Therefore λ is antidom-

inant if and only if for every α ∈ ∆+
[λ] we have in fact q

(λ+ρ,α∨)
α ∈ ±q−N0

α . This is

equivalent to condition a).
Now we prove the equivalence of the four listed conditions.
a)⇔ b) For any root α ∈∆+ we have

sα.λ = sα(λ+ ρ)− ρ = λ− (λ+ ρ, α∨)α = λ− (λ+ ρ, α)α∨.

This shows the desired equivalence.
c)⇒ b) is trivial.
b) ⇒ c) We use induction on the length of w ∈ W[λ]. For w = e the claim

obviously holds. Hence assume w = vsi for some v ∈ W[λ] with l(v) < l(w) and
si the reflection associated to some simple root αi in ∆[λ]. Note that, in this case,
wα < 0. We have

λ− w.λ = (λ− v.λ) + v(λ− si.λ),
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where in the second term v is acting by the unshifted action. The first term satisfies
λ− v.λ ≤ 0 by our inductive hypothesis. For the second term we obtain

v(λ− si.λ) = w(si.λ− λ) = −(λ+ ρ, α∨i )wαi ≤ 0

as well.
c)⇒ d) Assume ŵ = (β∨, w) satisfies ŵ.λ ≤ λ. We have

ŵ.λ− λ = w.λ− λ+ 1
2 i~
−1β∨,

so that w.λ ≤ λ in h∗q/
1
2 i~
−1Q∨. Hence condition c) implies w = e. Now (β∨, e).λ =

λ+ 1
2 i~
−1β∨ ≤ λ yields β∨ = 0.

d) ⇒ a) Fix α ∈ ∆+
[λ] and consider the affine reflection sk,α = (kα∨, sα). Since

sk,α ∈ Ŵ[λ] we automatically have

−(λ+ ρ, α∨)α+ k
2 i~
−1α∨ = sk,α.λ− λ ∈ Q

inside h∗q/
1
2 i~
−1Q∨, that is, (λ + ρ, α∨)α ∈ Q ⊂ h∗q/

1
2 i~
−1Q∨. In particular,

(Im(λ) + ρ, α) ∈ 1
2 i~
−1Z. If (Re(λ) + ρ, α∨) > 0 then we get sk,α.λ < λ for suitable

choice of k, which is impossible by d). Hence (Re(λ) + ρ, α∨) ≤ 0.
This finishes the proof. �

An analogous result holds for dominant weights.

Proposition 4.8. Let λ ∈ h∗q . Then λ is dominant if and only if one of the
following equivalent conditions hold.

a) (λ+ ρ, α) ≥ 0 in C/ 1
2 i~
−1Z for all α ∈ ∆+

[λ], that is, the real part of (λ+ ρ, α)

is non-negative, and the imaginary part of (λ+ ρ, α) is contained in 1
2~
−1Z.

b) λ ≥ sα.λ in h∗q/
1
2 i~
−1Q∨ for all α ∈∆+

[λ].

c) λ ≥ w.λ in h∗q/
1
2 i~
−1Q∨ for all w ∈W[λ].

d) If ŵ ∈ Ŵ[λ] satisfies ŵ.λ ≥ λ in h∗q then ŵ = e.

Proof. This is a direct translation of the proof of Proposition 4.7. �

4.2. Submodules of Verma modules. In this section we examine the existence
of submodules of Verma modules. We shall discuss in particular an analogue of
Verma’s Theorem and a necessary and sufficient condition for the irreducibility of
Verma modules.

The socle Soc(M) of a module M is the sum of all simple submodules of M .
Recall from Theorem 2.134 that the algebra Uq(n−) is Noetherian without zero-
divisors. Since M(λ) for λ ∈ h∗q is a free Uq(n−)-module, the following result
follows from general facts, see Section 4.1 in [37].

Lemma 4.9. Let λ ∈ h∗q . Any two nonzero submodules of M(λ) have a nonzero
intersection.

Proof. Assume M,N ⊂ M(λ) are nonzero submodules. Then M ⊃ Uq(n−)m · vλ
and N ⊃ Uq(n−)n · vλ for some nonzero elements m,n ∈ Uq(n−). Since Uq(n−) is
Noetherian and has no zero divisors, the left ideals Uq(n−)n and Uq(n−)m must
have nontrivial intersection, see Section 4.1 in [37]. �

We recall that V (µ) denotes the unique simple quotient of the Verma module
M(µ).

Lemma 4.10. Let λ ∈ h∗q . Then the socle of M(λ) is of the form

Soc(M(λ)) ∼= V (µ) ∼= M(µ)

for a unique weight µ ≤ λ.
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Proof. According to Lemma 4.9, the socle of M(λ) must be simple, therefore of
the form V (µ) for some µ ∈ h∗q . From the weight space structure of M(λ) it is
immediate that µ ≤ λ. Moreover V (µ) ⊂ M(λ) is necessarily a Verma module
since M(λ) is free as a Uq(n−)-module. Hence V (µ) ∼= M(µ). �

Let us remark that since M(λ) has finite length it is not hard to check that
Soc(M(λ)) = M(µ) ⊂ V for any submodule V ⊂M(λ).

We shall now study more general Verma submodules of M(λ). Recall the affine
reflections sk,αi defined before Proposition 4.7.

Lemma 4.11. Let λ ∈ h∗q and assume sk,αi .λ ≤ λ for some 1 ≤ i ≤ N and k ∈ Z2.
Then there exists an embedding of M(sk,αi .λ) into M(λ).

Proof. Note that
λ− sk,αi .λ = (λ+ ρ, α∨i )αi − k

2 i~
−1α∨i ,

so the assumption sk,αi .λ ≤ λ implies

Re(λ+ ρ, α∨i ) ∈ N0,

Im(λ, α∨i ) = Im(λ+ ρ, α∨i ) ≡ k
2~
−1d−1

i (mod ~−1d−1
i Z).

Put m = Re(λ+ρ, α∨i ) = Re(λ, α∨i )+1. We claim that the vector Fmi vλ is primitive.
Indeed, for j 6= i we have

EjF
m
i vλ = Fmi Ejvλ = 0,

while for j = i, Lemma 2.36 gives

EiF
m
i · vλ = Fmi Eivλ + [m]qF

m−1
i

q−m+1
i Ki − qm−1

i K−1
i

qi − q−1
i

· vλ

= [m]q
q−diRe(λ,α∨i )q(λ,αi) − qdiRe(λ,α∨i )q−(λ,αi)

qi − q−1
i

Fm−1
i · vλ

= [m]q
q−iIm(λ,αi) − qiIm(λ,αi)

qi − q−1
i

Fm−1
i · vλ

= 0.

The weight of Fmi · vλ is

λ− Re(λ+ ρ, α∨i )αi = si.λ+ Im(λ+ ρ, α∨i )αi = sk,αi .λ ∈ h∗q .

Hence we obtain an embedding as desired. �

Let us recall some definitions related to the Weyl group W , see Appendix A.1 in
[41]. For w ∈W set

S(w) = {α ∈∆+ | wα ∈∆−} = ∆+ ∩ w−1∆−.

If u, v ∈ W and α ∈ ∆+ we write u
α← v or simply u ← v if u = sαv and

l(u) = l(v)−1. In this case one has α ∈ S(v−1). The Bruhat order on W is defined
by saying that u ≤ v if u = v or if there is a chain u = w1 ← · · · ← wn = v. As
usual we write u < v if u ≤ v and u 6= v.

Lemma 4.12. Let µ ∈ P+ and assume u, v ∈ W are such that u ≤ v for the
Bruhat order. Then there exists an embedding of M(v.µ) into M(u.µ).

Proof. We use induction on the length of v. The case l(v) = 0, corresponding to
v = e is trivial. For the inductive step assume siv < v for some i. Then

si.(v.µ)− v.µ = siv(µ+ ρ)− v(µ+ ρ) = −(v(µ+ ρ), α∨i ) = −(µ+ ρ, v−1α∨i ) > 0,

which means v.µ ≤ si.(v.µ). Hence M(v.µ) is a submodule of M(siv.µ) according
to Lemma 4.11.
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Properties of the Bruhat order imply that we have either u ≤ siv or siu ≤ siv,
see for instance Proposition A.1.7 in [41].

In the first case we obtain an embedding M(siv.µ) ⊂ M(u.µ) by our induc-
tive hypothesis since siv has length l(v) − 1. Combining this with the embedding
M(v.µ) ⊂M(siv.µ) obtained above yields the claim in this situation.

In the second case we may assume siu < u, since otherwise we are again in the
previous case. Consider the embedding π : M(v.µ) → M(siv.µ) → M(siu.µ) ob-
tained from the inductive hypothesis. Let x be a highest weight vector for M(v.µ).
Note that Ki · x = q(αi,v.µ)x with

(αi, v.µ) = (v−1(αi), µ+ ρ)− (αi, ρ) < 0.

Therefore, repeated application of Lemma 2.36 shows that Eri F
r
i · x is a nonzero

multiple of x for all r ∈ N0. On the other hand, let y be a highest weight vector
for M(siu.µ), and note from the proof of Lemma 4.11 that a highest weight vector
of the submodule M(u.µ) ⊂ M(siu.µ) is given by Fmi y for some m ∈ N. Since
π(x) ∈ Uq(n−) · y, repeated application of the Serre relations shows that for r � 0
we have F ri π(x) ∈ Uq(n−)Fmi · y = M(u.µ). Therefore, π(Eri F

r
i · x) ∈M(u.µ) and

hence π maps M(v.µ) into M(u.µ), as desired. �

Definition 4.13. Let µ, λ ∈ h∗q . We say that µ ↑ λ if µ = λ or if there exists a

chain of positive roots α1, . . . , αr ∈∆+ and k1, . . . , kr ∈ Z such that

µ = sk1,α1
· · · skr,αr .λ < sk2,α2

· · · skr,αr .λ < · · · < skr,αr .λ < λ.

We say that µ is strongly linked to λ if µ ↑ λ.

Note that sk,α.ν < ν for some k ∈ Z if and only if

q(ν+ρ,α∨)
α ∈ ±qNα.

We are now ready to prove the following analogue of Verma’s Theorem, compare
section 4.4.9 in [41] and Section 4.7 in [37].

Theorem 4.14. Let µ, λ ∈ h∗q . If µ is strongly linked to λ then M(µ) ⊂M(λ), in
particular [M(λ) : V (µ)] 6= 0.

Proof. In order to prove the claim it is enough to consider the case µ = sk,α.λ for

some α ∈∆+ with q
(λ+ρ,α∨)
α ∈ ±qNα.

For α ∈∆+ and n ∈ N consider the sets

Λn,α = {λ ∈ h∗q | q(λ+ρ,α∨)
α = ±qnα}

and
Xn,α = {λ ∈ h∗q | HomUq(g)(M(λ− nα),M(λ)) 6= 0}.

Note that Xn,α ⊂ Λn,α. Our aim is to show Xn,α = Λn,α.
We begin by showing that P ∩ Λn,α ⊂ Xn,α. Let λ ∈ P ∩ Λn,α, and choose

w ∈W such that µ = w−1sα.λ ∈ P+. Then also w−1sα.λ+ ρ ∈ P+ and

(w−1sα.λ+ ρ, w−1α∨) = (w−1sα(λ+ ρ), w−1α∨) = −(λ+ ρ, α∨) = −n,
which means w−1α ∈ ∆−. This implies w > sαw, so we obtain M(sα.λ) =
M(w.µ) ⊂ M(sαw.µ) = M(λ) by Lemma 4.12. Hence λ ∈ Xn,α, and we con-
clude P ∩ Λn,α ⊂ Xn,α.

To complete the proof, we use a Zariski density argument. If B = C[x1, . . . , xd]/I
is a commutative algebra then the algebraic variety Spm(B) is the set of all points
x = (x1, . . . , xd) ∈ Cd such that f(x1, . . . , xd) = 0 for all f ∈ I. Observe that h∗q can
be identified with the variety Spm(B) of B = Uq(h) such that λ ∈ h∗q corresponds
to the point of Spm(B) given by the character χλ on B. Clearly, Λn,α is a Zariski
closed subspace.
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We claim that Xn,α ⊂ h∗q is also Zariski closed. Indeed, for each γ ∈ Q+ fix a

basis Y γ1 , . . . , Y
γ
r of Uq(n−)−γ . From the defining relations of Uq(g) it is clear that

we can find Laurent polynomials pkij in the generators K1, . . . ,KN such that

[Ek, Y
γ
i ] =

∑
j

Y γ−αkj pkij .

Now consider Y ∈ Uq(n−)−γ and write Y =
∑
ciY

γ
i . Then we have

EkY · vλ = [Ek, Y ] · vλ =
∑
i,j

ciY
γ−αk
j pkij · vλ =

∑
i,j

ciχλ(pkij)Y
γ−αk
j · vλ

Since M(λ) is a free Uq(n−)-module it follows that Y · vλ is the highest weight
vector for a submodule M(λ − γ) ⊂ M(λ) iff

∑
i ciχλ(pkij) = 0 for all k, j. Thus

λ ∈ Xn,α if and only if there exists a nontrivial kernel of the linear map

(ci)i 7→

(∑
i

ciχλ(pkij)

)
j,k

,

whose coefficients are polynomial in the character χλ. The existence of such a kernel
is determined by the vanishing of the determinants of minors of the corresponding
matrix (χλ(pkij))(j,k),i. Applying this to γ = nα we conclude that Xn,α is an
algebraic subset of Spm(B).

According to our above considerations Xn,α ∩P = Λn,α ∩P. Since P ∩ Λn,α ⊂
Λn,α is Zariski dense we conclude Xn,α = Λn,α as desired. �

As a consequence of Theorem 4.14 we obtain the following characterization of
simple Verma modules, compare Section 17.4 in [18].

Theorem 4.15. Let λ ∈ h∗q . The Verma module M(λ) is simple iff λ is antidomi-
nant.

Proof. If λ is not antidominant there exists an α ∈ ∆+ such that (λ + ρ, α∨) ∈
m + 1

2 i~
−1
α Z for some m ∈ N, where as before we use the notation ~α = dα~. In

this case sk,α.λ < λ for suitable k, and according to Theorem 4.14 there exists an
embedding M(sk,α.λ) ↪→M(λ). In particular, M(λ) is not irreducible.

Conversely, assume that λ is antidominant. Then due to Proposition 4.7 the
weight λ is minimal in its Ŵ[λ]-orbit. By Harish-Chandra’s Theorem 2.128, all
irreducible subquotients of M(λ) must be of the form V (µ) for some µ ≤ λ in the

Ŵ[λ]-orbit of λ. We conclude µ = λ, and hence M(λ) is irreducible. �

Let us also characterize projective Verma modules, compare Section 8.2 in [37].

Proposition 4.16. Let λ ∈ h∗q . Then the following conditions are equivalent.

a) M(λ) is a projective object in O.
b) If HomUq(g)(M(λ),M(µ)) 6= 0 for µ ≥ λ then λ = µ.
c) λ is dominant.

Proof. a)⇒ b) Assume f : M(λ)→M(µ) is a nonzero homomorphism and µ > λ.
Note that f is injective and set M = M(µ)/f(I(λ)), where I(λ) is the maximal
proper submodule in M(λ). Then f induces an embedding V (λ) ⊂ M , and hence
a surjection M∨ → V (λ). Since M(λ) is projective we get a nonzero map M(λ)→
M∨ lifting the canonical projection M(λ)→ V (λ), or equivalently, a nonzero map
M → M(λ)∨. This induces a nonzero map M(µ) → M(λ)∨. This is impossible,
since the µ-weight space of M(λ)∨ is trivial.
b) ⇒ c) Assume λ is not dominant. Then according to Proposition 4.8 there

exists some µ > λ such that λ ↑ µ, and hence an embedding M(λ) → M(µ) by
Theorem 4.14. This contradicts condition b).
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c) ⇒ a) Assume that π : M → N is a surjective morphism in O and let f :
M(λ)→ N be given. We may assume that f is nonzero. Moreover, since the centre
acts by ξλ on M(λ) the same is true for the action of ZUq(g) on f(M(λ)). Using
primary decomposition we may assume that Z − ξλ(Z) acts nilpotently on M and
N for all Z ∈ ZUq(g).

Let v ∈M be a vector of weight λ such that π(v) = f(vλ) and let V = Uq(n+)·v ⊂
M be the Uq(n+)-submodule of M generated by v. Since M is in O the space V is
finite dimensional. Choose a primitive vector vµ ∈ V , for some weight µ ≥ λ. Then

ξλ = ξµ, from which we conclude that µ and λ are Ŵ -linked. Due to dominance of
λ this means µ = λ. Hence v itself is a primitive vector, which means that there
exists a unique homomorphism F : M(λ)→ M such that F (vλ) = v. Clearly F is
a lift for f as desired. �

4.3. The Shapovalov determinant. In this section we study the Shapovalov
form for Uq(g). This form and its determinant are important tools in the study of
Verma modules. We refer to [32] for the analysis of Shapovalov forms in greater
generality.

Let us recall from Lemma 2.16 that the involutive algebra anti-automorphism τ of
Uq(g) keeps Uq(h) pointwise fixed and interchanges Uq(b+) and Uq(b−). Recall also
that the Harish-Chandra map is the linear map P : Uq(g)→ Uq(h) given by ε̂⊗id⊗ε̂
with respect to the triangular decomposition Uq(g) ∼= Uq(n−)⊗Uq(h)⊗Uq(n+), see
Proposition 2.14.

We shall call the bilinear form Sh : Uq(n−)× Uq(n−)→ Uq(h) defined by

Sh(X,Y ) = P(τ(X)Y )

the Shapovalov form for Uq(g). One checks that Pτ = P, and using τ2 = id this
implies immediately that Sh is symmetric. Moreover we have Sh(X,Y ) = 0 if X,Y
are of different weight.

We denote the restriction of Sh to the weight space Uq(n−)−µ for µ ∈ Q+ by
Shµ. In the following, we will use the determinant of the form Shµ as follows.
Fix a basis x1, . . . , xnµ of Uq(n−)−µ, and denote by det(Shµ) the determinant of
the matrix (Shµ(xi, xj)) ∈ Mnµ(Uq(h)). This only depends on the choice of ba-
sis up to multiplication by a nonzero scalar in C, which we shall disregard in the
following discussion. Moreover,by inspecting the definition of τ and the commuta-
tion relations for Ei and Fj , one sees that the Shapovalov determinant det(Shµ)

is in fact contained in the subalgebra of Uq(h) generated by the elements K±1
j for

j = 1, . . . , N .
Let λ ∈ h∗q . The contravariant bilinear form on M(λ) is defined as the unique

bilinear form Shλ : M(λ)×M(λ)→ C satisfying Shλ(vλ, vλ) = 1 and

Shλ(τ(X) · v, w) = Shλ(v,X · w)

for all v, w ∈M(λ) and X ∈ Uq(g). Different weight spaces of M(λ) are orthogonal

with respect to the form, that is, we have Shλ(M(λ)µ,M(λ)ν) = 0 for µ 6= ν.
Notice that

Shλ(X · vλ, Y · vλ) = χλ(Sh(X,Y ))

for all X,Y ∈ Uq(n−), where we recall that χλ(Kµ) = q(λ,µ).

The radical of Shλ is the subspace Rλ ⊂ M(λ) consisting of all u satisfying

Shλ(u, v) = 0 for all v ∈M(λ).

Lemma 4.17. Let λ ∈ h∗q . The radical of Shλ agrees with the maximal proper
submodule I(λ) of M(λ).

Proof. From the invariance property of Shλ it is clear that the radical Rλ is a sub-
module of M(λ). It is also clear that the highest weight vector vλ is not contained in



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 177

Rλ, and hence Rλ ⊂ I(λ). Assume that the quotient M(λ)/Rλ is not simple. Then
M(λ)/Rλ must contain a primitive vector, that is, a nonzero vector v of weight
λ− µ for some µ ∈ Q+ \ {0} which is annihilated by Uq(n+) ∩ ker(ε̂). This implies

Shλ(v, Uq(n−) · vλ) = Shλ(Uq(n+) · v, vλ) = 0

and hence v = 0 by nondegeneracy of the induced form on M(λ)/Rλ. This is a
contradiction, so that M(λ)/Rλ must be simple. Hence we obtain Rλ = I(λ) as
claimed. �

Instead of working with the form Sh(X,Y ) it is sometimes technically more
convenient to consider the modified form S : Uq(n−)× Uq(n−)→ Uq(h) given by

S(X,Y ) = P(Ω(X)Y ),

where Ω is the algebra anti-homomorphism from Lemma 2.15. As before, if ν ∈ Q+

we write Sν for the restriction of S to Uq(h)−ν . The determinant of Shν differs from
the one of Sν only by an invertible element of Uq(h).

Lemma 4.18. Let ν ∈ Q+ and X,Y ∈ Uq(n−)−ν . Then

Sν(X,Y ) ∈
∑

β,γ∈Q+

β+γ=ν

CKβ−γ .

Proof. We may assume without loss of generality that both X and Y are monomials
in the generators F1, . . . , FN . Let us proceed by induction on the height ht(ν) =
ν1 + · · · + νN of ν = ν1α1 + · · · + νNαN . Note that for ht(ν) = 0 the claim is
obvious.

Fix m ≥ 0 and assume that the claim holds for all terms of height m. Let
X,Y ∈ Uq(n−)−ν be monomials in F1, . . . , FN with ht(ν) = m + 1, and write
X = FiZ for suitable i and Z ∈ Uq(n−)−ν+αi . Let r be the total number of factors
Fi appearing in the monomial Y . If 1 ≤ k ≤ r then for the k-th occurrence of Fi in

Y we decompose Y = Y
(a)
k FiY

(b)
k , where Y

(a)
k Y

(b)
k are monomials in the generators

F1, . . . , FN containing a total number of factors Fi one less than for Y . We obtain

Sν(X,Y ) =

r∑
k=1

P(Ω(Z)Y
(a)
k [Ei, Fi]Y

(b)
k ) ∈

r∑
k=1

(CKi + CK−1
i )P(Ω(Z)Y

(a)
k Y

(b)
k ).

The latter is contained in

(CKi + CK−1
i )

∑
β,γ∈Q+,β+γ=ν−αi

CKβ−γ =
∑

β,γ∈Q+,β+γ=ν

CKβ−γ

according to our inductive hypothesis. This yields the claim. �

Let us enumerate the positive roots of g again as β1, . . . , βn. Recall that the
Kostant partition function P : Q→ N0 is given by

P (ν) = |{(r1, . . . , rn) ∈ Nn0 | r1β1 + · · ·+ rnβn = ν}| .

Lemma 4.19. We have an equality of weights

dim(Uq(n−)−ν)ν =

n∑
j=1

∞∑
m=1

P (ν −mβj)βj

for any ν ∈ Q+.

Proof. According to the PBW-Theorem 2.67, the space Uq(n−)−ν is spanned by all
PBW-vectors F r1β1

· · ·F rnβn such that r1β1 + · · ·+ rnβn = ν. Therefore,

dim(Uq(n−)−ν)ν =
∑

(r1,...,rn)∈Nn0
with r1β1+···+rnβn=ν

r1β1 + · · ·+ rnβn.
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Separating the coefficients of βj in this sum gives
n∑
j=1

∞∑
m=1

|{(r1, . . . , rn) ∈ Nn0 | r1β1 + · · ·+ rnβn = ν with rj = m}| mβj

=

n∑
j=1

∞∑
m=1

|{(r1, . . . , rn) ∈ Nn0 | r1β1 + · · ·+ rnβn = ν with rj ≥ m}| βj ,

=

n∑
j=1

∞∑
m=1

|{(r1, . . . , rn) ∈ Nn0 | r1β1 + · · ·+ rnβn = ν −mβj}| βj ,

=

n∑
j=1

∞∑
m=1

P (ν −mβj)βj ,

as claimed. �

We will also need a result from commutative algebra. Let B ∼= C[x1, . . . , xd]/I be
a finitely generated commutative algebra over C. Recall that the algebraic variety
Spm(B) ofB is the set of all points p = (p1, . . . , pd) in Cd such that f(p1, . . . , pd) = 0
for all f ∈ I. The elements of B can be viewed as polynomial functions on Spm(B),
and we write bp for the value of b ∈ B at p ∈ Spm(B).

If y(x) ∈ B[x] is a polynomial we write y(0) ∈ B for its image under evaluation
at 0, and we use the same notation for matrices with entries in B[x].

The following two Lemmas are taken from [32].

Lemma 4.20. Let B be an integral domain and Y ∈ Mn(B[x]) for some n ∈ N.
Then there exist 0 ≤ k ≤ n, matrices M1,M2 ∈Mn(B) with nonzero determinants,
a matrix M ∈Mn(B[x]) and a nonzero element b ∈ B such that

M1YM2 = xM + bDk

where Dk = diag(1, . . . , 1, 0, . . . , 0) is the diagonal matrix projecting onto the first
k coordinates.

Proof. Let Quot(B) be the field of fractions of B. By linear algebra there exist
invertible matrices C1, C2 ∈Mn(Quot(B)) such that

C1Y (0)C2 = Dk

for some 0 ≤ k ≤ n. Let b1, b2 be nonzero elements such that M1 = b1C1 and M2 =
b2C2 are contained in Mn(B). Write Y = Y (0) + xY ′ for suitable Y ′ ∈Mn(B(x)).
If we set b = b1b2 and M = M1Y

′M2 then the claim follows. �

The rank of a matrix Y with entries in an integral domain B is denoted by
rk(Y ); by definition this is the usual rank of Y where Y is viewed as a matrix over
the field of fractions Quot(B).

Lemma 4.21. Let B be an integral domain which is at the same time a finitely
generated commutative algebra over C, and let n ∈ N. If there exists 0 ≤ r ≤ n
such that Y (x) = (yij(x)) ∈ Mn(B[x]) satisfies rk(Y (0)p) ≤ r for all points p in a
nonempty Zariski-open subset of the affine variety Spm(B) of B, then det(Y (x)) =
xn−rb for some b ∈ B[x].

Proof. According to Lemma 4.20 there exists 0 ≤ k ≤ n such that M1YM2 = xM+
bDk for matrices M1,M2 and b ∈ B such that det(M1),det(M2) are nonzero. Let
V be a non-empty Zariski-open set of Spm(B) such that det(M1)p 6= 0,det(M2)p 6=
0, bp 6= 0 and rk(Y (0)p) ≤ r for all p ∈ V . This exists by assumption since Spm(B)
is irreducible. Since rk(Y (0)p) ≤ r for p ∈ V we get k ≤ r. Hence

det(M1) det(Y ) det(M2) = xn−rc
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for some c ∈ B[x]. Since det(M1),det(M2) ∈ B and B is an integral domain we
conclude det(Y ) ∈ xn−rB[x]. �

For the following result compare Theorem 1.9 in [20] and Theorem 8.1 in [32].

Theorem 4.22. For ν ∈ Q+, the Shapovalov determinant det(Shν) of Uq(g) is
given, up to multiplication by an invertible element of Uq(h), by

det(Shν) =
∏

β∈∆+

∞∏
m=1

(q
2(ρ,β∨)
β Kβ − q2m

β K−1
β )P (ν−mβ),

where P is the Kostant partition function.

Proof. Note first that if ν ∈ Q+ is fixed, then for any β ∈ ∆+ the expression
P (ν − mβ) is zero for large values of m. Therefore the right hand side of the
asserted formula is in fact a finite product.

As explained before Lemma 4.18, it suffices to prove the claim for the form Sν
instead of Shν .

Let D denote the dimension of Uq(n−)−ν and fix a basis x1, . . . , xD for this space.
From Lemma 4.18 we have

Sν(xi, xj) ∈
∑

β,γ∈Q+,β+γ=ν

CKβ−γ ,

and so the determinant det(Sν), which is an order D polynomial in these terms, is
contained in the linear subspace

Lν =
∑

β,γ∈Q+,β+γ=Dν

CKβ−γ ⊂ Uq(h).

For all 1 ≤ j ≤ n and m ∈ N the polynomials

q
2(ρ,β∨j )

βj
Kβj − q2m

βj K
−1
βj

have mutually distinct irreducible factors. According to Lemma 4.19, the double
product in the theorem is contained in Lν as well. Therefore it suffices to show

det(Sν) 6= 0 and that each term (q
2(ρ,β∨j )

βj
Kβj − q2m

βj
K−1
βj

)P (ν−mβj) divides det(Sν).

Let V ⊂ h∗q be the affine subvariety of h∗q defined by det(Sν) = 0. Then λ ∈ V if
and only if

χλ(det(Sh(xi, xj)ij)) = det(Shλ(xi · vλ, xj · vλ)ij) = 0.

By Lemma 4.17 this implies that M(λ) is not simple, so by Theorem 4.15 λ is not
antidominant. Thus

χλ(q
2(ρ,β∨j )

βj
Kβj − q2m

βj K
−1
βj

) = q
2(ρ,β∨j )

βj
q(λ,βj) − q2m

βj q
−(λ,βj)

= q−(λ,βj)
(
q

2(ρ+λ,β∨j )

βj
− q2m

βj

)
= 0

for some βj ∈ ∆+ and some m ∈ N. It follows that V is a subset of the union of
varieties defined by the zero sets of the polynomials

q
2(ρ,β∨j )

βj
Kβj − q2m

βj K
−1
βj

for j = 1, . . . , n and m ∈ N.
Using that det(Sν) is contained in Lν , and hence a linear combination of terms

of the form K2β−Dν for β ∈ Q+, we conclude that there exists an element f ∈
C[K±1

1 , . . . ,K±1
N ] which is invertible on V such that

det(Sν) = f

n∏
j=1

∞∏
m=1

(q
2(ρ,β∨j )

βj
Kβj − q2m

βj K
−1
βj

)N(ν,βj ,m),
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for certain exponents N(ν, βj ,m) ∈ N0. It follows in particular that det(Sν) is
nonzero. In order to finish the proof it suffices to show N(ν, βj ,m) = P (ν −mβj)
for all j = 1, . . . , n and m ∈ N.

Fix 1 ≤ j ≤ n and m ∈ N, and choose w ∈W and 1 ≤ i ≤ N such that βj = wαi.
Consider the algebra A = C[K±1

wα1
, . . . ,K±1

wαN ]. Moreover set

B = C[K±1
wα1

, . . . ,K±1
wαi−1

,Kwαi ,K
±1
wαi+1

, . . . ,K±1
wαN ].

If we put x = q
2(ρ,β∨j )

βj
Kβj − q2m

βj
K−1
βj

then A = B[x]. Let Y = (Sν(xi, xj)) ∈
MD(A) = MD(B[x]), and write Y (0) ∈ MD(B) for the image of Y under the map
induced by evaluation at 0.

If λ ∈ h∗q is an element in the variety of A/(x) ∼= B then we have

χλ(q
2(ρ,β∨j )

βj
Kβj − q2m

βj K
−1
βj

) = 0.

By a calculation similar to that above, this implies

(λ+ ρ, β∨j ) = m+
k

2
i~−1
βj

for some k ∈ Z, and so sk,βj .λ = λ −mβj < λ. According to Theorem 4.14 there
exists a submodule M(λ − mβj) ⊂ M(λ). This submodule is contained in I(λ),
and hence the radical of Sν evaluated at λ contains a subspace of dimension

dim(M(λ−mβj)λ−ν) = dim(Uq(n−)−ν+mβj ) = P (ν −mβj).

In other words, the rank of Y (0) evaluated at a point p of the variety of B = A/(x)
satisfies rk(Y (0)p) ≤ D−P (ν−mβj). Hence det(Y ) = xP (ν−mβj)b for some b ∈ B
according to Lemma 4.21. In particular, xP (ν−mβj) is a factor of det(Sν). This
finishes the proof. �

4.4. Jantzen filtration and the BGG Theorem. In this section we discuss the
Jantzen filtration and the BGG Theorem for Uq(g), giving us information about
the composition factors of Verma modules.

We shall first formulate the Jantzen filtration. Consider B = C[T, T−1], that is,
the algebra of Laurent polynomials with coefficients in C. Informally, we will think
of T as st where s ∈ C such that sL = q and t is an indeterminate. The ring B
is a principal ideal domain, and we write L for its field of quotients. Then L and
q ∈ L× satisfy our general assumptions in the discussion of the quantized universal
enveloping algebra in Chapter 2. Let us write UL

q (g) for the quantized universal

enveloping algebra defined over L. If λ ∈ h∗q = h∗/i~−1Q∨ is a weight with respect

to the ground field C, we define a character χλT : UL
q (h)→ L by the formula

χ(Kµ) = q(µ,λ)TL(µ,ρ) = q(µ,λ+ρt),

where the second equality is obtained by formally writing T = st.
Let M be a free module of finite rank over B. We write M =M⊗B C for the

vector space induced from the evaluation homomorphism ε : B → C, ε(f) = f(1).
If S :M×M→ B is a symmetric B-bilinear form let us set

Mi = {x ∈M | S(x,M) ⊂ (T − 1)iB},

and similarly M i =Mi ⊗B C for all i. For any x ∈ B let v(x) ∈ N0 be the largest
number n such that x can be written in the form x = y(T − 1)n for some y ∈ B.

With this notation in place we have the following result, which is a special case
of the Lemma in Section 5.6 of [37].

Lemma 4.23. Let M be a free module of finite rank over B = C[T, T−1]. Assume
that S : M×M → B is a nondegenerate symmetric B-bilinear form on M, and
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let det(S) be its determinant with respect to some basis of M. Then the following
holds.

a) We have v(det(S)) =
∑
i>0 dimC(M i).

b) For each i ≥ 0 the map Si :Mi ×Mi → B given by

Si(x, y) = (T − 1)−iS(x, y)

is well-defined and induces a nondegenerate B-bilinear form on M i/M i+1 with
values in C.

Proof. We follow the treatment in [37], adapted to the special case at hand for the
convenience of the reader.
a) Assume that M is free of rank r. The dual module M∗ = HomB(M, B)

is again free of rank r, as is the submodule M∨ ⊂ M∗ consisting of all linear
functionals of the form x∨ where x∨(y) = S(x, y) for x ∈ M. Using the structure
theory for modules over principal ideal domains we find a basis e1, . . . , er of M
and elements d1, . . . , dr ∈ B such that die

i is a basis of M∨, where e1, . . . , er of
M∗ is the dual basis defined by ei(ej) = δij . We then obtain det(S) = d1 · · · dr up
to an invertible scalar. Moreover, there is another basis f1, . . . fr of M such that
f∨i = die

i. If f =
∑
ajfj ∈M and nj = v(dj) we get f ∈Mi iff v(S(ej , f)) ≥ i for

all j iff v(aj) ≥ i− nj for all j. Hence Mi is spanned by the elements fj for which
i ≤ nj and the (T − 1)i−njfj for which i > nj . In particular M i =Mi ⊗B C = 0
for sufficiently large i. Moreover we obtain

v(det(S)) =

r∑
j=1

nj =
∑
i>0

|{j|i ≤ nj}| =
∑
i>0

dim(M i)

as desired.
b) By construction, the form Si takes values in B ⊂ L. We need to check that it

descends to a form on M i. For this consider x = (T − 1)y ∈Mi and compute

Si(x,Mi) ⊂ (T − 1)−iS(x,Mi) ⊂ (T − 1)−i+1(M,Mi) ⊂ (T − 1)B,

so that Si(x,Mi) = 0 in B⊗BC = C. Hence Si induces a bilinear form M i×M i →
C. In order to compute the radical Ri ⊂ M i of the latter notice that M i+1 ⊂ Ri.
Moreover, the coset of fj as above is contained in Ri iff i < nj . Since the fj with
i ≤ nj form a basis of M i we see that the form is nondegenerate on M i/M i+1, so
that Ri = M i+1. �

If M is a Uq(g)-module then a bilinear form on M will be called contravariant if

(τ(X) ·m,n) = (m,X · n)

for all x ∈ Uq(g) and m,n ∈M .

Theorem 4.24 (Jantzen filtration). Let λ ∈ h∗q . Then there exist a filtration

M(λ) = M(λ)0 ⊃M(λ)1 ⊃M(λ)2 ⊃ · · ·

of M(λ) with M(λ)i = 0 for i large, such that the following conditions hold.

a) Each nonzero quotient M(λ)i/M(λ)i+1 has a nondegenerate contravariant bi-
linear form.

b) M(λ)1 = I(λ) is the maximal submodule of M(λ).
c) (Jantzen Sum Formula) The formal characters of the modules M(λ)i satisfy∑

i>0

ch(M(λ)i) =
∑

α∈∆+,k∈Z2
sk,α.λ<λ

ch(M(sk,α.λ)).
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Proof. We work over B = C[T, T−1] and its field of quotients L as above. Given
λ ∈ h∗q = h∗/i~−1Q∨ consider the character χλT where λT = λ + tρ. We claim

that M(λT ) is a simple UL
q (g)-module. Indeed, by Theorem 2.128 any submodule

of M(λT ) must have highest weight in the same Ŵ -linkage class as λT . But if

ŵ = (ζ, w) ∈ Ŵ is nontrivial then

ŵ.(λ+ tρ)− (λ+ tρ) = (wλ+ wρ− λ− ρ+ ζ) + t(wρ− ρ) /∈ Q,

so the Ŵ -linkage class of λT is trivial. Hence the unique contravariant bilinear form
on M(λT ) with values in L such that (vλ, vλ) = 1 is nondegenerate.

Using the PBW Theorem 2.67 we obtain from the B-form UBq (g) = B⊗Uq(g) a
B-formM(λT ) of the Verma module M(λT ) in which all weight subspaces are free
of finite rank. For µ ∈ Q+ define

M(λT )iλT−µ = {x ∈M(λT )λT−µ | (x,M(λT )λT−µ) ⊂ (T − 1)iB}

and

M(λT )i =
∑
µ∈Q+

M(λT )iλT−µ.

It is straightforward to check that M(λT )i is a UBq (g)-submodule of M(λT ), and
that these submodules form a decreasing filtration.

Setting T = 1 yields a decreasing filtration M(λ)i = M(λT )i/(T − 1)M(λT )i

of M(λ) such that M0(λ) = M(λ). Thanks to Lemma 4.23 the quotients of this
filtration acquire nondegenerate contravariant bilinear forms. Since M(λ) has finite
length we see that M(λ)i = 0 for i� 0. This proves part a).

For part b) we only need to observe that the contravariant form on M(λ)/M(λ)1

is nondegenerate, and therefore M(λ)1 = I(λ) by Lemma 4.17.
It remains to prove the Jantzen Sum Formula in part c). Consider ν ∈ Q+ and

denote the determinant of the Shapovalov form of M(λT ) on the λT − ν weight
space by det(Shν). Since B contains C, the formula for the Shapovalov determinant
in Theorem 4.22 continues to hold over UBq (g). More precisely, we obtain

χλT (det(Shν)) =
∏

α∈∆+

∞∏
m=1

(q2(λ+ρ+tρ,α) − qm(α,α))P (ν−mα),

up to an invertible element of B. Applying v to the term

x = q2(λ+ρ+tρ,α) − qm(α,α) = q2(λ+ρ,α)T 2L(ρ,α) − qm(α,α)

gives 0 unless qm(α,α) = q2(λ+ρ,α), or equivalently, unless (λ + ρ, α∨) = m modulo
1
2 i~
−1
α Z, where as usual ~α = dα~. In this case we get v(x) = 1. The contribution

of the (λ− ν)-weight space to the valuation is therefore P (ν− (λ+ ρ, α∨)α), where
P denotes Kostant’s partition function. Using Lemma 4.23 we obtain∑

i>0

ch(M(λ)i) =
∑
ν∈Q+

∑
α∈∆+,k∈Z2
sk,α.λ<λ

P (ν − (λ+ ρ, α∨)α)eλ−ν

=
∑

α∈∆+,k∈Z2
sk,α.λ<λ

∑
ν∈Q+

P (ν)eλ−(λ+ρ,α∨)α−ν

=
∑

α∈∆+,k∈Z2
sk,α.λ<λ

ch(M(sk,α.λ))

as desired. �
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Notice that the Jantzen filtration reduces to the trivial filtrationM(λ) = M(λ)0 ⊃
M(λ)1 = 0 in the case that M(λ) is simple. The Jantzen sum formula does not
provide any information in this case.

Let µ, λ ∈ h∗q . Recall that µ is strongly linked to λ, written µ ↑ λ, if µ = λ or if

there exists a chain of positive roots α1, . . . , αr ∈∆+ and k1, . . . kr ∈ Z2 such that

µ = sk1,α1
· · · skr,αr .λ < sk2,α2

· · · skr,αr .λ < · · · < skr,αr .λ < λ.

Using the Jantzen filtration we shall now prove an analogue of the BGG Theorem,
compare Section 5.1 in [37].

Theorem 4.25 (The BGG Theorem). Let µ, λ ∈ h∗q . Then [M(λ) : V (µ)] 6= 0 iff
µ is strongly linked to λ.

Proof. From Theorem 4.14 we know that µ ↑ λ implies [M(λ) : V (µ)] 6= 0.
For the converse let us use the Jantzen filtration and induction on the number k of

weights µ linked to λ satisfying µ ≤ λ. If k = 1 then λ is minimal in its linkage class,
so there is nothing to prove. Assume now that the claim is proved for all weights
and some k. Suppose [M(λ) : V (µ)] > 0 for µ < λ. This means [M(λ)1 : V (µ)] > 0
for the first step M(λ)1 in the Jantzen filtration of M(λ). The sum formula in
Theorem 4.24 forces [M(sk,α.λ) : V (µ)] > 0 for some α ∈ ∆+

[λ], k ∈ Z2. By our

inductive hypothesis, there exist α1, . . . , αr ∈∆+, k1, . . . , kr ∈ Z2 such that

µ = sk1,α1 · · · skr,αrsk,α.λ < sk2,α2 · · · skr,αrsk,α.λ < · · · < skr,αrsk,α.λ < sk,α.λ.

Appending this chain with sk,α.λ < λ yields µ ↑ λ as desired. �

4.5. The PRV determinant. In this section we discuss the Parthasarathy-Ranga
Rao-Varadarajan determinants of Uq(g). In the classical setting they were intro-
duced in [62]. For more information on the quantum case we refer to [41].

4.5.1. The spaces F Hom(M,N). Before discussing the PRV-determinants we will
need a couple of preparations regarding the spaces F Hom(M,N), which we now
describe.

Let M,N be Uq(g)-modules. The space of C-linear maps Hom(M,N) becomes
a Uq(g)-module by setting

(X → T )(m) = X(1) · T (Ŝ(X(2)) ·m)

for T ∈ Hom(M,N), X ∈ Uq(g) and m ∈ M . We will refer to this as the adjoint
action of Uq(g). We denote by F Hom(M,N) the locally finite part of Hom(M,N)
with respect to the adjoint action.

We can also define a Uq(g)-bimodule structure on Hom(M,N) by

(Y · T · Z)(m) = Y · T (Z ·m).

for Y,Z ∈ Uq(g), T ∈ Hom(M,N), m ∈M . By restriction, F Hom(M,N) becomes
an FUq(g)-bimodule. Indeed, notice that

X → (Y · T · Z)(m) = X(1)Y · T (ZŜ(X(2)) ·m)

= (X(1) → Y ) · (X(2) → T )((X(3) → Z) ·m)

for all m ∈ M . Hence if Y,Z ∈ FUq(g) and T ∈ F Hom(M,N), then Y · T · Z is
again contained in F Hom(M,N).

The FUq(g)-bimodule structure on F Hom(M,N) is compatible with the adjoint
Uq(g)-action in the following sense.

Definition 4.26. Let V be an FUq(g)-bimodule, with left and right actions denoted
by X · v and v · X for X ∈ FUq(g) and v ∈ V , respectively. We say that a left
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module structure of Uq(g) on V , written X → v for X ∈ Uq(g) and v ∈ V , is
compatible if

(X(1) → v) ·X(2) = X · v

for all X ∈ FUq(g) and v ∈ V . Equipped with such a structure, V will be called a
Uq(g)-compatible FUq(g)-bimodule.

Note that the formula in Definition 4.26 makes sense since FUq(g) is a left coideal,
see Lemma 2.112. Morally, the compatibility condition can be written as

X → v = X(1) · v · Ŝ(X(2));

however, the right hand side of this formula might not be well-defined, even if we
consider X ∈ FUq(g). Nevertheless, inspired by this formula, we shall always refer
to a compatible action of Uq(g) on an FUq(g)-bimodule as the adjoint action.

Next, we introduce similar structures associated to the linear dual (M ⊗ N)∗,
where again M and N are in category O. Recall the algebra antiautomorphism
and coalgebra automorphism τ of Uq(g) from Lemma 2.16. We introduce a Uq(g)-
module structure on (M ⊗N)∗ by

(X → ϕ)(m⊗ n) = ϕ(Ŝ(X(2)) ·m⊗ τ(X(1)) · n)

for X ∈ Uq(g), ϕ ∈ (M ⊗N)∗ and m⊗ n ∈M ⊗N . Again, we refer to this as the
adjoint action of Uq(g) on (M ⊗N)∗. We also have a Uq(g)-bimodule structure on
(M ⊗N)∗ given by

(Y · ϕ · Z)(m⊗ n) = ϕ(Z ·m⊗ τ(Y ) · n),

for Y,Z ∈ Uq(g).
We denote by F ((M ⊗ N)∗) the locally finite part of (M ⊗ N)∗ with respect

to the adjoint action of Uq(g) defined above. The following lemma shows that by
restricting the above actions, F ((M ⊗ N)∗) becomes a Uq(g)-compatible FUq(g)-
bimodule in the sense of Definition 4.26.

Lemma 4.27. Let M,N be in category O. Then there exists an isomorphism of
FUq(g)-bimodules

F Hom(M,N∨)
∼=→ F ((M ⊗N)∗),

which is Uq(g)-linear for the adjoint actions denoted by → above. Explicitly, the
isomorphism is the restriction of the natural map γ : Hom(M,N∗) → (M ⊗ N)∗

defined by

γ(T )(m⊗ n) = T (m)(n)

for T ∈ Hom(M,N∗) and m ∈M , n ∈ N .

Proof. To begin with, let us show that F Hom(M,N∨) = F Hom(M,N∗). Here, we
are equipping N∗ with the obvious extension of the Uq(g)-action on N∨, namely

(X · f)(n) = f(τ(X) · n), f ∈ N∗, X ∈ Uq(g), n ∈ N.

Let T ∈ F Hom(M,N∗). For K ∈ Uq(h), we have

K · (T (m)) = (K(1) → T )(K(2) ·m).

Since T is locally finite and m ∈M is contained in a finite sum of weight spaces, we
see that T (m) generates a finite dimensional Uq(h)-submodule of N∗ and so must
belong to N∨.
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Now consider the linear map γ : Hom(M,N∗) → (M ⊗ N)∗ defined above.
General facts about tensor products imply that γ is a linear isomorphism. Since

(X → γ(T ))(m⊗ n) = γ(T )(Ŝ(X(2)) ·m⊗ τ(X(1)) · n)

= T (Ŝ(X(2)) ·m)(τ(X(1)) · n)

= (X(1) · T (Ŝ(X(2) ·m))(n)

= γ(X → T )(m⊗ n)

for X ∈ Uq(g), m ∈ M,n ∈ N we see that γ is Uq(g)-linear and so restricts to an
isomorphism on the locally finite parts.

Finally, for any Y, Z ∈ Uq(g), T ∈ Hom(M,N∗) and m⊗ n ∈M ⊗N we have

(Y · γ(T ) · Z)(m⊗ n) = γ(T )(Z ·m⊗ τ(Y ) · n)

= T (Z ·m)(τ(Y ) · n)

= (Y · T (Z ·m))(n)

= γ(Y · T · Z)(m⊗ n).

Since F Hom(M,N∨) is invariant for the left and right actions of FUq(g), we deduce
that the same is true for F ((M ⊗N)∗), and γ : F Hom(M,N∨)→ F ((M ⊗N)∗) is
an isomorphism of FUq(g)-bimodules. �

Consider the automorphism θ = τ Ŝ = Ŝ−1τ . It is an algebra homomorphism
and a coalgebra antihomomorphism. Note also that θ is involutive, since θ2 =
τ ŜŜ−1τ = τ2 = id.

Lemma 4.28. Let M,N be in category O. Then the flip map M ⊗N → N ⊗M
induces a linear isomorphism

α : F ((M ⊗N)∗)→ F ((N ⊗M)∗)

such that

α(Y · ϕ · Z) = τ(Z) · α(ϕ) · τ(Y ), α(X → ϕ) = θ(X)→ α(ϕ)

for all Y,Z ∈ FUq(g) and X ∈ Uq(g).
Similarly, there exists a linear isomorphism

β : F Hom(M,N)→ F Hom(N∨,M∨)

such that

β(Y · T · Z) = τ(Z) · β(T ) · τ(Y ), β(X → T ) = θ(X)→ β(T )

for all Y,Z ∈ FUq(g) and X ∈ Uq(g).

Proof. We define α : (M ⊗N)∗ → (N ⊗M)∗ by α(ϕ)(n⊗m) = ϕ(m⊗ n). Clearly
α is a linear isomorphism. To check that this isomorphism is compatible with the
locally finite parts we compute

θ(X)→ α(ϕ)(n⊗m) = α(ϕ)(Ŝ(θ(X(1))) · n⊗ τ(θ(X(2))) ·m)

= α(ϕ)(τ(X(1)) · n⊗ Ŝ(X(2)) ·m)

= ϕ(Ŝ(X(2)) ·m⊗ τ(X(1)) · n)

= α(X → ϕ)(n⊗m).
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Hence α restricts to an isomorphism F ((M ⊗N)∗)→ F ((N ⊗M)∗). Moreover we
have

α(Y · ϕ · Z)(n⊗m) = ϕ(Z ·m⊗ τ(Y ) · n)

= α(ϕ)(τ(Y ) · n⊗ Z ·m)

= (τ(Z) · α(ϕ) · τ(Y ))(n⊗m)

for all Y,Z ∈ FUq(g).
In order to prove the second assertion it suffices to construct an isomorphism

β : F Hom(M,N∨) → F Hom(N,M∨) with the claimed properties. This can be
done by combining the map α from the first part of the proof with the isomorphism
γ from Lemma 4.27. �

4.5.2. Conditions for F Hom(M,N) = 0. In this subsection we use Gelfand-Kirillov
dimension as a tool to derive sufficient conditions for F Hom(M,N) = 0 for certain
modules M,N ∈ O. For background on the Gelfand-Kirillov dimension we refer to
[14].

Let A be an algebra over C and let V ⊂ A be a linear subspace. We write V n for
the linear subspace generated by all n-fold products a1 · · · an with a1, . . . , an ∈ V ,
in addition we set V 0 = C. Assume that A is finitely generated and that V is a
finite dimensional generating subspace, so that

⋃∞
n=0 V

n = A. Moreover let M be a
finitely generated A-module with generating set M0, so that

⋃∞
n=0M

n = M where
Mn = V n ·M0. Then the Gelfand-Kirillov dimension of M over A is defined by

dA(M) = lim sup
n→∞

log(dim(Mn))

log(n)
.

It is not hard to check that this does not depend on the choice of the generating
subspaces V and M0.

Let us collect some general facts regarding the GK dimension.

Lemma 4.29. Let A be a finitely generated algebra.

a) If 0 → K → E → Q → 0 is an extension of finitely generated A-modules then
dA(K) ≤ dA(E) and dA(Q) ≤ dA(E).

b) If I ⊂ A is a left ideal containing an element a ∈ I which is not a right zero
divisor then dA(A/I) ≤ dA(A)− 1.

Proof. a) Pick a generating subspace K0 for K and extend it to a generating sub-
space E0 for E. Then Kn ⊂ En for all n and hence dim(Kn) ≤ dim(En). Similarly,
if π : E → Q denotes the quotient map then Q0 = π(E0) is a generating subspace
for Q, and we have dim(Qn) ≤ dim(En) for all n. This yields the claim.
b) We follow the proof of Theorem 3.4 in [14]. Without loss of generality we may

assume that dA(A) is finite. Let V ⊂ A be a finite dimensional generating subspace
containing 1. For each n let Dn ⊂ V n be a complement of V n ∩ I. If π : A→ A/I
is the quotient map then we get π(Dn) = π(V n).

We claim that Dn +Dna+ · · ·Dna
m is a direct sum for all m ∈ N. Indeed, from

x0 + x1a+ · · ·+ xma
m = 0 with xj ∈ Dn for all j we get π(x0) = 0 because a ∈ I.

Hence x0 = 0, and since a is not a right zero divisor we deduce x1 + x2a + · · · +
xma

m = 0. Therefore the assertion follows by induction.
Next observe Dn + Dna + · · ·Dna

n ⊂ V 2n so that dim(V 2n) ≥ n dim(Dn) =
ndim(π(V n)). Since W = V 2 is again a generating subspace for A and Wn = V 2n

we conclude

dA(A) = lim sup
n→∞

log(dim(V 2n))

log(n)
≥ lim sup

n→∞

log(ndim(π(V n)))

log(n)
= 1 + dA(A/I)

as desired. �
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We will be interested in the case that A = Uq(n−) or A = Uq(b) and M is a
Uq(g)-module contained in O, viewed as an A-module. Note that dA(M) will be
the same for both choices of A, and we will write d(M) = dA(M) in either case.

In the next lemma, recall that w0 denotes the longest element of the Weyl group.

Lemma 4.30. Let A = Uq(n−).

a) If λ ∈ h∗q then d(M(λ)) = l(w0).
b) If Q is a proper quotient of a Verma module then d(Q) < l(w0).
c) If M is in O and µ ∈ P+ we have d(M ⊗ V (µ)) = d(M).

Proof. a) Every Verma module is a free A-module of rank 1. Hence the claim can
be obtained by invoking a filtration of A as in the proof of Proposition 2.134, taking
into account Satz 5.5 in [14].
b) This follows again from the fact that every Verma module is a free A-module

of rank 1 combined with A having no zero-divisors and part b) of Lemma 4.29.
c) We use that M , being in O, is finitely generated as an A-module. If V ⊂ A is

the linear span of 1 and the generators F1, . . . , FN then V is a generating subspace
of A. Let M0 be a finite dimensional generating subspace of M over A. Then
M0 ⊗ V (µ) is a generating subspace for M ⊗ V (µ), and we have

V n · (M0 ⊗ V (µ)) ⊂ V n ·M0 ⊗ V (µ) = Mn ⊗ V (µ),

which implies d(M ⊗ V (µ)) ≤ d(M). If vµ ∈ V (µ) is a lowest weight vector then
M ⊗ vµ is isomorphic to M as an A-module, so that d(M ⊗ V (µ)) ≥ d(M). Hence
we get d(M ⊗ V (µ)) = d(M) as desired. �

Lemma 4.31. For M,N in O, the following are equivalent:

a) F Hom(M,N) = 0.
b) HomUq(g)(V (µ)⊗M,N) = 0 for every µ ∈ P+.

c) HomUq(g)(M,V (µ)⊗N) = 0 for every µ ∈ P+.

Proof. The map κ : Hom(M,N)⊗ V (µ)∗ → Hom(V (µ)⊗M,N) defined by

κ(T ⊗ f)(v ⊗m) = f(v)T (m)

is a Uq(g)-linear isomorphism

(X → κ(T ⊗ f))(v ⊗m) = f(Ŝ(X(3)) · v)X(1) · T (Ŝ(X(2)) ·m)

= (X(1) → T )(m) (X(2) → f)(v).

Therefore, if Hom(M,N) contains a finite dimensional Uq(g)-submodule of highest
weight µ then Hom(V (µ) ⊗M,N) contains a trivial submodule, and conversely.
An element of Hom(V (µ) ⊗M,N) spans a trivial submodule if and only if it is
Uq(g)-linear. This proves that a) and b) are equivalent.

A similar argument proves the equivalence of a) and c). �

Note that V (µ) ⊗M can be replaced by M ⊗ V (µ) in b) and c) of the above
lemma, since they are isomorphic as Uq(g)-modules.

Proposition 4.32. Let M,N be in category O.

a) If d(M) < d(K) for every simple submodule K of N we have F Hom(M,N) = 0.
b) If d(N) < d(Q) for every simple quotient Q of M we have F Hom(M,N) = 0.

Proof. a) By Lemma 4.31, it suffices to show HomUq(g)(M ⊗ V (µ), N) = 0 for all

µ ∈ P+. Let f : M ⊗ V (µ) → N be a nonzero Uq(g)-linear map. According
to part c) of Lemma 4.30 we have d(M ⊗ V (µ)) = d(M), and we have d(f(M ⊗
V (µ)) ≤ d(M ⊗ V (µ)) = d(M) < d(K) for all simple submodules K ⊂ N by
assumption. On the other hand, if K ⊂ f(M ⊗ V (µ)) is a simple submodule then
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d(K) ≤ d(f(M ⊗ V (µ)) by Lemma 4.29. This is a contradiction, thus giving the
claim.
b) In a similar fashion it is enough to show HomUq(g)(M,V (µ) ⊗ N) = 0 for

all µ ∈ P+. Let f : M → V (µ) ⊗ N be a nonzero Uq(g)-linear map. Using
V (µ)⊗N ∼= N ⊗V (µ) we have d(N) = d(V (µ)⊗N) according to part c) of Lemma
4.30, and hence d(V (µ) ⊗ N) < d(Q) ≤ d(f(M)) for every simple quotient Q of
f(M) by assumption. In addition, d(f(M)) ≤ d(V (µ)⊗N) by Lemma 4.29 because
f(M) ⊂ V (µ)⊗N is a submodule. Again we obtain a contradiction. �

As a consequence we arrive at the following result.

Proposition 4.33. Let λ ∈ h∗q . If Q is a proper quotient of a Verma module then
F Hom(Q,M(λ)) = 0. Similarly, if M(λ) is simple then F Hom(M(λ), Q) = 0.

Proof. If Q is a proper quotient of a Verma module then d(Q) < l(w0) according to
Lemma 4.30. In particular, we have d(Q) < d(K) for the unique simple submodule
K = Soc(M(λ)) ⊂ M(λ), see Lemma 4.10. Hence the first assertion follows from
Proposition 4.32 a). Similarly, the second claim follows from Proposition 4.32
b). �

4.5.3. Multiplicities in F Hom(M,N). If V is any Uq(g)-module and λ ∈ h∗q , then
V ⊗M(λ) is a free Uq(n−)-module. To see this, let Vτ denote V equipped with the
trivial action of Uq(n−) and observe that the isomorphism Vτ ⊗M(λ) ∼= V ⊗M(λ)
defined by

v ⊗ Y · vλ 7→ Y(1) · v ⊗ Y(2) · vλ,
for v ∈ V , Y ∈ Uq(n−) is Uq(n−)-linear.

Lemma 4.34. Let λ ∈ h∗q and ν ∈ P+. Then there exists a finite decreasing
filtration

V (ν)⊗M(λ) = M0 ⊃M1 ⊃ · · · ⊃Mk ⊃ 0

with quotients isomorphic to M(λ + γ), where γ runs over all weights of V (ν)
counted with multiplicity.

Proof. We can filter V (ν) = V0 ⊃ V1 ⊃ · · ·Vk ⊃ 0 as a Uq(b+)-module by one-
dimensional quotients Cγ where Uq(b+) acts on Cγ by the character χγ . Using the
above observations, tensoring this filtration with M(λ) yields the claim. �

Recall that if M is an integrable Uq(g)-module and ν ∈ P+ we write [M : V (ν)]
for the multiplicity of V (ν) in M .

Proposition 4.35. Let λ, η ∈ h∗q and ν ∈ P+. The the following properties hold.

a) We always have

[F ((M(λ)⊗M(η))∗) : V (ν)] = dim(V (ν)η−λ).

b) If M(η) is simple then

[F Hom(M(λ),M(η)) : V (ν)] = dim(V (ν)η−λ).

c) If M(λ) is projective then

[F Hom(M(λ),M(η)) : V (ν)] = dim(V (ν)η−λ).

Proof. a) Recall that the appropriate Uq(g)-module structure on (M(λ)⊗M(η))∗

is given by

(X → ϕ)(m⊗ n) = ϕ(Ŝ(X(2)) ·m⊗ τ(X(1)) · n)

for X ∈ Uq(g), ϕ ∈ (M(λ) ⊗M(η))∗ and m ⊗ n ∈ M(λ) ⊗M(η). This can be
rewritten as

(X → ϕ)(m⊗ n) = ϕ(Ŝ(X) · (m⊗ n)),
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if we define the Uq(g)-action on M(λ)⊗M(η) by

X · (m⊗ n) = X(1) ·m⊗ Ŝτ(X(2)) · n.

Similarly, let us define a Uq(g)-action on Uq(g)⊗ Uq(g) by

X · (Y ⊗ Z) = X(1)Y ⊗ Ŝτ(X(2))Z

for X,Y, Z ∈ Uq(g). Using the triangular decomposition, see Theorem 2.14, one
can check that this action induces an isomorphism

Uq(g)⊗Uq(h) (Uq(b+)⊗ Uq(b+)) ∼= Uq(g)⊗ Uq(g)

X ⊗ (Y ⊗ Z) 7→ X · (Y ⊗ Z)

of left Uq(g)-modules.
We obtain isomorphisms of left Uq(g)-modules as follows

(M(λ)⊗M(η))∗ ∼= HomUq(b+)⊗Uq(b+)(Uq(g)⊗ Uq(g), (Cλ ⊗ Cη)∗)

∼= HomUq(b+)⊗Uq(b+)(Uq(g)⊗Uq(h) (Uq(b+)⊗ Uq(b+))), (Cλ ⊗ Cη)∗)

∼= HomUq(h)(Uq(g), (Cλ ⊗ Cη)∗),

where the Hom spaces are spaces of morphisms of right modules. In the last line,
the right Uq(h)-action on Cλ ⊗ Cη) is given by

((φ⊗ψ)·H)(v⊗w) = (φ⊗ψ)(χλ(H(1))v⊗χη(Ŝτ(H(2)))w) = χλ−η(H)(φ⊗ψ)(v⊗w),

so that the second factor is isomorphic to C∗λ−µ as a right Uq(h)-module. Thus

(M(λ)⊗M(η))∗ ∼= (Uq(g)⊗Uq(h) Cλ−µ)∗.

We now have

HomUq(g)(V (ν),(Uq(g)⊗Uq(h) Cλ−η)∗)

∼= HomUq(g)(V (ν)⊗ (Uq(g)⊗Uq(h) Cλ−η),C)

∼= HomUq(g)((Uq(g)⊗Uq(h) Cλ−η)⊗ V (ν),C)

∼= HomUq(g)(Uq(g)⊗Uq(h) Cλ−η, V (ν)∗)

∼= HomUq(h)(Cλ−η, V (ν)∗)

∼= HomUq(h)(Cη−λ, V (ν)).

This yields the first claim.
b) If M(η) is simple we have M(η)∨ ∼= V (η) ∼= M(η). Hence Lemma 4.27 yields

F ((M(λ)⊗M(η))∗) ∼= F ((M(λ)⊗M(η)∨)∗) ∼= F Hom(M(λ),M(η)),

and part a) implies [F Hom(M(λ),M(η)) : V (ν)] = dim(V (ν))η−λ for all ν ∈ P+.
c) Using Frobenius reciprocity we obtain

[F Hom(M(λ),M(η)) : V (ν)]

= dim HomUq(g)(V (ν),Hom(M(λ),M(η)))

= dim HomUq(g)(V (ν)⊗M(λ),M(η))

= dim HomUq(g)(M(λ), V (ν)∗ ⊗M(η)).

By Lemma 4.34, the module V (ν)∗⊗M(η) admits a finite length filtration with
quotients isomorphic to M(η + γ), where γ runs over all weights of V (ν)∗ counted
with multiplicity. If M(λ) is projective, this yields a corresponding filtration of
HomUq(g)(M(λ), V (ν)∗ ⊗M(η)), and therefore

[F Hom(M(λ),M(η)) : V (ν)] =
∑

γ∈P(V (ν)∗)

dim HomUq(g)(M(λ),M(η + γ)),
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where P(V (ν)∗) denotes the weights of V (ν)∗ counted with multiplicity. Using
Proposition 4.16 we have

dim HomUq(g)(M(λ),M(η + γ)) = δλ,η+γ .

We therefore conclude that

[F Hom(M(λ),M(η)) : V (ν)] = dim(V (ν)∗λ−η) = dim(V (ν)η−λ).

�

Note that Proposition 4.35 implies in particular

[F ((M(λ)⊗M(η))∗) : V (ν)] = 0

for all ν ∈ P+ if η−λ is not contained in P. That is, we have F ((M(λ)⊗M(η))∗) = 0
in this case.

4.5.4. Hilbert-Poincaré series for the locally finite part of Uq(g). In this subsection
we collect further auxiliary considerations needed for the description of the PRV
determinant. We follow closely the treatment in [41].

Let us first recall that the height of a weight µ ∈ P is defined by ht(µ) =
c1 + · · ·+ cN ∈ 1

2Z if µ = c1α1 + · · ·+ cNαN , and that ht(µ) ≥ 0 for µ ∈ P+. For
our purposes below it will be notationally convenient to work with the degree of µ
defined by deg(µ) = 2ht(µ) = ht(2µ) instead. The advantage of deg over ht is that
the former takes only integral values for µ ∈ P.

We define an N0-filtration of the vector space FUq(g) by

Fk(FUq(g)) =
⊕
µ∈P+

deg(µ)≤k

Uq(g)→ K2µ

for k ∈ N0, and refer to this as the degree filtration of FUq(g). In fact, this is
essentially the filtration of O(Gq) used in the proof of Theorem 2.154, transported
to FUq(g) via the isomorphism from Proposition 2.116. We note that the degree
filtration is not compatible with the algebra structure of FUq(g) in an obvious way.

The associated graded components of the degree filtration are

grk(FUq(g)) = Fk(FUq(g))/Fk−1(FUq(g)),

observing that F−1(FUq(g)) = 0. We note that the graded components grk(FUq(g))
are finite dimensional for all k ∈ N0. Using the isomorphism FUq(g) ∼= H⊗ZUq(g)
in Theorem 2.154 we obtain an induced N0-filtration of the vector space H ∼= H⊗1 ⊂
FUq(g). We shall write

Hk = (Fk(FUq(g)) ∩H)/(Fk−1(FUq(g)) ∩H)

for the corresponding graded components.
As for any filtration with finite dimensional graded components, we may define

associated Hilbert-Poincaré series as the generating function of the corresponding
graded dimensions as follows.

Definition 4.36. Let µ ∈ P+. With the notation as above, the µ-Hilbert-Poincaré
series of FUq(g) and H are the formal power series defined by

hFUq(g)
µ (z) =

∞∑
k=0

[grk(FUq(g)) : V (µ)]zk, hHµ(z) =

∞∑
k=0

[Hk : V (µ)]zk,

respectively.



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 191

Recall from the proof of Theorem 2.113 that Uq(g) → K2λ is isomorphic to
End(V (−w0λ))∗ ∼= (V (λ)∗ ⊗ V (λ))∗ ∼= V (λ) ⊗ V (λ)∗ ∼= End(V (λ)) as a Uq(g)-
module, where we are using the fact that V ⊗W ∼= W⊗V for any finite dimensional
Uq(g)-modules V,W . Therefore we can also write

hµ(z) =
∑
λ∈P+

[End(V (λ)) : V (µ)]zdeg(λ).

In the remainder of this subsection we shall derive a formula for the formal
derivative of hHµ(z) at z = 1, presented in Proposition 4.42 further below.

Recall that if M is in category O and M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 a
filtration with simple subquotients as in Lemma 4.2, then [M : V (µ)] is the number
of subquotients Mi/Mi+1 isomorphic to V (µ).

Lemma 4.37. Let µ, λ ∈ P+. Then

[End(V (λ)) : V (µ)] =
∑

v,w∈W
(−1)l(v)+l(w)P (v.λ− w.λ+ µ),

where P denotes Kostant’s partition function.

Proof. If V (−λ) ∼= V (λ)∗ denotes the integrable simple Uq(g)-module with lowest
weight −λ, we have End(V (λ)) ∼= V (λ)⊗ V (−λ) ∼= V (−λ)⊗ V (λ). Using Lemma
4.34 and Proposition 4.4 we therefore obtain

[End(V (λ)) : V (µ)] = [V (−λ)⊗ V (λ) : V (µ)]

=
∑
w∈W

(−1)l(w)[V (−λ)⊗M(w.λ) : V (µ)]

=
∑
w∈W

∑
ν∈P(V (−λ))

(−1)l(w)[M(w.λ+ ν) : V (µ)],

where in the last line the sum is over the weights ν of V (−λ) counted with mul-
tiplicities. Since µ ∈ P+ we have [M(w.λ + ν) : V (µ)] = 1 if ν = µ − w.λ and
[M(w.λ+ ν) : V (µ)] = 0 otherwise by Theorem 2.43, so that we arrive at

[End(V (λ)) : V (µ)] =
∑
w∈W

(−1)l(w) dim(V (−λ)µ−w.λ)

=
∑
w∈W

(−1)l(w) dim(V (λ)w.λ−µ)

=
∑

v,w∈W
(−1)l(v)+l(w)P (v.λ− w.λ+ µ)

as claimed, using that dim(V (−λ)ν) = dim(V (λ)−ν) for all weights ν and Proposi-
tion 4.4 again. �

Let us write the group ring C[P] of the abelian group P additively, with basis
eλ for λ ∈ P.

Definition 4.38. We define

QFUq(g)(z) =
∑
w∈W

(−1)l(w)ew.0
N∏
j=1

1

1− zdeg($j)ew$j−$j
,

QH(z) =
∑
w∈W

(−1)l(w)ew.0
N∏
j=1

1− zdeg($j)

1− zdeg($j)ew$j−$j
,

both viewed as elements of the function field F(z), where F is the field of quotients
of the integral domain C[P].
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We note that expanding the geometric series in Definition 4.38 we can write

QFUq(g)(z) =
∑
λ∈P+

∑
w∈W

(−1)l(w)ew.λ−λzdeg(λ),

QH(z) =
∑
λ∈P+

∑
w∈W

(−1)l(w)ew.λ−λzdeg(λ)
N∏
j=1

(1− zdeg($j)),

as formal power series with coefficients in C[P].
In the next lemma, we will need to consider power series with coefficients belong-

ing to infinite formal series in the eλ of the type introduced in Section 4.1. That
is, we will be considering formal sums of the form

f(z) =

∞∑
n=0

∑
λ∈h∗q

fn(λ)eλzn,

where for each fixed n the support of fn : h∗q → Z is contained in a finite union

of sets of the form ν − Q+ for ν ∈ h∗q . As in Section 4.1, such series admit a
well-defined convolution product.

Lemma 4.39. Let µ ∈ P+ and hµ(z), hHµ(z) be the Poincaré-Hilbert series for
FUq(g) and H, respectively. Then

a) h
FUq(g)
µ (z) is the coefficient of e0 in ch(V (µ))QFUq(g)(z).

b) hHµ(z) is the coefficient of e0 in ch(V (µ))QH(z).

Here QFUq(g)(z) and QH(z) are viewed as formal power series.

Proof. a) Recall from Section 4.1 that we defined the formal series

p = ch(M(0)) =
∑
ν∈P

P (ν)e−ν .

Using Proposition 4.4 we can write

ch(V (µ))QFUq(g)(z) =
∑
w∈W

(−1)l(w)pew.µQFUq(g)(z)

=
∑
λ∈P+

∑
v,w∈W

(−1)l(v)+l(w)pew.µ+v.λ−λzdeg(λ)

=
∑
λ∈P+

∑
w∈W

(−1)l(w) ch(V (λ))ew(µ+ρ)−ρ−λzdeg(λ)

For each n ∈ N0, the coefficient of zn is the above series is a finite formal sum,
so we may consider the action of the Weyl group upon it, given by w(eλ) = ewλ.
Moreover, the e0 term in each summand is invariant under the Weyl group action,
so the coefficient of e0 in the above sum is the same as the coefficient of e0 in∑

λ∈P+

∑
w∈W

(−1)l(w) ch(V (λ))eµ+ρ−w−1(ρ+λ)zdeg(λ)

=
∑
λ∈P+

∑
w∈W

(−1)l(w) ch(V (λ))eµ−w
−1.λzdeg(λ)

=
∑
λ∈P+

∑
v,w∈W

(−1)l(v)+l(w)pev.λeµ−w
−1.λzdeg(λ)

=
∑
ν∈P

∑
λ∈P+

∑
v,w∈W

(−1)l(v)+l(w)P (ν)ev.λ−w
−1.λ+µ−νzdeg(λ),
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where in the second equality we have again used Proposition 4.4. Replacing w by
w−1 in the sum and using Lemma 4.37, we calculate the coefficient of e0 to be∑

λ∈P+

∑
v,w∈W

(−1)l(v)+l(w)P (v.λ− w.λ+ µ)zdeg(λ)

=
∑
λ∈P+

[End(V (λ)) : V (µ)]zdeg(λ).

From the formula immediately after Definition 4.36, this is hµ(z).
b) Using Theorem 2.120 it is easy to see that the centre ZUq(g) has Hilbert-

Poincaré series

hZUq(g)(z) =

N∏
j=1

( ∞∑
k=0

zk deg($j)

)
with respect to the degree filtration of FUq(g), and therefore

hZUq(g)(z)

N∏
j=1

(1− zdeg($j)) = e0.

Due to Theorem 2.154 we therefore get

hHµ(z) = hHµ(z)hZUq(g)(z)

N∏
j=1

(1− zdeg($j)) = hFUq(g)
µ (z)

N∏
j=1

(1− zdeg($j)).

Hence the assertion follows from a). �

Lemma 4.40. The derivative of the rational function QH(z) defined above satisfies

(∂zQ
H)(1) =

N∑
j=1

e−αj

1− e−αj
deg($j) =

N∑
j=1

∞∑
n=1

e−nαj deg($j).

Proof. For every λ ∈ P+ the stabilizer over λ with respect to the action of W is
generated by the simple reflections it contains, see Theorem 1.12 (a) of [36]. In
particular, the stabilizer of $j is the subgroup generated by all si for i 6= j. Hence
for each w ∈ W with l(w) > 1 there are at least two fundamental weights $j for
which w$j 6= $j . As a consequence, the product

N∏
j=1

1− zdeg($j)

1− zdeg$jew$j−$j

vanishes at z = 1 to at least order 2 when l(w) > 1.
It follows that only the summands with l(w) = 1 in the definition of QH(z)

contribute to (∂zQ
H)(1). Using si.0 = −αi and si$j = $j − δijαi we therefore

obtain

(∂zQ
H)(1) =

N∑
j=1

e−αj

1− e−αj
deg($j),

as claimed. Expanding the geometric series on the right hand side of this formula
yields the second equality. �

Lemma 4.41. Let µ ∈ P+ and n ∈ N. Then we have

N∑
j=1

dim(V (µ)nαj ) deg($j) =
1

2

∑
α∈∆+

dim(V (µ)nα) deg(α).
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Proof. We begin with the case where g is a simple Lie algebra, so that the root
system ∆ is irreducible. In this case, any two roots of the same length are con-
jugate under the Weyl group action, see Lemma C in Section 10.4 of [35], so the
decomposition of ∆ into W -orbits is given by ∆ = ∆s ∪∆l, where ∆s is the set
of short roots, meaning roots of minimal length, and ∆l is its complement, the
possibly empty set of long roots. We shall show that the contributions of all roots
of a given length on both sides of the claimed formula agree.

More precisely, denote by ∆+
s and ∆+

l the sets of short and long roots in ∆+,

respectively, and let Σs = ∆+
s ∩Σ and Σl = ∆+

l ∩Σ be the sets of short simple roots
and long simple roots. Since the dimension of weight spaces is constant on Weyl
group orbits we have dim(V (µ)nαj ) = dim(V (µ)nα) for any αj ∈ Σs and α ∈ ∆+

s ,

or αj ∈ Σl and α ∈∆+
l . Hence it suffices to show∑

αj∈Σs

$j =
1

2

∑
α∈∆+

s

α,
∑
αj∈Σl

$j =
1

2

∑
α∈∆+

l

α.

For the first equality, write ρs for the right hand side and notice that a simple
reflection sj satisfies sjρs = ρs − αj if αj ∈ Σs, and sjρs = ρs otherwise. Hence
(α∨j , ρs) = 1 for αj ∈ Σs and (α∨j , ρs) = 0 otherwise. However, the same relations
characterize the sum on the left hand side.

The second equality can be proved in the same way, or by using the first formula
and the fact that the sum of all fundamental weights equals the half-sum of all
positive roots.

Finally, if ∆ is not irreducible, then the two sums in the Lemma can be de-
composed into sums corresponding to each of the irreducible components, and the
result follows. �

Assembling the above results we obtain the following formula.

Proposition 4.42. Let µ ∈ P+. Then we have

(∂zh
H
µ)(1) =

1

2

∞∑
n=1

∑
α∈∆+

dim(V (µ)nα) deg(α).

Proof. According to Lemma 4.39 we know that (∂zh
H
µ)(1) equals the coefficient of

e0 in ch(V (µ))(∂zQ
H)(1). Due to Lemma 4.40 this coefficient is given by

N∑
j=1

∞∑
n=1

dim(V (µ)nαj ) deg($j).

Hence the claim follows from Lemma 4.41. �

4.5.5. The quantum PRV determinant. According to Theorem 2.154 there exists
a Uq(g)-invariant linear subspace H ⊂ FUq(g) such that the multiplication map
H⊗ ZUq(g)→ FUq(g) is a Uq(g)-linear isomorphism. For µ ∈ P+ let

Hµ ∼=
m⊕
j=1

V (µ)

be the µ-isotypical component of H. It is also shown in Theorem 2.154 that the
multiplicity m is given by m = [H : V (µ)] = dim(V (µ)0). Choose a basis v1, . . . , vm
of the zero weight space of V (µ), and write vij ∈ Hµ for the vector vj in the i-th copy
of V (µ) with respect to the above identification. According to the remarks after
Theorem 2.154, each of the copies of V (µ) in Hµ can be assumed to be contained
in a subspace of the form Uq(g)→ K2νi for some ν1, . . . , νm ∈ P+.

If we identify Hµ with Hµ ⊗ 1 ⊂ FUq(g) via the above isomorphism, then the
PRV determinant of Uq(g) associated with µ is defined as the determinant of the
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matrix Pµ = (P(vij)), where P : Uq(g)→ Uq(h) denotes the Harish-Chandra map.
Note that this determinant, which we denote by det(Pµ) ∈ Uq(h), is independent
of the choice of basis v1, . . . , vm up to an invertible scalar in C. Our aim in this
subsection is to compute det(Pµ), at least up to multiplication by an invertible
element of Uq(h). We start with a result on annihilators, see Lemma 7.1.10 in [41].

Lemma 4.43. Let H ⊂ FUq(g) be a submodule with respect to the adjoint action,
and let λ ∈ h∗q . Then χλ(P(H)) = 0 iff H ⊂ annFUq(g)(V (λ)).

Proof. Recall that χλ denotes the character of Uq(h) given by χλ(Kβ) = q(λ,β). Let
us write N ⊂ V (λ) for the linear span of all weight spaces in V (λ) apart from the
highest weight space V (λ)λ = Cvλ.

We claim that χλ(P(H)) = 0 iff H · vλ ⊂ N . Indeed, if H · vλ ⊂ N then the
projection P(H) of H onto Uq(h) = 1 ⊗ Uq(h) ⊗ 1 ⊂ Uq(n−) ⊗ Uq(h) ⊗ Uq(n+)
must satisfy χλ(P(H)) = 0 since it acts on vλ by the character χλ. Conversely, if
χλ(P(H)) = 0 then only terms in H · vλ which lower weights survive, which means
H · vλ ⊂ N .

Assume χλ(P(H)) = 0 and let X ∈ H be a weight vector of weight µ with
respect to the adjoint action. Then

XFj = q(µ,αj)K−1
j XKjFj = q(µ,αj)(FjX − (Fj → X))

by definition of the adjoint action. We conclude HUq(n−) = Uq(n−)H. Since
χλ(P(H)) = 0 implies H · vλ ⊂ N this implies

H · V (λ) = HUq(n−) · vλ = Uq(n−)H · vλ ⊂ N.
In addition, because H is ad-stable we have Uq(g)H = HUq(g) and Uq(g)H ·V (λ) =
HUq(g) · V (λ) = H · V (λ). That is, the vector space H · V (λ) ⊂ V (λ) is a Uq(g)-
submodule. Since H · V (λ) is contained in N and V (λ) is simple we conclude
H · V (λ) = 0. That is, we have H ⊂ annUq(g)(V (λ)), and therefore in particular
H ⊂ annFUq(g)(V (λ)).

Conversely, if H ⊂ annFUq(g)(V (λ)) we obtain H · vλ = 0 ⊂ N , and our initial
argument implies χλ(P(H)) = 0. �

We note that Lemma 4.43 implies in particular that det(Pµ) is nonzero for any
µ ∈ P+. In fact, otherwise we would find a nonzero ad-stable subspace H ⊂ Hµ ⊂ H
such that χλ(P(H)) = 0 for all λ ∈ h∗q , and hence H would act by zero on all
irreducible modules V (λ). This is impossible due to Theorem 2.101.

For α ∈∆+ and n ∈ N let us define

Γn,α = {λ ∈ h∗q | q(λ+ρ,α∨)
α = qnα and q

(λ+ρ,β∨)
β /∈ ±qZβ for all β ∈∆+, β 6= α}.

If λ ∈ Γn,α then this description implies in particular that sα.λ = s0,α.λ is antidom-
inant, see Definition 4.6. According to Theorem 4.15 it follows that M(s0,α.λ) is
simple. Moreover the Jantzen sum formula from Theorem 4.24 shows M(λ)i = 0
for i > 1 in this case and hence M(λ)1 = M(s0,α.λ). In particular M(λ)/M(s0,α.λ)
is simple.

Lemma 4.44. Let λ ∈ Γn,α. Then

[F End(V (λ)) : V (µ)] = dim(V (µ)0)− dim(V (µ)nα)

for all µ ∈ P+.

Proof. Since q
(λ+ρ,β∨)
β /∈ ±q−Nβ for all β ∈ ∆+ by the definition of Γn,α, it follows

from Proposition 4.16 that M(λ) is projective. Moreover V (λ) = M(λ)/M(s0,α.λ)
is a proper quotient of M(λ), so by Lemma 4.30 we have d(V (λ)) < d(M(λ)) =
d(M(s0,α.λ)). Therefore Proposition 4.32 b) shows that F Hom(M(s0,α.λ), V (λ)) =
0, and hence the map F End(V (λ), V (λ))→ F End(M(λ), V (λ)) is an isomorphism.
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Since M(λ) is projective the functor F Hom(M(λ),−) is exact, so applying this
functor to the short exact sequence

0 // M(s0,α.λ) // M(λ) // V (λ) // 0

gives

[F End(V (λ), V (λ)) : V (µ)] = [F Hom(M(λ),M(λ)) : V (µ)]

− [F Hom(M(λ),M(s0,α.λ)) : V (µ)].

Now Lemma 4.35 yields the claim, keeping in mind that dim(V (µ)−nα) = dim(V (µ)nα)
since ±nα are in the same orbit of the Weyl group action. �

Lemma 4.45. Let ν ∈ P+. Then

P(Uq(g)→ K2ν)K−2ν ⊂
∑

γ∈ν+P(V (−w0ν))

CK−2γ ⊂ C[K−2
1 , . . . ,K−2

N ],

where P(V (−w0ν)) denotes the set of weights of V (−w0ν) ∼= V (ν)∗.

Proof. Let us first show P(X → K2ν)K−2ν ∈ C[K−2
1 , . . . ,K−2

N ] for any X ∈ Uq(g).
For this it suffices to consider a monomial X = Ei1 · · ·EirKλFj1 · · ·Fjs with 1 ≤
i1, . . . , ir ≤ N,λ ∈ P and 1 ≤ j1, . . . , js ≤ N . Using the commutation relations in
Uq(g) one checks that Fj1 · · ·Fjs → K2ν is a linear combination of monomials of
the form K2λFjσ(1) · · ·Fjσ(s) where σ is a permutation of 1, . . . , s. The same is true
after applying the adjoint action of Kλ. In order for P(X → K2ν) to be nonzero
it is therefore necessary that Ei1 · · ·Eir contains exactly as many generators Ek as
Fj1 · · ·Fjs contains generators Fk for all 1 ≤ k ≤ N . Our assertion follows now
from

Ei → Fj = [Ei, Fj ]K
−1
i =

δij

qi − q−1
i

(1−K−2
i )

for 1 ≤ i, j ≤ N and the fact that the adjoint action is compatible with multiplica-
tion.

In order to prove the Lemma we recall that the isomorphism J : FUq(g) ∼=
O(Gq) from Theorem 2.113 maps Uq(g) → K2ν onto End(V (−w0ν))∗. Since J is
compatible with the adjoint action on FUq(g) and the coadjoint action on O(Gq)
it follows that for P(X → K2ν) to be nonzero it is necessary that Ei1 · · ·Eir is
contained in Uq(n+)γ for some γ ∈ Q+ such that −ν+γ ∈ P(V (−w0ν)). Combined
with the above considerations this yields the claim. �

As pointed out at the start of this subsection, the j-th copy of V (µ) in Hµ can
be assumed to be contained in a subspace of the form Uq(g) → K2νj for some
ν1, . . . , νm ∈ P+. Hence if we write ν = ν1 + · · · + νm then according to Lemma
4.45 it follows that det(Pµ) is contained in C[K−2

1 , . . . ,K−2
N ]K2ν ⊂ Uq(h). For

technical reasons it will be convenient to remove the factor K2ν from det(Pµ) in
our considerations below, and work with Det(Pµ) = det(Pµ)K−2ν instead. Thus

we have Det(Pµ) ∈ C[K−2
1 , . . . ,K−2

N ] ⊂ C[Q] by construction.
Recall from Subsection 2.3.1 that we identify elements λ ∈ h∗q with the associated

algebra characters χλ : Uq(h) ∼= C[P]→ C. We may also restrict these to characters

of C[Q]. For λ ∈ h∗q we denote by mλ ⊂ C[K±1
1 , . . . ,K±1

N ] = C[Q] the kernel of
χλ : C[Q] → C. Given f ∈ C[Q] we shall say that λ is a zero of f of order ≥ d
if f ∈ mdλ for some d ∈ N. We also say that λ is a zero of order d if f ∈ mdλ and

f /∈ md+1
λ .

Lemma 4.46. Let λ ∈ h∗q and µ ∈ P+. Then λ is a zero of Det(Pµ) of order
≥ [annH(V (λ)) : V (µ)].
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Proof. For each copy V of V (µ) in annH(V (λ)) we have χλ(P(V )) = 0 by Lemma
4.43. In terms of the elements vij ∈ Hµ defined at the start of this subsection
this means that the rank of the matrix χλ(P(vij)) satisfies rk(χλ(P(vij)) ≤ m −
[annH(V (λ)) : V (µ)]. Hence the same is true for the matrix χλ(P(uij)) where

uij = vijK−2νj ∈ C[K−2
1 , . . .K−2

N ]. Since Det(Pµ) = det(P(uij)) this yields the
assertion. �

Lemma 4.47. Let λ ∈ Γn,α and µ ∈ P+. Then λ is a zero of Det(Pµ) of order
≥ dim(V (µ)nα).

Proof. According to our above observations we have V (λ) = M(λ)/M(s0,α.λ).
Moreover the action of FUq(g) on V (λ) = M(λ)/M(s0,α.λ) clearly defines an in-
jection of FUq(g)/ annFUq(g)(V (λ)) into F Hom(V (λ), V (λ)). Hence

[H/ annH(V (λ)) : V (µ)] ≤ dim(V (µ)0)− dim(V (µ)nα) = [H : V (µ)]− dim(V (µ)nα)

by Lemma 4.44. We thus obtain

[annH(V (λ)) : V (µ)] = [H : V (µ)]− [H/ annH(V (λ)) : V (µ)] ≥ dim(V (µ)nα).

Therefore the assertion follows from Lemma 4.46. �

Lemma 4.48. Let µ ∈ P+. For each α ∈∆+ and n ∈ N, the element

(Kα − q2n−2(ρ,α∨)
α K−α)dim(V (µ)nα)

divides Det(Pµ).

Proof. We shall show that pdim(V (µ)nα) divides Det(Pµ) where

p = 1− q2n−(2ρ,α∨)
α K−2

α ∈ C[2Q].

Note first that in C[Q] we have the factorization p = p+p− where

p± = 1± qn−(ρ,α∨)
α K−1

α ,

and for λ ∈ Γn,α the formula

1± qn−(ρ,α∨)
α K−1

α = 1± q(λ,α∨)
α K−1

α = 1± q(λ,α)K−α

shows that χλ(p−) = 0 and χλ(p+) 6= 0.
We claim that p± are irreducible elements in C[Q] and that λ is a zero of p− of

order 1. This is clear if α = αi is a simple root. For general α we can use the Weyl
group action on C[Q] to transform p± into a polynomial of the form 1± q(λ,α)K−1

αi
for some simple root αi, which easily yields the claim in this case as well.

Consider the linear subspace Nα = {γ ∈ h∗ | (γ, α) = 0} of h∗. The bilinear
form ( , ) on h∗ induces an orthogonal direct sum decomposition

h∗ = Nα ⊕N⊥α ,
such that η ∈ h∗ corresponds to (η− 1

2 (η, α∨)α, 1
2 (η, α∨)α). We shall write π : h∗ →

Nα for the canonical projection, given by

π(η) = η − 1

2
(η, α∨)α.

Note that when η ∈ 2Q we have 1
2 (η, α∨) ∈ Z, so that η − π(η) ∈ Zα and

π(η) ∈ Nα ∩ Q. It follows that if we define Lα = π(2Q) ⊂ Nα ∩ Q then every

element of C[2Q] can be written in the form
∑l
j=−l gjK

j
α for some l ≥ 0 and

elements gj ∈ C[Lα].
In particular, we obtain such an expression for Det(Pµ). It follows that we can

write

Det(Pµ) = Kl
α

k∑
j=d

fjp
j
−,
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where each fj is contained in C[Lα] ⊂ C[Q], and we have chosen d ∈ N0 to be the
smallest integer with fd 6= 0.

Consider the canonical embedding C[Lα] ⊂ C[Q]. Since the restriction of the
bilinear form ( , ) to Nα is nondegenerate, the assignment η 7→ χη induces a
surjection χ : Nα → Hom(Lα,C×) such that the diagram

h∗
χ
//

π

��

Hom(Q,C×)

��

Nα
χ
// Hom(Lα,C×)

is commutative. Here the right hand vertical map is induced by restriction.
For n ∈ N let us define

Zn,α = {λ ∈ h∗ | (λ+ ρ, α∨) = n

and (λ+ ρ, β∨) /∈ Z + 1
2 i~
−1
β Z for all β ∈∆+, β 6= α},

where we are using the notation ~β = dβ~. Note that under the surjection h∗ →
h∗q
∼= Hom(P,C×) the set Zn,α gets mapped to Γn,α. The set Zn,α is open and

dense in the affine subspace

{λ ∈ h∗ | (λ+ ρ, α∨) = n},

and it follows that π(Zn,α) is open and dense in Nα. Interpreting Hom(Lα,C×)
as the set of characters of C[Lα] it follows easily that we find λ ∈ Zn,α such that
χλ(fd) is nonzero. Since the image of λ in Γn,α is a zero of Det(Pµ) of order
≥ dim(V (µ)nα) by Lemma 4.47, we conclude that d ≥ dim(V (µ)nα).

Finally, recall that Det(Pµ) is contained in C[2Q], and therefore invariant under
the automorphism of C[Q] which maps Kj to −Kj . It follows that pd+ divides

Det(Pµ) as well. We have thus shown that the polynomial pd divides Det(Pµ), and
this finishes the proof. �

The following result is essentially the content of Theorem 8.2.10 in [41].

Theorem 4.49. For µ ∈ P+ we have

det(Pµ) =
∏
n∈N

∏
α∈∆+

(Kα − q2n−2(ρ,α∨)
α K−α)dim(V (µ)nα),

up to multiplication by an invertible element of Uq(h).

Proof. Recall that we may choose the decomposition of Hµ in such a way that the
i-th copy of V (µ) is contained in Uq(g)→ K2νi for some νi ∈ P+ for i = 1, . . . ,m,
and we define ν = ν1 + · · · + νm. Clearly it suffices to prove the assertion for
Det(Pµ) = det(Pµ)K−2ν instead of det(Pµ).

According to Lemma 4.48 we have

Det(Pµ) = f
∏
n∈N

∏
α∈∆+

(1− q2(n−(ρ,α∨))
α K−2

α )dim(V (µ)nα)

for some element f ∈ C[K−2
1 , . . . ,K−2

N ]. Our strategy is to use degree considerations
to show that f is actually an invertible scalar.

Let us first use the definition of deg to define a filtration on C[K−2
1 , . . . ,K−2

N ]
whereby, for a linear combination X =

∑
j cjK−ηj with ηj ∈ 2Q+ and nonzero

coefficients cj ∈ C, we set deg(X) = maxj deg(ηj). By Lemma 4.45 each element
of P(Uq(g) → K2νj )K−2νj is a linear combination of monomials K−2γ with γ ∈
νj +P(V (−w0νj)). Since the action of −w0 on P preserves the set of positive roots
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it is easy to see that deg(−2w0νj) = deg(2νj), so that each element X ∈ P(Uq(g)→
K2νj )K−2νj satisfies

deg(X) ≤ deg(2νj) + deg(−2w0νj) = 4 deg(νj).

It follows that deg(Det(Pµ)) ≤ 4 deg(ν).
If we consider the Hilbert-Poincaré series

hHµ(z) =

∞∑
k=0

[Hk : V (µ)]zk

for H from Definition 4.36, then by the definition of the νi we have

(∂zh
H
µ)(1) =

∞∑
k=0

k[Hk : V (µ)] = deg(ν1) + · · ·+ deg(νm) = deg(ν).

According to Proposition 4.42 we therefore obtain

deg(ν) =
1

2

∑
n∈N

∑
α∈∆+

dim(V (µ)nα) deg(α).

This implies

deg

(∏
n∈N

∏
α∈∆+

(1− q2(n−(ρ,α∨))
α K−2

α )dim(V (µ)nα)

)
= 4 deg(ν).

Combining our above considerations yields

4 deg(ν) deg(f) = deg(Det(Pµ)) ≤ 4 deg(ν),

which implies deg(f) = 0. We conclude that f is a scalar, which must be invertible
since Det(Pµ) is nonzero. This finishes the proof. �

We note that Joseph establishes a slightly stronger version of the formula for the
PRV determinant given in Theorem 4.49. Namely, it is shown in Theorem 8.2.10
of [41] that the formula holds even up to multiplication by a nonzero scalar of the
ground field, and not only up to an invertible element of Uq(h). We shall not need
this stronger assertion in the sequel.

In fact, our main application of Theorem 4.49 is the following key result on
annihilators.

Proposition 4.50. Let λ ∈ h∗q . Then the Verma module M(λ) is simple iff

annFUq(g)(V (λ)) ∩H = 0.

Proof. From our considerations in Lemma 4.17 we know that the canonical projec-
tion M(λ) → V (λ) has a nonzero kernel if and only if χλ(det(Shν)) = 0 for some
Shapovalov determinant det(Shν) with ν ∈ Q+.

We claim that annFUq(g)(V (λ))∩H 6= 0 iff χλ(det(Pµ)) = 0 for some PRV deter-

minant det(Pµ) with µ ∈ P+. Indeed, consider the space H = annFUq(g)(V (λ))∩H.
Then H is invariant under the adjoint action and therefore χλ(P(H)) = 0 by
Lemma 4.43. Hence if H is nonzero we have χλ(det(Pµ)) = 0 for some µ. Con-
versely, if χλ(det(Pµ)) = 0 there exist scalars c1, . . . , cm, not all zero, such that∑
i ciχλ(P(vij)) = 0 for all j. Let us write V for the linear span of the vectors∑
civij for j = 1, . . . ,m. Then V is the weight zero subspace of a uniquely de-

termined Uq(g)-invariant subspace L ⊂ Hµ. Applying again Lemma 4.43 we have
L ⊂ H, so H is nonzero.

According to Theorem 4.49, we find that χλ(det(Pµ)) is zero for some µ ∈ P+

iff

q2(α∨,λ+ρ)
α − q2n

α = 0
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for some α ∈ ∆+ and n ∈ N. By Theorem 4.22, this corresponds precisely to
the condition for the vanishing of χλ(det(Shν)) for some ν ∈ Q+. This yields the
claim. �

4.6. Annihilators of Verma modules. This section is devoted to the Verma
module annihilator Theorem of Joseph and Letzter [44], see also Theorem 8.3.9 in
[41]. We shall rely crucially on results obtained in Chapter 2 and the considerations
in previous sections.

Let λ ∈ h∗q and consider the associated Verma module M(λ) = Uq(g)⊗Uq(b) Cλ,
where we recall that Cλ denotes the Uq(b)-module associated with the character
χλ. The canonical left action of elements in Uq(g) on M(λ) defines an algebra
homomorphism φλ : Uq(g)→ End(M(λ)).

The map φλ is Uq(g)-linear with respect to the adjoint action

ad(X)(Y ) = X → Y = X(1)Y Ŝ(X(2))

on Uq(g) and the action given by

(X · T )(m) = X(1) · T (Ŝ(X(2)) ·m)

on End(M(λ)). In particular, φλ induces an algebra homomorphism FUq(g) →
F End(M(λ)), which we again denote by φλ.

We write annFUq(g)(M(λ)) ⊂ FUq(g) for the annihilator of M(λ) viewed as a
FUq(g)-module, that is, for the kernel of φλ : FUq(g)→ F End(M(λ)).

Recall that ZUq(g) ⊂ FUq(g) denotes the centre of Uq(g). In a similar way we
write annZUq(g)(M(λ)) ⊂ ZUq(g) for the annihilator of M(λ) viewed as a ZUq(g)-
module.

Theorem 4.51 (Verma module Annihilator Theorem). Let λ ∈ h∗q . Then

annFUq(g)(M(λ)) = FUq(g) annZUq(g)(M(λ)),

and the linear map φλ : FUq(g)/ annFUq(g)(M(λ)) → F End(M(λ)) is an isomor-
phism.

Proof. We first claim that

FUq(g) = H + FUq(g) annZUq(g)(M(λ)),

where H is the subspace of FUq(g) obtained in the Separation of Variables Theo-
rem 2.154. Indeed, according to Theorem 2.154, we have FUq(g) = H ⊗ ZUq(g).
Moreover, recall that the centre ZUq(g) acts on M(λ) by the central character ξλ.
In particular, we have Z − ξλ(Z)1 ∈ annZUq(g)(M(λ)) for all Z ∈ ZUq(g). Hence
we can write any element h⊗ Z ∈ H⊗ ZUq(g) in the form

ξλ(Z)h⊗ 1 + h⊗ (Z − ξλ(Z)1) ∈ H + FUq(g) annZUq(g)(M(λ))

as desired.
Assume first that M(λ) is simple. Then Proposition 4.50 implies

annFUq(g)(M(λ)) ∩H = 0.

It follows that the restriction of the map FUq(g) → FUq(g)/ annFUq(g)(M(λ)) to
H is an injective map H → FUq(g)/ annFUq(g)(M(λ)). It is also surjective since
FUq(g) = H+FUq(g) annZUq(g)(M(λ)) and FUq(g) annZUq(g)(M(λ)) ⊂ annFUq(g)(M(λ)).
Therefore, we have an isomorphism

FUq(g)/ annFUq(g)(M(λ)) ∼= H.

Still assuming that M(λ) is simple, Proposition 4.35 implies

[F End(M(λ)) : V (ν)] = dim(V (ν)0)
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for any ν ∈ P+, where [N : V (ν)] denotes the multiplicity of V (ν) inside N and
V (ν)0 is the zero weight space of V (ν). From Separation of Variables in Theorem
2.154 we know that [H : V (ν)] = dim(V (ν)0) as well. By comparing the multiplici-
ties of all isotypical components it follows that the inclusion map

H ∼= FUq(g)/ annFUq(g)(M(λ))→ F End(M(λ))

is an isomorphism. This finishes the proof in the case that M(λ) is simple.
Now consider an arbitrary λ ∈ h∗q . Then according to Lemma 4.10 there exists

λ′ ≤ λ such that M(λ′) ⊂ M(λ) and M(λ′) is simple. Due to Proposition 4.50 we
have annFUq(g)(M(λ)) ∩H ⊂ annFUq(g)(M(λ′)) ∩H = 0. Hence we obtain

FUq(g)/ annFUq(g)(M(λ)) ∼= H.
in the same way as above. Consider the commutative diagram

F Hom(M(λ),M(λ′)) //

��

F Hom(M(λ),M(λ))

��

F Hom(M(λ′),M(λ′)) // F Hom(M(λ′),M(λ))

induced by the inclusion M(λ′) ⊂ M(λ). Using Proposition 4.33 and exactness of
the Hom-functor we see that the two vertical maps are injections and the bottom
horizontal map is an isomorphism.

This gives us an injection F End(M(λ)) ∼= F End(M(λ′)) and we obtain a com-
mutative diagram

H ∼= FUq(g)/ annFUq(g)(M(λ)) //

��

F End(M(λ))

��

H ∼= FUq(g)/ annFUq(g)(M(λ′)) // F End(M(λ′)).

The bottom horizontal map is an isomorphism since M(λ′) is simple. The left
vertical map is also an isomorphism. The right vertical map is therefore surjective.
Since we have shown it is injective, this map is in fact an isomorphism, and so is
the top horizontal map. This finishes the proof. �
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5. Representation theory of complex semisimple quantum groups

In this chapter, we discuss the representation theory of complex semisimple quan-
tum groups. The appropriate notion of a Gq-representation here is that of a Harish-
Chandra module for Gq, which means an essential D(Gq)-module with Kq-types of
finite multiplicity, see Section 5.2. In particular, the irreducible unitary represen-
tations of Gq belong to this class.

Our main focus will be the classification of irreducible Harish-Chandra modules.
This is achieved by studying the (non-unitary) principal series representations of
Gq and the intertwining operators between them. We shall begin, however, with
some results on the Verma modules for the quantized universal enveloping algebra
UR
q (g) associated to a complex semisimple quantum group Gq, see Section 5.1.

Although some of the constructions and results presented here work more gen-
erally, we shall assume throughout that K = C and 1 6= q = eh is positive. We
identify h∗q = h∗/i~−1Q∨ where ~ = h

2π . Moreover we write

[z]q =
qz − q−z

q − q−1

for the q-number associated with z ∈ C, and similarly use the notation for q-
binomial coefficients as in Section 2.1.

5.1. Verma modules for UR
q (g). In this section we discuss the theory of Verma

modules for the quantized universal enveloping algebra

UR
q (g) = UR

q (k) ./ C∞(Kq)

of the complex quantum group Gq, which was introduced in Section 3.6.

5.1.1. Characters of UR
q (b). Characters of the algebra UR

q (b) = UR
q (t) ./ C∞(Kq)

are parametrized by pairs of weights (µ, λ) where µ, λ ∈ h∗q , as we now describe.

To µ ∈ h∗q we associate the character χµ of UR
q (t) = Uq(h) given by χµ(Kν) =

q(µ,ν) for all ν ∈ P, as in Subsection 2.3.1.
To λ ∈ h∗q we associate a character Kλ of C∞(Kq) as follows. Briefly, if λ =∑
i aiαi ∈ h∗ with ai ∈ C then we may define Kλ =

∏
iK

ai
i ∈ M(D(Kq)) by

functional calculus. More explicitly, recalling that the multiplier algebra of D(Kq)
is

M(D(Kq)) = C∞(K̂q) =
∏
γ∈P+

End(V (γ)),

we define Kλ ∈ M(D(Kq)) to be the element which acts on any vector v ∈ V (γ)
of weight ν by

Kλ · v = q(λ,ν)v.

This is compatible with the existing notation for elements Kλ when λ ∈ P, and
depends only on the class of λ in h∗q = h∗/i~−1Q∨. The element Kλ determines a
character of C∞(Kq) by

f 7→ (f,Kλ).

Note that we are using the reverse pairing (f,Kλ) = (K−λ, f) in the definition of
this character, since we will want to interpret Kλ as an element of the function
algebra C∞(K̂q).

We remark that Kλ belongs to the subalgebraM(D(T )) ⊂M(D(Kq)) where T
is the maximal torus subgroup. It is in fact the pullback of a character Kλ of C∞(T )
by the quotient map C∞(Kq) → C∞(T ). Moreover, every character of C∞(Kq) is
of this form, see [77]. In this way, the parameter space h∗q is identified with the
Chevalley complexification TC of the torus T .
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Combining the characters χµ and Kλ for any µ, λ ∈ h∗q we obtain a character

χµ,λ of UR
q (b) = UR

q (t) ./ C∞(Kq) by setting

χµ,λ(X ./ f) = χµ(X)(f,Kλ).

Notice that χµ,λ is typically not ∗-preserving for the standard ∗-structure on UR
q (b).

Let us conclude with some remarks about the restriction of these characters to
the subalgebra UR

q (t) ./ C∞(PKq), which corresponds to the Borel subgroup of the

“connected component”G0
q of Gq that was discussed in Subsection 3.4.2. One sees

that the character χµ,λ restricts to the trivial character on UR
q (t) ./ C∞(PKq) if

and only if (µ, λ) = (0, i~−1γ) for some γ ∈ P∨/Q∨. It follows that the characters
of UR

q (t) ./ C∞(PKq) are indexed by pairs (µ, λ) ∈ P× h∗/i~−1P∨.

5.1.2. Verma modules for UR
q (g). The Verma module associated to χµ,λ is defined

by

M(µ, λ) = UR
q (g)⊗UR

q (b) Cµ,λ,
where Cµ,λ = C is the representation space corresponding to the character χµ,λ
defined above. Following previous notation, we will denote by vµ,λ the cyclic vector
1⊗ 1 ∈M(µ, λ).

Recall from Lemma 3.27 that we have an embedding UR
q (g) ⊂ Uq(g)⊗ Uq(g) of

algebras given explicitly by

ι(X ./ f) = ∆̂(X)(l−(f(1))⊗ l+(f(2))).

In this way we may view modules over Uq(g) ⊗ Uq(g) as modules over UR
q (g).

However, it will be convenient in later sections to use a different embedding of
UR
q (g) in Uq(g)⊗ Uq(g) as follows.

Definition 5.1. We define the embedding ι′ : UR
q (g)→ Uq(g)⊗ Uq(g) by

ι′(X ./ f) = ∆̂(X)(l+(f(1))⊗ l−(f(2)))

for X ./ f ∈ UR
q (g).

Note that ι and ι′ differ only by the order of the l-functionals in the formula.
Again, ι′ is an algebra homomorphism.

We observe that for any X ./ f ∈ UR
q (g) we have

ι′(X ./ f) = σ((Ŝ ⊗ Ŝ)(ι((1 ./ S−1(f))(Ŝ−1(X) ./ 1)))),

using Lemma 2.111. Thus we can also write

ι′ = σ ◦ (Ŝ ⊗ Ŝ) ◦ ι ◦ Ŝ−1
Gq
,

where σ denotes the flip map.
In the following proposition, N(λ) denotes the universal lowest weight module

of Uq(g) with lowest weight λ ∈ h∗q , namely

N(λ) = Uq(g)⊗Uq(b−) Cλ
where Cλ denotes the one-dimensional Uq(b−)-module upon which Uq(n−) acts
trivially and Uq(h) acts by the character χλ. We denote the cyclic vector 1⊗ 1 by
vλ.

Proposition 5.2. Let (µ, λ) ∈ h∗q × h∗q and let l, r ∈ h∗q be such that

µ = l − r, λ = −l − r.

We have an isomorphism

M(µ, λ) ∼= M(l)⊗N(−r)
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of UR
q (g)-modules which sends the cyclic vector vµ,λ to vl⊗ v−r. Here the action of

UR
q (g) on M(l)⊗N(−r) is that induced by the embedding ι′ above.

Proof. For all ν ∈ P, the action of Kν ∈ UR
q (t) onvl ⊗ v−r is given by

Kν · (vl ⊗ v−r) = Kν · vl ⊗Kν · v−r

= q(l,ν)vl ⊗ q(−r,ν)v−r = χµ(Kν)vl ⊗ v−r.

We make a similar calculation for the action of a matrix coefficient uηij = 〈eiη|•|e
η
j 〉

where η ∈ P+ and the eηj form a basis of weight vectors for V (η), with dual basis

vectors eiη ∈ V (η)∗. Writing εj for the weight of eηj we obtain

uηij · (vl ⊗ v
−r) =

∑
k

l+(uηik) · vl ⊗ l−(uηkj) · v
−r

= δij l
+(uηii) · vl ⊗ l

−(uηii) · v
−r

= δijKεi · vl ⊗K−εi · v−r

= δijq
(l,εi)vl ⊗ q(r,εi)v−r

= δijq
(−λ,εi)vl ⊗ v−r

= (uηij ,Kλ) vl ⊗ v−r.

Here, in the second step, we use that l±(uηij) is contained in Uq(b±)εj−εi , and that

the vectors v−l and vr are annihilated by Uq(n+) and Uq(n−), respectively. Note
also that when εi = εj we have l±(uνij) = δijK±εi .

By the definition of M(µ, λ), we thus obtain a UR
q (g)-linear map γ : M(µ, λ)→

M(l)⊗N(−r) such that γ(vµ,λ) = vl ⊗ v−r.
For surjectivity, we will prove inductively that the subspaces M(l)l−ν ⊗N(−r)

are contained in im(γ) for each ν ∈ Q+. For the case ν = 0, note that the action
of Ei ∈ UR

q (k) on vl ⊗ v−r is given by

Ei · (vl ⊗ v−r) = vl ⊗ Ei · v−r.

It follows that Cvl⊗N(−r) ⊂ im(γ). Now fix ν ∈ Q+ and suppose that M(l)l−ν′⊗
N(−r) ⊂ im(γ) for all ν′ < ν. Note that M(l)l−ν ⊗N(−r) is spanned by elements
of the form Fi ·m ⊗ n with m ∈ M(l)l−ν+αi and n ∈ N(−r). Using the action of
Fi on n⊗m we can write

(Fi ·m)⊗ n = Fi · (m⊗ n)−K−1
i ·m⊗ Fi · n ∈ im(γ),

and surjectivity follows.
For injectivity, we note to begin with that UR

q (g) is a free right UR
q (b)-module

generated by Uq(n−)⊗ Uq(n+) ⊂ Uq(g) = UR
q (k) ⊂ UR

q (g). That is, the map

Uq(n−)⊗ Uq(n+)→M(µ, λ); Y ⊗X 7→ Y X · vµ,λ
is an isomorphism. Consider an element∑

j

Yj ⊗Xj ∈ Uq(n−)⊗ Uq(n+)

where Yj ∈ Uq(n−)−ν′j , Xj ∈ Uq(n+)ν′′j for some weights ν′j , ν
′′
j ∈ Q+. We may

arrange the sum so that ν′′0 is maximal among those ν′′j appearing nontrivially,
and ν′0 is maximal among the weights ν′j such that ν′′j = ν′′0 and (ν′j , ν

′′
j ) appears

nontrivially. By considering the actions of Ei and Fi, one sees that

γ(
∑
j Yν′jXν′′j

· vµ,λ) =
∑
j Yν′jXν′′j

· (vl ⊗ v−r)

contains a nonzero term in M(l)l−ν′0 ⊗N(−r)−r+ν′′0 . This completes the proof. �
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In order to convert the lowest weight moduleN(−r) into a highest weight module,
we may twist the action of Uq(g) by the algebra automorphism

θ = τ Ŝ = Ŝ−1τ,

where τ is the algebra anti-automorphism defined in Lemma 2.16. We record the
formulas

θ(Ei) = −Fi, θ(Fi) = −Ei, θ(Kν) = K−ν ,

from which it follows that N(−r) is isomorphic to M(r)θ, where the latter denotes
the Verma module M(r) endowed with the action obtained by composition with θ.

Let us further note that for any Uq(g)-module M , we have M Ŝ2 ∼= M , where

M Ŝ2

denotes the same space with action twisted by the automorphism Ŝ2. This
is because the two modules are intertwined by the action of K2ρ, see Lemma 2.7.

Therefore, if we put θ′ = Ŝτ = Ŝ2θ then we also have N(−r) ∼= M(r)θ
′
.

We immediately obtain the following.

Corollary 5.3. Let (µ, λ) ∈ h∗q × h∗q and let l, r ∈ h∗q be such that

µ = l − r, λ = −l − r.

We have an isomorphism of UR
q (g)-modules

M(µ, λ) ∼= M(l)⊗M(r)

which sends the cyclic vector vµ,λ to vl⊗vr, and where the action of X ./ f ∈ UR
q (g)

on m⊗ n ∈M(l)⊗M(r) is given by

(X ./ f) · (m⊗ n) = (id⊗θ)(ι′(X ./ f)) · (m⊗ n).

The same is true if θ is replaced by θ′.

We point out that for a given character χµ,λ of UR
q (b) with µ, λ ∈ h∗q , there are

2N choices for the associated parameters (l, r) ∈ h∗q × h∗q , where N is the rank of G.
Specifically, if we lift µ, λ to h∗ then we obtain the solutions for (l, r) given by

l = − 1
2 (λ− µ) + 1

2 i~
−1α∨, r = − 1

2 (λ+ µ) + 1
2 i~
−1α∨,

for α∨ ∈ Q∨/2Q∨.
In other words, if we let the extended Weyl group from Definition 2.125

Ŵ = Yq oW = ( 1
2 i~
−1Q∨/i~−1Q∨) oW

act diagonally upon the parameter space h∗q × h∗q by ŵ(l, r) = (ŵl, ŵr) then the

action of the translation subgroup Yq = 1
2 i~
−1Q∨/i~−1Q∨ does not change the

isomorphism class of the associated UR
q (g)-modules M(l)⊗M(r).

The following criterion allows us to characterize irreducibility of the Verma
modules M(µ, λ) introduced above. We recall that in our conventions we use
N = {1, 2, . . .}.

Theorem 5.4. The UR
q (g)-module M(µ, λ) is irreducible if and only if (µ, λ) ∈

h∗q × h∗q satisfies

q(−λ+2ρ,α∨)
α 6= q(±µ,α∨)+2m

α

for all α ∈∆+ and all m ∈ N.

Proof. As in Proposition 5.3 we choose l, r ∈ h∗q such that µ = l − r, λ = −l − r.
Then M(l) ⊗M(r) is irreducible as a Uq(g) ⊗ Uq(g)-module if and only if M(l)
and M(r) are both irreducible as Uq(g)-modules. According to Theorem 4.15 and
Definition 4.6, this is the case iff

q2(l+ρ,α∨)
α /∈ q2N

α and q2(r+ρ,α∨)
α /∈ q2N

α
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for all α ∈ ∆+. Using 2l = −λ + µ and 2r = −λ − µ, this is equivalent to the
condition

q(−λ+2ρ,α∨)
α 6= q(±µ,α∨)+2m

α

for all α ∈∆+, m ∈ N.
It remains to check that M(l)⊗M(r) is irreducible as a a Uq(g)⊗Uq(g)-module if

and only if it is irreducible as a UR
q (g)-module with the action induced by (θ⊗ id)ι′,

compare the argument in the proof of Theorem 3.4 in [33]. For the nontrivial
implication assume that M(l) ⊗ M(r) is irreducible as a Uq(g) ⊗ Uq(g)-module.

According to Lemma 3.27, the image of ι′ is (1 ⊗ Ŝ(FUq(g)))∆̂(Uq(g)). Thus,
Theorem 2.113 shows that the image of (id⊗θ)ι′ contains Kν′ ⊗ K2ν′′−ν′ for all
ν′ ∈ P and ν′′ ∈ P+. It follows that any UR

q (g)-submodule V ⊂ M(l) ⊗M(r) is
the sum of its Uq(g)⊗ Uq(g)-weight spaces.

Let v =
∑
j xj ⊗ yj ∈ V be a nonzero vector of weight (εl, εr) with ε = εl + εr

maximal in the submodule V . We may assume that the yj are linearly independent
in M(r)εr . Since

Ei · (xj ⊗ yj) = Ei · xj ⊗K−1
i · yj − xj ⊗ Fi · yj ,

the maximality of ε forces Ei · xj = 0 for all i, and so each xj is primitive. Since
M(l) is irreducible we conclude that each xj is a scalar multiple of vl, and thus
v = vl ⊗ y for some y. Likewise, using

Fi · (vl ⊗ y) = Fi · vl ⊗ y −K−1
i · vl ⊗ Ei · y,

the maximality of ε shows that y is primitive, and hence is a nonzero multiple of vr.
By Corollary 5.3, vl⊗vr is a cyclic vector for the UR

q (g)-action, so V = M(l)⊗M(r).
This yields the claim. �

5.2. Representations of Gq.

5.2.1. Harish-Chandra modules. In this subsection we define the main notion of
Gq-representation which we will be studying in the remainder of the chapter.

We recall that the convolution algebra of Gq is D(Gq) = D(Kq) ./ C∞(Kq).
Recall also that a D(Gq)-module V is called essential if the multiplication map
D(Gq)⊗D(Gq) V → V is an isomorphism. Using the central idempotents in D(Kq)
one sees that a D(Gq)-module is essential if and only if it is an essential D(Kq)-
module under restriction.

Recall from Section 3.6 that the quantized universal enveloping algebra UR
q (g) =

UR
q (k) ./ C∞(Kq) of Gq sits inside the multiplier algebra of D(Gq). Let us say

that a UR
q (g)-module V is integrable if it is an integrable module for the action

of UR
q (k) ⊂ UR

q (g). The following result is then essentially immediate from the
definitions.

Lemma 5.5. There is a canonical isomorphism between the category of essential
D(Gq)-modules and the category of integrable UR

q (g)-modules.

Proof. Every essential D(Gq)-module becomes an integrable UR
q (g)-module via the

inclusion UR
q (g) ⊂M(D(Gq)).

Conversely, if V is an integrable UR
q (g)-module then the action of UR

q (k) ⊂ UR
q (g)

corresponds uniquely to an essential D(Kq)-module structure on V , and the latter
combines with the action of C∞(Kq) ⊂ UR

q (g) to turn V into an essential D(Gq)-
module.

These procedures are inverse to each other and compatible with morphisms. �

A third structure which is equivalent to an essential D(Gq)-module is that of a
C∞(Kq)-Yetter Drinfeld module. We recall the general definition.
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Definition 5.6. Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a
left H-module V which is at the same time a left H-comodule such that

(f · v)(−1) ⊗ (f · v)(0) = f(1)v(−1)S(f(3))⊗ f(2) · v(0)

for all v ∈ V and f ∈ H. Here we write γ(v) = v(−1) ⊗ v(0) for the left coaction of
H on V .

If V is a Yetter-Drinfeld module over C∞(Kq) then we can convert the left
C∞(Kq)-coaction into an essential left action of D(Kq) by the formula

x · v = (Ŝ(x), v(−1))v(0), x ∈ D(Kq).

A standard calculation shows that the resulting D(Kq)-action and the given C∞(Kq)-
action satisfy the commutation relations in the Drinfeld double D(Gq). It follows
that the category of C∞(Kq)-Yetter-Drinfeld modules is isomorphic to the category
of essential D(Gq)-modules.

Since any essential D(Gq)-module is an essential D(Kq)-module V by restriction,
it decomposes as a direct sum

V =
⊕
γ∈P+

V γ ,

where V γ is a direct sum of copies of the simple module with highest weight γ. The
subspace V γ ⊂ V is called the isotypical component corresponding to γ.

Definition 5.7. An essential D(Kq)-module V is called admissible if each isotypical
component V is finite dimensional. An essential D(Gq)-module which is admissible
as a D(Kq)-module will be called a Harish-Chandra module over Gq.

We remark that the term “Harish-Chandra module” has several different mean-
ings in the classical literature, in particular with or without the imposition of ad-
missibility. The imposition of admissibility in this definition avoids many technical
annoyances, and as in the classical case, all irreducible unitary Gq-representations
are admissible, see the following section.

5.2.2. Unitary Gq-representations. By definition, a unitary representation of Gq on
a Hilbert space H is a non-degenerate ∗-homomorphism C∗f (Gq)→ L(H).

In particular any unitary representation H of Gq becomes a unitary represen-
tation of Kq by restriction. A vector ξ ∈ H is called Kq-finite if it is contained
in a finite dimensional Kq-subrepresentation. The Harish-Chandra module HC(H)
associated with H is the space of all Kq-finite vectors in H. Explicitly, this is given
by

HC(H) = D(Kq) · H = D(Gq) · H ⊂ H.
From this description it is clear that HC(H) is dense inH, and that HC(H) naturally
becomes an essential module over D(Gq).

The goal of this subsection is to show that the D(Gq)-module HC(H) associated
with an irreducible unitary representation H of Gq is admissible, so that it is a
Harish-Chandra module in the sense of Definition 5.7. The argument is the same
as in the classical case, based on results of Godement.

Firstly, if A is any algebra then the n-commutator of n elements a1, . . . , an ∈ A
is defined by

[a1, . . . , an] =
∑
σ∈Sn

sign(σ)aσ(1) · · · aσ(n).

Note that for n = 2 this reduces to the usual commutator [a1, a2] = a1a2 − a2a1.
Let us say that A is n-abelian if all n-commutators [a1, . . . , an] for a1, . . . , an ∈ A
vanish. Clearly, subalgebras and quotients of n-abelian algebras are again n-abelian.
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By basic linear algebra, every finite dimensional algebra A is n-abelian for any
n > dim(A). In particular, for every k ∈ N there exists a smallest number r(k) ∈ N
such that Mk(C) is r(k)-abelian.

Lemma 5.8. With the notation as above, we have r(k + 1) > r(k) for all k ∈ N.

Proof. Put n = r(k) − 1. Then there exists x1, . . . , xn ∈ Mk(C) such that X =
[x1, . . . , xn] 6= 0. In particular, if we write X = (Xij) then there exist indices
1 ≤ i, j ≤ k such that Xij 6= 0. Set

yl =

(
xl 0
0 0

)
∈Mk+1(C) for l = 1, . . . n,

and yn+1 = ej,k+1 the standard matrix unit with 1 in the (j, k + 1)-position. Then
yn+1yl = 0 for all 1 ≤ l ≤ n and thus

[y1, . . . , yn+1] = [y1, . . . , yn]yn+1 = [y1, . . . , yn]ej,k+1 6= 0.

We conclude r(k + 1) ≥ r(k) + 1 as claimed. �

We are now ready to prove admissibility of irreducible unitary representations
of complex quantum groups, compare [2].

Theorem 5.9. Let H be an irreducible unitary representation of Gq. Then the
associated D(Gq)-module HC(H) is admissible, and so a Harish-Chandra module.
More precisely, for any µ ∈ P+ the multiplicity of the Kq-type HC(H)µ in HC(H)
is at most dim(V (µ)).

Proof. According to Proposition 3.25, the embedding D(Gq)→M(D(Kq)⊗D(Kq))
restricts to an embedding

pµD(Gq)pµ →
∏

η,ν∈P+

End(pµ · (V (η)⊗ V (ν))).

Let vη ∈ V (η) and vν ∈ V (ν) be the highest weight vector and lowest weight vector,
respectively. Then vη ⊗ vν is a cyclic vector for V (η) ⊗ V (ν) as a Uq(g)-module,
and therefore the linear map HomUq(g)(V (η) ⊗ V (ν), V (µ)) → V (µ) sending f to
f(vη ⊗ vν) is injective. We conclude that the dimension of pµ · (V (η)⊗ V (ν)) is at
most d = dim(V (µ))2. Therefore the algebra A = pµD(Gq)pµ is r(d)-abelian.

Now let π : C∗f (Gq) → L(H) be an irreducible unitary representation. Then
the von Neumann algebra π(C∗f (Gq))

′′ equals L(H) by irreducibility, and hence
π(pµ)π(C∗f (Gq))

′′π(pµ) = L(π(pµ)H). If we set A = pµD(Gq)pµ this means that
the strong closure π(A)′′ of π(A) ⊂ L(pµH) is equal to L(π(pµ)H). Since π(A) is
r(d)-abelian, the same holds for its strong closure L(π(pµ)H). We conclude that
π(pµ) ∈ L(H) is a finite rank projection of rank at most d. Hence the multiplicity
of V (µ) in H is at most dim(V (µ)) as claimed. �

Let π be an irreducible unitary representation of Gq on the Hilbert space H.
According to Theorem 5.9, the image of any element of D(Kq) ⊂ D(Gq) is a finite-
rank operator on H. This implies that D(Gq) acts by finite-rank operators. In
particular, the associated representation π : C∗f (Gq) → L(H) takes values in the
algebra of compact operators on H.

Let us say that a locally compact quantum group G is type I if the full group
C∗-algebra C∗f (G) is a C∗-algebra of type I. As an immediate consequence of the
above observations we obtain the following result.

Corollary 5.10. Complex semisimple quantum groups are type I.

We remark that the corresponding result for classical semisimple groups is due
to Harish-Chandra, see [31].
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5.3. Action of UR
q (g) on Kq-types. In this section we collect some facts on the

structure of integrable UR
q (g)-modules, following Section 9.1 in [22].

Let V be an essential D(Gq)-module. We may also view V as an integrable
UR
q (g)-module, see Lemma 5.5. By definition, the module V decomposes as a direct

sum

V =
⊕
γ∈P+

V γ

of its Kq-isotypical components.
For σ ∈ P+ we denote

Iσ = ker(πσ) = ann(V (σ)) ⊂ UR
q (k),

where πσ : UR
q (k) → End(V (σ)) is the homomorphism corresponding to the action

on V (σ). By construction we have UR
q (k)/Iσ ∼= End(V (σ)). Notice that

V τ = {v ∈ V | X · v = 0 for all X ∈ Iτ}.

For σ, τ ∈ P+ we define

UR
q (g)τ,σ = {X ∈ UR

q (g) | IτX ⊂ UR
q (g)Iσ}.

By construction, we have UR
q (g)τ,σ · V σ ⊂ V τ for any UR

q (g)-module V .

Lemma 5.11. Let σ ∈ P+. With the notation as above, the following holds.

a) UR
q (g)Iσ ⊂ UR

q (g)τ,σ for all τ ∈ P+.

b) UR
q (g)/UR

q (g)Iσ is an integrable D(Gq)-module with respect to left multiplication.
Its decomposition into Kq-types is

UR
q (g)/UR

q (g)Iσ =
⊕
τ∈P+

UR
q (g)τ,σ/UR

q (g)Iσ.

c) For all τ ∈ P+, the space UR
q (g)τ,σ consists precisely of all elements of UR

q (g)

that map V σ into V τ for any UR
q (g)-module V .

Proof. a) is obvious.
b) Using UR

q (k)/Iσ ∼= End(V (σ)), one sees that the generator 1 ∈ UR
q (g)/UR

q (g)Iσ

is Kq-finite. It follows that UR
q (g)/UR

q (g)Iσ is integrable. The τ -isotypical subspace
is the subspace annihilated by Iτ , that is,

(UR
q (g)/UR

q (g)Iσ)τ = {X + UR
q (g)Iσ | IτX ⊂ UR

q (g)Iσ} = UR
q (g)τ,σ/UR

q (g)Iσ.

This yields the claim.
c) follows from the decomposition into Kq-types in part b). �

We will mostly be interested in UR
q (g)σ,σ for any given σ ∈ P+. It is easy to

check that this is an algebra. It contains UR
q (g)Iσ as an obvious two-sided ideal,

and UR
q (g)Iσ acts as zero on every V σ. We will typically factor this ideal out.

Accordingly, for any UR
q (g)-module V we get a map UR

q (g)σ,σ/UR
q (g)Iσ → End(V σ).

Proposition 5.12. If V is a simple integrable UR
q (g)-module then V σ is a simple

UR
q (g)σ,σ-module or zero.

Proof. Let v ∈ V σ be nonzero. By simplicity of V we have UR
q (g) · v = V . More-

over, using the above observations and part b) of Lemma 5.11 we get UR
q (g) · v =∑

τ∈P+ UR
q (g)τ,σ · v. Since UR

q (g)τ,σ · v ⊂ V τ , we have V σ = (UR
q (g) · v)σ =

UR
q (g)σ,σ · v. �
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The converse is not true, that is, simplicity of V σ as a UR
q (g)σ,σ-module does not

imply that V is simple. Nonetheless, we will show the existence of a unique simple
UR
q (g)-module associated to each simple UR

q (g)σ,σ/UR
q (g)Iσ-module.

We start with the following construction. Let V be a Harish-Chandra module
and σ ∈ P+ such that V σ 6= 0. Moreover assume that W ⊂ V σ is a UR

q (g)σ,σ-
submodule. Then we define

Wmin = UR
q (g) ·W, Wmax = {v ∈ V | UR

q (g) · v ∩ V σ ⊆W}.

The following Proposition shows that Wmin and Wmax are minimal and maximal,
respectively, among the UR

q (g)-submodules V ′ ⊂ V satisfying (V ′)σ = W .

Proposition 5.13. We have (Wmin)σ = (Wmax)σ = W , and for any UR
q (g)-

submodule V ′ of V such that (V ′)σ = W , we have Wmin ⊂ V ′ ⊂Wmax.

Proof. From Lemma 5.11 c) we have that (UR
q (g) ·W ) ∩ V σ = UR

q (g)σ,σ ·W = W ,

and it follows that (Wmin)σ = (Wmax)σ = W . If V ′ is as given, then Wmin =
UR
q (g) ·W ⊂ UR

q (g) · V ′ ⊂Wmax, as claimed. �

Proposition 5.14. For σ ∈ P+ define

Mσ = {maximal left ideals of UR
q (g) containing UR

q (g)Iσ},
Lσ = {maximal left ideals of UR

q (g)σ,σ containing UR
q (g)Iσ}.

Then there is a bijective correspondence φ :Mσ → Lσ given by

φ(M) = M ∩ UR
q (g)σ,σ.

The inverse of φ is given by

φ−1(L) = {x ∈ UR
q (g) | UR

q (g)x ∩ UR
q (g)σ,σ ⊂ L}.

Proof. Notice that we have a natural bijection between left ideals of UR
q (g) con-

taining UR
q (g)Iσ and UR

q (g)-submodules of UR
q (g)/UR

q (g)Iσ. If M is a maximal left

ideal of UR
q (g) then 1 /∈M , and therefore M ∩ UR

q (g)σ,σ 6= UR
q (g)σ,σ.

Similarly, we have a natural bijection between left ideals of UR
q (g)σ,σ containing

UR
q (g)Iσ and UR

q (g)σ,σ-submodules of (UR
q (g)/UR

q (g)Iσ)σ.

Now it suffices to apply Proposition 5.13 to V = UR
q (g)/UR

q (g)Iσ. �

Proposition 5.15. Let σ ∈ P+. Consider

Sσ = {simple integrable UR
q (g)-modules V with V σ 6= 0, modulo isomorphism},

Tσ = {simple UR
q (g)σ,σ/UR

q (g)Iσ-modules, modulo isomorphism}.

There is a natural bijective correspondence ψ : Sσ → Tσ given by

ψ(V ) = V σ.

Proof. The map ψ is well-defined by Proposition 5.12.
For injectivity, suppose that V, V ′ are simple integrable UR

q (g)-modules with
nontrivial σ-isotypical component, and that f : V σ → (V ′)σ is an isomorphism of
UR
q (g)σ,σ/UR

q (g)Iσ-modules. Let v ∈ V σ be nonzero and set

• L = annihilator of v in UR
q (g)σ,σ,

• M = annihilator of v in UR
q (g),

• L′ = annihilator of f(v) in UR
q (g)σ,σ,

• M ′ = annihilator of f(v) in UR
q (g).
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These are all maximal left ideals of UR
q (g) or UR

q (g)σ,σ respectively, containing

UR
q (g)Iσ. But

M ∩ UR
q (g)σ,σ = L = L′ = M ′ ∩ UR

q (g)σ,σ,

so by the correspondence of Proposition 5.14 we deduce M = M ′.
For surjectivity, let W be a simple UR

q (g)σ,σ-module whose annihilator contains

UR
q (g)Iσ. Moreover let w ∈W be nonzero. Put

• L = annihilator of w in UR
q (g)σ,σ,

• M = φ−1(L), the maximal left ideal of UR
q (g) such that M ∩UR

q (g)σ,σ = L,
which is obtained from Proposition 5.14,

• V = UR
q (g)/M .

Then V is simple and by Lemma 5.11 b),

V σ = (UR
q (g)/UR

q (g)Iσ)σ/(M/UR
q (g)Iσ)σ

= UR
q (g)σ,σ/(M ∩ UR

q (g)σ,σ)

= UR
q (g)σ,σ/L = W.

This finishes the proof. �

5.4. Principal series representations. In this section we define principal se-
ries representations for the complex quantum group Gq. As in the classical case,
the principal series is key to the analysis of the representation theory of complex
quantum groups.

5.4.1. The definition of principal series representations. Recall from Subsection
5.1.1 that associated to any µ ∈ h∗q we have a character of UR

q (t) = Uq(h) given

by χµ(Kν) = q(µ,ν). In the case where µ ∈ P is an integral weight, this character
can be obtained as the pairing of UR

q (t) with an appropriately chosen matrix coef-
ficient in C∞(Kq). In other words, the character χµ can be viewed as an element
of the function algebra C∞(T ), compare Section 3.7. We will denote this function
by eµ ∈ C∞(T ), so that

(Kν , e
µ) = χµ(Kν) = q(µ,ν),

for all ν ∈ P.
In analogy with the classical case, there is an “associated line bundle”Eµ over the

quantum flag variety Xq = Kq/T . This bundle is defined via its space of sections

Γ(Eµ) = {ξ ∈ C∞(Kq) | (id⊗πT )∆(ξ) = ξ ⊗ eµ},

where πT : C∞(Kq) → C∞(T ) denotes the canonical projection map. Note that
Γ(Eµ) ⊂ C∞(Kq) is equal to the subspace of weight µ with respect to the left
UR
q (k)-action

X⇀ξ = ξ(1)(X, ξ(2)).

The space Γ(Eµ) is a left C∞(Kq)-comodule with coaction given by ∆. For λ ∈ h∗q
we define the twisted left adjoint representation of C∞(Kq) on Γ(Eµ) by

f · ξ = f(1) ξ S(f(3)) (K2ρ+λ, f(2)).

This combination of action and coaction make Γ(Eµ) into a Yetter-Drinfeld module
over C∞(Kq), see Definition 5.6, since we have

∆(f · ξ) = f(1)ξ(1)S(f(5))⊗ f(2)ξ(2)S(f(4)) (K2ρ+λ, f(3))

= f(1)ξ(1)S(f(3))⊗ f(2) · ξ(2)

for all f ∈ C∞(Kq), ξ ∈ Γ(Eµ).



212 CHRISTIAN VOIGT AND ROBERT YUNCKEN

We point out that the factor of 2ρ in the above formula is included merely to
force a shift in the parameter λ. This shift is chosen such that for purely imaginary
λ the resulting Yetter-Drinfeld module is always unitary, see Section 5.10 below.

Definition 5.16. We write Γ(Eµ,λ) for the space Γ(Eµ) equipped with the action
and coaction of C∞(Kq) as above, and call it the principal series Yetter-Drinfeld
module, or principal series representation, with parameter (µ, λ) ∈ P× h∗q .

Equivalently, Γ(Eµ,λ) can be viewed as an essential module over D(Gq) by trans-
forming the coaction into the associated left D(Kq)-action

x · ξ = (Ŝ(x), ξ(1))ξ(2)

for x ∈ D(Kq) and ξ ∈ Γ(Eµ). Likewise, replacing x ∈ D(Kq) by X ∈ UR
q (k) in

this formula we obtain the realization of Γ(Eµ,λ) as an integrable UR
q (g)-module,

see Lemma 5.5.
We record the following formula for the multiplicities of Kq-types in Γ(Eµ,λ).

Lemma 5.17. The multiplicities of the Kq-types in Γ(Eµ,λ) are given by

[Γ(Eµ,λ) : V (ν)] = dim((V (ν)∗)µ) = dim(V (ν)−µ),

for all ν ∈ P+.

Proof. Note that we have

C∞(Kq) ∼=
⊕
ν∈P+

(EndV (ν))∗ ∼=
⊕
ν∈P+

V (ν)∗ ⊗ V (ν) ∼=
⊕
ν∈P+

V (−w0ν)⊗ V (−w0ν)∗,

where the left and right regular UR
q (k)-actions correspond to the actions on the left

and right tensor factors, respectively. Here, the dual modules are equipped with
the contragredient action. Therefore, we have an isomorphism of UR

q (k)-modules

Γ(Eµ,λ) ∼=
⊕
ν∈P+

V (ν)⊗ (V (ν)∗)µ.

This proves the first equality. The second equality follows from dim((V (ν)∗)µ) =
dim((V (ν)−µ)∗) = dim(V (ν)−µ). �

Thus, in our conventions, the principal series representation Γµ,λ has a nontrivial
Kq-isotypical component of highest weight ν if and only if ν ∈ (−µ)+ + Q+, where
(−µ)+ denotes the unique dominant integral weight which is conjugate to −µ under
the Weyl group action. In particular, Γ(Eµ,λ) has a minimal Kq-type of highest
weight (−µ)+ and this minimal Kq-type occurs with multiplicity one.

5.4.2. Compact versus noncompact pictures. Definition 5.16 is referred to as the
“compact picture” of the principal series representation. One may simply accept
this definition without motivation and check that it satisfies the Yetter-Drinfeld
condition in Definition 5.6. But for more insight, we note that principal series
representations also admit an interpretation as representations of Gq induced from

characters of the parabolic quantum subgroup Bq = T ./ K̂q.
Let Cµ,λ denote the one dimensional representation of Bq with character χµ,λ as

in the definition of the Verma module M(µ, λ) in Section 5.1.1. By definition, the
(algebraic) unitarily induced representation of Gq is

ind
Gq
Bq

(Cµ,λ) = {ξ ∈ C∞(Gq) | (id⊗πBq )∆Gq (ξ) = ξ ⊗ (eµ ⊗K2ρ+λ)}.

Here K2ρ+λ is viewed as multiplier of D(Kq) inside C∞(Gq). Again, the shift by
2ρ is included to ensure a suitable parametrization with inner products later on.
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Observe that the coproduct of C∞c (Gq) induces a left D(Gq)-module structure on

ind
Gq
Bq

(Cµ,λ) according to the formula

x · ξ = (ŜGq (x), ξ(1))ξ(2)

for x ∈ D(Gq) and ξ ∈ ind
Gq
Bq

(Cµ,λ).

On the other hand, recall that

Γ(Eµ,λ) = {ξ ∈ C∞(Kq) | (id⊗πT )∆(ξ) = ξ ⊗ eµ}

admits a D(Gq)-action corresponding to the Yetter-Drinfeld structure from Defini-
tion 5.16.

Lemma 5.18. Let (µ, λ) ∈ P× h∗q . The linear maps

ext : Γ(Eµ,λ)→ ind
Gq
Bq

(Cµ,λ); ext(ξ) = ξ ⊗K2ρ+λ

and

res : ind
Gq
Bq

(Cµ,λ)→ Γ(Eµ,λ); res(σ) = (id⊗ε̂)(σ)

are well-defined and are inverse isomorphisms of D(Kq)-modules. Moreover, the
Yetter-Drinfeld action of C∞(Kq) on Γ(Eµ,λ) corresponds to the natural action of

C∞(Kq) ⊂M(D(Gq)) on ind
Gq
Bq

(Cµ,λ).

Proof. Let us check that ext(ξ) for ξ ∈ Γ(Eµ) satisfies the correct invariance prop-
erties. Recall that we can write the multiplicative unitary W in the form

W =
∑
ν,i,j

uνij ⊗ ωνij

where (uνij) is a basis of matrix units for C∞(Kq) and and (ωνij) is its dual basis.
Using the definition of ∆Gq from Subsection 3.4.1, we compute

(id⊗πBq )∆Gq (ext(ξ)) =
∑

ν,η,i,j,r,s

ξ(1) ⊗ ωνijK2ρ+λω
η
rs ⊗ πBq (uνijξ(2)S(uηrs)⊗K2ρ+λ)

=
∑
ν,i,j,s

ξ ⊗ ωνijK2ρ+λω
ν
js ⊗ πT (uνij) e

µ πT (S(uνjs))⊗K2ρ+λ

=
∑
ν,j

ξ ⊗ ωνjjK2ρ+λω
ν
jj ⊗ eµπT (uνjj)S(πT (uνjj))⊗K2ρ+λ

=
∑
ν,j

ξ ⊗ ωνjjK2ρ+λω
ν
jj ⊗ eµ ⊗K2ρ+λ

= ξ ⊗K2ρ+λ ⊗ eµ ⊗K2ρ+λ = ext(ξ)⊗ eµ ⊗K2ρ+λ

in M(C∞c (Gq) ⊗ C∞c (Bq)). Hence ext(ξ) satisfies the invariance condition in the

definition of ind
Gq
Bq

(Cµ,λ).

Similarly, for σ ∈ ind
Gq
Bq

(Cµ,λ) the element res(σ) = (id⊗ε̂)(σ) satisfies

(id⊗πT )∆(res(σ)) = (id⊗ε̂⊗ πT ⊗ ε̂)∆Gq (σ)

= (id⊗ε̂⊗ id⊗ε̂)(id⊗πBq )∆Gq (σ)

= (id⊗ε̂)(σ)⊗ eµε̂(K2ρ+λ)

= res(σ)⊗ eµ

inside C∞(Kq)⊗ C∞(T ).
It is clear that res ◦ ext is the identity on Γ(Eµ,λ). For the reverse composition,

we begin by observing that

(idC∞(Kq)⊗ε̂⊗ ε⊗ idD(Kq))∆Gq = idC∞c (Gq) .
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Then for σ ∈ ind
Gq
Bq

(Cµ,λ) we obtain

σ = (id⊗ε̂⊗ ε⊗ id)∆Gq (σ)

= (id⊗ε̂⊗ ε⊗ id)(id⊗πBq )∆Gq (σ)

= (id⊗ε̂⊗ ε⊗ id)(σ ⊗ (eµ ⊗K2ρ+λ))

= (id⊗ε̂)(σ)⊗K2ρ+λ

= ext ◦ res(σ).

Therefore ext and res are isomorphisms.
Finally, we consider the actions. The action of x = t ./ a ∈ D(Gq) on σ ∈

ind
Gq
Bq

(Cµ,λ) is given by

(t ./ a) · σ = (ŜGq (t ./ a), σ(1))σ(2)

= (t ./ a, S−1
Gq

(σ(1)))σ(2)

= (t ./ a, (S−1 ⊗ Ŝ−1)(Wσ(1)W
−1))σ(2)

= (Ŝ(t) ./ S(a),Wσ(1)W
−1)σ(2),

according to the formula before Proposition 3.19. To transfer this to the compact
picture, we consider ξ ∈ Γ(Eµ,λ) and calculate

res((t ./ a) · ext(ξ))

=
∑

ν,η,i,j,r,s

(Ŝ(t) ./ S(a),W (ξ(1) ⊗ ωνijK2ρ+λω
η
rs)W

−1)uνijξ(2)S(uηrs)

=
∑

ν,η,α,β,
i,j,r,s,p,q,m,n

(Ŝ(t) ./ S(a), uαpqξ(1)u
β
mn ⊗ ωαpqωνijK2ρ+λω

η
rsŜ
−1(ωβmn))uνijξ(2)S(uηrs)

=
∑

ν,η,i,j,r,s

(Ŝ(t(2)), ξ(1))(Ŝ(t(1))ω
ν
ijK2ρ+λω

η
rsŜ
−1(Ŝ(t(3))), a)uνijξ(2)S(uηrs)

= (Ŝ(t(1)), a(1))(t(3), a(5))a(2)(t(2) · ξ)S(a(4))(K2ρ+λ, a(3))

= (Ŝ(t(1)), a(1))(t(3), a(3))a(2) · (t(2) · ξ)
= t · a · ξ,

where the final lines use the actions of D(Kq) and C∞(Kq) on Γ(Eµ,λ) given by

t · ξ = (Ŝ(t), ξ(1))ξ(2)

for t ∈ D(Kq) and

a · ξ = a(1)ξS(a(3))(K2ρ+λ, a(2)),

for a ∈ C∞(Kq), respectively. �

In our conventions, the principal series module Γ(E0,−2ρ) corresponds to the
representation ofGq induced from the trivial representation ofBq when disregarding
the ρ-shift. Geometrically, this is the algebra of functions on the flag variety Gq/Bq
equipped with the regular representation. In particular, this algebra contains the
constant function 1 = 1⊗ 1 ∈ C∞(Gq), which is invariant under the D(Gq)-action,

(x ./ f) · 1 = (ŜGq (x ./ f), 1)1 = ε̂Gq (x ./ f)1.

That is, Γ(E0,−2ρ) contains the one-dimensional trivial representation of Gq as a
submodule.
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5.4.3. The action of the centre on the principal series. Recall from Subsection 3.4.2
that the quantum group Gq admits a finite group of one-dimensional unitary repre-
sentations indexed by the centre Z ∼= P∨/Q∨ of G. Explicitly, for each γ ∈ P∨/Q∨

we have the unitary character ε̂γ : D(Gq)→ C defined by

ε̂γ(x ./ f) = ε̂(x)(Ki~−1γ , f),

see Definition 3.21. These characters induce an action of Z on the class of Harish-
Chandra modules for Gq whereby γ ∈ Z sends a Harish-Chandra module H to the
module H ⊗Ci~−1γ , with Ci~−1γ being the one-dimensional module with action ε̂γ .
On the principal series, this action is given as follows.

Lemma 5.19. For any (µ, λ) ∈ P×h∗q and γ ∈ P∨/Q∨, we have Γ(Eµ,λ)⊗Ci~−1γ =
Γ(Eµ,λ+i~−1γ).

Proof. Using the compact picture, Γ(Eµ,λ)⊗Ci~−1γ and Γ(Eµ,λ+i~−1γ) are naturally
identified as D(Kq)-modules. It remains to compute the Yetter-Drinfeld action of
f ∈ C∞(Kq) on ξ ⊗ 1 ∈ Γ(Eµ,λ) ⊗ Ci~−1γ . Using the fact that Ki~−1γ⇀f = f ↼
Ki~−1γ we obtain

f · (ξ ⊗ 1) = f(1)ξS(f(3)) (K2ρ+λ, f(2))⊗ (Ki~−1γ , f(4))

= f(1)ξS(f(4)) (K2ρ+λ, f(2)) (Ki~−1γ , f(3))⊗ 1

= f(1)ξS(f(3)) (K2ρ+λ+i~−1γ , f(2))⊗ 1.

This completes the proof. �

This Z-action is responsible for the appearance of certain representations of Gq
which do not have classical analogues. For instance, in the case of SLq(2,C), Podleś
and Woronowicz observed the appearance of a nontrivial one-dimensional represen-
tation and of a pair of complementary series [63], as compared to the classical group
SL(2,C), which has only the trivial one-dimensional representation and only one
complementary series. This is related to the action of Z ∼= Z2.

In general, the various representations in a single Z-orbit all become isomorphic
upon restriction to the “connected component” G0

q described in Subsection 3.4.2,

since the characters ε̂γ are all trivial on D(G0
q). As a consequence, the natural

parameter space for the principal series representations of G0
q is P × h∗/i~−1P∨,

compare the remarks at the end of Subsection 5.1.1.

5.4.4. Duality for principal series modules. One can introduce a general notion of
the dual of a Harish-Chandra module.

Definition 5.20. Let V be a Harish-Chandra module over Gq, see Definition 5.7.
We equip the dual space V ∗ with the D(Gq)-action given by

(x · ϕ)(v) = ϕ(ŜGq (x) · v).

for x ∈ D(Gq), ϕ ∈ V ∗, v ∈ V . The locally finite part F (V ∗) ⊂ V ∗ for the D(Kq)-
action is again a Harish-Chandra module over Gq, called the dual Harish-Chandra
module.

Note that this defines an exact contravariant functor on the category of Harish-
Chandra modules over Gq with D(Gq)-linear morphisms. Note also that the double
dual of V is isomorphic to V . Explicitly, the double dual of V is naturally identified
with V as a vector space, equipped with the D(Gq)-action given by precomposing

the original action by Ŝ2
Gq

. Using the relation

(K2ρ ./ 1)(x ./ f)(K−2ρ ./ 1) = Ŝ2(x) ./ S2(f) = Ŝ2
Gq (x ./ f)

for all x ./ f ∈ D(Gq), we see that the two actions are intertwined by the action of
K2ρ.
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Lemma 5.21. Let (µ, λ) ∈ P × h∗q . The Haar integral φ on L2(Kq) induces a
non-degenerate bilinear pairing

Γ(Eµ,λ)× Γ(E−µ,−λ)→ C; (ξ, η) = φ(ξη)

which is UR
q (g-invariant in the sense that for all X ./ f ∈ UR

q (g),

((X ./ f) · ξ, η) = (ξ, ŜGq (X ./ f) · η).

Proof. Non-degeneracy and the fact that (Ŝ(X) · ξ, η) = (ξ,X · η) for X ∈ UR
q (k)

follow from the basic properties of the Haar integral. For f, g ∈ C∞(Kq) we have
S2(f) = K2ρ⇀f↼K−2ρ, where we are using the notation

X⇀f = (X, f(2))f(1) f↼X = (X, f(1))f(2).

We also have the modular property φ(fg) = φ((K2ρ⇀g↼K2ρ)f), see Subsection
3.2.3 and Lemma 3.17. Therefore,

(f · ξ, η) = (Kλ, f(2))φ(K2ρ⇀f(1)ξS(f(3))η)

= (Kλ, f(2))φ(ξS(f(3))ηf(1)↼K−2ρ)

= (K−λ, S(f(2)))φ(ξS(f(3))ηf(1)↼K−2ρ)

= (K−λ, S(f(2)))φ(ξS(f(3))ηK−2ρ⇀S2(f(1)))

= (ξ, S(f) · η).

This completes the proof. �

It follows that we have an isomorphism between Γ(Eµ,λ) and the dual Harish-
Chandra module of Γ(E−µ,−λ), in the sense of Definition 5.20.

5.4.5. Relation between principal series modules and Verma modules. Recall from
Lemma 3.27 and Proposition 3.24 that we have an embedding ι : UR

q (g)→ Uq(g)⊗
Uq(g) of algebras and an embedding O(Gq) ./ O(Gq)→ C∞(Gq) of multiplier Hopf
∗-algebras. These embeddings are compatible with the pairings

UR
q (g)× C∞(Gq)→ C

(X ./ c, a⊗ t) = (X, a)(c, t)

for a ⊗ t ∈ C∞(Kq) ⊗ D(Kq) ⊂ C∞(Gq) and X ./ c ∈ UR
q (k) ./ C∞(Kq) = UR

q (g),
and

(Uq(g)⊗ Uq(g))× (O(Gq) ./ O(Gq))→ C,
(X ⊗ Y, f ./ g) = (X, g)(Y, f)

for X ⊗ Y ∈ Uq(g) ⊗ Uq(g) and f ./ g ∈ O(Gq) ./ O(Gq), respectively, see the
remark at the end of Section 3.6.

Lemma 5.22. Let (µ, λ) ∈ P×h∗q and consider the Yetter-Drinfeld module Γ(Eµ,λ) ∼=
ind

Gq
Bq

(Cµ,λ) ⊂ C∞(Gq). The pairing UR
q (g)× ind

Gq
Bq

(Cµ,λ)→ C descends to a well-

defined bilinear pairing

M(µ, 2ρ+ λ)× ind
Gq
Bq

(Cµ,λ)→ C.

This induces an injective UR
q (g)-linear map

Γ(Eµ,λ)→M(µ, 2ρ+ λ)∗

where M(µ, 2ρ+ λ)∗ is equipped with the action given by

(X · T )(m) = T (ŜGq (X) ·m)

for X ∈ UR
q (g), T ∈M(µ, 2ρ+ λ)∗, m ∈M(µ, 2ρ+ λ).
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Proof. Let

X ./ c ∈ UR
q (k) ./ C∞(Kq) = UR

q (g),

Y ./ d ∈ UR
q (t) ./ C∞(Kq) = UR

q (b),

and a ∈ Γ(Eµ), so that

ext(a) = a⊗K2ρ+λ ∈ ind
Gq
Bq

(Cµ,λ).

Note that since Y ∈ UR
q (t) we have

(XY, a) = (X ⊗ Y, (id⊗πT )∆(a)) = (X, a)χµ(Y ).

Using the fact that UR
q (t) is commutative and cocommutative, we obtain

((X ./ c)(Y ./ d), a⊗K2ρ+λ)

=
(

(Y(1), c(1))(Ŝ(Y(3)), c(3))XY(2) ./ c(2)d, a⊗K2ρ+λ

)
= (Y(1), c(1))(Ŝ(Y(3)), c(3))(XY(2), a)(c(2)d,K2ρ+λ)

= (Y(1), c(1))(Ŝ(Y(3)), c(3))(X, a)χµ(Y(2))(K−2ρ−λ, c(2))(K−2ρ−λ, d)

= (Y(1)K−2ρ−λŜ(Y(2)), c)(X, a)χµ(Y(3))(K−2ρ−λ, d)

= (X, a)χµ(Y )(c,K2ρ+λ)(d,K2ρ+λ)

= χµ,2ρ+λ(Y ./ d)(X ./ c, a⊗K2ρ+λ).

This proves that the pairing is well-defined.
For the final statement we note that, with the action of UR

q (g) on C∞(Gq) given
by

X · f = (ŜGq (X), f(1))f(2),

the pairing UR
q (g)× C∞(Gq)→ C satisfies

(XY, f) = (Y, Ŝ−1
Gq

(X) · f).

Therefore, the map
C∞(Gq)→ UR

q (g)∗; f 7→ (•, f)

is UR
q (g)-linear, and this restricts to the map stated in the lemma. Moreover, this

map is injective by the nondegeneracy of the pairing. �

The above lemma will allow us to identify the principal series module Γ(Eµ,λ)
with the locally finite part of (M(l) ⊗ M(r))∗ for well-chosen values of l and r
in h∗q . To do so, we need to clarify the relationship between UR

q (g)-modules and
FUq(g)-bimodules with compatible adjoint action of Uq[g) as in Definition 4.26.

To begin with, suppose V is any UR
q (g)-module. The diagonal embedding ι :

UR
q (g) → Uq(g) ⊗ Uq(g) of Lemma 3.27 gives an isomorphism of UR

q (g) onto the

subalgebra (FUq(g) ⊗ 1)∆̂(Uq(g)) = (1 ⊗ Ŝ−1(FUq(g)))∆̂(Uq(g)). Therefore, we
can define an FUq(g)-bimodule structure on V by

Y · v = ι−1(Y ⊗ 1)v, v · Z = ι−1(1⊗ Ŝ−1(Z))v.

Moreover, we have a Uq(g)-action on V given by the action of Uq(g) = UR
q (k) ⊂

UR
q (g). As usual, we refer to this Uq(g)-action as the adjoint action and denote it

by X → v for X ∈ Uq(g) and v ∈ V . Note that for X ∈ FUq(g) we have

(X(1) → v) ·X(2) = ι−1((1⊗ Ŝ−1(X(2)))∆̂(X(1)))v

= ι−1(X ⊗ 1)v

= X · v,
so the actions indeed satisfy the compatibility condition of Definition 4.26.
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Next, recall from Subsection 4.5.1 that we defined left, right and adjoint actions
of Uq(g) on (M ⊗N)∗ by

(Y · ϕ · Z)(m⊗ n) = ϕ(Z ·m⊗ τ(Y ) · n),

(X → ϕ)(m⊗ n) = ϕ(Ŝ(X(2)) ·m⊗ τ(X(1)) · n),

for X,Y, Z ∈ Uq(g), where τ is the algebra antiautomorphism from Lemma 2.16.
The locally finite part of (M ⊗ N)∗ with respect to the adjoint action is denoted
F ((M⊗N)∗), and the above actions restrict to make F ((M⊗N)∗) into an FUq(g)-
bimodule with compatible adjoint action of Uq(g), see Lemma 4.27 and the discus-
sion preceding it.

These actions correspond to a UR
q (g)-module structure on F ((M⊗N)∗). Explic-

itly, we can define an action of UR
q (g) on (M ⊗N)∗ by first embedding UR

q (g) into
Uq(g)⊗ Uq(g) via the map ι and then letting Uq(g)⊗ Uq(g) act on (M ⊗N)∗ by

((Y ⊗ Z)ϕ)(m⊗ n) = (Y · ϕ · Ŝ(Z))(m⊗ n)

= ϕ(Ŝ(Z) ·m⊗ τ(Y ) · n)

for Y,Z ∈ Uq(g). By the above discussion, this UR
q (g)-action restricts to the locally

finite part F ((M ⊗N)∗).
With this in place, we have the following result.

Proposition 5.23. Let (µ, λ) ∈ P× h∗q and let l, r ∈ h∗q such that

µ = l − r, λ+ 2ρ = −l − r.

Then there exists an isomorphism of UR
q (g)-modules

Γ(Eµ,λ) ∼= F ((M(l)⊗M(r))∗),

where F ((M(l)⊗M(r))∗) is equipped with the UR
q (g)-module structure defined above.

Proof. By Corollary 5.3 we can identify the Verma module M(µ, λ+2ρ) with M(l)⊗
M(r) as a UR

q (g)-module if we equip M(l)⊗M(r) with the UR
q (g)-action given by

X · (m⊗ n) = ((id⊗θ′) ◦ ι′(X))(m⊗ n),

for X ∈ UR
q (g). Thus, from Lemma 5.22 we obtain an injective linear map γ :

Γ(Eµ,λ)→ (M(l)⊗M(r))∗.
By the UR

q (g)-linearity of the map in Lemma 5.22, we see that for any X ∈ UR
q (g)

and f ∈ Γ(Eµ,λ) we have

γ(X · f)(m⊗ n) = γ(f)(ŜGq (X) · (m⊗ n))

for all m⊗ n ∈M(l)⊗M(r), where the action of ŜGq (X) on the right-hand side is
given by

ŜGq (X) · (m⊗ n) = (id⊗θ′) ◦ σ ◦ (Ŝ ⊗ Ŝ) ◦ ι(X)(m⊗ n)

= ((Ŝ ⊗ τ)(σ ◦ ι(X)))(m⊗ n),

see Corollary 5.3. Thus, if we write ι(X) =
∑
j Yj ⊗ Zj we get

γ(X · f)(m⊗ n) =
∑
j

γ(f)(Ŝ(Zj) ·m⊗ τ(Yj) · n).

Comparing this with the formula for the UR
q (g)-action on (M ⊗ N)∗ given just

before the proposition, we see that γ is UR
q (g)-linear.

Since the action of UR
q (k) = Uq(g) on Γ(Eµ,λ) is locally finite and γ is UR

q (g)-
linear, the image im(γ) is contained in the locally finite part of (M(l) ⊗M(r))∗.
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Moreover, γ is surjective onto each Kq-type, since Proposition 4.35 and Lemma
5.17 show that for every ν ∈ P+,

[F ((M(l)⊗M(r))∗) : V (ν)] = dim(V (ν)−µ) = [Γ(Eµ,λ) : V (ν)].

This completes the proof. �

Using Lemma 4.27, we can also reformulate Proposition 5.23 in terms of the
spaces F Hom(M(l),M(r)∨). Here we will state the result in terms of FUq(g)-
bimodules with compatible Uq(g)-action rather than UR

q (g)-modules, using the dis-
cussion preceding Proposition 5.23.

Corollary 5.24. Let (µ, λ) ∈ P× h∗q and let l, r ∈ h∗q such that

µ = l − r, λ+ 2ρ = −l − r.

There is an isomorphism of FUq(g)-bimodules

Γ(Eµ,λ) ∼= F Hom(M(l),M(r)∨)

which respects the adjoint actions of Uq(g). Here F Hom(M(l),M(r)∨) is equipped
with the actions

(Y · ϕ · Z)(m)(n) = ϕ(Z ·m)(τ(Y ) · n),

(X → ϕ)(m)(n) = ϕ(Ŝ(X(2)) ·m)(τ(X(1)) · n)

for Y,Z ∈ FUq(g), X ∈ Uq(g), m ∈M(l) and n ∈M(r).

In the sequel we will often identify Γ(Eµ,λ) and F Hom(M(l),M(r)∨), with the
parameters matching as in Corollary 5.24.

As we noted in the remarks after Corollary 5.3, the parameters (l, r) and (l′, r′)
correspond to the same pair (µ, λ) ∈ P × h∗q iff they differ by the diagonal action

of the translation subgroup Yq = 1
2 i~
−1Q∨/i~−1Q∨ of the extended Weyl group

Ŵ = Yq oW , that is, iff

(l′, r′) = (l + 1
2 i~
−1α∨, r + 1

2 i~
−1α∨)

for some α∨ ∈ Q∨.
We also note that by applying Lemma 4.28, we have an isomorphism of Uq(g)-

compatible FUq(g)-bimodules

Γ(Eµ,λ) ∼= F Hom(M(r),M(l)∨)

where now F Hom(M(r),M(l)∨) should be equipped with the actions

(Y · ϕ · Z)(m)(n) = ϕ(τ(Y ) ·m)(Z · n),

(X → ϕ)(m)(n) = ϕ(τ(X(1)) ·m)(Ŝ(X(2)) · n)

for Y,Z ∈ FUq(g) and X ∈ Uq(g).

5.5. An equivalence of categories. In this section we discuss the relation be-
tween certain categories of FUq(g)-bimodules, which are related to the Harish-
Chandra modules of Section 5.2, and subcategories of category O, following Chap-
ter 8.4 in [41]. The results are due to Joseph and Letzter [44]. The corresponding
theory in the classical setting was developed independently by Bernstein-Gelfand
in [13], Enright [27], and Joseph [40].

We first introduce certain subcategories of category O.

Definition 5.25. For l ∈ h∗q let Ol be the full subcategory of O consisting of all
modules with weight spaces associated to weights in l + P ⊂ h∗q .
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Comparing with the set-up in [41], note that for all modules N in O the annihi-
lator annZUq(g)(N) has finite codimension in ZUq(g). This is due to the fact that
we require modules in O to be finitely generated.

Next we introduce a category of Uq(g)-compatible FUq(g)-bimodules as in Defi-
nition 4.26, but with some additional structural hypotheses.

Definition 5.26. Let H be a FUq(g)-bimodule with a compatible locally finite
action of Uq(g), meaning that

(X(1) → v) ·X(2) = X · v
for all X ∈ FUq(g) and v ∈ V . We say that H is a Harish-Chandra bimodule if the
following conditions are satisfied.

a) All isotypical components for the adjoint action of Uq(g) are finite dimensional
and integrable.

b) The annihilators of both the left and right actions of ZUq(g) have finite codi-
mension.

c) H is finitely generated as a right FUq(g)-module.

We write HC for the category of Harish-Chandra bimodules with morphisms
being FUq(g)-bimodule maps which are also Uq(g)-linear.

Let us observe that every irreducible Harish-Chandra module V naturally defines
a Harish-Chandra bimodule. Indeed, according to Definition 5.7 Harish-Chandra
modules are admissible as D(Kq)-modules, so that the isotypical components of
V are finite dimensional and integrable by assumption in this case. Irreducibility
implies that the annihilators for the action of left and right action of ZUq(g) have
finite codimension because the centre must act by fixed left/right central characters.
If V is simple then every finite dimensional D(Kq)-submodule W of V generates V
as a UR

q (g)-module, and the compatibility condition in Definition 4.26 implies that
W generates V even as a right FUq(g)-module.

Recall that ξl : ZUq(g) → C is the central character corresponding to l ∈ h∗q as
in Definition 2.123, and note that ker(ξl) annihilates M(l).

Definition 5.27. For l ∈ h∗q let HCl be the full subcategory of HC consisting of
all objects for which the annihilator of the right action of ZUq(g) contains ker(ξl).

We shall now relate Verma modules and compatible bimodules in the Harish-
Chandra category, at least with suitable extra conditions on both sides.

Proposition 5.28. For l ∈ h∗q we obtain a covariant functor Fl : Ol → HCl by
setting

Fl(M) = F Hom(M(l),M)

for M ∈ Ol, equipped with the compatible bimodule structure

(Y · ϕ · Z)(m) = Y · ϕ(Z ·m)

(X → ϕ)(m) = X(1) · ϕ(Ŝ(X(2)) ·m)

for Y, Z ∈ FUq(g), X ∈ Uq(g), ϕ ∈ F Hom(M(l),M) and m ∈M(l).

Proof. Let us check that Fl(M) is indeed contained in HCl. Firstly, the adjoint
action of Uq(g) is clearly locally finite on the right hand side. Moreover, since
the weights of M belong to l + P, one easily checks that the adjoint action has
weights in P, so is integrable. The annihilator of the left action of ZUq(g) has finite
codimension because M ∈ O, and the annihilator of the right action of ZUq(g) has
finite codimension because it contains ker(ξl).

For the finite multiplicity requirement, note that modules in category O have
finite length by Theorem 4.3, and since every simple module embeds in a dual



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 221

Verma module it is therefore enough to consider the case that M = M(r)∨ is a
dual Verma module. In this case it follows from Lemma 4.27 and Proposition 4.35
a).

Hence Fl(M) is indeed contained in HCl. Moreover Fl clearly maps Uq(g)-linear
maps to Uq(g)-linear FUq(g)-bimodule maps. �

Note that when M = M(r)∨ for r ∈ h∗q , the bimodule structure in Proposition
5.28 is exactly the same as that from Corollary 5.24. In other words, with µ = l− r
and λ+ 2ρ = −l − r we have

Fl(M(r)∨) ∼= Γ(Eµ,λ).

Let F be the functor on Uq(g)-modules that assigns to M its locally finite part
FM . This is not an exact functor. If 0 → K → E → Q → 0 is exact then clearly
0→ FK → FE → FQ→ 0 is exact at FK and FE. Surjectivity may fail however.
Consider for instance E = M(µ), Q = V (µ),K = I(µ) for µ ∈ P+. Then FE = 0
and FQ = Q.

Despite this fact we have the following result.

Lemma 5.29. Let l ∈ h∗q be dominant. Then Fl : Ol → HCl is an exact functor.

Proof. Recall from Definition 4.6 that l ∈ h∗q is called dominant if q
(l+ρ,α∨)
α /∈ ±q−Nα

for all α ∈∆+, where N = {1, 2, . . .}. According to Proposition 4.16, dominance of
l implies that M(l) is projective. Hence the invariant part of the induced sequence
0 → Hom(M(l),K) → Hom(M(l), E) → Hom(M(l), Q) → 0 is exact. Tensoring
with a simple module V (µ) for µ ∈ P+ we see that this applies to all µ-isotypical
components. Indeed, the µ-isotypical component of Hom(M(l), N) is the invariant
part of

Hom(M(l), N)⊗ V (µ)∗ ∼= Hom(M(l), N ⊗ V (µ)∗),

so exactness follows again from projectivity of M(l). �

Our next aim is to define a functor in the reverse direction. For this we need
some auxiliary considerations.

Firstly, assume that H is any FUq(g)-bimodule with a compatible action of
Uq(g), and let V be a finite dimensional integrable Uq(g)-module. Consider the
right FUq(g)-module structure on the second factor of V ⊗H and the left Uq(g)-
module structure given by the diagonal action

X → (v ⊗ h) = (X(1) · v)⊗ (X(2) → h)

for X ∈ Uq(g). Let us define a left FUq(g)-module structure on V ⊗H by setting

Y · (v ⊗ h) = (Y(1) · v)⊗ Y(2) · h,

for Y ∈ FUq(g). This makes sense since FUq(g) is a left coideal, see Lemma 2.112.
Then we compute

(Y(1) → (v ⊗ h)) · Y(2) = (Y(1) · v)⊗ (Y(2) → h) · Y(3)

= (Y(1) · v)⊗ (Y(2) · h)

= Y · (v ⊗ h),

so that the resulting FUq(g)-bimodule V ⊗H is compatible with the Uq(g)-action.

Proposition 5.30. Let V be a finite dimensional integrable Uq(g)-module and as-
sume that H ∈ HC. Then the compatible FUq(g)-bimodule V ⊗H constructed above
is again contained in HC. For H ∈ HCl we have V ⊗H ∈ HCl.
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Proof. We have to verify that the conditions in Definition 5.26 are satisfied for
V ⊗ H. For condition a) notice that V is locally finite and integrable for the left
Uq(g)-module structure, and that local finiteness and integrability are preserved
under tensor products.

The key point to check is condition b). For this we may assume that V =
V (µ) is simple. The annihilator of ZUq(g) for the left action on H being of finite
codimension implies that we have

annZUq(g)(H) ⊇ (ker(ξl1) · · · ker(ξlm))r

for some weights l1, . . . , lm ∈ h∗q and r ∈ N. Note that, thanks to the decomposition
series of V ⊗M(lj) from Lemma 4.34, we have

annZUq(g)(V (µ)⊗M(lj)) ⊇
∏

ν∈P(V (µ))

(annZUq(g)M(lj + ν))s

=
∏

ν∈P(V (µ))

(ker(ξlj+ν))s

for sufficiently large s. It follows that

annZUq(g)(V (µ)⊗H) ⊇
∏
j

∏
ν∈P(V (µ))

ker(ξlj+ν)s
′

for some s′ and hence annZUq(g)(V (µ)⊗H) has finite codimension.
Finite codimension for the annihilator of the right action of ZUq(g) is obvious

since H ∈ HC.
Condition c) is evidently satisfied because the right action of FUq(g) on V ⊗H

only sees the factor H. We conclude that V ⊗H is contained in HC.
The final assertion regarding HCl is again immediate because the right action of

ZUq(g) depends only on the second tensor factor of V ⊗H. �

Let H ∈ HC be given. Since H is finitely generated as a right FUq(g)-module we
find a finite dimensional integrable Uq(g)-submodule V ⊂ H such that the canonical
map V ⊗ FUq(g)→ H is surjective.

If H ∈ HCl then the right annihilator of H contains ker(ξl) ⊂ ZUq(g), and hence
Theorem 4.51 implies that the the projection V ⊗ FUq(g)→ H factorizes through
V ⊗ F End(M(l)).

Lemma 5.31. Let l ∈ h∗q and let H ∈ HCl. The left action of FUq(g) on the first
leg of H ⊗FUq(g) M(l) extends to a left action of Uq(g) via the formula

X · (h⊗m) = X(1) → h⊗X(2) ·m,

and we obtain a functor Tl : HCl → Ol by setting

Tl(H) = H ⊗FUq(g) M(l)

for H ∈ HCl.

Proof. Note that when X ∈ FUq(g), we have

(X · h)⊗m = (X(1) → h) ·X(2) ⊗m = X(1) → h⊗X(2) ·m,

for all h⊗m ∈ H ⊗FUq(g) M(l). We need to show that the expression on the right-
hand side remains well-defined on the balanced tensor product when X ∈ Uq(g).

Since H is a Harish-Chandra bimodule, we have a direct sum decomposition
H =

⊕
µ∈PHµ into weight spaces for the adjoint action. If h ∈ Hµ, m ∈ M(l)λ

then the above calculation shows (Kν · h)⊗m = q(µ+λ,ν)h⊗m for every ν ∈ 2P+.
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It follows that these elements Kν ∈ FUq(g) are simultaneously diagonalizable on
H ⊗FUq(g) M(l) with eigenspaces

(H ⊗FUq(g) M(l))γ =
⊕

µ+λ=γ

Hµ ⊗M(l)λ.

Now it makes sense to define the action of any Kν ∈ Uq(h) by Kν · v = q(γ,ν)v
whenever v ∈ (H ⊗FUq(g) M(l))γ , and this agrees with the formula stated in the
lemma. By Lemma 2.115, this action is well-defined for all X ∈ Uq(g).

The resulting Uq(g)-module Tl(H) is clearly a weight module with weights con-
tained in l + P. According to our considerations above there exists some finite
dimensional integrable Uq(g)-module V such that H can be written as a quotient
of V ⊗ FUq(g). Hence Tl(H) = H ⊗FUq(g) M(l) is a quotient of V ⊗M(l), and the
latter is in category Ol. It follows that Tl(H) is contained in Ol.

It is clear that Tl maps morphisms in HCl to morphisms in Ol. �

We obtain a Frobenius reciprocity relation for the functors Fl and Tl.

Proposition 5.32. For H ∈ HCl and N ∈ Ol there is a natural isomorphism

HomUq(g)(Tl(H), N) ∼= HomHC(H,Fl(N)),

that is, the functor Tl is left adjoint to Fl.

Proof. The standard Hom-tensor adjunction yields an isomorphism

φ : HomFUq(g)-FUq(g)(H,Hom(M(l), N))→ HomFUq(g)(H ⊗FUq(g) M(l), N),

sending f ∈ HomFUq(g)-FUq(g)(H,Hom(M(l), N)) to φ(f) given by φ(f)(h⊗m) =
f(h)(m). The inverse isomorphism is given by ψ(g)(h)(m) = g(h⊗m).

Let us show that φ maps morphisms in HC to Uq(g)-linear maps and ψ maps
Uq(g)-linear maps to morphisms in HC. We do this by verifying that the unit
and counit of the above adjunction have these properties. For H ∈ HCl the unit
u : H → FlTl(H) = F Hom(M(l), H ⊗FUq(g) M(l)) is given by u(h)(m) = h ⊗m.
We compute

u(X → h)(m) = (X → h)⊗m

= (X(1) → h)⊗ (X(2)Ŝ(X(3)))m

= X(1) · (h⊗ Ŝ(X(2)) ·m)

= X(1) · u(h)(Ŝ(X(2)) ·m) = (X → u(h))(m).

The counit e : TlFl(M) = F Hom(M(l),M) ⊗FUq(g) M(l) → M is given by e(T ⊗
m) = T (m). For any ν ∈ P we have

e(Kν · (T ⊗m)) = q(ν,µ+λ)e(T ⊗m)

= q(ν,µ+λ)T (m)

= (Kν → T )(Kν ·m)

= Kν · T (K−1
ν · (Kν ·m))

= Kν · T (m)

= Kν · e(T ⊗m)

if T has weight µ and m has weight λ. In light of Lemma 2.115, this suffices to
conclude that e is Uq(g)-linear.

We conclude that the map φ constructed above restricts to an isomorphism

HomHC(H,F Hom(M(l), N))→ HomUq(g)(H ⊗FUq(g) M(l), N)

as desired. �
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Proposition 5.33. Assume l ∈ h∗q is dominant. Then the canonical map H →
FlTl(H) induced from the adjunction of Fl and Tl is an isomorphism for H ∈ HCl.

Proof. First, take H = F End(M(l)). By the Verma module annihilator theorem
4.51 we have F End(M(l)) = FUq(g)/ annFUq(g)(M(l)) and so the canonical mul-
tiplication map F End(M(l)) ⊗FUq(g) M(l) → M(l) is an isomorphism. It follows
that

Tl(H) = F End(M(l))⊗FUq(g) M(l) ∼= M(l).

Hence we get FlTl(H) = Fl(M(l)) = F End(M(l)) = H in this case.
Next assume that H = V ⊗ F End(M(l)) for some finite dimensional integrable

Uq(g)-module V . Then by our previous considerations

Tl(H) ∼= (V ⊗ F End(M(l)))⊗FUq(g) M(l) = V ⊗ Tl(F End(M(l))) = V ⊗M(l),

and hence

FlTl(H) ∼= Fl(V ⊗M(l))

= F Hom(M(l), V ⊗M(l))

∼= V ⊗ F End(M(l)).

This means FlTl(H) ∼= H in this case as well.
Finally, suppose that H ∈ HCl is arbitrary. According to the discussion pre-

ceding Lemma 5.31, there exists a finite dimensional integrable Uq(g)-module V1

and a surjective homomorphism V1 ⊗ F End(M(l)) → H. Moreover, as FUq(g) is
Noetherian by Theorem 2.137, the kernel of the projection map is again in HCl.
Hence we obtain a short exact sequence of the form

V2 ⊗ F End(M(l)) // V1 ⊗ F End(M(l)) // H // 0

Since Fl is exact by Lemma 5.29 and Tl is right exact we obtain a commutative
diagram

V2 ⊗ F End(M(l)) //

∼=
��

V1 ⊗ F End(M(l)) //

∼=
��

H //

��

0

V2 ⊗ F End(M(l)) // V1 ⊗ F End(M(l)) // FlTl(H) // 0

with exact rows. The 5-lemma shows that the right hand vertical arrow is an
isomorphism. �

Lemma 5.34. Assume that l ∈ h∗q is dominant. If V ∈ Ol is simple then Fl(V ) = 0
or Fl(V ) is simple. All simple objects in HCl are obtained in this way.

Proof. Assume Fl(V ) 6= 0 and let H ⊂ Fl(V ) be a nonzero submodule. If i : H →
Fl(V ) denotes the embedding map then the map j : Tl(H) → V corresponding to
i is nonzero according to Proposition 5.32. Since V is simple it follows that j is a
surjection. Since Fl is exact by Lemma 5.29 we conclude that Fl(j) : FlTl(H) →
Fl(V ) is a surjection. Composing the latter with the isomorphism H → FlTl(H)
we reobtain our original map i. Hence i is surjective, which means that H = Fl(V ).
Hence Fl(V ) is simple.

Now let H ∈ HCl be an arbitrary simple object. Then we have H ∼= FlTl(H) by
Proposition 5.33, so that Tl(H) is nonzero. Since every object in Ol has finite length
we find a simple quotient V of Tl(H). Then Fl(V ) is simple, and the quotient map
Tl(H) → V corresponds to a nonzero homomorphism H → Fl(V ). Since both H
and Fl(V ) are simple this means H ∼= Fl(V ). �
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In fact, in Proposition 5.38 below we will see that with suitable hypotheses on l,
the bimodule Fl(V ) is never zero for V simple, so that Fl maps simple objects to
simple objects.

As a final ingredient we shall discuss under what conditions we have Fl(V ) 6= 0
for all simple V . For this we need to introduce the concept of a regular weight and
discuss the translation principle.

Let λ ∈ h∗q . Recall from Section 4.1 that Ŵ[λ] = {ŵ ∈ Ŵ | ŵ.λ − λ ∈ Q ⊂
h∗q/

1
2 i~
−1Q∨}. We adopt the following definition from Section 8.4.9 in [41].

Definition 5.35. A weight λ ∈ h∗q is called regular if the only element ŵ ∈ Ŵ[λ]

with ŵ.λ = λ is ŵ = e.

Observe that any element ŵ ∈ Ŵ which satisfies ŵ.λ = λ is automatically in
Ŵ[λ], so the definition is equivalent to demanding that e is the only element of Ŵ

which fixes λ. We conclude that the group Ŵ acts freely on the set of all regular
elements in h∗q .

Lemma 5.36. Let µ ∈ P+. If l ∈ h∗q is dominant and regular then

Ŵ .(l + µ) ∩ (l + P(V (µ))) = {l + µ},

where P(V (µ)) ⊂ P denotes the set of all weights of V (µ).

Proof. It is clear that l + µ is contained in Ŵ .(l + µ) ∩ (l + P(V (µ))).

Conversely, assume ŵ ∈ Ŵ satisfies ŵ.(l + µ) ∈ (l + P(V (µ))). Then ŵ ∈ Ŵ[l]

since

ŵ(l + µ+ ρ) ∈ l + µ+ ρ+ Q

and Ŵ[l+µ+ρ] = Ŵ[l]. Since l is dominant it is maximal in its Ŵ[l]-orbit according

to Proposition 4.8, which means that we have ŵ−1.l = l − γ for some γ ∈ Q+, or
equivalently ŵ(l − γ + ρ) = l + ρ. From the latter relation we conclude

ŵ.(l + µ) = ŵ(l + µ+ ρ)− ρ = l + ŵ(µ+ γ),

which implies in particular ŵ(µ + γ) ∈ P(V (µ)). Moreover, since γ ∈ Q+ and
µ ∈ P+ we have (µ, γ) ≥ 0, and we get

(ŵ(µ+ γ), ŵ(µ+ γ)) = (µ+ γ, µ+ γ) = (µ, µ) + 2(µ, γ) + (γ, γ) ≥ (µ, µ)

with a strict inequality iff γ 6= 0. However, for ν ∈ P(V (µ)) we have (ν, ν) ≤ (µ, µ),
see Lemma 1.7 in [26]. Hence γ = 0 and we conclude ŵ−1.l = l. This implies ŵ = e
by regularity of l. �

Let M ∈ O. For a central character χ : ZUq(g)→ C, let us define the χ-primary
component of M by

Mχ = {m ∈M | for all Z ∈ ZUq(g) we have (Z −χ(Z))n ·m = 0 for some n ∈ N},

compare Section 1.12 in [37]. Then Mχ ⊂ M is a Uq(g)-submodule, and as in the
classical case one checks that M decomposes into a finite direct sum of its primary
components.

Using this fact we obtain a direct sum decomposition of O into the full subcat-
egories Oχ of modules for which M = Mχ. We also refer to Oχ as the primary
component corresponding to χ.

Note that according to Proposition 2.129 every central character is of the form
χ = ξλ for some λ ∈ h∗q in our setting.

Proposition 5.37. Let µ ∈ P+ and let l ∈ h∗q be dominant and regular. Then for

all ŵ ∈ Ŵ the Verma module M(ŵ.(l+µ)) is a direct summand of V (µ)⊗M(ŵ.l).
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Proof. Consider the primary component of M = V (µ) ⊗M(ŵ.l) corresponding to
ξl+µ : ZUq(g) → C. All Verma modules in the primary component Oξl+µ have

central character ξl+µ, and hence highest weights in Ŵ .(l + µ). By Lemma 4.34,
M admits a Verma flag with highest weights of the form ŵ.l + η for η ∈ P(V (µ)).
Hence the Verma modules occurring as subquotients of M for this flag are of the
form M(ν) for ν ∈ (Ŵ .(l + µ)) ∩ (ŵ.l + P(V (µ))). Since P(V (µ)) is stable under
the (unshifted) action of W we obtain

ŵ.l+P(V (µ)) = ŵ(l+ρ)−ρ+P(V (µ)) = ŵ(l+P(V (µ))+ρ)−ρ = ŵ.(l+P(V (µ)))

Since clearly Ŵ .(l + µ) = ŵ.Ŵ .(l + µ) we deduce

(Ŵ .(l + µ)) ∩ (ŵ.l + P(V (µ))) = ŵ.(Ŵ .(l + µ) ∩ (l + P(V (µ)))) = ŵ.(l + µ)

by Lemma 5.36. Hence the only possibility is ν = ŵ.(l+µ). The result follows. �

We shall now show that Fl maps simple objects to simple objects in the case
that l is regular.

Proposition 5.38. Assume l ∈ h∗q is dominant and regular. Then Fl(V ) is simple
for each simple module V ∈ Ol.

Proof. We have to show that F Hom(M(l), V ) is nonzero if V is a simple module.
For this we may assume V = V (l + λ) for some λ ∈ P. According to Proposition
5.37 we have that M(l + µ) is a direct summand of V (µ) ⊗M(l) for any µ ∈ P+.
Since F Hom(M(l), V ) ⊗ V (µ)∗ ∼= F Hom(V (µ) ⊗M(l), V ) it therefore suffices to
show that F Hom(M(l + µ), V (l + λ)) is nonzero for some µ.

Choose µ such that ν = µ − λ ∈ P+, and let V (−ν) denote the simple module
of lowest weight −ν. Then Proposition 4.35 and Lemma 4.27 show that

[F Hom(M(l + µ),M(l + λ)∨) : V (−ν)] = dim(V (−ν)−ν) = 1

and

[F Hom(M(l + µ),M(l + λ− γ)∨) : V (−ν)] = dim(V (−ν)−ν−γ) = 0

for all γ ∈ P+ \ {0}. Since V (l + λ) ⊂ M(l + λ)∨ and the corresponding quotient
has a filtration with subquotients isomorphic to V (l+ λ− γ) for γ ∈ P+ \ {0} this
yields the claim. �

Let us now summarize the results obtained so far.

Theorem 5.39. Let l ∈ h∗q be dominant.

a) The functor Tl : HCl → Ol embeds HCl as a full subcategory into Ol.
b) If l ∈ h∗q is regular then Fl : Ol → HCl is an equivalence of C-linear categories.

Proof. a) It follows from Propositions 5.32 and 5.33 that we have

HomHC(H,K) ∼= HomHC(H,FlTl(K)) ∼= HomUq(g)(Tl(H), Tl(K))

for all H,K ∈ HCl, hence Tl is fully faithful. This means precisely that Tl embeds
HCl as a full subcategory into Ol.
b) Assume first that H ∈ HCl is simple. If Tl(H) is non-simple there is a

composition series 0 ⊂ V0 ⊂ · · · ⊂ Vn = Tl(H) in Ol with simple subquotients for
some n > 0. Since Fl is exact by Lemma 5.29 and maps simple modules to simple
modules by Proposition 5.38, this induces a composition series 0 ⊂ Fl(V0) ⊂ · · · ⊂
Fl(Vn) = FlTl(H) ∼= H with simple subquotients. Now our assumption that H is
simple implies n = 0, which is a contradiction. Hence Tl(H) is simple.

We conclude that Tl maps simple objects in HCl to simple objects in Ol. Taking
into account Proposition 5.38 it follows that Fl and Tl induce inverse equivalences
on simple objects.
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Let 0 → K → E → Q → 0 be an extension in Ol, and assume that the counit
of the adjunction from Proposition 5.32 induces isomorphisms TlFl(K) ∼= K and
TlFl(Q) ∼= Q. Consider the commutative diagram

0 // TlFl(K) //

∼=
��

TlFl(E)

��

// TlFl(Q)

∼=
��

// 0

0 // K // E // Q // 0

The bottom row is exact by assumption, so the map K ∼= TlFl(K)→ TlFl(E) must
be injective. Since Fl is exact and Tl is right exact, it follows that the upper row
of the diagram is exact as well. This implies TlFl(E) ∼= E as desired.

The full subcategory of Ol on which the counit e : TlFl → id of the adjunction is
an isomorphism contains all simple objects, and every object in Ol has finite length.
We conclude TlFl ∼= id, and this finishes the proof. �

5.6. Irreducible Harish-Chandra modules. We shall now derive consequences
for the category of Harish-Chandra modules. Some of these results have been
sketched in [3].

Recall from the comments following Lemma 5.17 that the principal series repre-
sentation Γ(Eµ,λ) has a minimal Kq-type which occurs with multiplicity one.

Definition 5.40. Let (µ, λ) ∈ P × h∗q . We denote by Vµ,λ the unique irreducible
subquotient of Γ(Eµ,λ) with the same minimal Kq-type.

To observe that Vµ,λ is indeed well-defined, consider the submodule of Γ(Eµ,λ)
generated by any nonzero vector in the minimal Kq-type. This module has a unique
maximal submodule, namely the sum of all submodules not containing the minimal
Kq-type, with corresponding quotient Vµ,λ.

Throughout this section, given (µ, λ) ∈ P × h∗q , we shall use (l, r) to denote a
pair of weights in h∗q × h∗q such that

µ = l − r, λ+ 2ρ = −l − r,

compare Corollary 5.24. We recall that the pair (l, r) is well-defined only up to
addition by an element of the form ( 1

2 i~
−1α∨, 1

2 i~
−1α∨) for some α∨ ∈ Q∨.

We record the following equivalent formulations of a common integrality condi-
tion on the parameters (µ, λ).

Lemma 5.41. Let (µ, λ) ∈ P × h∗q and let l, r ∈ h∗q be such that µ = l − r and

λ+ 2ρ = −l − r. For any positive root α ∈∆+, the following are equivalent:

a) q
(λ,α∨)
α ∈ q−|(µ,α

∨)|−2N
α .

b) Both q
(l+ρ,α∨)
α ∈ ±qNα and q

(r+ρ,α∨)
α ∈ ±qNα.

Likewise, the following are equivalent:

c) q
(λ,α∨)
α ∈ q|(µ,α

∨)|+2N
α .

d) Both q
(l+ρ,α∨)
α ∈ ±q−Nα and q

(r+ρ,α∨)
α ∈ ±q−Nα .

Proof. Let us put ~α = ~dα. Then condition a) is equivalent to

(λ, α∨) ∈ −|(µ, α∨)| − 2N mod i~−1
α Z.

If we define l′ = l + ρ, r′ = r + ρ, so that we have

µ = l′ − r′, λ = −l′ − r′,
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then the above condition is equivalent to having both

−(l′ + r′, α∨) ∈ −(l′ − r′, α∨)− 2N mod i~−1
α Z,

−(l′ + r′, α∨) ∈ −(r′ − l′, α∨)− 2N mod i~−1
α Z.

These conditions simplify to

(l′, α∨) ∈ N mod 1
2 i~
−1
α Z,

(r′, α∨) ∈ N mod 1
2 i~
−1
α Z,

which is equivalent to b).
The equivalence of c) and d) follows by replacing (µ, λ) by (−µ,−λ). �

We now begin the study of the simple modules Vµ,λ.

Lemma 5.42. If there is no α ∈ ∆+ such that q
(l+ρ,α∨)
α ∈ ±qZα then Γ(Eµ,λ) is

simple, and we have

Vµ,λ ∼= Fl(V (r)) = Fl(M(r)∨) ∼= Γ(Eµ,λ).

Proof. Since r − l is a weight, the hypothesis implies q
(r+ρ,α∨)
α /∈ ±qZα for any

α ∈∆+. In particular, r is antidominant, so M(r) is simple by Theorem 4.15. We
get Fl(V (r)) = Fl(M(r)∨) ∼= Γ(Eµ,λ), which is nonzero, and hence irreducible by
Lemma 5.34. By definition, we have Vµ,λ = Γ(Eµ,λ) in this situation. �

Our next result gives a sufficient condition for the simple modules Vµ,λ and Vµ′,λ′

to be isomorphic. We will shortly show that this condition is also necessary, see
Theorem 5.47.

Theorem 5.43. Let (µ, λ) ∈ P× h∗q . Then Vµ,λ ∼= Vwµ,wλ for all w ∈W .

Proof. Fix w ∈ W and let us write (µ′, λ′) = (wµ,wλ). We begin by proving that
Vµ′,λ′ ∼= Vλ,µ in the case where µ is fixed and λ belongs to the dense subset

Z = {λ ∈ h∗q | q(λ−µ,α∨)
α /∈ q2Z

α for all α ∈∆+} ⊂ h∗q .

Using the the relation 2l = µ − λ − 2ρ we get q
(l,α∨)
α /∈ ±qZα for λ ∈ Z, and hence

Vµ,λ = Γ(Eµ,λ) by Lemma 5.42. The condition q
(l,α∨)
α /∈ ±qZα implies that ∆[l] = ∅,

in the notation of Subsection 4.1.3, and thus also ∆[r] = ∅ since r and l differ by
an integral weight. Note also that l and r are both dominant and antidominant in
this case.

The parameters associated to (µ′, λ′) can be chosen as l′ = w.l, r′ = w.r, which
are again both dominant and antidominant. By Theorem 2.128 we have ξl′ = ξl,
and so HCl = HCl′ . Therefore, Lemma 5.34 implies that Γ(Eµ′,λ′) is isomorphic to
Fl(V ) for some simple module V ∈ Ol. Specifically, we have V ∼= V (s) for some
s ∈ l + P. From the above condition on l we see that s is again dominant and
antidominant. In particular, according to Theorem 4.15, we have V ∼= M(s)∨ and
thus Fl′(M(r′)∨) ∼= Fl(M(s)∨).

The minimal Kq-type of Fl′(M(r′)∨) is conjugate to −µ′ = r′ − l′ under the
Weyl group action and hence to −µ = r − l. Likewise, the minimal Kq-type of
Fl(M(s)∨) is conjugate to s− l. It follows that r − l ∈ P and s− l ∈ P are in the
same orbit of the Weyl group action, and hence s−r ∈ Q. Moreover, since ξs = ξr′ ,
we see that s and r′ must be Ŵ -linked, and hence s and r are Ŵ -linked as well.
This implies that s = v̂.r for some v̂ ∈ Ŵ[r], in the notation of Subsection 4.1.3.

But we observed above that ∆[r] = ∅, so Ŵ[r] is trivial, according to Proposition
4.5. Therefore s = r, and we conclude that Vµ,λ = Γ(Eµ,λ) ∼= Γ(Ewµ,wλ) = Vwµ,wλ
for all λ ∈ Z.
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Now we extend this to all λ ∈ h∗q as follows. Recall from Subsection 5.4.1
that the principal series modules Γ(Eµ,λ) for fixed µ all have the same underlying
D(Kq)-module Γ(Eµ). Let us write σ for the minimal Kq-type in Γ(Eµ) and denote
the subspaces of Kq-type σ by E ⊂ Γ(Eµ) and E′ ⊂ Γ(Ewµ), respectively. Since
the minimal Kq-type occurs with multiplicity one, there is a unique Kq-invariant
isomorphism ϕ : E → E′ up to scalar.

Recall from Section 5.3 that under any of the representations πµ,λ, the subalgebra
UR
q (g)σ,σ ⊂ UR

q (g) preserves E. By the above discussion, when λ ∈ Z, there is a
bijective intertwiner Γ(Eµ,λ)→ Γ(Ewµ,wλ), and after rescaling we may assume that
it agrees with ϕ on E. In particular, for any X ∈ UR

q (g)σ,σ we have ϕ◦πµ,λ(X)|E =
πwµ,wλ(X)|E′ ◦ ϕ. From the definition of the principal series representations πµ,λ
in Subsection 5.4.1, it is easy to check that the functions

h∗q → End(E); λ 7→ πµ,λ(X),

h∗q → End(E′); λ 7→ πwµ,wλ(X)

are algebraic. Since Z is dense in h∗q we deduce that ϕ◦πµ,λ(X)|E = πwµ,wλ(X)|E′ ◦
ϕ for all λ ∈ h∗q . Therefore, E and E′ are isomorphic as UR

q (g)σ,σ-modules for all

λ ∈ h∗q , and so Proposition 5.15 shows that Vµ,λ ∼= Vwµ,wλ as UR
q (g)-modules. �

To obtain more precise information on the structure of Γ(Eµ,λ), we will make use
of the following technical lemma. We use the notation ‖µ‖2 = (µ, µ), when µ ∈ P.
Note that when µ, µ′ ∈ P+ we have µ ≤ µ′ implies ‖µ‖ ≤ ‖µ′‖.

Lemma 5.44. Let α ∈ ∆+ and assume that l, r ∈ h∗ are such that l − r ∈ P and
that (l + ρ, α∨) ∈ N0 and (r + ρ, α∨) ∈ N0. Then

‖l − r‖ ≤ ‖l − sα.r‖.

Moreover equality holds iff the shifted action of sα stabilizes l or r.

Proof. Note first that sα.r = r−(r+ρ, α∨)α and hence l−sα.r = l−r+(r+ρ, α∨)α.
We compute

‖l − sα.r‖2 − ‖l − r‖2 = (l − sα.r, l − sα.r)− (l − r, l − r)
= 2(l − r, (r + ρ, α∨)α) + (r + ρ, α∨)2(α, α)

= 2(l − r, (r + ρ, α∨)α) + 2(r + ρ, α∨)(r + ρ, α)

= 2(r + ρ+ l − r, (r + ρ, α∨)α)

= 2(l + ρ, α)(r + ρ, α∨).

This yields the claim. �

We now consider the modules Vµ,λ when the associated parameter l is dominant.

Lemma 5.45. Let (µ, λ) ∈ P × h∗q such that the associated parameter l ∈ h∗q is
dominant.

a) If there is no α ∈∆+ such that both q
(l+ρ,α∨)
α = ±1 and q

(r+ρ,α)
α ∈ ±qNα then

Vµ,λ ∼= Fl(V (r)) ⊂ Fl(M(r)∨) ∼= Γ(Eµ,λ).

Otherwise Fl(V (r)) = 0.

b) The simple module Vµ,λ is a submodule of Γ(Eµ,λ). Explicitly, there exists û ∈ Ŵ
with û.l = l such that the pair (l, û.r) verifies the conditions in a) above, and
we have

Vµ,λ ∼= Fl(V (û.r)) ⊂ Fl(M(û.r)∨) ∼= Fl(M(r)∨) ∼= Γ(Eµ,λ).
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Proof. a) If l fulfils the hypothesis of Lemma 5.42 we are done, so we assume
henceforth that this is not the case. Given that l is assumed dominant, this means

that q
(l+ρ,α∨)
α ∈ ±qN0

α for some α ∈∆+.
Let I(r) denote the kernel of the surjection M(r) → V (r). By Lemma 4.2, we

have a filtration

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = I(r),

where for each 1 ≤ i ≤ n the quotient Mi/Mi−1 is a highest weight module.
By the BGG Theorem 4.25, if t ∈ h∗q is a highest weight for any Mi/Mi−1 with
1 ≤ i ≤ n then t is strongly linked to r, meaning that t = sk1,α1 · · · skm,αm .r
for some nonempty chain of affine reflections sαj ,kj with αj ∈ ∆+ and kj ∈ Z2,
satisfying

r > skm,αm .r > skm−1,αm−1
skm,αm .r > · · · > sk1,α1

· · · skm,αm .r = t.

Note that this implies

q
(sαj+1

···sαm .r+ρ,α
∨
j )

αj ∈ ±qNαj
for 1 ≤ j ≤ m. Moreover, since r−skj+1,αj+1

· · · skm,αm .r ∈ Q and l−r ∈ P we have

q
(l+ρ,α∨j )
αj ∈ ±qZαj for each αj appearing in this chain, and hence q

(l+ρ,α∨j )
αj ∈ ±qN0

αj

by dominance.
Therefore, for each 1 ≤ i ≤ n we have a surjective morphism M(ti)→Mi/Mi−1

for some ti strongly linked to r as above, and therefore an injective morphism

Fl((Mi/Mi+1)∨)→ Fl(M(ti)
∨).

If there is no α ∈ ∆+ such that q
(l+ρ,α∨)
α = ±1 and q

(r+ρ,α∨)
α ∈ ±qNα, then an

inductive application of Lemma 5.44 along the chain of reflections sαj shows that
‖Re(l)−Re(ti)‖ > ‖Re(l)−Re(r)‖, where the real part of an element in h∗q refers to
its component in the R-span of ∆, see the remarks before Proposition 4.5. Note that
we have a strict inequality here because the strict inequalities in the strongly linking
chain imply that the reflection sαj does not fix sαj+1 · · · sαm .Re(r). According to
Proposition 4.35 a) and Proposition 5.23, the minimal Kq-type in Fl(M(ti)

∨) is
strictly larger than that of Fl((M(r)∨), and therefore Fl((Mi/Mi−1)∨) does not
contain the minimal Kq-type of Fl(M(r)∨). By induction, using the short exact
sequences

0→ Fl((Mi/Mi−1)∨)→ Fl(M∨i )→ Fl(M∨i−1)→ 0,

we deduce that Fl(M∨i ) does not contain the minimal Kq-type of Fl(M(r)∨) for
any 1 ≤ i ≤ n.

Therefore, in the exact sequence

0→ Fl(V (r))→ Fl(M(r)∨)→ Fl(I(r)∨)→ 0,

the inclusion on the left is necessarily an isomorphism on the minimal Kq-type.
It follows that Fl(V (r)) is nonzero, and hence it is an irreducible Harish-Chandra
module by Lemma 5.34. Moreover, since Fl(V (r)) contains the minimal Kq-type
of Fl(M(r)∨) we have Fl(V (r)) ∼= Vµ,λ in this case.

Conversely, assume that there is an α ∈ ∆+ satisfying both q
(l+ρ,α∨)
α = ±1

and q
(r+ρ,α∨)
α ∈ ±qNα. Then M(sk,α.r) is a submodule of M(r) for suitable k, by

Theorem 4.14, and hence V (r) is a quotient of M(r)/M(sk,α.r). Equivalently, V (r)
is contained in the kernel of the natural projection M(r)∨ →M(sk,α.r)

∨. Applying
the exact functor Fl shows that Fl(V (r)) is contained in the kernel of the surjective
map Fl(M(r)∨)→ Fl(M(sk,α.r)

∨). Note that sk,α fixes l up to a translation by an
element of 1

2 i~
−1Q∨, and since sk,α.r and r differ by an element of P the same must

be true of sk,α.l and l, whence sk,α.l = l. It follows that both Fl(M(r)∨) ∼= Γ(Eµ,λ)
and Fl(M(sk,α.r)

∨) ∼= Γ(Esαµ,sαλ) have the same Kq-type multiplicities, so that
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the surjection Fl(M(r)∨) → Fl(M(sk,α.r)
∨) is in fact an isomorphism. It follows

that Fl(V (r)) is zero.
b) Under the conditions stated in a) we obtain the assertion with û = 1, so it

remains to consider the case where both q
(l+ρ,α∨)
α = ±1 and q

(r+ρ,α∨)
α ∈ ±qNα for

some α ∈∆+. Let β1, . . . , βm ∈∆+ be the positive roots such that q
(l+ρ,β∨i )
βi

= ±1.

Consider the subgroup U of Ŵ generated by the affine reflections corresponding to
β1, . . . , βm and pick û ∈ U such that r′ = û.r is minimal. We claim that then

q
(r′+ρ,β∨i )
βi

/∈ ±qNβi for all 1 ≤ i ≤ m. Indeed, if q
(r′+ρ,β∨i )
βi

∈ ±qNβi we would get

sk,βi .r
′ < r′ for suitable k, contradicting our choice of r′. Thus, by our definition

of r′ there is no α ∈∆+ such that q
(l+ρ,α∨)
α = ±1 and q

(r′+ρ,α∨)
α ∈ ±qNα.

We are thus back in a situation as in a). Using Theorem 5.43, we obtain an
embedding

Vµ,λ ∼= Vuµ,uλ ∼= Fl(û.r) ⊆ Fl(M(û.r)∨),

where u denotes the image of û under the canonical projection Ŵ → W . We may
assume that û is of the form û = sk1,βi1 · · · skp,βip ∈ U such that

sk1,βi1 · · · skp,βip .r < sk2,βi2 · · · skp,βip .r < · · · < skp,βip .r < r,

and we have skj ,βij . . . skp,βip .l = l for all 1 ≤ j ≤ p. In this situation, as in a), we

see that the corresponding quotient maps

Fl(M(r)∨)→ Fl(M(skp,βip .r)
∨)→ · · · → Fl(M(û.r)∨)

are all isomorphisms. Hence we get an inclusion Vµ,λ ⊂ Fl(M(û.r)∨) ∼= Fl(M(r)∨) ∼=
Γ(Eµ,λ) as claimed. �

Lemma 5.46. Assume l ∈ h∗q is dominant, and let r, r′ ∈ l+ P with Fl(V (r)) 6= 0.
Then Fl(V (r)) ∼= Fl(V (r′)) iff r = r′.

Proof. Assume r 6= r′ and Fl(V (r)) ∼= Fl(V (r′)). Let us write H = Fl(V (r)). Since
H 6= 0, it is simple by Lemma 5.34. The adjointness relation from Proposition 5.32
implies that there are nonzero Uq(g)-linear maps Tl(H) → V (r), Tl(H) → V (r′).
These are necessarily surjective by the simplicity of V (r), V (r′). Consider the direct
sum Tl(H)→ V (r)⊕V (r′) of the maps thus obtained. This map is again surjective
because V (r) is not isomorphic to V (r′). By exactness of Fl and Proposition 5.33,
we obtain a surjection H ∼= FlTl(H)→ Fl(V (r))⊕Fl(V (r′)). This contradicts the
simplicity of H. Hence Fl(V (r)) 6∼= Fl(V (r′)). �

Theorem 5.47. Two simple Harish-Chandra modules of the form Vµ,λ and Vµ′,λ′

for (µ, λ), (µ′, λ′) ∈ P×h∗q are isomorphic iff there exists w ∈W such that (µ′, λ′) =
(wµ,wλ).

Proof. Sufficiency was proven in Theorem 5.43, so it remains to check that the
condition is necessary. Suppose then that Vµ,λ ∼= Vµ′,λ′ , and let (l, r) and (l′, r′)

be the associated parameters in h∗q × h∗q . By Theorem 2.128, l and l′ are Ŵ -linked.
Therefore, after applying the isomorphisms of Theorem 5.43, we may assume that
l = l′ and moreover that l is dominant.

By Theorem 5.45 b), we have Vµ,λ ∼= Fl(V (û.r)) and Vµ′,λ′ ∼= Fl(V (v̂.r′)) for

some û, v̂ ∈ Ŵ such that û.l = v̂.l = l. By Lemma 5.46, this implies û.r =
v̂.r′. Therefore, (l′, r′) = (l, v̂−1û.r) = (v̂−1û.l, v̂−1û.r) and hence (µ′, λ′) =
(v−1uµ, v−1uλ), where u and v are the images in W of the canonical quotient

map Ŵ →W . This completes the proof. �

Theorem 5.48. Every simple Harish-Chandra module is of the form Vµ,λ for some
(µ, λ) ∈ P× h∗q .



232 CHRISTIAN VOIGT AND ROBERT YUNCKEN

Proof. Let V be a simple Harish-Chandra module. Then the elements of the algebra
1⊗ZUq(g) ⊂ FUq(g)⊗FUq(g) commute with the action of UR

q (g), in particular with

the action of UR
q (k). Hence they preserve the minimal Kq-type of V . According

to Theorem 5.12 and Schur’s Lemma they act by scalars. Hence, the action of
1 ⊗ ZUq(g) is determined by a central character ξl : ZUq(g) → C for some l ∈ h∗q ,
see Proposition 2.129. Since the central characters are invariant under the shifted
Ŵ -action by Theorem 2.128 we may assume without loss of generality that l is
dominant. It follows that V is contained in HCl, and according to Lemma 5.34 V
is isomorphic to Fl(V (r)) for some simple module V (r) ∈ Ol. Since V 6= 0, Lemma
5.45 a) shows that V ∼= Fl(V (r)) ∼= Vµ,λ where µ = l − r and λ = −l − r − 2ρ. �

Theorem 5.48 implies in particular that every irreducible Harish-Chandra module
has a unique minimal Kq-type, which occurs with multiplicity one.

Theorem 5.49. Let (µ, λ) ∈ P × h∗q . Then the principal series module Γ(Eµ,λ) is

an irreducible Yetter-Drinfeld module iff q
(λ,α∨)
α 6= q

±(|(µ,α∨)|+2k)
α for all k ∈ N and

all α ∈∆+.

Proof. The assumption on (µ, λ) is equivalent to saying that for every α ∈∆+ we

do not have nonzero integers m,n ∈ Z of the same sign such that q
(l+ρ,α∨)
α = ±qmα

and q
(r+ρ,α∨)
α = ±qnα.

We begin with the case where l is dominant. Under the above condition, this

means that for each α ∈∆+, either q
(l+ρ,α∨)
α /∈ ±qZα, in which case q

(r+ρ,α∨)
α /∈ ±qZα,

or q
(l+ρ,α∨)
α = ±qmα for some m ∈ N, in which case q

(r+ρ,α∨)
α /∈ ±qNα. In either

case, r is antidominant, so that M(r) is irreducible by Theorem 4.15 and therefore
Γ(Eµ,λ) ∼= Fl(M(r)∨) is irreducible by Lemma 5.34.

Conversely, if the above condition on l and r does not hold, with l dominant,

then there is some α ∈ ∆+ such that q
(l+ρ,α∨)
α and q

(r+ρ,α∨)
α both belong to ±qNα.

In this case, we have an embedding M(sk,α.r) ⊂M(r) for some k ∈ Z2 by Theorem
4.14, and hence a surjective morphism

Γ(Eµ,λ) ∼= Fl(M(r)∨)→ Fl(M(sk,α.r)
∨) ∼= Γ(Eµ′,λ′),

where µ′ = l− sk,α.r and λ = −l− sk,α.r− 2ρ. Moreover, since (Re(l) +ρ, α∨) 6= 0,
Lemma 5.44 shows that ‖Re(l)−Re(r)‖ < ‖Re(l)− sα.Re(r)‖, so that the minimal
Kq-type of Fl(M(sk,α.r)

∨) is strictly larger than that of Fl(M(r)∨). It follows that
Γ(Eµ,λ) is not irreducible.

Consider now an arbitrary weight (µ, λ) and let ŵ ∈ Ŵ be such that ŵ.l is dom-
inant. Due to Theorem 5.47 we know that Vwµ,wλ has the same Kq-type multiplic-
ities as Vµ,λ, where w ∈ W denotes the image of ŵ under the canonical projection

of Ŵ onto W . By Lemma 5.17, we also know that the principal series modules
Γ(Eµ,λ) and Γ(Ewµ,wλ) have the same Kq-type multiplicities. Since the condition

q
(λ,α∨)
α 6= q

±(|(µ,α∨)|+2k)
α for all k ∈ N and all α ∈ ∆+ is stable under the action of

W , the result follows. �

5.7. The principal series for SLq(2,C). In this section we will determine the
structure of the principal series representations for SLq(2,C) as well as all inter-
twiners between them. As a result we obtain a complete classification of the irre-
ducible Harish-Chandra modules for SLq(2,C). These results were first proven by
Pusz-Woronowicz [65]. Here we obtain them as a consequence of the relationship
between the categories HCl and Ol described in the previous sections.

Recall that when g = sl(2,C) we identify h∗ with C via the correspondence
which sends λ ∈ h∗ to 1

2 (λ, α∨). With this convention, P = 1
2Z, Q∨ = Q = Z and
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h∗q = C/i~−1Z. The unique simple root is α = 1 and we have ρ = 1
2 . It is important

to note that the invariant bilinear form on h∗ is given by (λ1, λ2) = 2λ1λ2.
As in the previous section, for parameters (µ, λ) ∈ 1

2Z×C/i~−1Z, we let (l, r) ∈
C/i~−1Z× C/i~−1Z denote a pair such that

µ = l − r, λ+ 1 = −l − r.

There are always two such choices for (l, r) which differ by ( 1
2 i~
−1, 1

2 i~
−1). A weight

l ∈ C/i~−1Z is dominant in the sense of Definition 4.6 iff

l + 1
2 /∈ − 1

2N mod 1
4 i~
−1Z,

and antidominant iff

l + 1
2 /∈ 1

2N mod 1
4 i~
−1Z,

where as usual N = {1, 2, 3, . . .}.

Theorem 5.50. Let (µ, λ) ∈ 1
2Z × C/i~−1Z. The principal series representation

Γ(Eµ,λ) for SLq(2,C) is irreducible iff λ /∈ ±(|µ| + N) mod 1
2 i~
−1Z. Moreover,

when λ ∈ ±(|µ|+N) mod 1
2 i~
−1Z the simple module Vµ,λ is finite dimensional and

Γ(Eµ,λ) is a non-split extension of simple modules as follows:

0→ Vµ,λ → Γ(Eµ,λ)→ Γ(Eλ,µ)→ 0 if λ ∈ −|µ| − N,

0→ Vµ,λ → Γ(Eµ,λ)→ Γ(Eλ+ 1
2 i~−1,µ+ 1

2 i~−1)→ 0 if λ ∈ −|µ| − N +
1

2
i~−1Z,

0→ Γ(Eλ,µ)→ Γ(Eµ,λ)→ Vµ,λ → 0 if λ ∈ |µ|+ N,

0→ Γ(Eλ+ 1
2 i~−1,µ+ 1

2 i~−1)→ Γ(Eµ,λ)→ Vµ,λ → 0 if λ ∈ |µ|+ N +
1

2
i~−1Z.

Proof. The statement about irreducibility follows directly from Theorem 5.49.
If λ ∈ −|µ| − N then l + 1

2 , r + 1
2 ∈

1
2N, so that l is dominant and regular and r

is not antidominant. We have a short exact sequence in category O,

0→ V (r)→M(r)∨ →M(−r − 1)∨ → 0.

Note that Fl(M(−r − 1)∨) ∼= Γ(E−λ,−µ) is irreducible, and so is isomorphic to
Γ(Eλ,µ) by Theorem 5.47. Therefore, applying the functor Fl to the above short
exact sequence gives the first of the stated extensions. It is non-split by Theorem
5.39. To see that Vµ,λ is finite dimensional, it suffices to compare the Kq-type
multiplicities in the two principal series representations in the extension. Specifi-
cally, Lemma 5.17 shows that Γ(Eµ,λ) contains the Kq-types with highest weights
ν ∈ |µ|+ N, each with multiplicity one.

The case λ ∈ −|µ| − N + 1
2 i~
−1 is obtained similarly, and the final two cases

follow by duality using Lemma 5.21. �

Theorem 5.51. The following is an exhaustive list of non-zero intertwining oper-
ators between principal series representations of SLq(2,C).

1. Trivial intertwiners: For every (µ, λ) ∈ P×h∗q , the only self-intertwiners
Γ(Eµ,λ)→ Γ(Eµ,λ) are the scalar multiples of the identity.

2. Standard intertwiners: For every (µ, λ) ∈ P × h∗q there is a unique
intertwiner, up to scalars, Γ(Eµ,λ)→ Γ(E−µ,−λ) as follows:
a) If λ ∈ −|µ|−N mod 1

2 i~
−1Z the intertwiner is Fredholm with kernel and

cokernel isomorphic to Vµ,λ.
b) If λ ∈ |µ| + N mod 1

2 i~
−1Z the intertwiner is finite-rank and factors

through Vµ,λ.
c) Otherwise, the intertwiner is bijective.
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3. Z̆elobenko intertwiners: With λ ∈ −|µ| − N, there are additional inter-
twiners as follows:

Γ(E−λ,−µ)
OO

∼=

��

� t

&&

Γ(Eµ,λ) //

88 88

&& &&

Γ(E−µ,−λ)oo

Γ(Eλ,µ)
* 


88

and

Γ(E−λ,−µ+ 1
2 i~−1)

OO

∼=

��

� v

((

Γ(Eµ,λ+ 1
2 i~−1) //

66 66

(( ((

Γ(E−µ,−λ+ 1
2 i~−1)oo

Γ(Eλ,µ+ 1
2 i~−1)
( �

66

where the right- and left-pointing horizontal arrows are the standard inter-
twiners from 2a) and b) respectively, the vertical arrows are the standard
intertwiners from 2c), and the diagonal arrows are obtained using the ex-
tensions in Theorem 5.50. These diagrams commute, up to scalar multiple,
except for the finite rank intertwiners from right to left which have compo-
sition zero with any other.

Proof. By Theorem 5.50, Γ(Eµ,λ) is either simple or a non-split extension of two non-
isomorphic simple modules. In either case, Γ(Eµ,λ) does not admit any nontrivial
self-intertwiners.

Inspecting the extensions in Theorem 5.50, we see that the non-simple principal
series representations are all mutually non-isomorphic. It follows that there exists
a unique intertwiner, up to scalars, between two principal series modules Γ(Eµ1,λ1

)
and Γ(Eµ2,λ2

) if and only if Γ(Eµ1,λ1
) admits a simple quotient which is isomorphic

to a simple submodule of Γ(Eµ2,λ2
). The simple Harish-Chandra modules are all

of the form Vµ,λ for some (µ, λ) ∈ P × h∗q , and we have Vµ,λ = Γ(Eµ,λ) if λ /∈
±(|µ|+ N) mod 1

2 i~
−1Z. Also, by Theorem 5.47 we have Vµ,λ ∼= Vµ′,λ′ if and only

if (µ′, λ′) = ±(µ, λ). Therefore, to complete the proof, we can make a case-by-case
examination using the structure of the principal series modules given in Theorem
5.50.

Here are the details. First, consider the case where both λ1 /∈ ±(|µ1|+ N) mod
1
2 i~
−1Z and λ2 /∈ ±(|µ2| + N) mod 1

2 i~
−1Z. Then Γ(Eµ1,λ1

) and Γ(Eµ2,λ2
) are

both simple, so the only nontrivial intertwiners in this situation are the bijective
intertwiners Γ(Eµ,λ)→ Γ(E−µ,−λ) from case 2c).

Next, we consider the cases where either λ1 ∈ ±(|µ1|+N) or λ2 ∈ ±(|µ2|+N) on
the nose. We will obtain precisely the intertwiners in the first diagram from part 3.

• If λ1 ∈ −|µ1| − N then the image of T must be isomorphic to Γ(Eλ1,µ1) =
Vλ1,µ1 . The only principal series modules which contain Γ(Eλ1,µ1) as a sub-
module are Γ(Eλ1,µ1

) itself, Γ(E−λ1,−µ1
) which is simple and isomorphic to

Γ(Eλ1,µ1
), and Γ(E−µ1,−λ1

) which contains Γ(E−λ1,−µ1
) as a proper submod-

ule according to Theorem 5.50. These correspond to the three intertwiners
issuing from the left-hand module in the first diagram.
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• If λ1 ∈ |µ1|+ N then the image of T must be isomorphic to Vµ1,λ1
and the

only principal series module containing this as a submodule is Γ(E−µ1,−λ1
).

This corresponds to the horizontal arrow from right to left.
• If λ2 ∈ −|µ2|−N then the image of T must be isomorphic to Vµ2,λ2 and the

only principal series admitting this as a quotient module is Γ(E−µ2,−λ2
).

This corresponds again to the horizontal arrow from right to left.
• If λ2 ∈ |µ2| + N then the image of T must be isomorphic to Γ(Eλ2,µ2

) and
the only principal series modules admitting this as a quotient module are
Γ(Eλ2,µ2) ∼= Γ(E−λ2,−µ2) and the non-simple module Γ(E−µ2,−λ2). These
correspond to the three intertwiners mapping to the right-hand module.

Finally, the cases where λ1 ∈ ±(|µ1|+ N) + 1
2 i~
−1 or λ2 ∈ ±(|µ2|+ N) + 1

2 i~
−1

are treated similarly, and we obtain the intertwiners in the second diagram from
part 3. �

We note that the two diagrams in part 3 of Theorem 5.51 are related by the
action of the group Z = P∨/Q∨ ∼= Z2 which is described in Subsection 5.4.3. More
precisely, the representations in the second diagram become isomorphic to the corre-
sponding representations in the first diagram upon tensoring by the one-dimensional
module C 1

2 i~−1 , see Lemma 5.19. Therefore, the corresponding principal series rep-

resentations in these diagrams become identical upon restriction to the “connected
component” SLq(2,C)0. Moreover, under the canonical identification of the vector
spaces Γ(Eµ,λ) = Γ(Eµ,λ+ 1

2 i~−1) for each pair (µ, λ), the corresponding intertwiners

in the two diagrams are given by exactly the same linear operators.
Finally, let us remark that the Z̆elobenko intertwiners can be interpreted ge-

ometrically. For instance, from the case (µ, λ) = (0, 1) we obtain a system of
D(Gq)-linear operators

Γ(E1,0)
++

C // Γ(E0,−1)

33

++

Γ(E0,1) // C
Γ(E−1,0)

33

where C carries the trivial representation. In Subsection 5.8.3, we will show that
the diagonal intertwiners in this diagram are given by the right regular action of
the elements E or F in UR

q (k).
The principal series representation Γ(E0,−1) is the quantum analogue of the space

of polynomial functions on the flag variety G/B. In this vein, the above diagram
can be viewed as a quantum analogue of the (∂, ∂̄)-complex:

Ω0,1(G/B)⊕ ∂
,,

C // Ω0,0(G/B)

∂̄ 22

∂
,,

Ω1,1(G/B) // C.
Ω1,0(G/B) ∂̄

22

Similarly, from the other values of (µ, λ) appearing in part 3 of Theorem 5.51 we
obtain quantum analogues of the (∂, ∂̄)-complex twisted by a G-equivariant vector
bundle.

5.8. Intertwining operators in higher rank.

5.8.1. Intertwiners in the compact picture. Fix (µ, λ) ∈ P× h∗q . Let f = 〈v′| • |v〉 ∈
C∞(Kq) and ξ = 〈w′| • |w〉 ∈ Γ(Eµ,λ) be matrix coefficients of finite dimensional
D(Kq)-modules V and W , respectively. That is, we have v ∈ V, v′ ∈ V ∗, w ∈
W,w′ ∈W ∗, and moreover w has weight µ. Let e1, . . . , en be a weight basis for V ,
with ej of weight εj for each 1 ≤ j ≤ n, and let e1, . . . en be the dual basis of V ∗.
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We shall write cV for the dual space V ∗ equipped with the precontragredient
representation of UR

q (k), namely

(X · v′)(v) = v′(Ŝ−1(X) · v)

for X ∈ UR
q (k), v′ ∈ cV and v ∈ V . This is relevant for the antipode in C∞(Kq),

since

S(〈v′| • |v〉) = 〈v| • |v′〉,
where the latter is a matrix coefficient for the pre-contragredient representation cV .

Lemma 5.52. With the above notation, the Yetter-Drinfeld action of f = 〈v′|•|v〉 ∈
C∞(Kq) on ξ = 〈w′| • |w〉 ∈ Γ(Eµ,λ) becomes

f · ξ =
∑
j

(K2ρ+λ, 〈ej | • |ej〉)〈v ⊗ w′ ⊗ v′| • |ej ⊗ w ⊗ ej〉

=
∑
j

q(λ+2ρ,εj)〈v ⊗ w′ ⊗ v′| • |ej ⊗ w ⊗ ej〉,

where the latter is viewed as a matrix coefficient for cV ⊗W ⊗ V .

Proof. This follows immediately from the definitions. Indeed, we compute

(x, f · ξ) = (x, f(1)ξS(f(3)))(K2ρ+λ, f(2))

= (x(3), f(1))(x(2), ξ)(x(1), S(f(3)))(K2ρ+λ, f(2))

=
∑
i,j

(K2ρ+λ, 〈ei| • |ej〉)(x(1), 〈v| • |ej〉)(x(2), 〈w′| • |w〉)(x(3), 〈v′| • |ei〉)

=
∑
j

(x, (K2ρ+λ, 〈ej | • |ej〉)〈v ⊗ w′ ⊗ v′| • |ej ⊗ w ⊗ ej〉)

for all x ∈ D(Kq), as desired. �

Let T ∈ M(D(Kq)) be an element of weight β ∈ P for the adjoint action,
meaning

KλTK−λ = q(λ,β)T

for all λ ∈ P. Then the right regular action of T on C∞(Kq),

T→ξ = (T, ξ(2))ξ(1),

restricts to a morphism of D(Kq)-modules Γ(Eµ) → Γ(Eµ+β) for any µ ∈ P. We
will denote this morphism simply by T .

In general, any D(Kq)-linear map f : Γ(Eµ)→ Γ(Eµ+β) is of this form for some
(in fact, many) T ∈M(D(Kq)). To confirm this, use the Peter-Weyl decomposition
of C∞(Kq) to write f in the form

f =
⊕
σ∈P+

id⊗Tσ :
⊕
σ∈P+

V (σ)∗ ⊗ V (σ)µ →
⊕
σ∈P+

V (σ)∗ ⊗ V (σ)µ+β

for some family of linear maps Tσ : V (σ)µ → V (σ)µ+β . Extend these maps to
Tσ : V (σ) → V (σ), for instance by zero on all other weight spaces, to obtain
T =

⊕
σ Tσ ∈M(D(Kq)) which acts as f .

Given this characterization of the D(Kq)-linear maps between principal series
representations, Lemma 5.52 immediately yields the following characterization of
intertwiners of principal series representations.

Lemma 5.53. Fix (µ1, λ1), (µ2, λ2) ∈ P× h∗q and let T ∈ M(D(Kq)) have weight
µ2 − µ1 for the adjoint action. Then the following conditions are equivalent.

a) T : Γ(Eµ1,λ1)→ Γ(Eµ2,λ2) is an intertwiner of D(Gq)-modules.
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b) For any finite dimensional D(Kq)-modules V and W , for any w ∈Wµ1
we have∑

j

q(λ1+2ρ,εj) T · (ej ⊗ w ⊗ ej) =
∑
j

q(λ2+2ρ,εj) ej ⊗ T · w ⊗ ej .

where e1, . . . , em is a weight basis for V with weights ε1, . . . , εm, respectively,
and e1, . . . , em is the dual basis of cV .

5.8.2. Intertwiners associated to simple roots. Fix a simple root α. Consider the
Hopf ∗-algebra UR

qα(su(2)) generated by elements E, F and K = K$ as usual,

where $ is the fundamental weight of sl(2,C). We write UR
qα(psu(2)) for the ∗-

Hopf subalgebra generated by E, F and Kα = K2.
There is a unique Hopf ∗-algebra morphism

ια : UR
qα(psu(2))→ UR

q (k)

sending E,F,K2 to Eα, Fα,Kα, respectively. In this way, every UR
q (k)-module V

restricts to a UR
qα(psu(2))-module. If V is integrable then the restriction extends

uniquely to an integrable module over UR
qα(su(2)), where K acts by the positive

square root of K2. This gives a well-defined restriction functor from integrable
UR
q (k)-modules to integrable UR

qα(su(2))-modules and thus a map

ια : D(SUqα(2))→M(D(Kq)).

We will write Sα for the quantum subgroup of Kq which is obtained in this way.
Let V be an integrable UR

q (k)-module. If v ∈ V is a weight vector of weight
µ ∈ P, then

ια(K) · v = q
1
2 (α,µ)v = q

1
2 (α∨,µ)
α v.

In other words, upon restricting V to a D(Sα)-module, v has weight 1
2 (α∨, µ) ∈ 1

2Z.
Motivated by this, we define

µα = 1
2 (α∨, µ),

and call it the restriction of µ with respect to α. Note in particular that ρα = 1
2 .

More generally, we write λα = 1
2 (λ, α∨) ∈ C for any λ ∈ h∗. This yields the

orthogonal decomposition

λ = λ′ + λαα,

where λ′ = λ− λαα ∈ α⊥.
We also wish to define λα when λ ∈ h∗q = h∗/i~−1Q∨. We have

1
2 (i~−1Q∨, α∨) = 1

2 i~
−1d−1

α (Q∨, α) ⊆ 1
2 i~
−1
α Z,

where we are using the notation ~α = dα~. Therefore, we obtain a map

h∗q → C/ 1
2 i~
−1
α Z; λ 7→ λα.

We point out that that the factor of 1
2 in the above quotient means that the

restriction of parameters

P× h∗q → 1
2Z× C/ 1

2 i~
−1
α Z

(µ, λ) 7→ (µα, λα)

sends principal series parameters for Gq to principal series parameters for the com-
plex quantum group SLqα(2,C)0 rather than SLqα(2,C), see the remarks at the
end of Subsection 5.1.1. This point will not play a significant role in what fol-
lows, thanks to the observation after Theorem 5.51 that the intertwining operators
corresponding to different lifts of λα to C/i~−1

α Z coincide.
Recall from Subsection 5.8.1 that the intertwiners of SLqα(2,C)-principal series

representations are always given by the right regular action of some element T ∈
M(D(SUqα(2))). Since α is a simple root, we can map T to an element Tα =
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ια(T ) ∈M(D(Kq)) as described above. We will show that the right regular action
of Tα is itself an intertwiner of appropriate Gq-principal series representations.

Lemma 5.54. Let α be a simple root, and suppose the right regular action of
T ∈ M(D(SUqα(2))) defines an intertwiner of SLqα(2,C)-principal series repre-
sentations

T : Γ(Eµ1,λ1)→ Γ(Eµ2,λ2)

for some (µ1, λ1), (µ2, λ2) ∈ 1
2Z × C/i~−1

α Z. Then the right regular action of
the corresponding element Tα ∈ M(D(Kq)) defines an intertwiner of Gq-principal
series representations

Tα : Γ(Eµ′+µ1α,λ′+λ1α)→ Γ(Eµ′+µ2α,λ′+λ2α),

for any sα-fixed points µ′ ∈ h∗ and λ′ ∈ h∗q such that µ′ + µiα ∈ P for i = 1, 2.
Moreover, the intertwiner Tα is injective or surjective if and only if T : Γ(Eµ1,λ1)→
Γ(Eµ2,λ2

) is injective or surjective, respectively. Likewise Tα is injective on the
minimal Kq-type if and only if T : Γ(Eµ1,λ1

)→ Γ(Eµ2,λ2
) is injective on the minimal

SUqα(2)-type.

Proof. We will appeal to Lemma 5.53. Let V and W be finite dimensional essential
D(Kq)-modules and let w ∈ Wµ′+µ1α. We need to fix a weight basis for V ; let us
do so by first decomposing V into D(Sα)-submodules, V =

⊕
i Vi, and then fixing

a weight basis (ei,j)
Ni
j=1 for each Vi. Let εi,j denote the weight of ei,j . Note that

the weights in any fixed Vi differ by multiples of α, so that we can write

εi,j = ε′i + ki,jα,

where ki,j = 1
2 (εi,j , α

∨) ∈ 1
2Z is the weight of ei,j in Vi as a D(Sα)-module, and

the orthogonal component ε′i does not depend on j. The analogous orthogonal
decomposition of ρ is

ρ = ρ′ + ραα = ρ′ + 1
2α,

where ρ′ = ρ− 1
2α. Note that 1

2α is itself the half-sum of positive roots associated
to the quantum subgroup Sα.

Now we calculate, as in Lemma 5.53,∑
i,j

q(λ′+λ1α+2ρ,εi,j)Tα(ei,j ⊗ w ⊗ ei,j)

=
∑
i

q(λ′+2ρ′,ε′i)

∑
j

q(λ1α+α,ki,jα)Tα(ei,j ⊗ w ⊗ ei,j)


=
∑
i

q(λ′+2ρ′,ε′i)

∑
j

q2(λ1+1)ki,j
α Tα(ei,j ⊗ w ⊗ ei,j)

 .

Recall that for the Lie algebra sl(2,C) with the identification h∗ ∼= C, the bilinear
form on h∗ is given by (ν1, ν2) = 2ν1ν2 and the half-sum of positive roots is 1

2 .
Therefore, since T defines an SLqα(2,C)-intertwiner from Γ(Eµ1,λ1) to Γ(Eµ2,λ2),
Lemma 5.53 for the group SLqα(2,C) shows that the above sum equals

∑
i

q(λ′+2ρ′,ε′i)

∑
j

q2(λ2+1)ki,j
α ei,j ⊗ Tα(w)⊗ ei,j


=
∑
i,j

q(λ′+λ2α+2ρ,εi,j)ei,j ⊗ Tα(w)⊗ ei,j .

Thus Tα satisfies the condition of Lemma 5.53 for Gq, and so Tα : Γ(Esαµ,sαλ) →
Γ(Eµ,λ) is an intertwiner of Gq-representations.
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For the statement concerning injectivity, note that Γ(Eµ′+µ1α,λ′+λ1α) is spanned
by matrix coefficients of the form ξ = 〈v′| • |v〉 with v′ ∈ V (ν)∗ and v ∈ V (ν)µ′+µ1α

where ν ∈ P+, and where we may moreover assume that v belongs to some simple
D(Sα)-submodule of V (ν). Note that v has weight µ1 for the D(Sα)-action, and
so the highest weight of its D(Sα)-submodule is equal to |µ1|+ n for some n ∈ N0.
Moreover, every such highest weight in |µ1|+ N0 can occur for ν sufficiently large.
Since Tα(〈v′| • |v〉) = 〈v′| • |ια(T ) · v〉, it follows that Tα annihilates ξ if and only
if the action of T annihilates the µ1-weight space of V (|µ1| + n). Therefore Tα is
injective if and only if T acts injectively on the µ1-weight space of every simple
D(SUqα(2))-module, and hence if and only if T : Γ(Eµ1,λ1)→ Γ(Eµ2,λ2) is injective.

The statement about surjectivity is proven similarly.
Finally, suppose ξ = 〈v′|• |v〉 belongs to the minimal Kq-type in Γ(Eµ1,λ1

). Then
v is an extremal weight vector in V (µ′ + µ1α), meaning that its weight lies in
the Weyl orbit of the highest weight µ′ + µ1α. In particular, v is annihilated by
either Eα or Fα, so that it is an extremal weight vector in the D(Sα)-submodule it
generates, which must therefore have highest weight |µ1|. Since |µ1| is the minimal
Sα-type of Γ(Eµ1,λ1

), it follows that Tα annihilates ξ if and only if T annihilates
the minimal Sα-type of Γ(Eµ1,λ1

). �

Theorem 5.55. Fix a simple root α. For any (µ, λ) ∈ P×h∗q there exists a nonzero
intertwiner

Tα : Γ(Eµ,λ)→ Γ(Esαµ,sαλ),

where T ∈ D(SUqα(2)) implements the intertwiner T : Γ(Eµα,λα) → Γ(E−µα,−λα)
of SLqα(2,C)0-principal series. We can identify the following particular cases:

a) If λα ∈ −|µα| − N mod 1
2 i~
−1
α Z, then the intertwiner is zero on the minimal

Kq-type of Γ(Eµ,λ).
b) If λα ∈ |µα| + N mod 1

2 i~
−1
α Z, then the intertwiner is nonzero on the minimal

Kq-type, but is not bijective.
c) If ±λα /∈ |µα|+ N mod 1

2 i~
−1
α Z, the intertwiner is bijective.

Moreover, if λα ∈ −(|µα| + N) mod 1
2 i~
−1
α Z, then we have additional Z̆elobenko

intertwiners as follows:

Γ(Eµ+mα,λ+mα)
OO

∼=

��

� u

((

Γ(Eµ,λ) //

77 77

'' ''

Γ(Esαµ,sαλ)oo

Γ(Eµ−nα,λ+nα)
) 	

66

where m = 2Re(rα) + 1 = −µα − Re(λα), n = 2Re(lα) + 1 = µα − Re(λα), and
where the horizontal and vertical arrows are those from a), b) and c) above.

Proof. Let (µ, λ) ∈ P× h∗q . As usual, we write µ′ = µ− µαα for the component of
µ orthogonal to α, so that

µ = µ′ + µαα, sαµ = µ′ − µαα.

With λ we must be a little careful since in general λα is only well-defined modulo
1
2 i~
−1
α Z rather than i~−1

α Z. Let λ̃ ∈ h∗ be any lift of λ ∈ h∗q and put λ̃′ = λ̃− λ̃αα.

If we write λ′ for the projection of λ̃′ in h∗q , then

λ = λ′ + λ̃αα, sαλ = λ′ − λ̃αα.
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Hence applying Lemma 5.54 to the standard SLqα(2,C)-intertwiner T : Γ(Eµα,λ̃α)→
Γ(E−µα,−λ̃α) from Theorem 5.51 (2) yields the intertwiner

Tα : Γ(Eµ,λ)→ Γ(Esαµ,sαλ).

We remark that a different choice of lift λ̃ would only alter λ̃α by an integer multiple
of 1

2 i~
−1
α , and so would result in the same intertwiner Tα : Γ(Eµ,λ) → Γ(Esαµ,sαλ)

by the remark after Theorem 5.51.
Using Lemma 5.54, the statements about bijectivity and action on minimal Kq-

types follow from the analogous statements in Theorem 5.51.
The construction of the Z̆elobenko intertwiners runs similarly. Suppose that

λα ∈ −(|µα|+ N) mod 1
2 i~
−1
α Z. As above, we lift λ ∈ h∗q to λ̃ ∈ h∗ and write

λ̃ = λ̃′ + λ̃αα,

where λ̃′ is fixed by sα and λ̃α ∈ −(|µα| + N) mod 1
2 i~
−1
α Z. This means we can

apply Lemma 5.54 to one of the two diagrams of Želobenko intertwiners in Theorem
5.51. However, it will simplify the exposition if we arrange to have λ̃α ∈ −(|µα|+N)

on the nose. To this end, suppose that the imaginary part of λ̃α is equal to k
2~
−1
α

for some k ∈ Z. Note that 1
2 i~
−1α∨ is fixed by sα modulo i~−1Q∨, so that if we

decompose λ̃ as

λ̃ = (λ̃′ +
k

2
i~−1α∨) + (λ̃α −

k

2
i~−1
α )α,

then the first term is still fixed by sα when understood as an element of h∗q . Thus,

without loss of generality, we may assume that λ̃α ∈ −(|µα|+ N) on the nose.

In this situation, if we define m = −µα − λ̃α and n = µα − λ̃α, then the various
principal series parameters in the diagram in the statement decompose as

µ = µ′ + µαα, λ = λ̃′ + λ̃αα,

µ+mα = µ′ − λ̃αα, λ+mα = λ̃′ − µαα,

µ− nα = µ′ + λ̃αα, λ+ nα = λ̃′ + µαα,

sαµ = µ′ − µαα, sαλ = λ̃′ − λ̃αα.

Applying Lemma 5.54 to the intertwiners in part 3a) of Theorem 5.51, we obtain

the diagram of Z̆elobenko intertwiners as claimed. �

5.8.3. Explicit formulas for intertwiners. In this subsection, we will give explicit
formulas for some of the intertwining operators between principal series represen-
tations. As usual, if (µ, λ) ∈ P× h∗q are parameters for the principal series, we will
use (l, r) ∈ h∗q × h∗q to denote a pair such that

µ = l − r, λ+ 2ρ = −l − r.
We begin with the Želobenko intertwiners. Recall from Theorem 4.14 that if

r′ ∈ h∗q is strongly linked to r, then we have an inclusion M(r′) ⊂ M(r). Recall

also the algebra involution θ = τ Ŝ of Uq(g), which is given on generators by

θ(Ei) = −Fi, θ(Fi) = −Ei, θ(Kν) = K−ν ,

see the remarks before Corollary 5.3.

Theorem 5.56. Let (µ, λ) ∈ P× h∗q with associated parameters (l, r) ∈ h∗q × h∗q .

a) Suppose that r′ ∈ h∗q is strongly linked to r and fix Y ∈ Uq(n−) such that
Y · vr ∈ M(r) is a primitive vector of weight r′. Then the right regular action
of θ(Y ) on Γ(Eµ) defines an intertwiner

θ(Y )⇀• : Γ(Eµ,λ)→ Γ(Eµ′,λ′)
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where µ′ = l − r′, λ′ + 2ρ = −l − r′.
b) Suppose that l′ ∈ h∗q is strongly linked to l and fix Y ∈ Uq(n−) such that Y · vl ∈

M(l) is a primitive vector of weight l′. Then the right regular action of Y on
Γ(Eµ) defines an intertwiner

Y ⇀• : Γ(Eµ,λ)→ Γ(Eµ′,λ′)

where µ′ = l′ − r, λ′ + 2ρ = −l′ − r.

Proof. a) It will be convenient to work with the involution θ′ = Ŝτ in place of

θ = τ Ŝ in the calculations to follow. Note that Y is of weight r′ − r for the adjoint
action, and hence

θ′(Y ) = Ŝ2(θ(Y )) = K2ρθ(Y )K−2ρ = q(2ρ,r−r′)θ(Y ),

so that θ′(Y ) differs from θ(Y ) only by a scalar multiple. Therefore, it is equivalent
to prove the claim with θ′ in place of θ. Also, since µ′−µ = r−r′, the right regular
action

θ′(Y )⇀ξ = (θ′(Y ), ξ(2))ξ(1)

does indeed map Γ(Eµ) to Γ(Eµ′).
From Corollary 5.3 we have an isomorphism of UR

q (g)-modules M(µ, λ + 2ρ) ∼=
M(l)⊗M(r) which sends the cyclic vector vµ,λ to vl⊗vr. This requires a particular
choice of action of UR

q (g) on M(l)⊗M(r), and in particular for X ∈ Uq(g), we have

(X ./ 1) · (m⊗ n) = X(1) ·m⊗ θ′(X(2)) · n.

Note that θ′(Y ) ∈ Uq(n+), and so ∆̂(θ′(Y )) ∈ Uq(n+) ⊗ Uq(b+). Since the action
of Uq(n+) on vl factors through ε̂, we get

(θ′(Y ) ./ 1) · (vl ⊗ vr) = θ′(Y )(1) · vl ⊗ θ′(θ′(Y )(2)) · vr
= vl ⊗ θ′(θ′(Y )) · vr
= vl ⊗ Y · vr.

Therefore the inclusion M(l)⊗M(r′)→M(l)⊗M(r) gives rise to an inclusion of
UR
q (g)-modules j : M(µ′, λ′+2ρ)→M(µ, λ+2ρ) such that j(vµ′,λ′+2ρ) = (θ′(Y ) ./

1) · vµ,λ+2ρ.

Let ext : Γ(Eµ,λ) → ind
Gq
Bq

(Cµ,λ) denote the extension from the compact to the

induced picture, see Lemma 5.18, so that ext(ξ) = ξ ⊗K2ρ+λ, for all ξ ∈ Γ(Eµ,λ).

For any X ./ f ∈ UR
q (g), the pairing M(µ, λ+ 2ρ)× ind

Gq
Bq

(Cµ,λ)→ C from Lemma

5.22 satisfies

(j((X ./ f) · vµ′,λ′+2ρ), ext(ξ)) = (f,Kλ′+2ρ) (j((X ./ 1) · vµ′,λ′+2ρ), ξ ⊗Kλ+2ρ)

= (f,Kλ′+2ρ) ((Xθ′(Y ) ./ 1) · vµ,λ+2ρ, ξ ⊗Kλ+2ρ)

= (f,Kλ′+2ρ) (X, ξ(1)) (θ′(Y ), ξ(2))

= ((X ./ f) · vµ′,λ′+2ρ, ext(θ
′(Y )⇀ξ)),

for ξ ∈ Γ(Eµ,λ). Thus j is dual to the right regular action θ′(Y )⇀ • : Γ(Eµ,λ) →
Γ(Eµ′,λ′) under this pairing. By Lemma 5.22, we conclude that the right regular
action of θ′(Y ) is UR

q (g)-linear.
b) The inclusion M(l′)⊗M(r)→M(l)⊗M(r) corresponds to a map

j : M(µ′, λ′ + 2ρ)→M(µ, λ+ 2ρ)

which sends vµ′,λ′+2ρ to (Y ./ 1) · vµ,λ+2ρ, and this map is dual to the right regular
action of Y from Γ(Eµ,λ) to Γ(Eµ′,λ′) under the pairing from Lemma 5.22. The rest
of the argument is analogous to part a). �
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In particular, let us consider the Želobenko intertwiners corresponding to simple
roots, that is, the diagonal arrows in the diagram from Theorem 5.55 part (3).
Suppose that (µ, λ) ∈ P × h∗q is such that λα ∈ −|µα| − N mod 1

2 i~
−1
α Z. This is

equivalent to the condition that lα and rα belong to 1
2N0 mod 1

4 i~
−1
α Z. Therefore,

putting l′ = l − 2Re(lα)α and r′ = r − 2Re(rα)α we have inclusions of Verma
modules

M(l′) ⊂M(l), M(r′) ⊂M(r).

Explicitly, F
2Re(lα)
α · vl is a primitive vector of weight l′ in M(l) and F

2Re(rα)
α · vr is

a primitive vector of weight r′ in M(r). Therefore, an application of Theorem 5.56
gives the diagram of intertwiners

Γ(Eµ+mα,λ+mα)
OO

∼=

��

� u

Fnα

((

Γ(Eµ,λ) //

Emα
77 77

Fnα '' ''

Γ(Esαµ,sαλ)oo

Γ(Eµ−nα,λ+nα)
) 	 Emα

66

(5.1)

Next, we give an explicit formula for the standard intertwiners Tα : Γ(Eµ,λ) →
Γ(Esαµ,sα,λ) corresponding to a simple root, as in Theorem 5.55 (2).

We begin with the case of Gq = SLq(2,C). Let (µ, λ) ∈ 1
2Z × C/i~−1Z. Recall

that we have

Γ(Eµ,λ) ∼=
⊕

n∈|µ|+N0

V (n)∗ ⊗ V (n)µ.

and therefore any D(Kq)-linear map T : Γ(Eµ,λ)→ Γ(E−µ,−λ) is specified uniquely
by a sequence of linear maps

Tn : V (n)µ → V (n)−µ

for all n ∈ |µ| + N0. Since the weight spaces of simple D(SUq(2))-modules are all
one dimensional, the map Tn is specified by a scalar once we have fixed a weight
basis of V (n).

For this, we will use the orthonormal weight basis with respect to the invariant
inner product on V (n). In comparison to the weight basis vn, vn−1, . . . , v−n from
Theorem 2.38, the orthonormal basis is given by

enm = q
1
2 (n−m)(n+m−1)

(
[n+m]q!

[2n]q![n−m]q!

) 1
2

vm.

where m = −n,−n+ 1, . . . , n.
To see that it is indeed orthonormal for the invariant inner product, one can first

confirm that the action of Uq(sl(2)) on this basis is given by

K · enm = qmenm, Kα · enm = q2menm,

E · enm = qm[n−m]
1
2
q [n+m+ 1]

1
2
q e

n
m+1,

F · enm = q−(m−1)[n+m]
1
2
q [n−m+ 1]

1
2
q e

n
m−1,

and then check these formulas are compatible with the involution on UR
q (su(2))

when they are declared to be orthonormal, compare Section 3.2.1 in [48]. We point
out that one must be careful with statements about unitary modules in [48], since
there are different versions of the enveloping algebra in play, and their preferred
real forms do not always agree under the Hopf algebra morphisms they use.
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We can then specify a D(Kq)-linear operator T : Γ(Eµ,λ) → Γ(E−µ,−λ) by the
scalars (Tn)n∈|µ|+N0

such that T (enµ) = Tne
n
−µ. Our reason for working in this basis

is that we will be using the Clebsch-Gordan formulas from [48]. Looking at Lemma
5.53, we will need to consider the action of T on tensor products of the form

e
1
2∨
± 1

2

⊗ enµ ⊗ e
1
2

± 1
2

for n ∈ |µ| + N0. There is a double multiplicity of the representation V (n) in the
tensor product V ( 1

2 )⊗ V (n)⊗ V ( 1
2 ), and to deal with this we will write

V ( 1
2 )⊗ (V (n)⊗ V ( 1

2 )) ∼= V (n+ 1)⊕ V (n+)⊕ V (n−)⊕ V (n− 1),

where V (n±) signifies the copy of V (n) contained in V ( 1
2 )⊗V (n± 1

2 ), respectively.
The Clebsch-Gordan coefficients for tensor products with the fundamental rep-

resentation are as follows:

enµ ⊗ e
1
2
1
2

= q
1
2 (n−µ) [n+µ+1]

1
2

[2n+1]
1
2
e
n+ 1

2

µ+ 1
2

− q− 1
2 (n+µ+1) [n−µ]

1
2

[2n+1]
1
2
e
n− 1

2

µ+ 1
2

,

enµ ⊗ e
1
2

− 1
2

= q−
1
2 (n+µ) [n−µ+1]

1
2

[2n+1]
1
2
e
n+ 1

2

µ− 1
2

+ q
1
2 (n−µ+1) [n+µ]

1
2

[2n+1]
1
2
e
n− 1

2

µ− 1
2

,

e
1
2
1
2

⊗ enµ = q−
1
2 (n−µ) [n+µ+1]

1
2

[2n+1]
1
2
e
n+ 1

2

µ+ 1
2

+ q
1
2 (n+µ+1) [n−µ]

1
2

[2n+1]
1
2
e
n− 1

2

µ+ 1
2

,

e
1
2

− 1
2

⊗ enµ = q
1
2 (n+µ) [n−µ+1]

1
2

[2n+1]
1
2
e
n+ 1

2

µ− 1
2

− q− 1
2 (n−µ+1) [n+µ]

1
2

[2n+1]
1
2
e
n− 1

2

µ− 1
2

.

For this, see e.g. Equations (3.68)–(3.69) in [48], but note the typographical error

in Equation (3.68), where the factor [l ± j + 1
2 ]

1
2 should be [l ± j + 1]

1
2 .

For SUq(2), the precontragredient representation cV (n) is isomorphic to V (n). In
particular, for the fundamental representation the following map is an isomorphism:

e
1
2∨
1
2

7→ iq−
1
2 e

1
2

− 1
2

, e
1
2∨
− 1

2

7→ −iq 1
2 e

1
2
1
2

.

Combining this with the Clebsch-Gordan formulae above gives

e
1
2∨
1
2

⊗ (enµ ⊗ e
1
2
1
2

) = iq−
1
2

(
e

1
2

− 1
2

⊗ (enµ ⊗ e
1
2
1
2

)
)

= iq
1
2 (n−µ−1) [n+µ+1]

1
2

[2n+1]
1
2

(
e

1
2

− 1
2

⊗ en+ 1
2

µ+ 1
2

)
− iq− 1

2 (n+µ+2) [n+µ+1]
1
2

[2n+1]
1
2

(
e

1
2

− 1
2

⊗ en−
1
2

µ+ 1
2

)
= iqn [n+µ+1]

1
2 [n−µ+1]

1
2

[2n+1]
1
2 [2n+2]

1
2

en+1
µ − iq−1 [n+µ+1]

[2n+1]
1
2 [2n+2]

1
2
en

+

µ

− iq−1 [n−µ]

[2n]
1
2 [2n+1]

1
2
en
−

µ + iq−n−1 [n+µ]
1
2 [n−µ]

1
2

[2n]
1
2 [2n+1]

1
2
en−1
µ .

e
1
2∨
− 1

2

⊗ (enµ ⊗ e
1
2

− 1
2

) = −iq 1
2

(
e

1
2
1
2

⊗ (enµ ⊗ e
1
2

− 1
2

)
)

= −iq 1
2 (−n−µ+1) [n−µ+1]

1
2

[2n+1]
1
2

(
e

1
2
1
2

⊗ en+ 1
2

µ− 1
2

)
− iq 1

2 (n−µ+2) [n+µ]
1
2

[2n+1]
1
2

(
e

1
2
1
2

⊗ en−
1
2

µ− 1
2

)
= −iq−n [n+µ+1]

1
2 [n−µ+1]

1
2

[2n+1]
1
2 [2n+2]

1
2

en+1
µ − iq [n−µ+1]

[2n+1]
1
2 [2n+2]

1
2
en

+

µ

− iq [n+µ]

[2n]
1
2 [2n+1]

1
2
en
−

µ − iqn+1 [n+µ]
1
2 [n−µ]

1
2

[2n]
1
2 [2n+1]

1
2
en−1
µ .



244 CHRISTIAN VOIGT AND ROBERT YUNCKEN

This allows us to write the sums that appear in Lemma 5.53 as∑
j=± 1

2

q(λ+2ρ,εj)e
1
2∨
j ⊗ enµ ⊗ e

1
2
j

= qλ+1e
1
2∨
1
2

⊗ enµ ⊗ e
1
2
1
2

+ q−λ−1e
1
2∨
− 1

2

⊗ enµ ⊗ e
1
2

− 1
2

= i(qn+λ+1 − q−n−λ−1) [n+µ+1]
1
2 [n−µ+1]

1
2

[2n+1]
1
2 [2n+2]

1
2

en+1
µ

− i q
λ[n+µ+1]+q−λ[n−µ+1]

[2n+1]
1
2 [2n+2]

1
2

en
+

µ

− i q
λ[n−µ]+q−λ[n+µ]

[2n]
1
2 [2n+1]

1
2

en
−

µ

+ i(q−n+λ − qn−λ) [n+µ]
1
2 [n−µ]

1
2

[2n]
1
2 [2n+1]

1
2
en−1
µ

= Aen+1
µ +Ben

+

µ + Cen
−

µ +Den−1
µ ,

with coefficients

A = A(µ, λ, n) = i(q − q−1)
[n+ λ+ 1][n+ µ+ 1]

1
2 [n− µ+ 1]

1
2

[2n+ 1]
1
2 [2n+ 2]

1
2

,

B = B(µ, λ, n) = −i q
λ[n+ µ+ 1] + q−λ[n− µ+ 1]

[2n+ 1]
1
2 [2n+ 2]

1
2

,

C = C(µ, λ, n) = −i q
λ[n− µ] + q−λ[n+ µ]

[2n]
1
2 [2n+ 1]

1
2

,

D = D(µ, λ, n) = −i(q − q−1)
[n− λ][n+ µ]

1
2 [n− µ]

1
2

[2n]
1
2 [2n+ 1]

1
2

.

Therefore, the intertwiner condition in Lemma 5.53 reduces to the following four
conditions on the scalars Tn for n ∈ |µ1|+ N0:

Tn+1A(µ1, λ1, n) = TnA(µ2, λ2, n),

TnB(µ1, λ1, n) = TnB(µ2, λ2, n),

TnC(µ1, λ1, n) = TnC(µ2, λ2, n),

Tn−1D(µ1, λ1, n) = TnD(µ2, λ2, n).

Note that when n = |µ1| we have D(µ1, λ1, n) = 0, so that the last equation should
be interpreted as saying TnD(µ2, λ2, n) = 0 in this case.

The following theorem gives explicit formulas for the standard intertwiners from
part 2 of Theorem 5.51.

Theorem 5.57. Let (µ, λ) ∈ 1
2Z× C/i~−1Z. Up to scalar, the unique intertwiner

of SLq(2,C)-principal series T : Γ(Eµ,λ) → Γ(E−µ,−λ) acts on matrix coefficients
as

T (〈v′| • |enµ〉) = Tn〈v′| • |en−µ〉
where the coefficients (Tn)n∈|µ|+N0

are as follows:

a) If λ ∈ −|µ| − N mod 1
2 i~
−1Z, we have

Tn =

{
0, |µ| ≤ n < −Re(λ),∏n
k=−Re(λ)+1

[k−λ]q
[k+λ]q

, n ≥ −Re(λ).

b) Otherwise, we have

Tn =

n∏
k=|µ|+1

[k − λ]q
[k + λ]q

.
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Proof. We know that such intertwiners exist from Theorem 5.51 (2), so it only
remains to deduce the explicit formulas for the coefficients Tn from the recurrence
relations stated before the theorem. With (µ1, λ1) = (µ, λ) = (−µ2,−λ2), the last
equation before the theorem reduces to

Tn[n+ λ]q = Tn−1[n− λ]q

for all n ∈ |µ|+ N. Note that the q-numbers [n± λ]q are all nonzero except for at
most one value as follows:

• if λ ∈ −|µ| − N mod 1
2 i~
−1Z, then [n+ λ]q = 0 for n = −Re(λ);

• if λ ∈ |µ|+ N mod 1
2 i~
−1Z, then [n− λ]q = 0 for n = Re(λ);

• otherwise, they are all nonzero.

In every case, we observe that the recurrence relation will have a unique solution up
to an overall scalar multiple, and a direct check shows that the values of Tn stated
in the Theorem are indeed solutions. This completes the proof. �

We note that the intertwiners T : Γ(Eµ,λ)→ Γ(E−µ,−λ) given in part b) of Theo-
rem 5.57 form a meromorphic family of operators Γ(Eµ)→ Γ(E−µ) as a function of
λ, with poles at the points where λ ∈ −|µ| −N+ 1

2 i~
−1Z. We also point out, when

λ ∈ |µ| + N + 1
2 i~
−1Z, the coefficients Tn in b) are zero for all n ≥ Re(λ), so that

the intertwiner T is indeed finite rank in this case.
Using Theorem 5.55, the results of Theorem 5.57 immediately give an explicit

formula for the intertwiners in higher rank associated to a simple reflection. To
specify this formula, we will make use of elements Ph(Eα) and Ph(Fα) inM(D(Kq))
which are defined as the operator phases in the polar decomposition of Eα and Fα,
respectively. Explicitly, if V ∼= V (n) is a D(SUqα(2))-submodule of highest weight
n ∈ 1

2N0 inside a D(Kq)-module, Ph(Eα) and Ph(Fα) act as

Ph(Eα) · enm = enm+1, Ph(Fα) · enm = enm−1,

where enm, . . . , e
n
−m denotes an orthonormal weight basis of V isomorphic to that

described above for V (n). In order to avoid having to deal with different cases, we
will abuse notation and write, for any k ∈ Z

Ph(Fα)k =


Ph(Fα)k if k > 0,

1 if k = 0,

Ph(Eα)−k if k < 0.

We can now give formulas for the standard intertwiners corresponding to simple
reflections from Theorem 5.55 a), b) and c).

Corollary 5.58. Let (µ, λ) ∈ P × h∗q and fix a simple root α. The intertwiner
T : Γ(Eµ,λ)→ Γ(Esαµ,sαλ) acts on matrix coefficients by

T (〈v′| • |v〉) = Tn 〈v′| • |Ph(Fα)2µαv〉

whenever v belongs to a D(SUqα(2))-submodule of highest weight n, and where the
coefficients Tn ∈ C are as follows:

a) If λα ∈ −|µα| − N mod 1
2 i~
−1
α Z,

Tn =

{
0, |µα| ≤ n < −Re(λα),∏n
k=−Re(λα)+1

[k−λα]qα
[k+λα]qα

, n ≥ −Re(λα).

b) Otherwise,

Tn =

n∏
k=|µα|+1

[k − λα]qα
[k + λα]qα

.
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5.9. Submodules and quotient modules of the principal series. In this sec-
tion we will elaborate on the structure of the principal series representation Γ(Eµ,λ).
We closely follow the proofs of the corresponding classical results in [26].

For (µ, λ) ∈ P × h∗q and α ∈ ∆+ any positive root, we continue to use the
notation

µα = 1
2 (µ, α∨) ∈ 1

2Z, λα = 1
2 (λ, α∨) ∈ h∗/ 1

2 i~
−1
α Z,

as in the previous section.
Recall that for any w ∈W we define

S(w) = {α ∈∆+ | wα ∈∆−} = ∆+ ∩ w−1∆−,

and note that l(w) = |S(w)|.

Proposition 5.59. Let (µ, λ) ∈ P× h∗q with associated parameters (l, r) ∈ h∗q × h∗q
as usual. Let w ∈W and suppose that for all α ∈ S(w) we have

±λα /∈ |µα|+ N mod 1
2 i~
−1
α Z.

Then Γ(Eµ,λ) ∼= Γ(Ewµ,wλ)

Proof. We proceed by induction on the length of w. If w = 1, the result is obvious.
So suppose that l(w) ≥ 1, and write w = sαv for some simple root α and some
v ∈ W with l(w) = l(v) + 1. In this case, we have S(w) = S(v) ∪ {v−1α}. In
particular, by the inductive hypothesis we have Γ(Eµ,λ) ∼= Γ(Evµ,vλ).

Further, since v−1α ∈ S(w), the hypothesis gives that

± 1
2 (λ, v−1α∨) /∈ | 12 (µ, v−1α∨)|+ N mod 1

2 i~
−1
α Z,

and hence ±(vλ)α /∈ |(vµ)|α + N mod 1
2 i~
−1
α Z. Therefore, by Theorem 5.55, we

have a bijective intertwiner from Γ(Evµ,vλ) to Γ(Ewµ,wλ). The result follows. �

The next two results are quantum analogues of Theorems I.4.3 and I.4.2 in [26].

Theorem 5.60. Let (µ, λ) ∈ P×h∗q . Every nonzero submodule of Γ(Eµ,λ) contains

the minimal Kq-type if and only if q
(λ,α∨)
α /∈ q

|(µ,α∨)|+2N
α for every positive root

α ∈ ∆+. In this case, the submodule generated by the minimal Kq-type is equal to
Vµ,λ, and this is the only simple submodule of Γ(Eµ,λ).

Proof. We fix a pair (l, r) ∈ h∗q × h∗q with µ = l − r and λ + 2ρ = −l − r as usual.

Suppose that q
(λ,α∨)
α /∈ q

|(µ,α∨)|+2N
α for every positive root α ∈ ∆+. By Lemma

5.41, this is equivalent to saying that for every α ∈ ∆+, the quantities q
(l+ρ,α∨)
α

and q
(r+ρ,α∨)
α do not both lie in ±q−Nα .

Recall that we write Re(l) for the component of l in the R-span of ∆, see the
remarks before Proposition 4.5. To begin with, let us suppose that the real part of
l + ρ lies in the closure of the dominant Weyl chamber, meaning that

(Re(l) + ρ, α∨) ≥ 0

for all α ∈∆+. This means in particular that l is dominant. According to Lemma
5.45 b), there exists û ∈ Ŵ such that, if we put r′ = û.r, we have Γ(Eµ,λ) ∼=
Fl(M(r′)∨) and there is no α ∈∆+ with both q

(l+ρ,α∨)
α = ±1 and q

(r′+ρ,α∨)
α ∈ ±qNα.

Let H be a submodule of Fl(M(r′)∨). By Proposition 5.32, we have a nonzero
Uq(g)-linear map ϕ : Tl(H)→M(r′)∨. Every nontrivial quotient module of M(r′)
projects to V (r′), and consequently every nontrivial submodule of M(r′)∨ contains
V (r′). In particular, V (r′) ⊂ im(ϕ).

Using Lemma 5.45 b) and applying the exact functor Fl, we obtain an inclusion

Vµ,λ ∼= Fl(V (r′)) ⊂ Fl(im(ϕ)) ∼= im(Fl(ϕ)).
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By Proposition 5.33, the inclusion of H into Fl(M(r′)∨) factorizes as

H ∼= Fl(Tl(H))
Fl(ϕ)−→ Fl(M(r′)∨),

so that im(Fl(ϕ)) = H and so the inclusion above shows that Vµ,λ is isomorphic to
a submodule of H. By considering minimal Kq-types, it follows that Vµ,λ is indeed
a submodule of H as claimed.

Now consider the case of arbitrary l. We can find w ∈W such that the real part
of w(l+ρ) belongs to the closure of the dominant Weyl chamber. For any α ∈ S(w)
we have wα ∈∆−, so that

(Re(l) + ρ, α∨) = (w(Re(l) + ρ), wα∨) ≤ 0.

In particular, according to Lemma 5.41, we do not have q
(λ,α∨)
α ∈ q−|(µ,α

∨)|−2N
α , and

by hypothesis we do not have q
(λ,α∨)
α ∈ q|(µ,α

∨)|+2N
α . Therefore, Proposition 5.59

shows that Γ(Eµ,λ) ∼= Γ(Ewµ,wλ). By the previous case, every nonzero submodule
of Γ(Ewµ,wλ) contains Vwµ,wλ, and the result follows.

In this situation, the intersection of all nonzero submodules of Γ(Eµ,λ) contains
the minimal Kq-type, and in particular is nonzero. It is necessarily simple, and so
must be equal to Vµ,λ. Moreover, there can be no other simple submodule, since
otherwise the above intersection would be zero.

Conversely, suppose that there exists α ∈∆+ with q
(λ,α∨)
α ∈ q|(µ,α

∨)|+2N
α , and so

q
(l+ρ,α∨)
α ∈ ±q−Nα and q

(r+ρ,α∨)
α ∈ ±q−Nα , by Lemma 5.41. In this case, r is strongly

linked to r′ = sk,α.r for some k ∈ Z2, see Definition 4.13 and the remark which
follows it. By Theorem 5.56 we have an nonzero intertwiner T : Γ(Eµ′,λ′)→ Γ(Eµ,λ)
where µ′ = l − r′ and λ′ + 2ρ = −l − r′.

We have (Re(l)+ρ, α∨) ∈ −N and (Re(r)+ρ, α∨) ∈ −N, so (sα.Re(l)+ρ, α∨) ∈ N
and (sα.Re(r) + ρ, α∨) ∈ N. Thus, neither Re(l) nor Re(r) is fixed by the shifted
action of sα, and an application of Lemma 5.44 shows that ‖µ′‖ > ‖µ‖. Therefore,
im(T ), is a submodule of Γ(Eµ,λ) which does not contain the minimal Kq-type.
This completes the proof. �

Corollary 5.61. Let (µ, λ) ∈ P× h∗q . The principal series representation Γ(Eµ,λ)

is generated by its subspace of minimal Kq-type if and only if q
(λ,α∨)
α /∈ q−|(µ,α

∨)|−2N
α

for every positive root α ∈∆+.

Proof. First suppose that q
(λ,α∨)
α /∈ q−|(µ,α

∨)|−2N
α for every positive root α ∈ ∆+.

Let V ⊂ Γ(Eµ,λ) be the submodule generated by the minimal Kq-type. Using the
invariant pairing from Lemma 5.21, we can define a submodule of Γ(E−µ,−λ) by

V ⊥ = {η ∈ Γ(E−µ,−λ) | φ(ξη) = 0 for all ξ ∈ V }.

The pairing decomposes as a sum of nondegenerate pairings between the subspaces
of each Kq-type. Since V contains the minimal Kq-type, V ⊥ does not contain the
minimal Kq-type of Γ(E−µ,−λ). Note, however, that Γ(E−µ,−λ) fulfils the conditions
of Theorem 5.60, so we must have V ⊥ = {0}, and hence V = Γ(Eµ,λ).

Conversely, suppose that Γ(Eµ,λ) is generated by its subspace of minimal Kq-
type. Let U ⊂ Γ(E−µ,−λ) be a submodule which does not contain the minimal
Kq-type. Then the module

U⊥ = {ξ ∈ Γ(Eµ,λ) | φ(ξη) = 0 for all η ∈ Γ(E−µ,−λ)} ⊂ Γ(Eµ,λ)

contains the minimal Kq-type, and hence U⊥ = Γ(Eµ,λ) by hypothesis. Therefore
U = 0, and we deduce that every nonzero submodule of Γ(E−µ,−λ) contains the

minimal Kq-type. Theorem 5.60 implies that q
(−λ,α∨)
α /∈ q

|(−µ,α∨)|+2N
α for every

positive root α ∈∆+, and the result follows. �
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5.10. Unitary representations. In this section we briefly comment on the ques-
tion of unitarizability of Harish-Chandra modules. For more information we refer
to the work of Arano [2], [3].

Let us write a∗ ⊂ h∗ for the R-span of the roots ∆, and t∗q = ia∗/i~−1Q∨. Recall
that for λ ∈ h∗q we have a decomposition λ = Re(λ) + iIm(λ) where Re(λ) ∈ a∗ and

iIm(λ) ∈ t∗q . Accordingly we write λ = Re(λ) − iIm(λ). Note that the characters
Kλ ∈M(D(Kq)) with λ ∈ h∗q , as defined in Subsection 5.1.1, satisfy K∗λ = Kλ.

Proposition 5.62. Let (µ, λ) ∈ P × h∗q . The standard inner product on C∞(Kq)
defined by 〈ξ, η〉 = φ(ξ∗η), where φ is the Haar functional, restricts to a non-
degenerate sesquilinear pairing between Γ(Eµ,−λ) and Γ(Eµ,λ) which is Gq-invariant
in the sense that

〈ξ, πµ,λ(x ./ f)η〉 = 〈πµ,−λ((x ./ f)∗)ξ, η〉

for all x ./ f ∈ D(Gq), ξ ∈ Γ(Eµ,−λ), η ∈ Γ(Eµ,λ).

Proof. Consider the bijective conjugate-linear map ∗ : Γ(Eµ,−λ)→ Γ(E−µ,−λ) which

sends ξ to ξ∗. We claim that for any x ./ f ∈ D(Gq), we have

∗ ◦ πµ,−λ((x ./ f)∗) = π−µ,−λ(Ŝ−1
Gq

(x ./ f)) ◦ ∗.

It suffices to prove this for elements of the form x ./ 1 and 1 ./ f with x ∈ D(Kq)
and f ∈ C∞(Kq). Let ξ ∈ Γ(E−µ,−λ). Using the compatibility of the ∗-structures,
as recorded after Definition 3.15, we calculate

π−µ,−λ(Ŝ−1
Gq

(x ./ 1))(ξ∗) = (x, ξ∗(1)) ξ
∗
(2)

= (Ŝ(x∗), ξ(1)) ξ
∗
(2)

= (πµ,−λ(x∗ ./ 1)ξ)∗,

and similarly,

π−µ,−λ(Ŝ−1
Gq

(1 ./ f))(ξ∗) = S−1(f(3))ξ
∗f(1) (K2ρ−λ, S

−1(f(2)))

= S−1(f(3))ξ
∗f(1) (Ŝ(K∗

2ρ−λ), f(2))

= (f∗(1)ξS(f∗(3)))
∗ (K2ρ−λ, f

∗
(2))

= (πµ,−λ(1 ./ f∗)ξ)∗,

which proves the claim.
Therefore, using the invariance property of the non-degenerate bilinear pairing

( , ) : Γ(E−µ,−λ)× Γ(Eµ,λ)→ C from Lemma 5.21 we have

〈ξ, πµ,λ(x ./ f)η〉 = (ξ∗, πµ,λ(x ./ f)η)

= (π−µ,−λ(Ŝ−1
Gq

(x ./ f))(ξ∗), η)

= ((πµ,−λ((x ./ f)∗)ξ)∗, η)

= 〈πµ,−λ((x ./ f)∗)ξ, η〉,

for any ξ ∈ Γ(Eµ,−λ) and η ∈ Γ(Eµ,λ) and x ./ f ∈ D(Gq), as claimed. �

A nondegenerate D(Gq)-module V is unitarizable if it admits a positive definite
Hermitian form ( , ) which is invariant in the sense that

(x · v, w) = (v, x∗ · w)

for all v, w ∈ V and x ∈ D(Gq). By Proposition 5.62, the invariant sesquilin-
ear forms ( , ) on Γ(Eµ,λ) are in one-to-one correspondence with the intertwining
operators T : Γ(Eµ,λ)→ Γ(Eµ,−λ) via the formula

(η, ξ) = 〈T (η), ξ〉, ξ, η ∈ Γ(Eµ,λ).
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Moreover, if Γ(Eµ,λ) admits a nonzero invariant sesquilinear form ( , ) then we can
arrange it to be Hermitian. Indeed, by polarization, we must have (ξ, ξ) 6= 0 for
some ξ, and after multiplying the form by some scalar we can ensure this is strictly
positive. Then the Hermitian form defined by

〈η, ξ〉 =
1

2

(
(η, ξ) + (ξ, η)

)
is invariant and nonzero since 〈ξ, ξ〉 > 0.

On the other hand, there is no guarantee that this Hermitian form will be positive
definite. Two particular classes of unitarizable principal series are well-known. We
use the notation a∗ ⊂ h∗ for the R-span of the roots ∆ and put

t∗q = ia∗/i~−1Q∨ ⊂ h∗q .

Thus, t∗q is a compact torus of dimension N .

Theorem 5.63. Let Gq be a complex semisimple quantum group.

a) (Unitary principal series) The principal series representation Γ(Eµ,λ) equipped
with the standard inner product is unitary if and only if λ ∈ t∗q .

b) (Complementary series) Let α be a simple root. There is an invariant inner
product on the principal series representations Γ(Eµ,λ′+tα) where µ ∈ P, λ′ ∈ t∗q
are both sα-fixed and −1 < t < 1.

All of these representations are irreducible, and they are unitarily equivalent if and
only if their parameters lie in the same orbit of the Weyl group action on P× h∗q .

Proof. We have the following facts.

a) The standard inner product is Gq-invariant if and only if (µ, λ) = (µ,−λ), which
is equivalent to λ ∈ t∗q .

b) Let µ, λ = λ′ + tα be as stated. Note that

−λ = λ′ − tα = sα(λ),

so the standard intertwiner Γ(Eµ,λ) → Γ(Esαµ,sαλ) = Γ(Eµ,−λ) from Theorem
5.55 combined with the sesquilinear pairing from Proposition 5.62 yields an
invariant Hermitian form on Γ(Eµ,λ). Moreover, since λα = t and µα = 0, this
intertwiner is bijective for all −1 < t < 1. At t = 0, the Hermitian form is
positive definite by part a). Therefore, by a standard continuity argument, they
are positive definite for all −1 < t < 1.

The irreducibility of these representations follows from Theorem 5.49. The inter-
twiners associated to the simple reflections are therefore bijective and automatically
unitary. �

This is far from an exhaustive list of irreducible unitary representations of Gq. In
particular, some subquotients of generalized principal series are unitarizable. Arano
[3] has used continuity arguments in q to compare the unitary dual of Gq with the
classical unitary dual of G. This yields a complete classification for SLq(n,C), and
an almost complete classification for general Gq.

The case of SLq(2,C) was already completed by Pusz [66]; see also [65]. We
state their result without proof.

Theorem 5.64. Up to unitary equivalence, the irreducible unitary representations
of SLq(2,C) are the Hilbert space completions of the following Harish-Chandra mod-
ules.

a) The unitary principal series Γ(Eµ,λ) with µ ∈ 1
2Z, λ ∈ iR/i~−1Z, modulo the

unitary equivalences Γ(Eµ,λ) ∼= Γ(E−µ,−λ),
b) The two complementary series Γ(E0,t) and Γ(E 1

2 i~−1,t) with −1 < t < 1, modulo

the unitary equivalences Γ(E0,t) ∼= Γ(E0,−t) and Γ(E 1
2 i~−1,t)

∼= Γ(E 1
2 i~−1,−t),
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c) The trivial representation and the unitary character χz where z is the nontrivial
element of the centre of SU(2).

As a final remark, we recall that Corollary 5.58 gives explicit formulas for the
intertwiners between unitary principal series representations. In particular, we
can obtain a particularly simple formula for the intertwiners between the base of
principal series representations. This fact was needed in [75].

Corollary 5.65. For any µ ∈ P and any simple root α, the operator

Ph(Fα)2µα : Γ(Eµ,0)→ Γ(Esαµ,0),

defined by the right regular action, is a unitary intertwiner.

We recall that before Corollary 5.58 we introduced the notation Ph(Fα)k ∈
M(D(Kq)) for the operator phase of F kα if k ≥ 0 or E−kα if k < 0.
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