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INTRODUCTION

The theory of quantum groups, originating from the study of integrable systems,
has seen a rapid development from the mid 1980’s with far-reaching connections to
various branches of mathematics, including knot theory, representation theory and
operator algebras, see [25], [57], [I7]. While the term quantum group itself has no
precise definition, it is used to denote a number of related constructions, including in
particular quantized universal enveloping algebras of semisimple Lie algebras and,
dually, deformations of the algebras of polynomial functions on the corresponding
semisimple groups. In operator algebras, the theory of locally compact quantum
groups [54] is a powerful framework which allows one to extend Pontrjagin duality
to a fully noncommutative setting.

In both the algebraic and the analytic theory of quantum groups, an important
role is played by the Drinfeld double, also known as the quantum double, which
is designed to produce solutions to the quantum Yang-Baxter equation. While the
algebraic version of this construction, due to Drinfeld, appears already in [25], the
analytical analogue of the Drinfeld double was defined and studied first by Podles
and Woronowicz in [63].

If one applies the Drinfeld double construction to the Hopf algebra of functions
on the g-deformation of a compact semisimple Lie group then in accordance with
the quantum duality principle [25], [30], the resulting quantum group can be viewed
as a quantization of the corresponding complex semisimple group. This fact, which
was exhibited in [63] in the case of the quantum Lorentz group SL,(2,C), is key
to understanding the structure of these Drinfeld doubles. More precisely, one can
transport techniques from the representation theory of classical complex semisimple
groups to the quantum situation, and it turns out that the main structural results
carry over, albeit with sometimes quite different proofs.

These notes contain an introduction to the theory of complex semisimple quan-
tum groups, that is, Drinfeld doubles of compact quantum groups arising from
g-deformations. Our main aim is to present the classification of irreducible Harish-
Chandra modules for these quantum groups, or equivalently the irreducible Yetter-
Drinfeld modules of g-deformations of compact semisimple Lie groups. We also
treat some operator algebraic aspects of these constructions, but we put our main
emphasis on the algebraic considerations based on quantized universal enveloping
algebras.

The main reason for going into a considerable amount of detail on the algebraic
side is that the existing literature does not quite contain the results in the form
needed for our purposes. Many authors work over the field Q(g) of rational functions
in ¢, while we are mainly interested in the case that ¢ € C* is not a root of unity.
Although it is folklore that this does not affect the general theory in a serious
way, there are subtle differences which are easily overlooked, in particular when
it comes to Verma modules and Harish-Chandra bimodules. In addition, different
conventions are used in the literature, which can make it cumbersome to combine
results from different sources.

In the first part of these notes, consisting of Chapters [1| and [2| we work over a
general ground field K and a deformation parameter ¢ € K* which is not a root of
unity. Technically, this means that one has to start from an element s € K such
that s© = ¢ for a certain number L € N depending on the type of the underlying
semisimple Lie algebra. No assumptions on the characteristic of K are made, and
in particular we shall not rely on specialization at ¢ = 1 in order to transport
results from the classical situation to the quantum case. However, we shall freely
use general constructions and facts from classical Lie theory as can be found, for
instance, in [35].
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In the second part of the notes, consisting of Chapters [3 [] and [5] we restrict
ourselves to the case K = C and assume that ¢ = e # 1 is a positive real number.
Some parts of the material could be developed in greater generality, but for certain
arguments the specific properties of the ground field C and its exponential map
do indeed play a role. This is the case, for instance, for the characterization of
dominant and antidominant weights in Chapter [4]

We have used a number of textbooks as the basis of our presentation, let us men-
tion in particular the books by Lusztig [67], Jantzen [39], Klimyk and Schmiidgen
[48], Chari and Pressley [17], Brown and Goodearl [15], and the book by Humphreys
on category O in the classical setting [37]. The key source for the second half of
these notes is the book by Joseph [41], which in turn builds to a large extent on
work of Joseph and Letzter. Our account is largely self-contained, the only notable
exception being the section on separation of variables in Chapter [2] which relies on
the theory of canonical bases. Nonetheless, we assume that the reader has some pre-
vious acquaintance with quantum groups, and we have kept short those arguments
which can be easily found elsewhere. Let us also point out that our bibliography
is far from complete, and the reader should consult the above mentioned sources
for a historically accurate attribution of the results covered here, along with much
more background and motivation.

Let us now explain in detail how this text is organized.

In Chapter [I] we review the theory of Hopf algebras and multiplier Hopf algebras.
While the basics of Hopf algebras can be found in numerous textbooks, the non-
unital version, developed by Van Daele [73], [74] under the name of multiplier Hopf
algebras, is not as widely known. Multiplier Hopf algebras provide a natural setting
for the study of some aspects of quantized enveloping algebras, like the universal
R-matrix. Moreover, they are a very useful tool for studying the link between the
algebraic and analytic theory of quantum groups [51]. Since only a limited amount
of the general theory of multiplier Hopf algebras is needed for our purposes, we
refer to the original sources for most of the proofs.

Chapter [2] contains an exposition of the basic theory of quantized universal en-
veloping algebras. Most of the material is standard, but we have made an effort
to establish uniform conventions and notation. We work throughout with what is
often called the simply connected version of U,(g). This is crucial for some of the
more advanced parts of the theory, notably in connection with the [-functionals.
Our discussion of the braid group action on U,(g) and its modules is significantly
more detailed than what can be found in the standard textbooks. We have also
tried to simplify and streamline various arguments in the literature, in particular
we avoid some delicate filtration arguments in [41] in the proof of Noetherianity of
the locally finite part of U,(g).

In Chapter [3| we introduce our main object of study, namely complex semisimple
quantum groups. These quantum groups can be viewed as quantizations of complex
semisimple Lie groups viewed as real groups. As indicated above, they are obtained
by applying the quantum double construction to compact semisimple quantum
groups. We discuss the structure of complex quantum groups as locally compact
quantum groups, including their Haar weights and dual Haar weights.

The remaining two chapters are devoted to representation theory. Chapter [4]
contains a discussion of category O for quantized universal enveloping algebras.
This is parallel to the theory for classical universal enveloping algebras, but some
peculiar new features arise in the quantum situation due to the periodicity in the
space of purely imaginary weights.
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Finally, Chapter 5] covers the representation theory of complex semisimple quan-
tum groups and their associated Harish-Chandra modules. We also provide a de-
tailed account of intertwining operators, by taking advantage of the relation between
the category of Harish-Chandra modules and category O. This both simplifies and
extends the work by Pusz and Woronowicz [66], [64] on the quantum Lorentz group
SL,(2,C).

Let us conclude with some remarks on notation and conventions. By default, an
algebra is a unital associative algebra over a commutative ground ring, which will
typically be a field K. In some situations we have to deal with non-unital algebras
and their multiplier algebras, but it should always be clear from the context when
a non-unital algebra appears. Unadorned tensor products are over the ground field
K. In some situations we also use ® to denote the tensor product of Hilbert spaces,
the spatial tensor product of von Neumann algebras, or the minimal tensor product
of C*-algebras. Again, the meaning should be clear from the context.

Let us note that we have aimed to make the transition between the algebraic
and analytic points of view as convenient as possible. This results in some slightly
unconventional choices for the algebraically-minded reader, in particular in terms of
the pairing between quantized enveloping algebras and their dual function algebras,
which we define to be skew-pairings by default.

Last but not least, it is a pleasure to thank a number of people with whom we
have discussed aspects of quantum groups and representation theory over the past
few years. Let us mention in particular Y. Arano, P. Baumann, K. A. Brown, L.
Heckenberger, N. Higson, U. Krdhmer, S. Neshveyev, S. Riche and D. Vogan; we
are grateful to all of them for sharing their insight with us.
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1. MULTIPLIER HOPF ALGEBRAS

In this chapter we collect definitions and basic results regarding Hopf algebras
and multiplier Hopf algebras. Algebras are not assumed to have identities in general.
Throughout we shall work over an arbitrary base field K, and all tensor products
are over K.

1.1. Hopf algebras. The language of Hopf algebras is the starting point for the
study of noncommutative symmetries. In this section we collect some basic defini-
tions and facts from the theory. There is a large variety of textbooks devoted to
Hopf algebras and quantum groups where more information can be found, let us
mention in particular [17], [39], [47], [48].

An algebra is a vector space H together with a linear map m : H ® H — H such
that the diagram

HoHoH™YS HoH

wem [

HeoH—" - H

is commutative. An algebra H is called unital if there exists a linear map v : K — H
such that the diagram

Ko H-2Y He i HoK

is commutative. Here the isomorphisms are induced by scalar multiplication. As
usual, we write fg for m(f ® ¢), and 1y or simply 1 for u(1) in the unital case.

A (unital) algebra homomorphism between (unital) algebras A and B is a linear
map ¢ : A — B such that pm4 = mp(p ® ¢) (and pus4 = up in the unital case).
Here m 4, mp denote the multiplication maps of A and B, respectively, and w4, up
the unit maps in the unital case. In other words, ¢ is an algebra homomorphism iff
o(fg) = (f)p(g) for all f,g € A, and additionally p(14) = 1p in the unital case.

By definition, a coalgebra is a vector space H together with a linear map A :
H — H ® H such that the diagram

H— 2 \HoH
J{A lid RA
HoH""HoHoH

is commutative. A coalgebra H is called counital if there exists a linear map
€ : H — K such that the diagram

KoH< gon 2% Hok

is commutative.
We shall use the Sweedler notation

A(C) = C(1) ® C(2)
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when performing computations in coalgebras, where we are suppressing a summa-
tion on the right-hand side. For instance, the counit axiom reads e(c(1))c) = ¢ =
c(y€e(c(z)) in this notation.

In analogy to the case of algebras, a (counital) coalgebra homomorphism between
(counital) coalgebras C' and D is a linear map ¢ : C' — D such that (¢ ® p)Ac =
Apy (and €pp = €¢ in the counital case).

If C is a (counital) coalgebra then the linear dual space C* = Hom(C,K) is a
(unital) algebra with multiplication

(fg,¢) = (f,cy) (9, c2))

(and unit element ec). Here (, ) denotes the canonical pairing between C' and C*.

Conversely, if A is a finite dimensional (unital) algebra, then the linear dual
space A* becomes a (counital) coalgebra using the transpose m* : A* — (AR A)* =
A* @ A* of the multiplication map m : A® A — A (and counit e(f) = f(1)). We
point out that if A is infinite dimensional this will typically break down since then
(A® A)* £ A* @ A*.

However, at least in the finite dimensional situation, we have a complete duality
between algebras and coalgebras. This can be used to transport concepts from
algebras to coalgebras and vice versa. For instance, a coalgebra C is called cosimple
if it does not admit any proper subcoalgebras. Here a subcoalgebra of C' is a linear
subspace D C C such that A(D) C D ® D. This notion corresponds to simplicity
for the dual algebra A. A coalgebra is called cosemisimple if it is a direct sum of
its simple subcoalgebras.

A basic example of a cosimple coalgebra is the dual coalgebra C = M, (K)* of
the algebra of n x n-matrices over K. Explicitly, the coproduct of C is given by

A(Uij) = Zuik R Uk
k=1

for 1 < 4,5 < n, where the elements u;; € C' are dual to the basis of standard
matrix units for M,,(K). All cosemisimple coalgebras we will encounter later on are
direct sums of such cosimple matrix coalgebras.

A Hopf algebra structure is the combination of the structures of a unital algebra
and a counital coalgebra as follows.

Definition 1.1. A bialgebra is a unital algebra H which is at the same time a
counital coalgebra such that the comultiplication A : H — H ® H and the counit
€ : H — K are algebra homomorphisms.

A bialgebra is a Hopf algebra if there exists a linear map S : H — H, called the
antipode, such that the diagrams

H—* H H—* > H

id®S. S®id

H®H —H®H HH —H®H
are commutative.

In the definition of a bialgebra, one can equivalently require that the multiplica-
tion map m and the unit map u are coalgebra homomorphisms.

For many examples of Hopf algebras the antipode S is an invertible linear map.
We write S~ for the inverse of S in this situation. We remark that S is always
invertible if H is a finite dimensional Hopf algebra.
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If H is a finite dimensional Hopf algebra then the dual space H = H* =
Hom(H,K) can be naturally equipped with a Hopf algebra structure with comulti-
plication A : H — H ® H and counit € such that

®y, A(f))
z,9f)
)

(zy, f) = («
(A(z), f@g) = (
é(z) = (=,
(8(x), f) = (2,57'(f))

for all z,y € H and f, g € H. Here (, ) denotes the canonical pairing between H
and H, or H® H and H ® H respectively, given by evaluation. Note that we are
choosing the convention whereby H and H are skew- paired, in the sense that the
comultiplication A is dual to the opposite multiplication f ® g — gf.

In order to generalize this construction to certain infinite dimensional examples
we shall work with the theory of multiplier Hopf algebras discussed in the next
section.

1.2. Multiplier Hopf algebras. The theory of multiplier Hopf algebras developed
by van Daele and his coauthors [74], [23], [24] is an extension of the theory of Hopf
algebras to the case where the underlying algebras do not necessarily have identity
elements.

1.2.1. FEssential algebras. In order to obtain a reasonable theory, it is necessary to
impose some conditions on the multiplication of an algebra. We will work with
algebras that are essential in the following sense.

Definition 1.2. An algebra H is called essential if H # 0 and the multiplication
map induces an isomorphism H @y H = H.

Clearly, every unital algebra is essential.

More generally, assume that H has local units in the sense that for every finite
set of elements hy,...,h, € H there exists u,v € H such that uh; = h; and
hjv = h; for all j. Then H is essential. Regular multiplier Hopf algebras, to be
defined below, automatically have local units, see [24].

The prototypical example of a non-unital essential algebra to keep in mind is an

algebra of the form
H= @ Aiv

iel
where (A;);cr is a family of unital algebras and multiplication is componentwise.
In fact, all non-unital essential algebras that we will encounter later on are of this
form.

Let H be an algebra. A left H-module V is called essential if the canonical map
H ®y V — V is an isomorphism. An analogous definition can be given for right
modules. In particular, an essential algebra H is an essential left and right module
over itself.

1.2.2. Algebraic multiplier algebras. To proceed further we need to discuss multi-
pliers. A left multiplier for an algebra H is a linear map L : H — H such that
L(fg) = L(f)g for all f,g € H. Similarly, a right multiplier is a linear map
R: H — H such that R(fg) = fR(g) for all f,g € H. We let M;(H) and M, (H)
be the spaces of left and right multipliers, respectively. These spaces become alge-
bras with multiplication given by composition of maps.
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Definition 1.3. The algebraic multiplier algebra M(H) of an algebra H is the
space of all pairs (L, R) where L is a left multiplier and R is a right multiplier for
H such that fL(g) = R(f)g for all f,g € H.

The algebra structure of M(H) is inherited from M;(H) & M,.(H). There is
a natural homomorphism ¢ : H — M(H). By construction, H is a left and right
M(H)-module in a natural way.

In the case that H = @iel A; is a direct sum of unital algebras A; for i € I, it
is straightforward to check that

M(H) =] A
icl
is the direct product of the algebras A;.

Let H and K be algebras and let ¢ : H — M(K) be a homomorphism. Then
K is a left and right H-module in an obvious way. We say that the homomorphism
v : H— M(K) is essential if it turns K into an essential left and right H-module,
that is, we require Hoy K =2 K &2 K®y H. Note that the identity mapid : H - H
defines an essential homomorphism H — M(H) iff the algebra H is essential.

Lemma 1.4. Let H be an algebra and let ¢ : H - M(K) be an essential homo-
morphism into the multiplier algebra of an essential algebra K. Then there exists
a unique unital homomorphism ® : M(H) — M(K) such that & = ¢ where
v: H— M(H) is the canonical map.

Proof. We obtain a linear map ®; : M;(H) — M;(K) by

m®id
MH @K~ M(HoHog K "S5 Hoyg K 2K
and accordingly a linear map ®, : M,.(H) - M, (K) by

KoM (H) = Koy Ho M. (H) " Koy H > K.

It is straightforward to check that ®((L,R)) = (®;(L),®,(R)) defines a unital
homomorphism ® : M(H) — M(K) such that ®¢ = ¢. Uniqueness of ® follows
from the fact that ¢(H) - K = K and K - p(H) = K. O

We note that essential homomorphisms behave well under tensor products. More
precisely, assume that Hy, Ho are essential algebras and let ¢q : H; — M(K7) and
w2 : Hy — M(K3) be essential homomorphisms into the multiplier algebras of
algebras K7 and K5. Then the induced homomorphism ¢ ® ps : Hy ® Hy —
M(K; ® K») is essential.

Following the terminology of van Daele, we say that an algebra H is nondegener-
ate if the multiplication map H x H — H defines a nondegenerate bilinear pairing.
That is, H is nondegenerate iff fg = 0 for all ¢ € H implies f = 0 and fg =0
for all f implies g = 0. These conditions can be reformulated by saying that the
natural maps

H— Mi(H), H— M,(H)

are injective. In particular, for a nondegenerate algebra the canonical map H —
M(H) is injective.

Nondegeneracy of an algebra is a consequence of the existence of a faithful linear
functional in the following sense.

Definition 1.5. Let H be an algebra. A linear functional w : H — K is called
faithful if w(fg) = 0 for all g implies f = 0 and w(fg) = 0 for all f implies g = 0.
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1.2.3. Multiplier Hopf algebras. In this subsection we introduce the notion of a
multiplier Hopf algebra.

Let H be an essential algebra and let A : H — M(H ® H) be a homomorphism.
The left Galois maps v;,v, : H ® H — M(H ® H) for A are defined by

nf@g)=Ag®1), %(f@g)=A)1&9).
Similarly, the right Galois maps p;, pr : H® H - M(H ® H) for A are defined by

p(f®g)=(f®1)A(g), pr(f ®g) = (1@ f)A(g).

These maps, or rather their appropriate analogues on the Hilbert space level, play an
important role in the analytical study of quantum groups [5], [54]. Our terminology
originates from the theory of Hopf-Galois extensions, see for instance [60].

We say that an essential homomorphism A : H - M(H ® H) is a comultiplica-
tion if it is coassociative, that is, if

(A ®id)A = (i[d®A)A

holds. Here both sides are viewed as maps from H to M(H ® H® H). An essential
algebra homomorphism ¢ : H — M(K) between algebras with comultiplications is
called a coalgebra homomorphism if Ap = (p ® p)A.

We need some more terminology. The opposite algebra H°PP of H is the space
H equipped with the opposite multiplication. That is, the multiplication m°PP in
HP°PP is defined by m°PP = mo where m : H ® H — H is the multiplication in H
and 0 : H® H — H ® H is the flip map given by o(f ® g) = g ® f. An algebra
antihomomorphism between H and K is an algebra homomorphism from H to
K°PP. Equivalently, an algebra antihomomorphism can be viewed as an algebra
homomorphism H°PP — K. If A: H - M(H ® H) is a comultiplication then A
also defines a comultiplication HPP — M (H°PP ®@ HOPP).

Apart from changing the order of multiplication we may also reverse the order of
a comultiplication. If A : H - M(H ® H) is a comultiplication then the opposite
comultiplication AP is the essential homomorphism from H to M(H & H) defined
by A“P = gA. Here 0 : M(H ® H) - M(H ® H) is the extension of the flip map
to multipliers. We write H°P for H equipped with the opposite comultiplication.
Using opposite comultiplications we obtain the notion of a coalgebra antihomomor-
phism. That is, a coalgebra antihomomorphism between H and K is a coalgebra
homomorphism from H to KP, or equivalently, from HP to K.

Let us now give the definition of a multiplier Hopf algebra [73].

Definition 1.6. A multiplier Hopf algebra is an essential algebra H together with
a comultiplication A : H — M(H ® H) such that the Galois maps ~,,p; are
isomorphisms from H ® H to H® H C M(H ® H).

A regular multiplier Hopf algebra is an essential algebra H together with a
comultiplication A : H — M(H ® H) such that all Galois maps v;,~,, pi, pr are
isomorphisms from H ® H to H ® H.

A morphism between multiplier Hopf algebras H and K is an essential algebra
homomorphism « : H - M(K) such that (a ® o)A = Aa.

Note that a multiplier Hopf algebra H is regular iff H°PP is a multiplier Hopf
algebra, or equivalently, iff H°P is a multiplier Hopf algebra.

We have the following fundamental result due to van Daele [73].

Theorem 1.7. Let H be a multiplier Hopf algebra. Then there exists an essential
algebra homomorphism € : H — K and an algebra antihomomorphism S : H —
M(H) such that

(e®id)A =id = (id ®¢)A
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and
m(S ®id)y, = e®id, m(id ®95)p; = id ®e.

If H is a regular multiplier Hopf algebra, then S is a linear isomorphism from H
to H.

If follows from Theorem [I.7] that Definition [I.6] reduces to the definition of Hopf
algebras in the unital case. A unital regular multiplier Hopf algebra is the same
thing as a Hopf algebra with invertible antipode.

We will be exclusively interested in regular multiplier Hopf algebras. For a
regular multiplier Hopf algebra, the antipode S is a coalgebra antihomomorphism,
that is, it satisfies (S ® S)A = APS| see [73].

Given a multiplier Hopf algebra we will again use the Sweedler notation

A(f) = f) ® fro

for the comultiplication of H. This is useful for writing calculations formally, al-
though in principle one always has to reduce everything to manipulations with
Galois maps.

1.3. Integrals. In this section we discuss integrals for multiplier Hopf algebras.
For a detailed treatment we refer to [74]. The case of ordinary Hopf algebras can
be found in [69].

1.3.1. The definition of integrals. Let H be a regular multiplier Hopf algebra. For
technical reasons we shall suppose throughout that H admits a faithful linear func-
tional, see Definition[I.5] As noted before that definition, we may therefore view H
as a subalgebra of the algebraic multiplier algebra M(H). An analogous statement
applies to tensor powers of H.
Assume that w is a linear functional on H. Then we define for any f € H a

multiplier (id @w)A(f) € M(H) by

(id®@w)A(f) - g = ([d@w)n(f @ g)

g - (Id@w)A(f) = (id@w)p(g @ f).

To check that this is indeed a two-sided multiplier observe that

(f@Umn(g@h) =p(feg)(hel)
for all f,g,h € H. In a similar way we define (w ® id)A(f) € M(H) by
(w@Id)A(f) -9 = (w@id)w(f © g)
9 (w@Id)A(f) = (w@id)pr(9 @ f).

Definition 1.8. Let H be a regular multiplier Hopf algebra. A linear functional
¢ : H — K is called a left invariant integral if

(id®@@)A(f) = o(f)1
for all f € H. Similarly, a linear functional ¥ : H — K is called a right invariant
integral if
(¥ @id)A(f) = ¢(f)1
for all f € H.
Definition 1.9. A regular multiplier Hopf algebra with integrals is a regular mul-

tiplier Hopf algebra H together with a faithful left invariant functional ¢ : H — K
and a faithful right invariant functional ¢ : H — K.
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Note that the existence of one of ¢ or v is sufficient. More precisely, one obtains
a faithful right/left invariant functional by taking a faithful left/right invariant
functional and precomposing with the antipode.

It can be shown that left/right invariant integrals are always unique up to a
scalar, see Section 3 in [74]. Moreover, they are related by a modular element, that
is, there exists an invertible multiplier 6 € M (H) such that

(6 @A) = 6(£)6
for all f € H. The multiplier ¢ is a group-like element in the sense that
AS) =606, €6)=1, S©)=06"
It follows that a right invariant integral v is defined by
(f) = o(f0) = ¢(6f).

We say that H is unimodular if § = 1, or equivalently if we can choose ¥ = ¢.
For ordinary (unital) Hopf algebras, the existence of integrals is closely related
to cosemisimplicity.

Proposition 1.10. Let H be a Hopf algebra. Then the following conditions are
equivalent.

a) H is cosemisimple.
b) H admits a left and right invariant integral ¢ such that ¢(1) = 1.

Proof. a) = b) Assume that H = @, C» is written as a direct sum of its sim-
ple coalgebras, and without loss of generality let us write Cy C H for the one-
dimensional simple subcoalgebra spanned by 1 € H. Then we can define ¢ : H — K
to be the projection onto Cy = K. Since A(C)) C Cy ® C, it is straightforward to
check that ¢ is a left and right invariant integral such that ¢(1) = 1.

b) = a). Let us only sketch the argument. Firstly, using the invariant integral
¢ one proves that every comodule for H is a direct sum of simple comodules. This
is then shown to be equivalent to H being cosemisimple. We refer to chapter 14 of
[69] for the details. O

1.3.2. The dual multiplier Hopf algebra. Given a regular multiplier Hopf algebra
with integrals we shall introduce the dual multiplier Hopf algebra and discuss the
Biduality Theorem. These constructions and results are due to van Daele [74].

We define H as the linear subspace of the dual space H* = Hom(H, K) given by
all functionals of the form F(f) for f € H where

(F(f)sh) = F(f)(h) = o(hf).

It can be shown that one obtains the same space of linear functions upon replacing
¢ by 1, or reversing the order of multiplication under the integral in the above
formula, see [74]. Note that these other choices correspond to reversing the multi-
plication or comultiplication of H, respectively.

Using the evaluation of linear functionals, we obtain the canonical pairing H x
H — K by

(z, f) = x(f)

for 2 € H and h € H. Note that the formula for F(f) above can be used to extend
this to a pairing H x M(H) — K. In a similar way one obtains pairings between
tensor powers of H and H.

Let us now explain how the space H can be turned into a regular multiplier
Hopf algebra with integrals. We point out, however, that we work with the opposite
comultiplication on H compared to the conventions in [74].
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Theorem 1.11. Let H be a reqular multiplier Hopf algebra with integrals. The
vector space H becomes a regular multiplier Hopf algebm with comultiplication A
H — M(H® H), counit ¢ : H — K, and antipode S : H — H, such that

(zy, f) = (x @y, A(f))
(A(2), f® g) = (z,9f)
é(z) = (=, )
(8(z), f) = (x,571())

forx,y € H and f,g € H. A left invariant integral for H is given by

S(F(f)) = e(f)
for fe H.

Proof. We shall only sketch two parts of the argument; a central part of the proof
consists in showing that the above formulas are well-defined.
Firstly, for f,g € H the product F(f)F(g) in H is defined by

F()F(g) = ¢(S (9 /) F(92)) = (F @ )7 g @ f).

Then formally using

(F(NF9)(h) = (F(f) @ Flg), A(h))

= ¢(ha)f)o(h2)9)

= o(h1)92)S " (91) F)d(h2)9(3))
(S5~ (9(1))f)¢(h9(2))
(S~ g9 F)F(ge))(h)

we see that this agrees with the transposition of the coproduct of H. From the fact
that the product can be described in this way it follows easily that multiplication
in H is associative.

Secondly, assuming that A is well-defined let us check that dA) is left invariant.
For this we compute

((id @) A(F(f)), h) = ¢(F(hf)) = e(f)e(h) = (16(F(f)), h)

© S

for any h € H.
For the construction of the remaining structure maps and the verification of the
axioms see [74]. O

We shall again use the Sweedler notation
A(z) = z(1) ® 22)

for the comultiplication of H. The compatibility between H and H can be summa-
rized as follows.

Proposition 1.12. Let H be a reqular multiplier Hopf algebra with integrals. Then
the canonical evaluation pairing between H and H satisfies

(xyaf) - (xvf(l))(yvf@)), (‘Tmfg) - (x(Q)af)(x(l)ag)

and

(S(@), f) = (x,57(f))
forall x,y € H and f,ge H.
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Note that the final relation implies

(Sv*l(z)vf) - (an(f))
for all z € H and f € H.

The next major result is the Biduality Theorem, which states that H = H as
multiplier Hopf algebras. It is important to note, however, that under this isomor-

phism the canonical pairing H x H — K will not correspond to evaluation between
H and H. This is due to our choice to work with the coopposite comultiplication in
the definition of the dual. We therefore introduce the following convention, which
will apply throughout this work.

Definition 1.13. If H is a regular multiplier Hopf algebra, we define the reverse
pairing H x H — K by

(f,2) = (x,57H(f)),
forallf€H7x€I;T.

Let us stress that with these conventions, we have (f,z) # (z, f) in general.

Since H is again a regular multiplier Hopf algebra with integrals, we can construct
its dual. As in the case of finite dimensional Hopf algebras one has a duality result,
see [74].

Theorem 1.14 (Biduality Theorem). Let H be a reqular multiplier Hopf algebra
with integrals. Then the dual of H is isomorphic to H. The isomorphism is given
by

B:H—H;  B(f)(z)=(f2),
for feH,zeH.

Proof. Again we shall only give a brief sketch of the argument. The key step in the
proof—which we will not carry out—is to show that B is well-defined. Injectivity
then follows from the nondegeneracy of the pairing ( , ). The fact that B is
compatible with multiplication and comultiplication is a consequence of Proposition
[L12] O

Let us conclude this section by writing down a formula for the inverse of the
Fourier transform F.

Proposition 1.15. Let H be a reqular multiplier Hopf algebra. For any z,y € H
we have

(y, F(2)) = (5~ (y)a).
Proof. Let us first observe that for any = € H, f € H we have the formula

aF(f) = (2,87 (f)) F(fez)s
which can be confirmed by pairing each side with some g € H and using the left

invariance of ¢. Then, using the proposed formula for F~! from the proposition,
we compute

(. FF(£) = oS W) F(F) = 6(F(f))v. fy) = (v. F),
for all f € H,y € H. Since F is surjective by definition, we see that F is invertible
with inverse F~! as proposed. (]

If, as above, we identify the dual of H with H via the reverse pairing H x H — K,
then we can reinterpret the relation F~1F = id by saying that F = F~!. Indeed,
notice that

(F(2),9) = ¢yx) = (S(y), F (@) = (F(x),y)
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for all z,y € H.
This simple relation between F and F is a feature of our conventions to work
with the coopposite comultiplication on the dual.

1.4. The Drinfeld double - algebraic level. In this section we discuss the al-
gebraic version of the Drinfeld double construction. This construction produces a
regular multiplier Hopf algebra L <t K out of two regular multiplier Hopf algebras
K, L equipped with an invertible skew-pairing. For ordinary Hopf algebras—that
is, in the situation that K and L are unital—this is covered in all standard text-
books, see for instance [48]. For a more detailed account in the non-unital setting
we refer to [23].

This construction will be crucial for the later chapters, since the quantized con-
volution algebra of a complex semisimple group is defined as the Drinfeld double of
the quantized convolution algebra of the associated compact form, see Section [3.4
for a precise statement.

Let us first discuss skew-pairings in the unital case. If K and L are Hopf algebras
then a skew-pairing between L and K is simply a bilinear map 7 : L x K — K
satisfying

T(zy, f) = 7(, fy)7(y, f2))
(z, fg) = T(xq), 9)T(2(2), [)
(1, f) = ex(f)
7(x,1) = e ()
for all f,g e K and z,y € L.

In the non-unital case this needs to be phrased more carefully. Assume that K, L
are regular multiplier Hopf algebras and let 7 : L x K — K be a bilinear map. For
xz € L and f € K we define linear maps 7, : K — K and y7: L — K by

T

(9) =7(z,9),  7(y) =7y, f).

We can then define multipliers 7(x(1), f)z@) = (y7 ® id)AL(x), 7(x(2), flza) =
(id@sm)Ap(z) € M(L) by first multiplying the outer leg of the coproduct of z
with elements of L, and then applying ;7 to the first leg. In the same way one ob-
tains multipliers 7(z, f(1)) f2) = (T2 @ Id)Ak (f), 7(z, fi2)) f1) = (1[d@T2)AK(f) €
We will say that the pairing 7 is regular if the following two conditions are
satisfied. Firstly, we require that all the multipliers defined above are in fact con-
tained in L and K, respectively, and not just in M(L) and M(K). Secondly, we
require that the linear span of all 7(x(1), f)z(2) is equal to L, and the linear span
of all 7(x, f(1)) f(2) is equal to K, as well as the analogous conditions for the flipped
comultiplications. It is shown in [23] that this implies that the multiplier

(@), f))r@) ® fe2)
of M(L ® K) is in fact contained in L ® K. The same holds for the multipliers

obtained by flipping the comultiplications in this formula in one or both factors.

Definition 1.16. Let K, L be regular multiplier Hopf algebras. A skew-pairing
between L and K is a regular bilinear map 7 : L x K — K which satisfies

a) Toy(f) = 2 (id@7)) A (f) = 7y (72 ® 1d) AR (f)

b) to7(x) =4 T(Id@s7)AL(2) =¢ T(47 ®id)AL(x)

for all f,g € K and x,y € L.

Occasionally we will identify 7 with its associated linear map L ® K — K and
write 7(x ® f) instead of 7(z, f).
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Note that the conditions in Definition [L.16] are well-defined by the regularity
assumption on 7. Informally, these conditions can be written as

T(SCy, f) = ’T(I, f(l))T(y7 f(?))? T(l’, fg) = T(z(l)ag)T(I(Q)a f)

for f,g € K,z,y € L, as in the unital case explained above.

Regularity implies that the skew-pairing 7 induces essential module structures of
K acting on L and vice versa. More precisely, K becomes an essential left L-module
and an essential right L-module by

e f=1( fo)fo,  far=r1(,fu)fe)

and L becomes an essential left and right K-module by

fro=1(a,Hre,  2af=T1(1e), o).

This means in particular that 7 extends canonically to bilinear pairings M(L) x
K — Kand L x M(K) — K by setting

(@, f) =ex(@> f) =ex(fam),  7(y,9) =eLlgry) =erly<yg)
forx € M(L),f € K and y € L,g € M(K), respectively. With this notation, we
get in particular
T(Ivl) :eL(I)a T(]‘ﬂf) :EK(f)

forall x € L, f € K, again reproducing the formulas in the unital case.

The convolution product 7n of two regular pairings 7,7 : L ® K — K is defined
by

() (@ f) =n(xn) @ fa))T(T2) @ f2))-

This defines an associative multiplication on the linear space of all regular pairings
L ® K — K, with unit element €7, ® €. Any skew-pairing 7 : L ® K — K between
regular multiplier Hopf algebras is convolution invertible, with inverse given by

T e, f) = 7(Sp (), ) = 7(2, S (f))-
Let us now introduce the Drinfeld double of skew-paired regular multiplier Hopf

algebras.

Definition 1.17. Let K, L be regular multiplier Hopf algebras and let 7 : LR K —
K be a skew-pairing between them. The Drinfeld double L 1 K is the regular
multiplier Hopf algebra with underlying vector space L ® K, equipped with the
multiplication

(x> f)(y e g) =27y, fa) ¥ = foy T We), fi3))9,
the coproduct
Appar (24 f) = (2(1) > f1)) @ (22) > fr2)),
antipode
Spear (@0 f) =77 (21, f1))SL(2(2)) 2 Sk (fi2)T(2(3) f(3))
and the counit
ervarc (T 24 f) = ep(z)ex (f).

It is proved in [23] that these structures indeed turn L > K into a regular
multiplier Hopf algebra such that M(L 1 K) contains both L and K as multiplier
Hopf subalgebras in a natural way. Note that the formula for the antipode is forced
by requiring that it be compatible with the antipodes St and Sk on the subalgebras
L and K in M(L < K), thanks to the formula

Stparc (224 f) = Spearc (w2 1) (1< ) = (1> Sk (f)) (SL(x) pa 1),
forzel, feK.
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Formally, associativity of the multiplication in L <1 K follows from

((za f)(y > 9))(z 0 h) = (27 (y1y, fa))¥e2) 2 foym " (Wes), f3))g) (2 < h)

=27 (Y1), F1)¥e)T(2a), f2)90)) 2@ X f3)92)7  (26), f@96) T W), fe)h
= 27(y) (), f) (200, 90))Y2)23) 2 Foy T (Yesy2a)s f3) 927 (25, 93) )
= (z 0 f) (y7(2(1), 9(1)) 22) R 927 (2(3), 9(3))h)

= (z > f)((y > g)(2 b))

forzx fiyig,z>xth € Lt K. To check that Ak is an algebra homomorphism
one may formally compute

Appar (254 f)(y 4 9)) = Apparc (27 (Y1), f1)y) ™ o7 (W) f3))9)
=z1yT(Y), fa))ve) X f2)90) © TyE) X T Yy, fu) fe)9e)
= (zyT(Way, f)ve) X fom ™ We), f3))90))
® ()T (W), fa)ye) = fe 7 (W), f6))92)
= (z(1) ™ f1) ® 2(2) > fi2)) (Y1) > 91) @ Y(2) X 9(2))
= Appar (7 > f)Apparc (y > g)

forz < f,y>g € L < K. Tt is clear from the definition that A,k is coassociative
and that eryqx is a counit for Apx. For the antipode axiom we compute

MLpar (Sioar @ 1d)Apsar (204 f) = Mpsar (Sisarx ® 1d)(21) >4 f1) @ 2(2) > fra))
= mpsar (77 (1), f1))SL(@(2)) > Sk (f2))7(2(3), f3)) © Ta) B9 fray)
T @) ) Spee@)T (), Sk (fia)zes)

> Sk (fi3) X 726y, Sk (f2))T(23), () f6)
=7 Nz, f0)Se(z@)n@) b (@), Sk (f2) Sk (f3) fay
= T_l(x(l), Jay)lea T_l(x(g), Sk (f2))1
= eLpar (T > f)1,

where m sk denotes the multiplication of L >t K. In a similar way one verifies
the other antipode condition.

Let K, L be regular multiplier Hopf algebras and let p : L ® K — K be an
invertible skew-pairing. Then 7: K ® L — K given by

7(f,2) = p(z, i () = p(Se(2), f)

is also an invertible skew-pairing.

Definition 1.18. With the above notation, the Rosso form is the bilinear form
on the Drinfeld double L <1 K defined by

K> frypag) = ply, p(Si(x), Si' (9)) = 7(Sk (f), )7 (g, Se.(2))-

The left adjoint action of a regular multiplier Hopf algebra H on itself is defined

by
ad(f)(9) = f = 9= f)9 S(fi2))-
A bilinear form  on H is called ad-invariant if
&(f = g,h) =£K(g,S5(f) = h)

for all f,g,h € H.

For the following result compare Section 8.2.3 in [4§].

Proposition 1.19. Let K, L be reqular multiplier Hopf algebras equipped with an
invertible skew-pairing p : L x K — K. Then the Rosso form on the Drinfeld double
L K is ad-invariant.
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Proof. Since L 1 K is generated as an algebra by L and K it suffices to consider
the adjoint action of z € L and f € K on an element y <1 g of the double. We
compute

ad(z)(y > g) = (z(1) > 1)(y > 9)(SL(2(2)) > 1)
= 1)y SL(23)p(SL(20),901)) > 7 (SL(2(2)), 9(3))92) -
Noting that p(Sg (), Sk(f)) = p(x, f) we obtain
k(z — (yag), 2z h)

( yySL(@E))p " (), 91)) > p~ (SL(2(2)), 93))9(2)» 2 > )
“NSe(zayySL(z)), h)p~ (x(4)ag(1))Pfl(SL(fU(2))a9(3))/)(2»9(2))
HSp()) hay)p  (SL), hi)p ™ (ST (2(3)), hs))

X p~ @@y, 90))p (e (x2)), 9(3))P(2: 92))
= p 1Sz (), haay)p” (S ()s b))~ (ST (2(3))s hs)) p(SL(2a)) 257 (2(2)), 9)
=k (y 19, S(z@) 25t (@2)p  (SL(zm), hry) = p~ (ST (2(3)), hz)) b))
=k(yg,Sp(x) = (zxh)).
Similarly, we have
ad(f)(y > g) = (1< f1))(y > g)(1 < Sk (f(2)))
= p(yy> Fa)v@) > p~ sy, £3)) F2) 95k (fa))
and so
K(f = (y>g),zh)
k(p(yay, f)ye > e W) f3) f 2095k (fay), 2 > h)
P(yu )P (SLlya) e (), fa)p(z, f)95k (fa)))
(W) )P, Sx2(h)p(ys)y, Sk (f3)p(z), Sk (Fa)p(22), 9)p(23), f2))
(v, S (f(3 )Si2(h) fa)) P21y, Sk (fay)p(z2): 90~ (23), Sk (f2)))
(y > g, p(2(1), Sk (fa)))2(2) >4 p~ (2(3), Sk (f(2))) Sk (F13)) ST (1))
= r(yag, SK(f) — (2 h)).
This yields the claim. O

p
p
K
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2. QUANTIZED UNIVERSAL ENVELOPING ALGEBRAS

In this chapter we collect background material on quantized universal enveloping
algebras. We give in particular a detailed account of the construction of the braid
group action and PBW-bases, and discuss the finite dimensional representation
theory in the setting that the base field K is an arbitrary field and the deformation
parameter ¢ € K* is not a root of unity. Our presentation mainly follows the
textbooks [39], [41] and [57].

2.1. g-calculus. Let K be a field. We will assume ¢ € K* is not a root of unity.
For n € Z we write

" —q"
q—qt

for the corresponding g-number. For n € N we set

= H[k]q
k=1

[n], = — gl S g

and in addition we define [0],! = 1.
The ¢-binomial coefficients are defined by

1] il 1

=1 for all n € Z and [n] =0
m

for n € Z and m € N. In addition we declare {g]
q

q
for m < 0. Note that if n € Ny we have

[n} _ [n]y!
m|,  [n—mg!m]g!
for 0 < m < n. We shall often omit the subscripts ¢ if no confusion is likely.
Lemma 2.1. We have
m | T m—n—1 n _|n +1
R IR

and

for anyn € Z and m € N.

Proof. We calculate

(r B o] o

= ™[] —m 4 2l —m 1]+ ¢ ] [ — m o+ 2][m)]
= (a" n_m+u+¢n"1mnwuwn—m+ﬂ
(et ) ) - m 2
1[n]...[n—m+2]

1} « [m].

=[n+
+

- [nm

This yields the first claim. The second follows by replacing ¢ by ¢~ *. U
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Lemma 2.2. For any n € Ny we have
n .
m 0 ifn>0
and
n .
> =y [n} gmin-n Z 1 =0,
— m 0 ifn>0.
m=0

Proof. For n = 0 or 1 the claim can be checked directly. For n > 2 we compute,
using Lemma [2:1]

>y o] g

S(_qum [nm 1] g ™ + Zi: (—1)mgm {:1_11} g

m=0 m=1
= n—1 = n—1
_ _1\ym, nm - _1\ym n(m-—1) - —
S [mbz_l( R
For n = 1 the claim can be checked directly. The second equation follows by
replacing g by ¢~ 1. O

Consider the special case K = Q(q). It is clear by definition that [n] € Z[q,¢71] C
Q(q). Moreover, from Lemma one obtains by induction that all ¢g-binomial coef-
ficients are contained in Z[q, ¢~ !]. That is, the above formulas, suitably interpreted,
are valid in Z[q, ¢~*]. With this in mind, one can dispense of our initial assumption
that ¢ is not a root of unity.

2.2. The definition of U,(g). In this section we explain the construction of the
quantized universal enveloping algebra of a semisimple Lie algebra.

2.2.1. Semisimple Lie algebras. Let g a semisimple Lie algebra over C of rank N.
We fix a Cartan subalgebra b C g and a set ¥ = {a,...,ay} of simple roots. We
write (, ) for the bilinear form on h* obtained by rescaling the Killing form such
that the shortest root « of g satisfies (o, @) = 2. Moreover we set

di = (o, ;) /2
foralli=1,..., N and let
a) = d; Loy
be the simple coroot corresponding to «;.

Denote by wq,...,wy the fundamental weights of g, satisfying the relations
(@i, ) = dij. We write

N N N
P=Pzw;, Q=7 Q' =Pz},
j=1 Jj=1 j=1

for the weight, root and coroot lattices of g, respectively. Note that Q C P C b*
and that QV identifies with the Z-dual of P under the pairing.

The set P+ of dominant integral weights is the set of all non-negative integer
combinations of the fundamental weights. We also write Q™ for the non-negative
integer combinations of the simple roots.

The Cartan matrix for g is the matrix (a;;)1<; j<n With coefficients

2(041‘, OZj)

aij = (062/700) = (O[ a_) .
iy Qg
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We write W for the Weyl group, that is, the finite group of automorphisms of
P generated by the reflections s; in the hyperplanes orthogonal to the simple roots
a; € AT, namely

si(p) = p— (o), p)ey
for all 4 € P.

Throughout we fix the smallest positive integer L such that the numbers (w;, @;)
take values in $7Z for all 1 <i,j < N, see Section 1 in [68] for the explicit values
of L in all types and more information.

In the sequel we shall also work over more general ground fields K. We will always
keep the notions of weights and roots from the classical case as above. Remark that
associated to the complex semisimple Lie algebra g we can construct a Lie algebra
over K using the Serre presentation of g. We will sometimes work implicitly with
this Lie algebra and, by slight abuse of notation, denote it by g again. This apparent
ambiguity is resolved by observing that the starting point for all constructions in
the sequel is in fact a finite Cartan matrix, rather than a semisimple Lie algebra.

2.2.2. The quantized universal enveloping algebra without Serre relations. For prac-
tical purposes it is convenient to construct the quantized universal enveloping alge-
bra in two steps, mimicking the standard approach to defining Kac-Moody algebras.
In this subsection we present the first step, namely the definition of a Hopf algebra
which will admit the quantized universal enveloping algebra as a quotient.

Let g be a semisimple Lie algebra. We keep the notation introduced above.

Definition 2.3. Let K be a field and ¢ = s* € K* be an invertible element such
that ¢; # £1 for all 1 < i < N where ¢; = ¢%. The algebra U,(g) over K has
generators K for A € P, and F;, F; for i =1,..., N, and the defining relations
Ko=1
Ky\K,, = Ky,

KAEjK)Tl — q(’\’o‘j)EJ—

K\FjK ' =g M) Fy
K, — K !
a—q
for all \,p € P and all 1 <4,j < N. Here we abbreviate K; = K,, for all simple
roots.

[Ei, Fj] = 6;;

Our hypothesis on ¢ mean that we always require ¢> # 1, and in fact ¢* # 1
or ¢ # 1 in the case that g contains a component of type B,,C,,Fy or Gs,
respectively.

Notice that ¢(®"%) = ¢, Therefore we have

KEK'=¢"E;, KFK '=q "F
for all 1 <4,j < N. In particular
K,EK; ' =qE;, K,F,K; ' =q*F,
The algebra U,(g) admits a Hopf algebra structure as follows.

Lemma 2.4. The algebra U,(g) is a Hopf algebra with comultiplication A U,(g) —
Uq(9) @ Ug(g) given by

A(Ku) =K, ® K,
AE)=E®K;+18E
AF)=F o1+ K 'oF,
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counit ¢ : Uy(g) — K given by
€(K>\) =1, é(Ej) =0, é(Fj) =0,
and antipode S : Uq(g) — Uq(g) given by

S(K\)=K_\, S(E)=-EK;',  S(F)=-KF,
Proof. These are straightforward calculations. In order to verify that A extends to
a homomorphism as stated we compute, for instance,
AE:),A(F)] = B0 Ki+1® E;, F; @1+ K; ' @ Fj]
= K; ' ®[E;, Fj] + [Bi, Fj] ® K;
5i

= — AU - K.
qi — q;
To see that S defines an antihomomorphism we check for instance
. Sy 4 )
S(Ei, Fyj)) = —L=S(K; — K; )
qi — 4q;
dij _
= 73_1([(2 't K;)
qi — 4q;

= K;FEK ' — KB F; K
= K,F;E;K;' — E;K; 'K, F;
= [-K;Fj, —EiK; '] = [S(F;), 5(E)].
The Hopf algebra axioms are easily verified on generators. O
Throughout we will use the Sweedler notation
A(X) = Xy @ Xeo)
for the coproduct of X € U,(g).
The following fact is frequently useful.
Lemma 2.5. There exists an algebra automorphism w : U,(g) — U,(g) given by
w(Ky) =K_x,  w(Ej)=F;, w{;)=E
on generators. Moreover w is a coalgebra antihomomorphism.

Proof. Tt is straightforward to verify that the defining relations of ﬁq(g) are pre-
served by the above assignment. For the coalgebra antihomomorphism property
notice that

oAW(E;) =F;® K;' +10 F; = (w @ w)(A(E)))
for all j =1,..., N. Here o denotes the flip map. ]

Note that, as a consequence of Lemma we have wo S = S~1 o w. 3
Let us record the following explicit formulas for certain coproducts in Uy(g).

Lemma 2.6. We have

A i(r—i) [T i r—i 71
=Y i [} Beonx
=0 q;
AF) =Yg H FI7K; @ F}
.

forallreNandj=1,...,N.



24 CHRISTIAN VOIGT AND ROBERT YUNCKEN

Proof. We use induction on r. The claim for A(Ejl) = A(EJ) is clear. Assume the
formula for A(E;") is proved for r € N. Using Lemma we compute
A(ET*) = A(E)A(E))
- i(r—i) [T i —i 7
= (B @K +10E) > q >H Ei® B K]
=0 q
. r—i) i(r—i) |T i r—i i i(r—i) |T i r+1—i i
=3 (‘132'( U H B @ EjTK 4 g H Ej @ E;* K§>
=0 4 45
r+1 r
_ 2(r41-4) (i—1)(r+1—i) i r1—i g
=>4 4 [Z _ 1} Ej@ BT K
@

=1 J

-

i(r—i) |7 i r+1—i i

+> 4] H E;@E; " K;
i=0 q;

J

J

1 ( ylr+1

_ i(r+1—i i r+1—i -
= q; [ ; ] Ej & Ej Kj.
i=0 q;

J

The formula for A(F; ) is proved in a similar way, or by applying the automorphism

w from Lemma 2.5 to the first formula. O
Let
N 1
SR
i=1 acEAT
be the half-sum of all positive roots. Note that for all 1 <7 < N, we have
(P, O‘;/) =1, (pa ai) =d;.

Lemma 2.7. For all X € U,(g) we have
S*(X) = K3, XK _o,.
Proof. This is easily checked on generators. O

In particular, the antipode S is invertible, so that U,(g) is a regular Hopf algebra,
compare the remarks after Theorem The inverse of S is given on generators by

STHKN) =K_x, S7(Ej)=-K;'E;, S'(F;)=-FK;.

Let Uy, (n,) be the subalgebra of U,(g) generated by the elements Ej, ..., Ey,
and let U,(n_) be the subalgebra generated by Fi, ..., Fy. Moreover we let U, (h)
be the subalgebra generated by the elements Ky for A € P. We write U, (b, ) for the
subalgebra of U, (g) generated by Ey, ..., Ey and all Ky for A € P, and similarly
we write Uq(b,) for the subalgebra generated by the elements Fi,..., F, K for
A € P. The algebras U, (h) and U, (b) are Hopf subalgebras. It is often convenient
to use the automorphism w from Lemma to transport results for U,(n;) and
U,(by) to Uy(n_) and U,(b_), and vice versa.

Proposition 2.8. Multiplication in ﬁq(g) induces a linear isomorphism

Ug(n—) @ Ug(h) ® Ug(ny) = Uy(g)-
Proof. In order to prove the claim it suffices to show that the elements F; K, E;, for
Fr=F, - ---F,,F;=Fj; - Ej finite sequences of simple root vectors and p € P,
form a linear basis of U,(g). This in turn is an easy consequence of the Diamond

Lemma [12]. Indeed, from the definition of U,(g) we see that there are only overlap
ambiguities, and all of these turn out to be resolvable. U

k>
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In a similar way we obtain linear isomorphisms

Uyne) ® Uq(b) = Uq(bj:)Q

moreover Uq(h) identifies with the group algebra of P, whereas Uq (n4) is isomorphic
to the free algebra generated by the E; or F}, respectively.

The algebra Uq(g) is equipped with a Q-grading such that the generators K
have degree 0, the elements E; degree «;, and the elements F; degree —«;. We shall
also refer to the degree of a homogeneous element with respect to this grading as
its weight, and denote by U,(g)s C U, (g) the subspace of all elements of weight 3.
The weight grading induces a direct sum decomposition

ﬁq(g) = @ ﬁq(g)ﬁ

BeQ

of U,(g). Notice that Uy(9)aU,(8)s C Uy(8)asps for all a, 8 € Q.

If ¢ € K* is not a root of unity we can describe the weight grading equivalently
in terms of the adjoint action. More precisely, we have that X € U,(g) is of weight
Aiff

ad(K,)(X) = K, XK, ' = ¢"MX
for all 4 € P.

As for any Hopf algebra, we may consider the adjoint action of Uq(g) on itself,
given by

ad(X)(Y) =X =Y = X)Y S(X(2))
Explicitly, we obtain
E; =Y =YS(E))+ E;YS(K;) = -YE;K; ' + E;YK; ' = [E;, YK !
F; =Y =K 'YS(F;) + F;}Y = —-K; 'YK;F; + F}Y
Ky =Y = K\YS(K)) = K,)YK, !

forall1<j < N and X € P. }
We shall occasionally also consider the right adjoint action of U,(g) on itself,
given by

Y X =5(X0)Y X
These actions are linked via
WX 2 Y) =w(Y) « 57 (w(X)),
where w is the automorphism from Lemma [2.5]

Lemma 2.9. We have
r N ri_—(r—i)(r=1) |T iy pr—i gt
Ef Y =Y (-1)""q M EYYET'K;
=0 i

aj

T _ - i d(r=1) |7 T—i pr—iyy g i
Ff =Y =) (~-1)'q H FI 'K 'YKIF]
i=0 a5

J

for all r € N.
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Proof. We apply Lemma [2.6] to obtain
r 1(7“ l) T_ 7 r—1 171
Ef Y = Z . EIYS(E; 'K}

1=0 - - 45

i(r—i) [T r—i i —1 —1\r—i
Z T () B KB K

i
L -q]
1(T i [7] r—i —(r—i)(r—i—1)—2i(r—i) pix, pr—i —r
- 45 i (=1) ij E}YEJ- Kj
=0 - - 4qj

— 7‘ % —(7” i)(r—1) i r—i g o—1
Z H EYYE 7K.
q

)

Similarly,
r d i(r—i) [T —i —iv O i
Fl =Yy =Y q"" H FIT'K; 'Y S(F))
; 4
_ - i(r—i) |T i (i=1)i pr—i g -—i i i
—qu H (=D'q; " F K Y KGF]
q;
z i(r—1) r—1 77—t 8 nll
—Z H Fj KUY KGE.
4
This yields the claim. (]

2.2.3. The Serre elements. For the construction of U,(g) we shall be interested in
the Serre elements of U,(g), defined by

1—0.1_7‘

1—a;; 1—ai;—k
k 7, ij k
uf = Z (-1) [ . J} E; E,E;
k=0 qi
1-ay; 1
_ k — Q44 l—a;;—k k
up =Yy (-1) [ . ”} F, F,F},
k=0 qi
for 1 <i4,5 < N with i # j. We note that
_ 170@_7' ~N— 170@_7'
u; =F, " = Fy, uf =By« STHE;T")

due to Lemma Note also that w(u;;) = uy;.
Proposition 2.10. We have
Al = o F 1-aij - +
Alug) =uj; @1+ K, UK @ uy,
and
S(uf) - _ fK?“J‘lel
. 1 .
S(uzj):_K aJKJ zj
forall1 <4,5 < N withi # j.

Proof. Let us prove the first claim for u;, following Lemma 4.10 in [39]. We note

that

’L]’

1—aij

Aug) = 3 (e |1 AEAEDAET

k=0

[
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and by Lemma [2.6] we have

r—1
AE)=E @Kl +10E + Y ¢""™ m E™® E""K".
m=1 q

It follows that A(u;;) has the form

1—a73j

Awf) =uf; @ K"K +10uf+ > E"®Xpm+ Y El'EE! @ Yo,
m=1 m,n
for suitable elements X}, Y, where the second sum is over all m,n > 0 such that
m + n S 1-— a'ij-
We shall show that all X and Yj; are zero. Collecting terms in the binomial
expansions we obtain

l—ai;j—n
Yo = 3 (1)1 7ouh {1 —kaij] g
k=m qi
-k- —m m (1— ij—k— ) 1_012_]6 l—a;j—k— n
X m Ef KZ quzn aij n |: n] :| E,L' Ajj TLKl )
- qi
‘We have
r kKl [r—Fk| _ [r]'[E]!r — K]
k oM, Lno [k m)![n)![r — E]I[k — m]![r — k — n]!
_ [r]!
— m)![n)' [k — m)![r — k — n]!
_ [r —m —n)lr —n]!r]!
[k —m]!m)![n)[r — k — n]![r —m —n][r —n]!
_|r=m-—n r—mn r
| k—m m n|
qi qi qi
This shows
Yon = (_1)17111-1' Y |:1 — C’Lr:; — n] |:1 —n(lij:| Eil—ai,j—m—nKim+nKj
qi qi
where
1 aijj;—n
o Nk 1-— Qi —M—N m(k—m)+(n+2m+a;;)(1—a;;—k—n)
Ymn = Z ( 1) |: E—m qu

_ (_1)mqin+2m+aij)(1*aij*m*’ﬂ)
l—a;;—m—n 1
l — Qi — M —"n (1-ag;—m—n)l |
x Z (=1) { I ] 4q; q =0

=0

according to Lemma
For X,, we get

170@_7'

ik |1 = aij —1) |k k1
D e e B I ST H e
q qi

k=0 i

% ql(mfl)(lfaijfkferl) |:1 *T:Zl* k:| EilfaijfkferlKZm_l,
q

i
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where [ runs over max(0,m + k + a;; — 1) <1 < min(k,m). We get

17(11‘_7‘777’7.
Xm — (_1>1—a1;j Z amsEijEiliaij *mszm

7
s=0

where
= 1—ay] [K] [l—ay—k
_ _1\k — Uiy — W45 —
“ms—z( ) [ k ]L}{m—l—s—k}
k=s qi qi qi
% qgk—s)s+(m+s—k)(l—a7¢j—m—s)+a7;j(k—s)+2(k—s)(1—aij—m—s).
Using

r k r—k _ [r)'[K]!r — K]
[kLi [SLi {m-%-S—kLi —[K)s]Vm + s — KV r — KNk — s]lr — m — s]!
[r]!
[s]![m + s — k]l[k — s]![r — m — s]!
_ [r![r — m]![m]!
[(m]![s]'[k — s]![r — m]![r —m — s]l[m + s — k]!

MRS RAAR

this simplifies to

Ay (1—a;;] [1—a m|] [ m ]
ms = Z( 1) m s k—s
k=s - 4q; b 4q; b <44
% q(kfs)s+(m+sfk)(17aij7mfs)+aij(kfs)+2(krfs)(17aij7177,75)
o %ﬁ(_l)k _]. — aij_ _]. — Q45 — m_ [ m 1
o m s k—s
k=s - -4 - -4qi - - qi
v q(k—s)s-&—(m-‘rk—s)(l—aij—m—s)—i—aij(k—s)
_ 1-— ;5 1-— Qi — M ﬂfr:s(_l)k m qm(l—aij—m—s)+(k—s)(1—m)
m s k—s v
qi 9i k=s qi
_ (_1\s,m(l=a;;—m=—s) 1- Qi 1- Qi35 — M - L |m l(1-m) _
- ()¢ I o ] g0 —o,
qi qi =0 qi

taking into account Lemma

The claim for the coproduct of u,; is obtained by applying the automorphism w
from Lemma 2.5

The remaining assertions follow from the formulas for A(ui) and the antipode
relations. (]

Lemma 2.11. For any 1 <k < N and r € N we have

X — 1 _
[Ey, F)) = [l Fy ' ——— (q,
qr — qg

(Tfl)Kk _ q]:flkal).
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Proof. For r =1 the formula clearly holds. Assuming the claim for r, we compute

[Ex,F{ Y = [Ey, F{|Fy, + F{[Ey, Fx)

— 1 —(r— 1 — 1
= [ Fy ' ———(q k(r UKk*qk 'K OWF+ F———— (K — K1)
gk — 4, Qk — gy
1 ” - _ 1
= ————[r]g. Fy (g, AR GV K+ Fl——— (K — K )
dr — g qr — qg
1 r— T T T r _
:771(% + 4y St g +1)F( (+1)Kk_qk+1Kk D)
qr — qg
+ Ff (K, — K1)
Qk_qk
T -7\ T 1 —r rro—
Z(C]k“qu 2+"'+qk )Fki_l(qk ch_QkKkl)
qr — qg
' 1 -7 r —
= [T+1]Qka7—1(qk Ky — g, K 1)~
dk — qg
This finishes the proof. O

Lemma 2.12. For1<4,j < N and i # j we have
[Ek,ui_j] =0= [Fk,uj'j]
forallk=1,... N.

Proof. Let us verify [Ey,u;;] = 0. If k # 4, j then the elements Ej commute with
F;, Fy, so that the assertion is obvious. Assume now k = i. Note that

[Ek,ui_j] = ad(Ek)(uZ—_j)Kk,
so it suffices to show ad(Ey)(uy;) = 0. As observed at the beginning of this sub-

section, we have ad(Fkl*a’”')(Fj) = u;;. Combining this relation with Lemma m
we obtain

ad(Ek)(uk]) ad(Fy)a ( 1 ak7)(Fj)
ad(E, " )ad(Ey)(F)) + ad([Ey, F,~“™])(F))
ad(F! - akj)ad(Ek)(Fj)

. (F

[1 — ak;lq,ad _akj) (qkk] ad(Ky) — g, akjad(Kk_l))(Fj)
-0,

by using [Ey, Fj] = 0 and ad(Ky)(F;) = g, "™ F;.
Now let k = j. Then [Ey, F;] = 0 and K F; = ¢;"* F; K}, so that

1—aix
_ 170,1' —ai—
(Bru] = Z(—nl[ | meim, R
q

=0 i
_ Z [1 - azk] Flmenl(K, — KY)F!
Qk - qk qi
1— azk
qk - qk; 1=0 qi
by Lemma [2.2]

Finally, the equality [F, u:;] = 0 follows by applying the automorphism w from
Lemma O
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2.2.4. The quantized universal enveloping algebra. Let us now give the definition of
the quantized universal enveloping algebra of g. We fix a ground field K.

Definition 2.13. Let K be a field and ¢ = s € K* be an invertible element such
that ¢; # £1 for all 4. The algebra U,(g) over K has generators K for A € P, and
E;, F;fori=1,...,N, and the defining relations for U,(g) are
Ko=1
KK, = Ky,
K\EjK' = ¢M)E;
K\FjK ' =g M) Ry
K, — K !
[Ei, ] = 6 ——
qi — 4q;
for all A\, € P and all 4, j, together with the quantum Serre relations
1—(l7,j 1
k=0 qi
1—aqjj 1
(-1 { _ka”} F" T R R = 0.
k=0 qi
In the above formulas we abbreviate K; = K, for all simple roots, and we use the
notation ¢; = ¢%.

One often finds a slightly different version of the quantized universal enveloping
algebra in the literature, only containing elements K for A € Q. For our purposes
it will be crucial to work with the algebra as in Definition

It follows from Lemma and Proposition that U,(g) is a Hopf algebra

with comultiplication A : Uy(g9) — Uy(g) ® Uy(g) given by

counit € : U,(g) — K given by
é(Ky) =1, é(E;) =0, é(F;) =0,
and antipode S : Uqy(g) — Uq(g) given by
S(Kx)=K_, S(Ej)=-EK;'  S(F)=-K;F,
Throughout the text we will use the Sweedler notation
AX) = Xy ® Xo)

for the coproduct of X € U,(g).

Let Uy(ny) be the subalgebra of U,(g) generated by the elements Ei,..., Ey,
and let Uy(n_) be the subalgebra generated by F1, ..., Fn. Moreover we let Uy(h)
be the subalgebra generated by the elements K for A € P.

Proposition 2.14. Multiplication in Uy(g) induces a linear isomorphism
Ug(n-) @ Ug(h) ® Ug(ny) = Uy(g),

the quantum analogue of the triangular decomposition.
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Proof. Let us write I for the ideal in Uq(n+) generated by the elements ujj We
claim that under the isomorphism of Proposition the ideal in U,(g) generated
by the uj; identifies with ﬁq(n_) ® ﬁq(b) ® IT. The left ideal property is obvious,
and the right ideal property follows using Lemma An analogous claim holds
for the ideal I~ in U,(n_) generated by the elements Uy

It follows that

I=1" U, h) @Uy(ny) +Uyn_) @ Uy(h) @ I*
is an ideal in U,(g), and the quotient algebra U,(g)/I is canonically isomorphic to

Uq(g). The assertion now follows from Proposition Note in particular that we
obtain a canonical isomorphism Uy () = U, (h). O

We write U, (b4) for the subalgebra of U,(g) generated by Ei,...,Eyx and all
K for A € P, and similarly we write U,(b_) for the subalgebra generated by the
elements FY, ..., Fy, Ky for A € P. These algebras are Hopf subalgebras. It follows
from Propositionthat these algebras, as well as the algebras U, (n+) and Uy (b),
are canonically isomorphic to the universal algebras with the appropriate generators
and relations from Definition 213

As a consequence of Proposition we obtain linear isomorphisms

Uyg(h) @ Ug(ng) = Uy(by).

Also note that U, (h) is isomorphic to the group algebra of P.

We observe that the automorphism w : U,(g) — U,(g) from Lemma induces
an algebra automorphism of Uy(g), which we will again denote by w. This auto-
morphism allows us to interchange the upper and lower triangular parts of Ug,(g).
We state this explicitly in the following Lemma.

Lemma 2.15. There exists an algebra automorphism w : Uy(g) — Uq(g) given by
w(Ky) =K_x,  w(E)=F;, w(F)=E,

on generators. Moreover w is a coalgebra antihomomorphism.

Similarly, there exists an algebra anti-automorphism € : Uy(g) — Uy(g) given by
QKN =Ky, QUEj) =F;,  QF) =Ej

on generators.

Proof. 1t is straightforward to verify that the defining relations of U,(g) are pre-
served by these assignments. O

We note that the automorphism w can be used to translate formulas which
depend on our convention for the comultiplication of U,(g) to the convention using
the coopposite comultiplication.

Let us introduce another symmetry of U,(g).

Lemma 2.16. There is a unique algebra antiautomorphism 7 : Uy(g) — Uq(g) such
that

T(Ej) = K;F;,  7(Fy) = E;K; ', 7(K)) = Ky
for j =1,...,N and A\ € P. Moreover 7 is involutive, that is T
coalgebra homomorphism.

2 =1id, and a

Proof. Observe first that all of the Hopf algebra relations of U,(g) are preserved by
the transformation

Ei'—)—Ei, Fi'—)—Fi, KA'—)K)\,
so that these generate an involutive Hopf algebra automorphism of U,(g). Now 7
agrees on generators with the composition of this map with the involution .S o w,
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which is an algebra anti-automorphism and coalgebra automorphism. The result
follows. 0

In the same way as for Uq(g) one obtains a Q-grading on Uy(g) such that the
generators K, have degree 0, the elements F; degree «;, and the elements F; degree
—a;. The degree of a homogeneous element with respect to this grading will again
be referred to as its weight, and we write Uy(g)s C Uy(g) for the subspace of all
elements of weight 5. The weight grading induces a direct sum decomposition

Uy(9) = €D Ua(0)s

BeEQ

of Uy(g), and we have Uq(9)aUq(9)s C Ug(8)as for all a, 5 € Q.
If ¢ € K* is not a root of unity the weight grading is determined by the adjoint
action of U,(g) on itself in the same way as for U,(g).

2.2.5. The restricted integral form. Instead of working over a field K, it is sometimes
necessary to consider more general coefficient rings.

Let us fix a semisimple Lie algebra g and put ¢ = s* € Q(s). We consider the
ring A = Z[s,s7!] € Q(s). With this notation in place, we define the restricted
integral form of the quantized universal enveloping algebra, compare [56].

Definition 2.17. The restricted integral form U;‘(g) of Uy(g) is the A-subalgebra
of the quantized universal enveloping algebra U,(g) over Q(s) generated by the
elements K for A € P and

K, — K *
[Ki;0] = ——5
qi — g,
fori=1,..., N, together with the divided powers
1

ET —

1
O L
[r]g:!

[r]g;!
fori=1,...,N.

Let us show that U;‘(g) is a Hopf algebra over the commutative ring A in a
natural way.

Lemma 2.18. The comultiplication, counit and antipode of Uy(g) induce on U,;“(g)
the structure of a Hopf algebra over A.

Proof. Let us verify that the formulas for the coproducts of all generators of U, (;4 (9)
make sense as elements in U;‘(g) ®aU. 54(9). For the generators K this is obvious.
Moreover we observe

A([K;0]) = [K;0] @ K; + K @ [K;30].
According to Lemma [2.6] we have

AL NS ) o 0) o p(r—i) g
AE) =) 6 VEY 9 B)VK]
1=0

A = SR K o
i=0
for all 7, so the assertion also holds for the divided powers.
It is clear that the antipode and counit of U,(g) induce corresponding maps on

the level of U;‘(g). The Hopf algebra axioms are verified in the same way as in
Lemma 2.4 O
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We next define the bar involution of U,;‘t(g). The field automorphism 3 of Q(s)

determined by 3(s) = s~! restricts to a ring automorphism of A. This extends to
U(;“(g) as follows.

Lemma 2.19. The quantized universal enveloping algebra Uy(g) over Q(s) admits
an automorphism 8 : U,(g) — U,(g) of Q-algebras such that B(s) = s~ and

B(K,) = K_,, B(E;) = E;, B(F;) = F;
forallp € P and 1 <i < N. This restricts to an automorphism of U,;“(g),

Proof. We can view Uy(g) as a Q(s)-algebra using the scalar action ce X = (c)X
for ¢ € Q(s). Let us write Uy(g)? for the resulting Q(s)-algebra. Sending K|, to
K_,, and fixing the generators E;, F; determines a homomorphism U,(g) — U,(g)”
of Q(s)-algebras. By slight abuse of notation we can view this as the desired
automorphism S : Uy(g) — U,(g) of Q-algebras.

The fact that  restricts to U;‘(g) follows directly from the definition of the
integral form. O

In the literature, the bar involution 8 of U,(g) is usually denoted by a bar. We
shall write 3(X) instead of X for X € U,(g) in order to avoid confusion with
s-structures later on. Note that 5 : Uy(g) = U,(g) is not a Hopf algebra automor-
phism.

Forl € Z and 1 < i < N we will use the notation

¢ K —q 'K

?

[Klvl]th = [Kﬂl] = 1
qi — 4;

)

and for any m € Ny we define

m

[Ki; l} K g (Kl =1, Kl —m 1], ﬁ qé‘H_jKi — q;(Hlﬂl)I(i_1
qi [m]ql' j=1 qzj' - q;]
where, as usual, we interpret this as 1 when m = 0. Note that

Ki;l
|: 1 :l :[Klal}(h
qi

These expressions should be considered as elements in U,(g). We will see in Propo-
sition that they in fact belong to the restricted integral form U(;“(g).

Lemma 2.20. Let m € Ng,l € Z and 1 < i < N. Then the following relations
hold.

a) We have

~m+y) | Kl | 1 | Kil—1
% {m—i—lLvK” 4 { m

) m+1 “

Kl K;;l—1 K;;l—1
m—+1 [z _ l [z [z
4q; |:m_|_1:|q‘—qu1|: m :|q+|:m+1:|q

b) If 1 > 0 then
Kl :Em:q{(m—j) ! K K;;0
m |, = J bom =g,
4 7=0 qi

qi

and

¢) If 1 < 0 then

m .
{Kﬁ l:l _ (_1)jqi(j*m) |:l +ﬁ7 — 1:| KZJ |:Ki§ 0':| .
mo].. — J . m-=171,.
i 7=0 qi qi

9
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Proof. a) To verify the first equation we use induction on m. For m = 0 one
computes

o [Kpl] a 'K —q TR
q; 1 - —1
a q; — ¢,
_ —(=1) e _ T
_ @K — g ( )K,- " g g — g DK
g —aq; "
-1 —(-1) p—1
K. —q. K
R
qi — 4q;

— — Ki;l—l Ki;l—l
- [ [
q q

as desired. Assume that the assertion is proved for m — 1 > 0 and compute

i

(1) |: Kz,l ] o |:K“ l:| qé—m—lKl_ . qi_(l_m+1)Ki_l
qi qi

T m —(m+1
m+1 m qi+1_qi(+)
ey e L I g K =g VRS
% 1 m—1 m m+1 —(m+1)
q 4 q; 4;
i 7 m—1 @ quJrl . q;(erl)
. [Ki;l - 1} g UK g TR [Ki;l - 1}
m —(m+1
m qi qi+1*qi(+) m+1 qi
1 g [Kl—1 g ! _ gt — gt
:K41q4l|:17 :| ( Z, (qzm_q'm)_’_ [ 71
C m i qrﬂ—qi( = ' qzn+1_Q’L'( )
+ K“l —1
m+1
qi
K;;l—-1 K;;l—-1
_ -1 _—1 (2l 'z
Kiqi{ m }.+[m+1]q.

This yields the first equality. Applying the automorphism S to this equality yields

the second claim, where we note that the terms [KT;L’ Z} are fixed under 3 for all
4

l € Z and m € Ny.

b) We use induction on [. Assume without loss of generality that m > 0. For
I = 0 the assertion clearly holds. To check the inductive step we use a) and the
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inductive hypothesis to calculate

|:Ki§l+ 1} _ Kt |:K’i§l } g |:Ki§l:|
m
qi qi qi

m —1 m

m—1
— KfqurL—l—l Z qll(m—l—j) l K»_j K;;0
i g . i j i m—1—j

Jj=0 ai qi

[l i | K
S [] w159
qi qi

-1 m—j) [ 1 —j | Ki;0
e zq _j_l]qz_fq [m_jqi

_l —j KZ‘;O
+ql”qu(m 7 j} K7 {m_j]
qi qi

Z (I+1)(m—j) [{+1 K K;;0
J “ m=J Qi’

7=0

taking into account Lemma [2.1] in the last step.
¢) We first show

H qz K; Kz_ _i( ) -(- mKJ H ql kK _qii(lik)Ki_l
P4 i

k
b g " =0 af — q;

by induction on m. For m = 0 this relation clearly holds. If it holds for m > 0 then
using the inductive hypothesis we get

m+1 _ — m+1 _fk — m+1 1 k —(1—k) z—
I e I e |
k=1 qz qz k=1 qz - qz k=1 q; — 4,
o KK qu —qu '
? m-+ —(m+1
a; ( = k=1 qz 7qz
m+1 —(1—-k — - 1 m —
= gmtt H ql kK ( )K + (qi o )Ki — 4 +1Ki !
T m —(m—+1
q_qi qi+1_qi(+)
m+1 m+17-—1 m 1-k (1 k) 1
7qi+Ki_qi+Ki Z( ) —(J m)KJHq K K
m+1 _ —(m+1) fk
q; q; §=0 — 4
m—+1 —(1—k _
—q +11_[q1 kK*qi( )Ki1
' ¢ —q "
| 1—k (1—k) _
. K; — K:
’KZZ —U- m)Kqu L
7, qi
m—+1 k 1—k —
— m+1 H ql K ( )K
qi _qi
m+1 m+1—j 1 k —(1 k) p-—
m— K; — K;
Ry L
k=1 af —a; "
m+1 m+1l—j 1 FE, — (1 k)K 1

DG Vil i |

=0 k=1 qi - qi
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as desired.
Let us now prove the assertion. For [ = —1 we obtain

[K — } _ﬁq;kK —qZK !
k=1 9 _qz
m k (1 k)
:Z( Yq —(J m) K7 H ql Ki— K
=0 af —q; "

Ms

( 1)jq;(j*m)Kij l:Ki§O.:|
m—7 q

<.
Il
=)

using the above calculation. Assume now that the claim holds for some [ < 0 and
all m € Nyg. For [ —1 and m = 0 the assertion clearly holds too. Using induction
on m and applying the second formula from a) we get

[Ki;ll] :qm[m;z} kg {Kﬁl }
m g m 1
i q qi

N Gy [l =1 [ K0
_ . m 1)l )|: : :| Kg|: is ]
"y (-1 i), Myl

K lmfl joA=1)G—m+1) | =L+ ] il K0
qi qi

[ K.-0
K|
’ |:m_']]117‘,

z_m i D Gem) [l 1 j | Kis0
+qZZ( 1) 4q; |: j—l q'Ki m—j o

j=1
=3 (—1igl e {‘H‘J] [KO}
=0 71 m=J
as claimed, again taking into account Lemma [2.1] a

We collect some more formulas.

Lemma 2.21. Assume m € N and n € Ng. Then we have

i(*l)qu(n_ﬂ m+j—1 KJ K;;0 K;;0 _ K;;0 Ki;—m
; ! J lmo| n—J], m | n
q qi qi qi q

i

foralli=1,... N.
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Proof. The first equality follows from Lemma ¢). For the second equality we

compute

S,
m n
qi qi

_ ﬁ qil—jKi . qi—(l—J)Ki—l ﬁ qi—m+1—kKi . qi_(_erl_k)Ki_l

- k —k
=1 @ —q;’ i1 4 =g
1—j —(1—§) 7 — + _ —(1—Fk) p—
_ﬁqz‘ K- g TR 0 G =g Y R
o g k— —(k—
j=1 4G —q’ e (h=m

as desired. O

Lemma 2.22. Given anyl € Z,m € Ny we have

[Ki;l] EW — g [Ki;l —&—271
qi qi

m m
[Ki;l} FO o [Ki;l - 27“:|
m m
qi i
for all r € Ny.
Proof. We compute
m +1 TR, _ f(l+1 j)K—l
[anz’ q B =% > . =7 —E"
qi j=1 4G — 4
m l4+1—j+42r —(l+1—j+2r —
ol | Ki—q TR
b 0 —aq;’
_ Ei(r) {Ki;l—k 27"}
m
4
as desired. The proof of the second formula is analogous. O

According to Lemma We have
(B, F{™] = [m]tiim_l[KiE 1 —mlg,
for m > 1. This can also be written in the form
(B:, ™) = F VKL=
Let us record a more general commutation relation.
Proposition 2.23. We have

BRSO = Y g |:Ki§7£ — s]
r,s>t>0 qi

- 3 B [Ki§2t N r— 8} el
r,s>t>0 qi

for all r,s € Np.
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Proof. Let us verify the first equality. For »r = 0 and s € Ny arbitrary the for-
mula clearly holds. For r = 1 and s € Ny arbitrary the formula follows from the
computation just before the proposition.

Assume that the equality is true for some r» > 1 and all s € Ny. Then we compute

1
E§T+1)Fi(3) — EZ‘(T)EiFi(S)
[r +1lg:
1 . _ ' X
= (BVFCVK ;1 - o)+ EVFYE)
[r+1]g:
1 s—1— r— iy —
_ 1 Y Ep t)[K rts+1] (K1 — 5]
[+ ]qi r,s—1>t>0 qi
1 _ B P
oo 2 RUUETY {K“T 5] E;
[T. + 1]% r,s>t>0 ¢ qi
1 s—1— r— T —
= 1 Z Fi( ' t)Ei( ) [K,rts—&—l} [Ki;1— ]
[+ 1, r1,s>t4+1>1 qi
1 _ _ I
bt ST 1= g FETOETY {K“r . 8+2]
[r+1]q, ra>t>0 @i
1 _ _ e
= Y ETE [K”Q_ o 1] K1 — ]
[r+1q, rls>t>1 ai
1 s— r1—t) | K r — 2
b X - Egrne [Kertes?)
[r+ 1q, P4 1,530 a
using Lemma [2.:22] Therefore it suffices to show
Kijr—s+1 Kol — s+ r+1— 1], Kijr—s+2
t—1 ‘ t
qi qi
Kisr+1-
=[r+1], { T—it_ S}
ai

for r, s >t > 1; note that the contribution corresponding to ¢t = 0 is covered by the
second term in the previous expression.
We compute the left-hand side,

Ki:r— 1 Ki;r— 2
R I e e e
qi qi
Kiyyr—s+1]... |[Kijr—s—t+3
-1 ] [t][u ]([t]qi[Ki;l—3]+[T+1—t}qi[Ki§7"—S+2])
qi*

The expression in parentheses here is

([tg [Ks;1 = 8]+ [r + 1 —t]g,[Ki;r — s +2])
= <(qf — a4 )a K =g VR

F (@t =g T (K, qZ(T_SH)K{l))

T (qi—q; )2

r —(r+1 r—s+2— —(r—s+2—t —
- m(%ﬂ — 4 ( ))(%‘ TR g ( )Kz' D)

=[r+1]g[Kisr—s+2—t,

— 1 ((q?r+3—t—s _ qi—t-i-l—S)Ki + (qi—2r—3+t+s _ q;_t—l-l-s)Ki—l)
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which yields the claim.
The second equality follows from Lemma [2:22] O

We denote by U;‘(mr) the subalgebra of U(;“(g) generated by the divided powers
EYl), . .,E](\?N) with ¢; € Ny, and let U;'(n_) be the subalgebra generated by

the corresponding divided powers Fl(tl), .. F I(JN ). Moreover we let U;‘(h) be the
intersection of U,;“(g) with Uy, (h).

The algebras U;‘(ni) will be studied in greater detail later on. Here we shall
determine the structure of Ué“(h), see Theorem 6.7 in [56].

Proposition 2.24. The algebra U;‘(f)) is free as an A-module, with basis given by

all elements of the form
N
] Ki;O
vl

i=1
where s; € {0,1}, m; € Ny and X belongs to a set of representatives of the cosets of
Q in P.

Proof. Let us first show by induction on m that U,;‘l(h) contains all elements

[Krg l} for I € Z and m € Ny. The assertion clearly holds for m = 0. As-
qi

sume that it holds for some m > 0. Then Proposition applied tor =s=m+1

and induction shows that [75101] is contained in U, f(h). Finally, parts b) and c)
qi

of Lemma [2.20[ and induction allow us to conclude that {n{jill] is in U(;“(h) for

k3

all positive and negative integers [, respectively.
For A € Pands = (s1,...,sy) € ZY, m = (my,...,my) € N let us abbreviate

qi

m;

N
K\ sm) = K, [ £ [
=1

According to the definition of U, 54([7) and our above considerations, these elements
are all contained in U;A(h).

Let us write H for the A-linear span of all elements of the form K Hfil {Knlz? ‘l’]
tda

with A € P, [; € Z and m; € No. Then H C UA(h). We claim that H is
closed under multiplication. For this, it suffices to consider products of the form

. o
[Kl’q [K;n’,l] with I,I’ € Z, m,m’ € Ng. Using Lemma [2.20, we can re-
q qi

m

duce to the case | = I’ = 0, which follows from Lemma [2.21] by induction on
m’. Next, note that according to Proposition and Lemma the A-module
U (n_)HUZ(ny) is closed under multiplication, and therefore agrees with U;*(g).
This implies H = U;‘(h).

Now fix a set of coset representatives of Q in P, which we will denote temporarily
by R. Let us write L for the A-linear span of all K(\;s,m) with A € R and
s = (s1,-..,8n) € {0,1}¥ m = (mq,...,my) € NY. We will prove that L
contains K (\,t,m) for all A € P, t € Z¥, m € N}y by induction on t. For this, it

is enough to show that L contains vazl K} [KNZO} for all t € Z" and m € N}.
qi

(2

This is trivially true for t € {0,1}" and any m. From the definition of [Ktz,;flm]

i
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we can write

t;
K442 = K, |:Ki7_mi:| n Z b
qi

t;+1
it k=—t;
for some a,b_¢,,...,b, € A, and likewise
ti+1
4 Ki;—m;
ti—1 7 [X] 7 / k
R i I S
@G k=—t+1

for some a',b" ; ,4,...,b},,, € A. Using the second equality from Lemma we
therefore obtain
ti

. K;;0 m; +t;+1 K;;0 K;;0
ti+2 73 _ 7 i . (2] k: (2]
Ki |:mi:|q__a|: ti+1 :|q»KZ|:mi+ti+1:|q‘+ ZkaZ [m7:| ’

k=—t; ‘3
K;;0 Ft+1 K;;0 pay K0
—t;—1 s |y 4 s ! ok s
Ki |: m; :| —a [ ti+1 ] |:mi+ti+1:| + Z kaz [ m; ] ’
q; qi qi k=—t;+1 qi
Performing an induction on t; successively for ¢ = 1,..., N, we see that every

K(\ t,m) is a linear combination of the elements K (\,s,m) with s € {0,1}%.
Taking into account Lemma b),c) we conclude L = H = U;‘(h) as desired.

It remains to show that the elements K(A,s,m) in L are linearly independent
over A. For this it suffices to observe that the elements K (0,s, m) with s € {0,1}¥

and m = (my,...,my) satisfyingm; <mforall j = 1,..., N span the 2 (m+1)"-
dimensional subspace of U,(g) over Q(s) generated by all elements of the form
Ki*--- K\ such that —m < r; <m+1 for all 7. O

It will be shown later on that U, f(g) is indeed an integral form of the quantized
universal enveloping algebra U,(g) over K = Q(s) in the sense that there is a
canonical isomorphism Q(s) ® 4 Ué“(g) = Uy(9).

Using the integral form one can also show that U,(g) tends to the classical
universal enveloping algebra U(g) as ¢ tends to 1. More precisely, let K be a field
and let U1(g) = U7*(g) ®.4 K be the algebra obtained by extension of scalars from
A to K such that s is mapped to 1 € K.

Recall that the classical universal enveloping algebra U(g) of g over K is the
K-algebra with generators F;, F;, H; for 1 <1 < N satisfying

[Hi,H;]=0
[Hi, Ej] = ai; E;
[Hi, Fj] = —ai; Fj
[Ei, Fj] = 0ijH,

for all 1 < 4,5 < N and the Serre relations

17aij

k=0

17(17;1‘ 1

> (D ( _kaij> FrRFT ™ =0
k=0

for i # j.

Proposition 2.25. Let U(g) be the universal enveloping algebra of g. Then there
exists a canonical surjective homomorphism Uy(g) — U(g) of Hopf algebras.
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Proof. Let us write e;, f;, h; for the generators E;, F;, [K;;0] viewed as elements
of Uy(g), and similarly write ky for K. Moreover let I, C U;‘(g) be the ideal
generated by all elements Ky — 1. We claim that Uy(g)/I; is isomorphic to U(g).

For this we need to verify that the generators e;, f;, h; € Uy(g)/I satisfy the
defining relations of U(g). Clearly the elements h; commute among themselves.
We compute

Ki— K Ki— K '
HKwO]»EJ} = ] jl Ej - Ej _ ,/1
qi — q; qi — g;
C(l—gq ")Ki— (1 —¢/")K] !
- -1 Ej
qi — 4q;
= laijlq, By

in U,(g)/1,, and hence deduce [h;,e;] = a;;e; in Ur(g)/I1. Similarly one obtains
[hi, ;] = —aijf;, and the relation [e;, f;] = 0;;h; follows from the definitions.
Finally, to check the Serre relations for the e; and f; it suffices to observe that
quantum binomial coefficients become ordinary binomial coefficients at ¢ = 1.

Hence we obtain an algebra homomorphism ¢ : U (g) — U(g) by sending e;, f;, h;
to E;, F;, H;, respectively. This map is clearly surjective. It induces an isomorphism
Ui(g)/I; — U(g) whose inverse is obtained by using the universal property of U(g).

To check that this map is compatible with coproducts we use Lemma to
calculate

A([K3;0]) = [Ki50] @ 1+ 1® [K;50]

in U,(g)/1,, and the corresponding formulas for A(E;), A(F;) follow from the def-
initions. This yields the claim. O

Let us finally note that the integral form U;‘(g) plays a prominent role in the
construction of canonical bases. More recently, it has appeared in connection with
categorification of quantum groups.

2.3. Verma modules. This section contains some basic definitions and results on
weight modules and Verma modules for U,(g). Throughout, our basic assumption
is that K is a field and ¢ = s© € K* is not a root of unity. At this stage, some
constructions and results work for more general parameters ¢, but our interest is in
the case that ¢ is not a root of unity anyway.

2.3.1. The parameter space hy. The notion of a (non-integral) weight for a rep-
resentation of the quantum enveloping algebra U,(g) is more subtle than in the
classical case. To illustrate this, let us start with the case where the ground field
is K = C and q is a strictly positive real. This will be the main case of interest in
later chapters.

Let h € R* with ¢ = e" and put A = h/27. One says that a vector v in a
representation of U,(g) is a weight vector of weight A € h* = Home(h, C) if it is a
common eigenvector for the action of Uy(h) with

K, v= gy, for all u € P.
Note, however, that the characters
Uq(h) — (C; K}L = q(’\’”)

are not all distinct. Specifically, ¢ = 1 as a function on P whenever \ € %Qv =

ih~1QV. Therefore, the appropriate parameter space for weights is

by =b"/ih Q.
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For more general ground fields K, weights should be understood as algebra char-
acters of the Cartan part U,(h) of U,(g). The set of such characters is an abelian
group with product dual to the coproduct on U,(h), namely for any characters

X1, X2 of Uy(h),
x1x2(K) = (x1 ® x2)(AK), for all K € U,(h).

This character group is isomorphic to Hom(P,K*), upon observing that U, (h) is
the group algebra K[P]. In order to be consistent with the notation when K = C,
we will use a formal g-exponential notation for elements of Hom (P, K*), as follows.

Definition 2.26. The parameter space b is the character group of Uy (h), writ-
ten additively. For an element A € h; we denote the corresponding character of
Uy(h) by xx. The associated elements of Hom(P,K*) will be written as formal
g-exponentials,

P — K%, s g,
so that xx(K,) = ¢ for all y € P.

To justify this notation, let us make some observations according to the proper-
ties of the base field K.

Firstly, consider the case where K is a field satisfying no further assumptions.
Let A € P be an integral weight. Note that (A, ) € +Z for all u € P, so it makes
sense to define a character of U,(h,) by

XA(KH) — q(’\’”) = gLOon)

The map A — x» is a homomorphism of P into the characters of Uy(h), and we
claim that it is injective. Indeed, if A is in the kernel of this map, then we have
¢ =1 for all € P. Since ¢ is not a root of unity, this implies A = 0. Therefore,
we obtain an embedding

P Chb;

which is compatible with the formal g-exponential notation ¢(*#) above.

Occasionally, we will consider the stronger condition that ¢ = s, in which case
we have an embedding %P C by

The other case of interest to us is that the field K is exponential and the param-
eter ¢ is obtained by exponentiating an element h € K. Recall that an exponen-
tial field is a field K of characteristic zero together with a group homomorphism
e® : K — K>, which we will denote by e®(h) = e. We shall assume that g = e” for
some element h € K, and write ¢® for the group homomorphism K — K* given by
qo (SU) = ehz,

In this case we set h* = K ®z P. We can associate to any A € h* the character
X given by

Xa(K,) = g = hom)

Again, the map A — x is a homomorphism from h* to the characters of U,(h),
and therefore induces a homomorphism

h* — by A X,

which is compatible with the formal g-exponential notation. Under the continuing
assumption that g is not a root of unity, the kernel of this map is ker(¢®)QVY, so we
obtain an embedding
b/ ker(¢*)Q" C by.
Of course, the prototypical example of an exponential field is K = C with the
standard exponential function. In this case, ¢* : C — C* is surjective, with kernel
ker(q®) = (27i/h)Z = ih~'7Z. Using the fact that any character of U,(h) is uniquely
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determined by its values on the generators K, for ¢ =1,...,n, one can check that
the map h* — b7 is a surjection, and we have an isomorphism

by = b /ih Q.
In other words, Definition is consistent with our definition of b at the start
of this subsection in the case K = C.

There is an action of the Weyl group W on the quantum weight space b7, induced
by the action on Hom(P,K*). Specifically, if w € W and A € b then wA is defined
by

g = q(A,w“u)

for all © € P. This extends the usual action of W on P C bj.
We can extend the usual ordering on Q to by as follows. Recall that we write
QT for the set of non-negative integer combinations of the simple roots.

Definition 2.27. We define a relation > on b by saying that
A>p if A—peqQr.
Here we are identifying Q* with its image in b;.

Since Q7 is embedded in by, it is a simple matter to check that this is indeed a
partial order.

2.3.2. Weight modules and highest weight modules. Let V be a left module over
Uy(g). For any A € by we define the weight space

Va={veV|K, v=q"uforall u € P}.
A vector v € V is said to have weight A iff v € V).

Definition 2.28. A module V over U,(g) is called a weight module if it is the
direct sum of its weight spaces V) for A € h;. We say that A is a weight of V' if
Vy # 0.

Every submodule of a weight module is again a weight module. This is a conse-
quence of Artin’s Theorem on linear independence of characters.

Definition 2.29. A U,(g)-module V is called integrable if it is a weight module
whose weights all belong to P, and the operators E;, F; are locally nilpotent on V'
forall 1 <i4,5 < N.

Such modules are sometimes referred to as type 1 modules.

Definition 2.30. A vector v in a weight module V is called primitive if
E;,-v=0 foralli=1,...,N.

A module of highest weight A € by is a weight module V' with a primitive cyclic

vector vy € V of weight .

If V' is a weight module such that all weight spaces are finite dimensional, we
define the restricted dual of V' to be the U,(g)-module

VY = @ Hom(13,K),
A€hy
with the left U,(g)-module structure given by
(X)) =f(7(X) -v).
Here 7 is the automorphism from Lemmam It is clear that V'V is again a weight

module with (V) = Hom(Vy,K). Notice that we have a canonical isomorphism
VVV 2 V since 7 is involutive. If 0 — K — M — @Q — 0 is an exact sequence
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of weight modules with finite dimensional weight spaces then the dual sequence
0—QV— MY — KY — 0 is again exact.

2.3.3. The definition of Verma modules. Let us now come to the definition of Verma
modules. Recall that U,(by) denotes the subalgebra of U,(g) generated by the
elements F; and K. The projection

Uy(b4) 2 Uy(h) @ Uy(ny) 9% U, (b)

which kills the generators E; is an algebra morphism, and we can use this to extend
any character x : Uy(hh) — K to a character of Uy(b,) which sends the generators
E; to zero. We write again x for the resulting homomorphism U, (by) — K.

Conversely, every algebra homomorphism U, (b4 ) — K vanishes on the elements
E;, and therefore is determined by a homomorphism U, () — K. In particular, for
each \ € h; we have the character x, of U,(b) determined, as above, by

XA (Ky) = g, for all p € P.

Definition 2.31. The Verma module M ()) associated to A € b is the induced
U,(g)-module

M(X) = Uq(9) ®u,(6,) Ka
where K, denotes the one-dimensional U, (b )-module K with the action induced
from the character x. The vector vy = 1 ® 1 € Uy(g) ®u, (b, ) Kn is called the
highest weight vector of M(\).

By construction, M (A) for A € b, is a highest weight module of highest weight
A, and every other highest weight module of highest weight A is a quotient of M ()).

Using Proposition one checks that M () is free as a U, (n_)-module. More
specifically, the natural map Ug(n_) — M(X) given by Y +— Y - vy sends Uy(n_),
bijectively on to M (X)x—,.

As in the classical case, the Verma module M (\) contains a unique maximal
submodule.

Lemma 2.32. The Verma module M()\) contains a unique maximal proper sub-
module I()\), namely the linear span of all submodules not containing the highest
weight vector vy.

Proof. Since every submodule U of M()) is a weight module, it is a proper sub-
module iff it does not contain the highest weight vector. That is, U is contained
in the sum of all weight spaces different from M (\),. In particular, the sum I()\)
of all proper submodules does not contain vy, which means that I()) is the unique
maximal proper submodule of M (). O

The resulting simple quotient module M (A)/I(\) will be denoted V(A). It is
again a weight module, and all its weight spaces are finite dimensional. We may
therefore form the restricted dual V(M) of V/(\). Note that V()Y is simple for any
A € by because V(A)¥Y = V(A) is simple. Since V(A)Y is again a highest weight
module of highest weight A we conclude V(A)Y = V().

2.4. Characters of U,(g). Unlike the classical case, the quantized enveloping al-
gebras U, (g) admit several one-dimensional representations, with a corresponding
multiplicity for all finite dimensional representations of U,(g). We will only really
be interested in the integrable (type 1) finite dimensional modules, but at certain
points we will need to acknowledge the existence of their non-integrable analogues.

Definition 2.33. We write X, for the set of weights w € by satisfying
¢ = 41, for all a € Q.
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Proposition 2.34. The algebra characters of Uy(g) are in one-to-one correspon-
dence with elements of X,. Specifically, for every w € X, there is an algebra
character X, : Uy(g) — K defined on generators by

Xw(K,u) = q(ww)’ Xw(Ei) = Xw(Fi) =0,
and every algebra character of U,(g) is of this form.

Proof. One can directly check that the formulas for x,, respect the defining relations
of U,(g). Conversely, suppose X is an algebra character of Uy(g). Considering the
restriction of x to Uy(h), there is w € b with x(K,) = ¢“ ) for all u € P. Since

_ q(w»(’ti) _ q—(‘%ai)

0 = [x(E:), x(Fi)]

a—aq'
we have ¢(“»®) = +1 for all i, so w € X4. Finally, from the relation KILEJ-K;1 =

q(ai”‘)Ej and the fact that ¢ is not a root of unity, we deduce that x(F;) =0, and
similarly x(F;) = 0. d

Definition 2.35. We define the extended integral weight lattice by
P,=P+X,.
We also put Pl =P+ + X,

Note that P N X, = {0} by the assumption that ¢ is not a root of unity.

2.5. Finite dimensional representations of U,(sl(2,K)). In this section we dis-
cuss the finite dimensional representation theory of U,(sl(2,K)). We work over a
field K containing the non-root of unity ¢ = s> € K*, and we write s = q% for
simplicity.

When discussing U, (s!(2,K)), we will use the following notation for the genera-
tors. Let a be the unique simple root and w = %a be the fundamental weight. We
write

E =E, F=F, K =K., K=K, =K.
We warn the reader that with this notation one must replace K; with K? when
specializing formulas for Uy(g) in terms of E;, F;, K; to formulas for Uy, (s((2, K)).

We will often identify P with %Z in the sequel, so that w corresponds to % and

« corresponds to 1. Note that K acts on any vector v of weight m € %Z by

K -v=q"v.

It is not hard to check that the formulas

- - ) (3

define a 2-dimensional irreducible representation m : Uy(sl(2,K)) — Mz(K). We

will write V/(4) for this module.
In order to construct further simple modules we shall use the following specific
instance of Lemma 2.1 We recall the notation

quQ _ quK72
q—q!

™

[K?%5m] =

for m € Z.
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Lemma 2.36. In U,(sl(2,K)) we have

(B, F™ =

—[m+ 1 F" (¢ K? = ¢" K%)= [m+ 1 FK?; —m)

for all m € Ny.

Proposition 2.37. Let A € .

a) The Verma module M (X) is simple if and only if X ¢ P}

b) If X € PS, so that X = na + w with n € iNo, w € X, then M(X) has a
unique simple quotient V() of highest weight A\ and dimension 2n + 1. Up
to isomorphism, these are the only finite dimensional simple weight modules of
Uq(s1(2,K)).

c) If X\ € PT then V(\) is integrable, and these are the only simple integrable
U,(s1(2,K))-modules up to isomorphism.

Proof. a) The Verma module M ()) is non-simple if and only if it contains a prim-
itive vector of the form F™+! .y, for some m > 0. According to Lemma this
occurs if and only if ¢~™qM®) — gmg= (M) = 0, or equivalently ¢} ~"® ) = +1.
Putting w = A — mw we have w € X, and so A = mw +w € P;.

b) In the case A = mw+w € P;, the simple quotient is spanned by {F*-vy | i =
0,...m}. Putting m = 2n we obtain the dimension formula. Moreover, any finite
dimensional simple U, (sl(2, K))-module is necessarily a highest weight module, and
so a quotient of some Verma module M ().

¢) Likewise, any simple integrable module is necessarily a highest weight module
with highest weight in P. Since F' must act locally nilpotently, a) implies that
AePT. O

In the sequel we will write V' (n) for the integrable module V (n«) with n € %No.
Let us give an explicit description of V(n).

Lemma 2.38. Let n € i1Ng. The module V(n) over Uy(sl(2,K)) has a K-linear
basis Vyp, Up—1, ..., V—pt1,V_p Such that

K- -v;= qjvj7

F . ’Uj = ’Ujfl,

E-vj=[n—jln+j+1vj.
Here we interpret v, = 0 if k is not contained in the set {n,n —1,...,—n}. If we
rescale this basis as

1
v
n— j]! J

Vi) = [
we have
K -vg) = ¢'vg),
Frugy = [n =7+ -,
E - V() = [TL +] + 1]U(j+1)'

Proof. This is an explicit description of the basis obtained from applying the oper-
ator F' to the highest weight vector v,,. Since FK = qKF we obtain the action of
K on the vectors v; by induction, for the inductive step use

K-vj_1=KF - v; = ¢ 'FK - v = ¢ F. vj = qulvj_l.
Moreover, Lemma yields
EF™ .y, = [E,F™ v, =[r+1][2n —r]F" - v,
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for all » € Ny, hence setting r =n — j — 1 we get
E-v=EF"7 v,=n—jln+j+1]F" 7 v,
=[n—=jlln+Jj+1vjn

The second set of equations follows immediately from these formulas, indeed, we
have

1 n+j+1] .
E-vg = n _7]-]!E'Uj = -1 1]!Uj+1 =[n+Jj+ vy,
1 n—j+1] B ‘
Fog =gt w= gy it ey
as desired. O

We point out that the labels of the basis vectors in Lemma [2.38| run over half-
integers if n is a half-integer, and over integers if n € Nj.

The non-integrable simple modules are obtained by twisting the integrable simple
modules by a character. Specifically, if n € %N and w € X, then

Vina4+w) =2 V(in) @ V(w),

since both are simple modules of highest weight na + w. More generally, we have
the following.

Lemma 2.39. All weights of a finite dimensional weight module V' for U,(sl(2,K))
belong to P,. Moreover, V' admits a direct sum decomposition

Ve B WeV(w)
weX,y

where the W are finite dimensional integrable Uy(sl(2,K))-modules.

Proof. Let A € by be a weight of V. If we fix v € V) nonzero then E* .y is primitive
vector for some k € Ny. By Proposition we must have A + ka € Pq+ and so
rebPy.

Now fix w € X,4. The subspace

VPer = @ V,u,er

nep

is invariant under the U,(g)-action. We obtain a direct sum decomposition V =
DB.ex, Vp+w- Putting W = Ve, ® V(—w) yields the result. 0

We can now prove complete reducibility for finite dimensional weight modules of
Uq(s1(2,K)).

Proposition 2.40. Every finite dimensional weight module of U, (s1(2,K)) is com-
pletely reducible.

Proof. By Lemma [2.39] it suffices to proof the proposition for finite dimensional
integrable modules V. In this case, the weights of V' belong to P.

Let 1v € P be maximal among the weights of V. Any vector v € V), generates a
finite dimensional U, (s[(2, K))-module isomorphic to V' (1). Since the intersection of
this submodule with V,, is Kv, one checks that V' contains a direct sum of dim(V/,)
copies of V(u) as a submodule.

Writing K for this submodule and @ = V/K for the corresponding quotient, we
obtain a short exact sequence 0 - K — V — @ — 0 of finite dimensional weight
modules. Using induction on dimension we may assume that @ is a direct sum
of simple modules. Moreover the dual sequence 0 — Q¥ — VV — KV — 0, see
the constructions after Definition [2.28] is split by construction because the highest
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weight subspace of V'V maps isomorphically onto the highest weight subspace of
KVY. Applying duality again shows that the original sequence is split exact, which
means that V is a direct sum of simple modules. O

2.6. Finite dimensional representations of U,(g). In this section we begin the
study of finite dimensional representations of U,(g). Ultimately, in Section we
will prove complete reducibility of finite dimensional weight modules and obtain a
classification the finite dimensional simple modules, although those results require
considerably more machinery than in the case g = sl(2,K) discussed above. For
more information we refer to [39], [57].

Throughout this section we assume that g is a semisimple Lie algebra and ¢ =
s € K* is not a root of unity.

2.6.1. Rank-one quantum subgroups. For each 1 <1i < N, we write Uy, (g;) C U,(g)
for the subalgebra generated by FE;, Fj, Kiﬂ. It is isomorphic as a Hopf algebra to
the subalgebra of Uy, (s/(2,K)) generated by F, F, K*2.

The classification of finite dimensional simple modules for U, (g;) is essentially

identical to that of Uy, (sl(2,K)): such modules are indexed by highest weights of
(

the form p = na; + w where n € %No and qiw") denotes a character of Za; with
values in {£1}.

Note that if v € V) is a vector of weight A € b for some U,(g)-module V, then
K; acts on v by
Ki-v= q(’\’a’iv)

i v.
In particular, if V' is an integrable U,(g)-module then it becomes an integrable

U,(g:)-module by restriction, wherein vectors in Vy have weight
T\ o) € 3Z
under the usual identification of half-integers with integral weights for U,, (s((2, K)).

2.6.2. Finite dimensional modules. As a consequence of the above remarks, we ob-
tain some basic structural results for finite dimensional U, (g)-modules. We begin
with the analogue of Lemma [2.39] which will let us restrict our attention to inte-
grable modules.

Lemma 2.41. All the weights of a finite dimensional weight module V' for U,(g)
belong to P,. Moreover, V' admits a direct sum decomposition

Ve (P W eV
weXy
where each W* is a finite dimensional integrable Uy (g)-module and V (w) is the one
dimensional representation with weight w € Xg.

Proof. Let A € b7 and v € V) be a nonzero weight vector. For each i =1,..., N,
we have

K;-v= q()"ai)v.
Considering V' as a U, (s1(2,K))-module by restriction, Lemma implies that
g™ e +¢Z. Tt follows that \ € P,. The direct sum decomposition then follows
exactly as in the proof of Lemma [2:39] O

Proposition 2.42. The set of weights of any integrable U, (g)-module V', and their
multiplicities, are invariant under the Weyl group.

Proof. Let 1 < i < N. By Proposition 2:40] V' decomposes as a direct sum of
irreducible integrable U, (g,;)-modules. It follows that the set of weights of V' and
their multiplicities are invariant under the simple reflection s;. Since these generate
W, the result follows. O
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Let us fix a dominant integral weight 4 € P+ and 1 <4 < N. Then (o}, 1) € Ny,
and we claim that v = Fi(ai )+ -v,, is a primitive vector in M (u). Indeed, Lemma
shows that £; -v = 0, and E; -v = 0 for j # ¢ follows from the fact that
[E;, F;] = 0 and the primitivity of vy. The vector v has weight s;.u, where s; € W

denotes the simple reflection corresponding to «; and
wA=wA+p)—p

denotes the shifted Weyl group action. Hence v generates a homomorphic image of
M (s;.11) inside M (p). By slight abuse of notation we write M (s;.p) C M (p) for this
submodule, since it will be shown later that the homomorphism M (s;.u) — M ()
is indeed injective.

We are now ready to describe the finite dimensional integrable quotients of Verma
modules, compare Section 5.9. in [39].

Theorem 2.43. Let A € P*. Then the largest integrable quotient L(X\) of M(X) is
finite dimensional and given by

N
L\ = M()\)/ZM(si.)\).

If\ e hj;\PJr then the Verma module M(X) does not admit any nontrivial integrable
quotients.

Proof. Tt is clear that any integrable quotient of M (\) must annihilate the sum of
the modules M (s;.\), because otherwise the action of F; on v fails to be locally
finite.

In order to show that the action of F; on any v € L(\) is locally nilpotent we use
that v can be written as a sum of terms F'-vy where F' is a monomial in Fy,..., Fiy.
Let us show by induction on the degree r of F = F;, --- F;_ that FF-F-vy =0 for
some k € N. For r = 0 the claim is obvious from the definition of L()\). Assume
now F' = F;Y -vy where Y is a monomial of degree r and 1 < j < N. If j =4 then
the claim follows from our inductive hypothesis, so let us assume j # i. Writing
u =Y -vy we have

F;-(Fj-u) = (F; = Fj) -u+ K;'F;K;F; - u.

By applying this relation iteratively we obtain F}- (F;-u) = 0 in L() for a suitable
k € N, using the inductive hypothesis and the fact that the Serre relations imply
Filfa”‘ — F; = 0. It follows that L()) is integrable, and it is indeed the largest
integrable quotient of M (\).

By Proposition the set of weights of L(A) is invariant under the Weyl group
action. Since each weight space is finite dimensional this implies that L()) is finite
dimensional.

Finally, suppose M(\) admits a nontrivial integrable quotient for some A €
by \ PT. The definition of integrability implies A\ € P. But since A ¢ P*, we
have (o, \) ¢ Ny for some i. It follows that the Uy, (g;)-module generated by vy
is infinite dimensional and simple by Proposition [2.37, and hence F; does not act
locally nilpotently on any quotient of M (). O

Note that we will ultimately observe, in Theorem that when u € P, the
finite dimensional quotients L(u) are irreducible, and hence L(p) = V(p).

Corollary 2.44. The Verma module M(\) admits a finite dimensional quotient if
and only if A € P}

Proof. If M()\) admits a nontrivial finite dimensional quotient then Lemma
implies A € Py, so A = p+ w for some p € P, w € X,;. It is easy to check that
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M(p) 2 M(\) ® V(—w). Tt follows that M (u) has a nontrivial finite dimensional
hence integrable quotient. Theorem implies 4 € P*, 50 X € Pg‘.

Conversely, if A = p+w € P} then M(\) = M(u) ® V(w) admits the finite
dimensional quotient L(\) @ V(w). O

The following technical lemma says roughly that in weight spaces sufficiently
close to the highest weight, the finite dimensional module L() resembles the Verma
module M ().

Lemma 2.45. Let p =Y, m;w; € PY. If A =3, lia; € QT with I; < m; for all
i=1,...,N then L(p)—x = M(p)u—x = Ug(n_)_x as vector spaces, via the map
which sends F' € Ug(n_)_x to F-v, € L(1),—x-

Proof. Note that s;.u = p — m;a;. Therefore, with the given conditions on A we
have g — A £ s;.u for every i = 1,..., N, and the first claim follows from Theorem
243l The second claim then follows from the definition of w. O

If v =% ,nw; € P, we will use the notation L(—v) to denote the finite
dimensional module L(v) twisted by the automorphism w from Lemma SO
that the action of X € U,(g) on v € L(—v) = L(v) is given by w(X) - v. In this
case we have L(—v)_, 45 =2 Uy(ny)y provided {; <n; foralli=1,...,N.

An important fact is that finite dimensional integrable representations separate
the points of U,(g), compare for instance Section 7.1.5 of [4S].

Theorem 2.46. The finite dimensional integrable representations of Uq(g) separate
points. That is, if X € Uy(g) satisfies m(X) = 0 for all finite dimensional integrable
representations w : Uy(g) — End(V), then X = 0.

Proof. Let us write v, for the highest weight vector in L(x) and v_, for the lowest
weight vector in L(—v). Assume X # 0 and write this element as a finite sum
X =" fijKyeij,
,1,]

where fi; € Uj(n_)_p,,ei; € Uy(ny),, for pairwise distinct weights £,...,Bn
and ¥1,...,7,, and n € P. We shall show that X acts in a nonzero fashion on
L(—v) ® L(p) for suitable p,v € PT.

Assume this is not the case, so that X acts by zero on all L(—v) ® L(p) for
p,v € P, Let 4, be maximal among the 7; such that some f;;K,e; is nonzero.

For each i, j we have A(e;;) = e;; @ K., +b where b is a sum of terms in Uy(ny) ®
(Uq(b4) Nker(€)) which vanish on v_, ® v,,. We thus get

eij (v_) ® v,) = q("’f’”)eij V-, @ U,
Moreover, since A(K,) = K, ® K, we obtain
Kyeij-(v_, @v,) = q(n7u—u+w)q(wvu)eij V- ® U,
Finally, using that A(f;;) = K_p, ® fij + ¢ where ¢ € (Uy(b_) Nker(¢)) @ (Uy(n_)
we get
fijKneij - (v_y, @v,) = q(ﬂw—w)q(n,u—v-irw)q(wau)eij Uy ® fij vt

where 7 is a sum of terms in L(—v)_,45 ® L(u) with § # . It follows that the
component of X - (v_, ® v,) contained in L(—v)_,4+, ® L(p) is

0= Z qPov=0) gmu—viv) (et ey @ fiy - o
]
Assume without loss of generality that all e;, f;; for 1 < i < m are nonzero, and
using Lemma[2.45] fix v large enough such that e;;-v_, is nonzero for all i. Choosing
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w large enough we get that the vectors ey - v—, ® fi; - v, are linearly independent.
Hence

0= Z q(Bi,V—%)q(n,u—w—%)q(w,u)
n

for all ¢ in this case. Cancelling the common nonzero factors ¢(%*=7)g(7:1#) and
writing ¢, = ¢ Y) we deduce

= Zq(n,uflﬂr%) _ chq(’fh#) — Z CT]XTI(KIL)'
n

n n

Consider the subsemigroup P C P of all 4 € P such that the vectors e;; - v_, ®
fit - v, are linearly independent. Since the characters x,, on P are pairwise distinct,
Artin’s Theorem on the linear independence of characters implies ¢("7 %) = ¢y =0
for all i, which is clearly impossible.

Hence our initial assumption that X acts by zero on all modules of the form
V(—v) ® V(i) was wrong. This finishes the proof. O

2.7. Braid group action and PBW basis. In this section we explain the con-
struction of the PBW basis for U,(g) and its integral form. A detailed exposition is
given in part VI of [57] and chapter 8 of [39]; we shall follow the discussion in [39].
In order to define the PBW basis one first constructs an action of the braid group
By of g on Uy(g) and its integrable modules. Throughout this section we assume
that ¢ = s € K* is not a root of unity.

Let g be a semisimple Lie algebra of rank IN. The braid group B, is obtained
from the Cartan matrix (a;;) of g as follows, see [I7] Section 8.1. Let m;; be equal
to 2,3,4,6 iff a;5a;; equals 0,1,2,3, respectively. By definition, By is the group
with generators Tj for j = 1,..., N and relations

1T = T;T,T; - -

for all 1 < 4,5 < N with ¢ # j, where there are m;; terms on each side of the
equation.

For g of type A one obtains the classical braid groups in this way. In general,
there is a canonical quotient homomorphism By — W, sending the generators T}
to the simple reflections s;. Indeed, the Weyl group W is the quotient of By by the
relations 77 =1 for j =1,..., N.

2.7.1. The case of sI(2,K). We use the notation for U,(sl(2,K)) from Section
in particular we write K = K, and K? = K,. Let V be an integrable module
over Uy (sI(2,K)). We label the weights by 1Z, so that v € V is of weight m if
K -v =q™v. The corresponding weight space is denoted by V/,.

We define operators T : V — V by

7;(,0) _ Z (—1)Sq57TtF(T)E(S)F(t) )

r,8,t>0
r—s+t=2m

T-()= Y ()¢ FOEOFD .y
r,8,t>0
r—s+t=2m
for v € V,,,, where E() = E*/[i]! and FU) = FJ/[j]! are the divided powers. Note
that these operators are well-defined because the action of E and F on V is locally
finite. It is also clear that 71 maps V,, to V_,, for any weight m.
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Recall the basis v(,), V(n—1), ..., V() of V(n) from Lemma According to
Lemma [2.38 we obtain the formulas

n+j+1n+j+2]---n+j+r] n+j+r
BT v = , UG = V()
[r]! r
r m—j+Un—j+2---n—j+r] n—j+r
F VG = ]! "V = " V(j—r)

for the action of divided powers on these basis vectors, where we adopt the conven-
tion v(p41) =0 =v(_p_1)-

Using these formulas shall derive explicit expressions for the action of the oper-
ators 71 on the basis vectors U(4)- As a preparation we state some properties of
g-binomial coefficients.

Lemma 2.47. Let a € Z and b,m € Ng. Then
i ai—b(m—i) | @ bl _la+b
—~ q m—i| [i| | m |’

Proof. We proceed using induction on b. For b = 0 the sum reduces to the single

term
a0—0(m—0) | @ 0 la+0
4 m-—0||0| | m |~

Suppose the assertion holds for some b. Using Lemma with ¢ replaced by ¢~
and the inductive hypothesis we compute

1

m

Z g (e (m—i) | @ b+1
m—1 )

=0

H

— a b
ai+a—b(m—1—1i)+b—m+1
]* i) [

+
m
a+b a+b7m+1 a+b
m m—1
+b+1
m

as desired. O

Lemma 2.48. For any k,l € Ny we have

P& k| la4+1| |c+1
_ \atctk A(atc—ac—k—kl) _
ZZ( 1)a c q a+c—ac |:a:| |:kc:| |: . :| —1.

a=0 c=0
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Proof. Using [C—c’_q = (-1)° [_lc_ 1] and —(a+1)c—(I+1)(k—c) = c—ac—k—kl

we obtain
k

: k|l [a+1] [c+1
_1\atc+k  t(atc—ac—k—kl)
DM ) [l ]
kK
:ZZ 1)@tk gt ae—ac—k—k) El| fa+1] |[-1-1
k—c c

a=0 c=

i k a+1 -1
_ a+k :I:a +(—(a+l)e—(14+1)(k—c)) v
=R ]S ]

_f: o 1),

using Lemma for the sum over c in the final step. The last factor in this
expression vanishes for 0 < a — 1 < k, so only the summand for a = 0 survives. We
conclude

ii(i1)a+c+kq:|:(a+cfacfk7kzl) {2] [qu {c—cs—l] — (~1)F [g} {—kl}

a=0 c¢=0

as claimed. O

We are now ready to obtain explicit formulas for the action of 7 on the simple
module V(n).

Proposition 2.49. For V =V (n) and any j € {n,n—1,...,—n} we have
T:I:('U(j)) _ (_1)n—jqi(n—j)(n+j+1)v(_j).
In particular, the operators Ty are invertible with inverses given by
T (vgy) = (1) HgFRI= Dy ) = (—q) T T (v))-
Proof. The formulas for the action of divided powers before Lemma [2:47] imply
Te(vy) = Z (_1)Sqi(s—rt)F(T)E(S)F(t) ()

r,s,t>0
r—s+t=2j3
= Y (g |n T +t] FOE® o,
r,8,t>0 -
r—s+t=2j
s +(s—r _n—&-j—t—&-s n_J+t r
= > (=1 . ] [ 2 FO v
r,8,6>0 -
rfertt:2j
. _ vs E(s—rt) (n—j+t—s+7r] [n+j—t+s| [n—j+t A
'rfss-i-f:Qj

Note that all terms in this sum with ¢ > n + j or » > n + j must vanish, since the
vectors v(j_¢) OF V(j4s—t) = V(r—j) vanish in these cases. Also, when t < n + j, the
middle binomial coefficient can be rewritten as
n+j—t+s| [n+j—t+s
s T on4g—t |’
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and the latter expression vanishes when s < 0. Using s = r + t — 25 we therefore

have to show

n+j . . .
z (71)r+t72jq:|:(r+t72jfrt) n+jln—Jg+r||n—g+t
= r n+j—t t

_ (_1)nquj:(nfj)(n+j+1).
Setting k =n+ j,l =n — j,a = r,c =t this amounts to
. K| [1+a] [l +¢
_1\l—k+a+c t(l—k+a+c—ac) — (_1\!,TUE+D)
3 (—1)kreeg AR ] = e,

a c
a,c=0

hence the first claim follows from Lemma 2.48
In order to verify the formula for 7' we compute

(_1)n+jq¢(n+a’)(n—j+1)7}(U(_j))

= (_1)n+3qﬂF(n+J)(nﬂ+1)(_1)n+aqi(nﬂ)(n*ﬁl)v(j) = ),
and to check T; ' (v(;)) = (—q) T T+ (v(j)) Wwe observe

qi(”'+j)("—j+1) — q$((n+j)(n—j)+n+j)

= ¢F2 g Tt (n=j)tn—j) — (F2j F(n=j)(n+j+1)

This finishes the proof.

O

The inverses of 74 can be described in a similar fashion to the way we defined

the operators 7. themselves, as we discuss next.

Corollary 2.50. Let V be an integrable module over U,(sl(2,K)). Then we have

7;_1(’()) — Z (_1)sqrt—sE(r)F(s)E(t) ‘v,

r,5,t>0
—r+s—t=2m

T o)=Y (-1)¢ "EDFWED .y

r,s,t>0
—r+s—t=2m

forve V.

Proof. Tt suffices to consider V' = V(n). Consider the involutive linear automor-

phism wy : V' — V given by wy(v(;)) = v(—j). Using the automorphism w from

Lemma [2.15] and the formulas before Lemma [2.47] we obtain
w(X)  wy(v) =wy(X -v)

for all X € U,(sl(2,K)) and v € V. Accordingly, the claim becomes T 'wy =

wy T¢. This in turn follows immediately from Proposition [2.49]

Let us also record the following commutation relations.

Lemma 2.51. Let V be an integrable U,(s1(2,K))-module and v € V. Then we

have
To(E-v) = —K*2F - Ty (v)
To(K -v) = K1 - Tx(v)
To(F-v) = —EKT? . T (v)

d
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and

B-Ti(v) = —~Te(FE™ - v)

K -Ti(v) = 'Ti(K_l - v)

F-Ti(v) = =Te(K*E - v).
Proof. 1t suffices to consider V = V(n) for n € $Ny. Since 7 interchanges the
weight spaces with weights 47 for all j the formulas for the action of K are obvious.
Using Lemma [2.38] and Lemma we compute

Ti(E . ’U(j)) = [n +7+ I]Ti(v(j+1))
_ (_1)71—]'—1[” +5+ 1}qi("—j—l)(n-i'j-i'?)v(_j_l)

= (D) g f 4 1]gEr ) 22y

— _qi(f2jf2)(_1)nqui(nfj)(n+j)i(nfj) [n+ 5+ v

= UYL gDt By,
= ¢t ¥2p. T2 (v(5))
= —KizF . Ti(v(j)),

(=9)

and similarly

Te(F -viy) = [n—j+1Te(vg-1)
(_1)nfj+1[n _j + 1]qj:(nfj+l)(n+j)

U(=5+1)
(=) [ —j + 1]qﬁ:(n—3)(nﬂ)ﬁ:(nﬂ)U(ijJr1

)

- ,qi2j(71)n*jqi(n*j)(n+ﬂ')i(n*j)[n —j+ v
= ¥ (=)D V()
= —¢"¥E - Ti(vg))
=—EK™ Ty (v(j))-
The remaining formulas can be easily deduced from these relations. (]

2.7.2. The case of general g. Now let g be an arbitrary semisimple Lie algebra.
Based on the constructions in the previous subsection we will define operators 7;
for i =1,..., N acting on every integrable U,(g)-module.

Specifically, let V' be an integrable U,(g)-module and recall that Uy, (g;) for
1 <4 < N denotes the subalgebra of U,(g) generated by Ei,Fl-,Kiil. Using the
canonical embedding Uy, (g;) C Uy(g) we can view V as an integrable Uy, (gi)-
module, and we define 7; : V. — V to be the operator corresponding to 7 = 74 in
the notation of the previous subsection. Explicitly,

Tw) = > (-1 EEYEY

r,5,6>0
r—s+t=m

for v € Vy and m = (o, A). According to Proposition the operators 7; are
bijective, and 7; maps V) onto Vs, . From this observation it follows that

Ti(Ky - v) = Ky - Tiv)

for all 4 € P. Let us also record the following formulas.
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Lemma 2.52. Let V be an integrable U,(g)-module and v € V. Then we have
Ti(E; - v) = 7K4F~T( )

( v) =—E; K ’T(v)
Ti(v) = =Ti(FiK; " - v)
T.(v) = =T;(K;E; - v)
foralli=1,... N.
Proof. This is an immediate consequence of Lemma [2.51 (]

Our first aim is to obtain explicit formulas for 7;(E; - v) and E; - 7;(v) also in
the case ¢ # j, and similarly for F} instead of E;.
Rewriting the results from Lemma [2.9]in terms of divided powers we obtain

E(m LY = Z m k —(m—k)(m— 1)E(k)YE(m k)K m

F™ 5y = Z Yrgkm =1 pm=h) pe—ky [k k),
In particular, we have

F(m) N F Z k k(m 1+“11)F(m k)F F(k)
k=0
. —k ) k k:aij .
using K, "F; K = q;" " Fj.
Lemma 2.53. Ifi # j then for all m,l € Ny we have

l
(F o F)EY = Y0 |7 B s et
k=0 qi
l
m |m+k —l(aij+2m)—k(l— - m
(F )—>Fj)Fz—(”=Z(—1)"[ / ] g @ 2m)—K(=D) p=8) (plmtR) _ gy
k=0 qi

Proof. We use induction on [ for both formulas. For [ = 0 there is nothing to show.
Assume the first formula holds for some I. Note that since F; and F; commute
we have F; — I = 0, and hence

(EF™) = Fy = [—ai; + 1 —=m], F"" ) 5 F

i
due to Lemma Writing a(m) = Fi(m) — F; we deduce
a(m)E;K; " = E;a(m)K; ' — E; — a(m)
= Eia(m)K; " — [—a;; + 1 —m],a(m — 1),

which implies

alm—k)E; = Eja(m — k) — [—a;j + 1+ k —m]ga(m —k — 1)K
for all 0 < k < m. Now from the induction hypothesis we obtain
EVE

(1+1) _
a(m)E; = a(m) T,

K2

l k
-1 — Qi — — - m—
:Z (—1) { aij km+k} DRI (k) p Rk R,
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Since KFE; = ¢?* E; KF our above computation yields

70

m)E{ T = }:bE““k) — k)K}

where

[+1—F|,

(—1)k {—azj —m+ k} k(l—1)+2k
k= q
qq

[+ 1], k ‘

(=D DFt Tqy —m+k—1 q(k—l)(l—1)+2k—2[
T+ 1 a“

1+ ] EL—1 7aijfm+k]q7:

( 1)k —Q45 — m+k kl+k
EEP k Lo

]
(—1)* |:_aij_m+k:| klk—l—1
qi

+ [l + ]']Qi k . q; [k]qm

note here that the first summand vanishes for £k = + 1, and the second summand
vanishes for k = 0. Using

U+ 1Ko + a7 Ko _ e - q”*”ﬂ+#’l%ﬁ—ﬂ{5

—1
1+ 1], gttt — gt

we conclude

mzvnﬂﬂwgm+ﬂ g
qi

as desired.
For the second formula we proceed in the same way. Assume that the formula

(m)

holds for some I. Writing again a(m) = F;"’ — F; we compute

(0¥~
m)FY = a(m I B
U+H%

e

k:O

[m + k] qi_z(a,ij+2m)—k(l—1)Fi(z—k)a(m +R)F
q

according to the induction hypothesis. Note also that

a(m)F; = qi_2m_a”Ki_1a(m)KiFi
— q._Qm_a” (Fya(m) — F; — a(m))

X2

= q'_gm_aij (Fla(m) - [m + 1]Qia(m + 1))7

K3

using [m + 1], Fi(mH) = FiFi(m) in the last step. We thus have

a(m+ k) F, = ¢ 2" % (Fa(m 4+ k) — [m+ k + 1g.a(m + k + 1)),

and combining these formulas we obtain

I+1
a(m)Fi(lH) = Z ckFi(l+17k)a(m + k)
k=0
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where
(—1)F {m + k} — (1) (s, +2m) —2k—k(1—1)
cp = q; ‘ [+1—k
[+, L + |,
( Dt fm4+k—1 —(1+1)(ai;+2m)—2k+2—(k—1)(I—1
el ST B e o
qi

l)k {erk} —(1+1)(as;+2m)—kl G+ 1— K],

+

m+k —(I41)(as;+2m)—kl—k+1+1
S o
qi

[l+ 1]q_ k i

i

note in particular that the first summand vanishes for & = [ 4+ 1, and the second
summand vanishes for £ = 0. Using

R 1 — Ky + PR, _ R (g IR gk g gl R (g =y »
[+ 1]y, q£+1 - qz_l '

we conclude

m+k - i -
e = (—1)F [ / ] gD @ +2m) =k
qi

This finishes the proof. U

Proposition 2.54. Let V be an integrable U,(g)-module. If i # j we have

(—s) = (B < $~HE ™)) - Ti(w)
Ti(Fj-v) = (Fi(*aij) S Fy) - Tiv)

=

S

=
|

forallveV.

Proof. Let us first consider the second formula. In the same way as in the proof of
Lemma we shall abbreviate a(m) = F\™ — F;. Since F, “*" & F; = u;; =
0, the second part of Lemma [2.53| implies

a(=ay) " = (F7") = F)FY = ¢ FO(F") > Fy) = " FYa(-ay)
for any [. Moreover we obtain

a(—a;;)EY = (F.(*‘“J‘) — F)EY

_ Z k kl 1) E(z k:)(Fi(faij*k}) N Fj)Kik

- Y e -

from the first part of Lemma [2.53
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Assume v € V), for some A € P. Writing p = (o), A), the above formulas imply
a(-a)Tiw) = Y (~1'q "a(-ay) FVEVEY v

r,s,t>0
r—s+t=p

> Ve a(—ag) B o

7,5,t>0
r—s+t=p

Z Z k:+s s—rt+ra;;+k(s— 1)F(7‘)E(S k)a(_aij _ k)KkF(t) v

%
r,5,t>0 k=0
r—9+t*p

Z Z k+s s—r(t—ai;)+k(s—1+p— 2t)F(7‘)E(s k) ( a; _k)F(t) v

r,5,t>0 k=0
r—s+t=p

_ Z ii k:Jrs s—r(t—ai;)+k(s—1+p— 2t)F(T)E(5 k:)

r,s,t>0 k=0 1=0
r—s+t=p

0T

s t

(_1)k+s+l |:_aij —k+ l:|
r—s+t=p

q»S_T(t_aij)+k(s_1+p)+taij_l(t_l)Fi(T)EZ-(S_k)Fi(t_Z)a,(faij —k+ l) v

7

ft(faij72k)7l(t71)F§t—l)a(_aij ke l) v
qi

k+l}

qi

using

KR v =g MK o= g7 M B0
for k,t € Ny and the second part of Lemmal[2.53] Setting b = s—k, ¢ =t —[ we have
—r+b—c = —p—k+I, and since a(—a;; —k+1) = 0 for [ > k we see that a(—a;;)7;(v)
is a linear combination of terms Fi(T)Ei(b)Fi(C)a(—aij —h)-vwith —r+b—c=—p—h
and h > 0. Explicitly, the coefficient of Fi(T)Ei(b)Fi(c)a(—aij —h)-vis

—a;i—h
ZJ: (—1)**! [_aij - h] bk (c-Hl—ais)+h(b-+hk—1+p)+(c+Das; —l(c+—1)
l qz 9
q

[

1=0
where k = [+ h. If we insert k = [ 4+ h in this expression we obtain

7aij7h
b b+h—r(c—ai;)+h(b+h—14+p)+ca;; 1| —aiy — h
(-1 >

=0

I(1—r+b+l4+h—1+p+hta;;—c—1+1)
g

—ajj—h
_ (_1)bq§)—r(c—aij)+h(b+h+p)+ca,;j Z (_1)l [—aij — h:| «
=0 qi

I(1—r+b+2h+p+a;;—c)
i .

Using —r +b — c = —p — h, the sum over [ in the previous formula becomes
—Q5j5 —h h
—Q5;5 — I(14+h+a;j;
Z (_1)l |: Zjl :| qi( aij) _ 57(1”7}170
=0 qi
according to Lemma Hence only the term with h = —a;; survives, and since

b—r(c—ai;)+h(b+h+p)+ca;; qbfrc+h(fr+bfc+h+p) _ qbfrc
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for h = —a;;, we conclude

a(ial])’];(v) _ Z (71)bq?_rcFi(r)Ei(b)Fi(C)a(O)v — Z(Fj . rv)
7r,b,c>0
r—btc=p—a;;

as desired.

Let us now consider the first relation. Fix v € V) and let wy denote the au-
tomorphism of V' defined as in the proof of Corollary by viewing V as a
Uy, (9i)-module. Then combining Proposition and the proof Corollary
yields

wy Tiwy (v) = (=) VT (v).

Moreover we recall that
w(X =Y) =w(Xq) S'(X(z)))
= w(X1)w(¥)SH(w(X))
= w(X)@w(Y)SH w(X)q) = w(Y) « 57 w(X))

for X,Y € Uy(g), where Y + X = S( 1))Y X(2). Using that the vector F} - wy (v)
has weight —A — o; we therefore obtaln

Ti(E; - v) = Ti(w(F) - v)

= Ti(wy (Fj - wy (v)))

= (=) wy (Ti(F - wy (v)))

= (—q;) @Ay (BT = ) - Tilwy (v))

= (—q)) "N (BT 5 Fy) - wv (Tiwy (1))
= (=)~ V785 () O N(FTH) 5 Fy) - Ti(w)
= (~a)
= (~a)

Y
Y

)
)

4) " (w(Fy) ¢ 57 @(E")) - Tiw)
4) " (B = §THE[") - Ti(w).
This finishes the proof. U
We obtain an algebra antiautomorphism «y : U,(g) — Uy(g) by defining
V(E) =Ei,  yF)=F, ~y(E)=K_,

on generators. Notice that v is involutive, that is, 4% = id.
Let us define the y-twisted adjoint action by

X 2Y =X = 7(Y))
for X,Y € U,(g). Note that
E; 5Y =~(E,v(YV)K; ') = Ki[Y, Ej
Fi LY =y(Fy(Y) - K'Y (Y)K,F;) = YF, - F;K; 'YK,
K, Y =y(Kn ()K" = KYK;!
for all Y € U,(g), where 1 <¢ < N and p € P.

Lemma 2.55. Suppose X,Y € U,(g) satisfy X - T;(v) = T;(Y - v) for any vector v
in an integrable U,(g)-module. Then

(B; = X) - Ti(v) = Ti(F; > Y) - v)
(Fi = X) Ti(v) = Ti(B; > Y) - v).
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Proof. Using the formula F; - T;(v) = —T;(F;K; ' -v) from Lemmawe compute
(E: = X) - Ti(v) = [Bs XIK - Ti(w)
=Ti((-FK 'Y + YF,K; YK, -v)
=Ti((YF, - FK;'YK;) - v)
—T((F S Y) )
for v € V. Similarly, using F; - 7;(v) = —T;(K,E; - v) we obtain
(Fi = X)-Ti(v) = (F;X — K] ' XK F) - Ti(v)
=Ti(-K:E;)Y + K,YK; 'K,E;) - v)
Ti(Kq[Y, Eq] - v)
Ti(B; = Y) - v).
This yields the claim. (|

Lemma 2.56. Let V' be an integrable U,(g)-module and v € V. If i # j we have
(F = B Tw) = T(ED 5 F) )
for any 0 <1 < —ay;.
Proof. Using induction on [, Lemma and Proposition imply
T((FY 2 Fy) o) = (BUET™ = Fy) - Titw).
As already observed in the proof of Lemma [2.53] we have
(BF™) = Fy = [—ai; +1—m], F™" 7 = Fj.

Applying this formula iteratively we obtain
(Ei(l)Fz'(_aM)) — Fj = Fi(_a”_l) — Fj,

which yields the desired formula. O
Proposition 2.57. Let V be an integrable Uy(g)-module and v € V. If i # j we
have
7(17;]'7[
> VRV EN B EC TN ()
k=0
l
Z g —kl 1+a,J)T(EZ(l—k)EjEZ(k) v)
k=0
and
—a,-j—l

— —a;;j—l—k
(_l)kqi k(lH)l z'( ! )ljl 'L(k) - Ti(v)
k=0

l
Z k k(l 1+a,7)7-( )F F(l k) 7))
k=0
forany 0 <1 < —ay;.

Proof. Let us first consider the second formula. Recall from the calculations before
Lemma that

Fz(m) N Fj — Z(_1)kq£€(m*1+aij)Fi(m*k)FjFi(k).
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Since v is an anti-automorphism fixing the generators Fj, for all k we therefore
obtain
m m s k(m—1 Qjj k m—k
( )—>F_’Y( (m) _, ):Z(_l)kqi( + )Fz’( )FjFZ_( ).
k=0

Combining these formulas with Lemma [2.56] yields

7aij7l
S R TTVE T PR ER . Tw)
k=0

1
Z k k - 1+a”)7'(F(k)F F(l k) v)
k=0
as desired. s
Next observe that w(X) - T;(v) = (—¢;) @ M T;(w(Y) - v) if X has weight p with
respect to the adjoint action and X - 7;(v) = T;(Y - v) for all vectors v in integrable
Uq(g)-modules. Hence the formula proved above implies

—aij—l
> (R CTVER BB Y T ()
k=0
7(17;]‘71
7ai]‘7l +1 7aij7l7k —i—-1 k 7aijflfk7
k=0

—aj

_ (_1)0’1J+l Z(—(li,j—l) I+1) Z ]g :C(—l—l)Ez(—a”—l—k)E]Ez(k) . 7;(/0)

1
:(_l)aij—&-l Z(—aq‘,j—l)(l-‘rl)(_qi)zl-‘raijZ( 1)quk(I 1+a77)7-( k)E E(l k) 0)
k=0

Z( aij— l)(l+1)q2l+a” 11— 1+a”)z i 71@(1 1+a”)7—( l_(sz)EjEi(k) )
k=0

l
—k(I—1+as; I—k k
— (TR B ),
upon reindexing k to —a;; —{—k, and further below reindexing k to {—k, respectively.
Note here that Fi(fa”*l) — F} has weight (a;; + [)a; — a;, so that
(Oé;/, (ai]‘ + l)a, — Oéj) =2l + Qjj-
This finishes the proof. o

Note that putting / = 0 in Proposition [2.57] yields in particular

Ti(E; - v) = Y (-1 EF BE T Tiw)
Ti(F-0) = > (-Drq "EC VR EY - Tiw).
k=0

2.7.3. The braid group action on Uy(g). We are now ready to construct automor-
phisms 7; of Uy(g) for i =1,...,N.
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Theorem 2.58. Fori=1,...,N there exist algebra automorphisms T; : Uy(g) —
U,(g) satisfying
Ti(Ky) = Ko,y Ti(E) = —KiF;, Ti(F) = -EK;!

_%
—a;;—k . .
Ti(E) =3 (~)FFEN BBV 4
k=0
o
TE) = 3 (Vg P ET YR ED, iz
k=0

Proof. We shall define 7; : U,(g) — U,(g) using conjugation with the operators
7; on integrable U,(g)-modules. More precisely, we consider the canonical map
Uy(g) = [[End(V) C End(€@ V') where V runs over all integrable U,(g)-modules.
According to Theorem [2.46] this map is an embedding, and we shall identify X €
Uq(g) with its image in [[ End(V). We then define 7;(X) € [[End(V) by setting

Ti(X) = TXT, "

where the operators 7; € [[ End(V) are defined as in the previous subsection. In
order to show that this prescription yields a well-defined automorphism of U,(g) it
is enough to check that conjugation with 7; € [[End(V') preserves the action of
Uy(g). In fact, it is sufficient to verify this for the standard generators of Uy (g).
For the generators K, for ; € P the claim follows from elementary weight

considerations, indeed the corresponding relation 7; K u771 = K, was already
pointed out in the discussion before Lemma [2.52] For the generators E;, F; the
assertion follows from Proposition [2.57} O

Next we shall verify the braid group relations.

Theorem 2.59. The automorphisms T; of Uy(g) satisfy the braid relations in By,
that is,

T =TT
forall1 <4,j < N such thati # j, with m;; operators on each side of the equation.
In other words, the maps T; : Ug(g) — Uq(g) induce an action of the braid group
Bg on Uy(g) by algebra automorphisms.

Proof. Recall that m;; = 2,3,4,6 iff a;;a;; = 0,1, 2,3, respectively. We have a;; =
0 = ay; if my; = 2, and a;; = —1 = aj; if m;; = 3. Note that we may assume that
a;; = —2,a5 = —1 and a;; = —3,aj; = —1in the cases m;; = 4, 6, respectively. The
cases m = m;; = 2,3,4,6 are verified separately by explicit calculations, compare
[57] and [39].
m = 2: This corresponds to (a;, ;) = 0. In this case we clearly have 7;7; = 7;7; on
modules because the operators £;, F; commute pairwise with E;, F};. Since
the action of 7; on U,(g) is obtained by conjugating with the operator 7;
on modules, it follows that 7;7; = 7;7; as automorphisms of U,(g).
m = 3: Since a;; = —1 = a;j; we have ¢; = ¢;, and the formulas in Proposition [2.57]
give
Ti(Ej) = E;B; — BBy = T, |(E))
Ti(Fy) = FiF; — q; ' FiF; = T (Fy).
Symmetrically, we obtain
Tj(Ei) = EiEj — . B;E; = T, ' (E))
Ti(F;) = FiF; — q; ' FiFy = T, (Fy).
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It suffices to verify T;7;7:(X) = T;T;T;(X) for X = Ey,F}, and k =
1,...,N as well as X = K for A\ € P. For the generators K the claim
follows from the fact that the action of the Weyl group on h* satisfies the
braid relations.
Let us consider X = E;. The above relations imply 7;7;(E;) = E;, and
hence we obtain
TiTiTi(E)) = Ti(E;) = —Ki F;.
On the other hand we get
TiTiTi(E;) = Ty Ti(=K; Fy) = =T, Ti(K;)T; Ti(F;) = —KiF;
since the above relations imply 7;7;(F;) = F;, and moreover we have
T,T:(K;) = K;. For the latter use
sjsi(og) = sj(a; — (o, aj)a)
= S]'(Oéj + CVZ') = —Oéj + ij + o; = .
For X = F} analogous considerations give
TTTi(Fy) = Ti(Fi) = —E K
and
TiTiTi(Fy) = TiTi(=E;K; ') = =T T(E)T T K} Y) = —E K
Since the situation is symmetric in ¢ and j we also get the claim for X =
E; F;.
Therefore it remains to consider the case X = Ej, F}, for k # i,j5. For
k # 4,7 we have a;; = 0 or ajr = 0. Again by symmetry we may assume
ajr = 0. Then [Ey, E;] = 0 = [Eg, Fj]. From the construction of the
automorphism 7; using conjugation by the operator 7; we therefore get
T;(Ex) = Ei. Moreover recall that 7;7;(E;) = E; and T;7T;(F;) = F;.
Hence we also get
[T, Ti(Ex), Ei] = T; Ti([Ek, Ej]) =0,
(T Ti(Ex), Fi] = Ty Ti([Ex, Fj]) = 0.
Again by the construction of 7; we therefore get T, 7;T:(Ex) = T;Ti(Ex).
Combining these considerations yields
TiTiTi(Ex) = T;Ti(Ex) = T; TiT; (Ex)
as desired. Upon replacing Ejy by Fj, the above argument shows
TiT;Ti(Fe) = T;Ti(Fy) = T;TiT;(Fr)

as well.

: Let us assume a;; = —2,a;; = —1. In this case we have ¢; = ¢ and ¢; = 7.

As in the case m = 3, Proposition [2.57] implies
T;(Ei) = E:E; — ¢°E;E;,
T, '(Ei) = E;E; — ¢°E;E;.
Moreover, taking the first formula of Proposition [2.57] for [ = 1 gives
T:(E:E; — ¢°E,E;) = E,;E; — ¢*E,E;.

Hence T;T;(E;) = '771(Ei), or equivalently 7;7;7;(E;) = E;.

Swapping the roles of i and j, Proposition [2.57] gives
T(E;) = E;E® — 4E,E;E; + "E”E;,
T YE;) = E®E; — qE,E,E; + ¢°E;E®.
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I we obtain

Multiplying these equations with [2],, = ¢; + q; L—g+q
2. Ti(Ej) = E;E; — (14 ¢*)EE;E; + ¢*E} E;
=T, Y(E)E; — BT, ' (Ei)
and

2.7, (E)) = EZE; — (1 + ¢°)EiE;E; + ¢*E E}
= EiT;(E;) — T;(E:) E;.
Combining these equations yields 7;7;(E;) = 7, '(E;), or equivalently
TiT; Ti(Ej) = Ej.
In a completely analogous fashion we obtain
TiTiTi(Fy) = Fy, T TiT(Fy) = Fi.
Let us now show T;7;7;7;(X) = T,T:T;T:(X) for X = Ej, F}, where k =
1,...,N. Since
sjsisj(ou) = sjsi(ou — ajiy)

= sj(—ai + oy — aijai)

we have T; T, 7, (K;) =
TiTiTiT;(Ei) = 72(E') = —Kl;
=T TiT5(K) Ty TiT; (Fi)
TJTT( KiF;)
=T TiTiTi(Ei).

In a similar way one obtains the assertion for X = E; and X = F;, F}.

Consider now k # i,5. Then we have (o, ax) = 0 or (o), ax) = 0. If
(a ,ag) = 0 we obtain [Ey, E;] = 0 = [Ey, F;] and hence 7;(Ey) = Ej.
Moreover our above computations yield

[TiT3Ti(Er), Ej] = TiT; Ti([Ew, Ejl) = 0,
(TT; Ti(Ek), Fj] = TiT; Ti[Ex, Fj]) = 0.
This implies T; 7, 7;Ti(Ex) = T;T; Ti(E)), and thus
TiTiT;Ti(Ey) = TiT; Ti(Ex) = TiT; TiT;(Ek).
Replacing Ej by F}, in this argument yields the claim for X = Fj. Finally,
if (o), ) = 0 we swap the roles of ¢ and j in the above argument, and
obtain the assertion in the same way.

m = 6: Let us assume a;; = —3,a;; = —1. In this case we have ¢; = g and q; = 7.
Given 0 <[ < 3, let us abbreviate

K;, and hence our above computations imply

l
_ k(4—1 k -k
E; (1) =Y (1) EM BB,

k=0
As in the case m = 3, Proposition implies
T;(Ei) = E:E; — ¢°E;E; = E}(1)
—1
7; (E;)) = E;E; — ¢*E,E; = E”(l)
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Moreover the relations from Proposition [2.57] give

B, = Ti(E5(3)),
B (1) = Ti(ES(2),
B;;(2) = T (1),
E;(3) = Ti(E)).

E:(3) = EPE; —¢EP BB, + ¢ EE;E®) — E;EP)

3) ),
3) = B,E® — ¢B,E,E® + fEPEE, - ¢EVE;,
E5(2) = EVE; - CEE B + ¢' BB,
(2) = BB — *E,EE; + B E;.
Hence we obtain
[3,E5(3) = (2], ' B2 E; — q[3],E E; B,
+ Bl Ei BB — P2 B E}
= B(E" E; — *E:E;E; + ¢*E;E”)
~ ¢ EPE; - EE;E; + ¢*E,E))E;
= EiE;(2) - ¢ B5(2)E;

using ¢(¢*+1+¢7%) = ¢*(¢+¢ 1) +¢ ' and ¢*(¢*+1+¢72) = ¢*+q(g+q71).
Similarly,

3,55 (3) = [2], ' E; E? — q[3],E:E; B
+¢* 381, E; Bi - 42 BV
= (B;E® — *E,E;E; + ('"E®E})E;
— ¢ 'E/(E;E® - ?E,E,E; + ("EYE;)
= E;(2)Ei — ¢ 'EE;;(2).
Let us also record
21,E5(2) = EYE; — ¢*(qa+ ¢ ") E:E;Ei + ¢'E; E}
= EES(1) - qE5(1)E;
and
21,E;;(2) = E;E} — ¢°(¢+ q ")E:E,E; + ¢*E} E;
— E;(1)E; — qE:E; (1),

Using Ej;(l) = ’Tjﬂ(Ei) we obtain

E5(2) = 21, (B T;(E:) — qT;(E:)E))
2], ' T;(E; () E; — ¢E:E;(1))

= TH(E;(2).
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Now we compute

TiTi(E;) = T;(E3;(3))
= 8], ' TH(E; (2B — ¢ ' EiE;;(2))
= 8], {(TH(E;; ) ES (1) —q  ES()TH(E;(2))
= B8], (B5ES(1) — ¢ ' ES()ES(2))
and

= Bl,' T, (BEL(2) — ¢ Ef(2)E)
= B, "(E; ()T, HEL2) — ¢ ' T (B (2)E; (1))
8], (E; (DE;(2) — ¢ 'E;;(2)E; (1)).

We thus obtain
TN (E) = B TN (B (DES(2) — ¢ B (2)E; (1)

NESQESW) — ¢ B ()ES(2)

and

Therefore
TiTiTi(E) = Tj(E;(2)) = E§(2) = T, 1T (Ey),
and hence T; T, T, T, T;(E;) = E;.

In a completely analogous fashion one calculates

T.T,TiT;Ti(F;) =F;,  T;TT,T.T;(F;) =F,.

67

Let us now verify T, T, T, T:T;(X) = T, TiT;TiT;Ti(X) for X = Ey, Fy,

where k =1,..., N. Since
5;8:858:5j(u) = sjsi858i(0y — aj;0)
= SjSiSj(—Ozi +a; — aijai)
= 5;5;5;(20; + o)
= sj(4ai -+ 20[j — Olj -+ aijozi)
=sjl+oaj)=0+o; —a; =04
we have T, T, T; T;T;(K;) =
TTTT T (E)

K;, and hence our above computations imply

Il
ﬁv

(E;) = —K;F;
= T TT(E) T TTTT(E)
TTTTiT (- KiF)
T T T ).

In a similar way one obtains the assertion for X = E; and X = F;, F}.



68 CHRISTIAN VOIGT AND ROBERT YUNCKEN

Consider now k # 4,j. Then we have (o), ax) = 0 or (o),
(o, ax) = 0 we obtain [Ey, E;] = 0 = [Ey, Fj] and hence T;(Ey) = Ej.
Moreover, our above computations yield
(T TTTi(E), Ej] = TT, TT; Ti([Ex, Ej]) =0,
(LT TiTiTi(E), F5] = TiT; TiT Ti([Ex, F5]) = 0.
This implies T; 7, T; T T; Ti(Ex) = T, T; T:T; Ti(Ey), and thus
TiTTTiT5Ti(Bx) = T, TT Ti(Ey) = TiT3TiT5TiT5(Ex).-
Replacing Ey by F}, in this argument yields the claim for X = Fj. Finally,

if (o), ) =0 we swap ¢ and j in the above computations and obtain the
assertion in the same way.

This finishes the proof. O

M a) = 0. If
J

We remark that the algebra automorphisms 7; in Theorem [2.59]are not coalgebra
automorphisms.

The action of the braid group By on Uy(g) does not descend to an action of the
Weyl group W, since 7,2 # id. Nevertheless, there is a standard way to associate
to each w € W an automorphism 7, as we now explain.

If w= s -5 is a reduced expression of w € W, then any other reduced
expression is obtained by applying a sequence of elementary moves to s;, - - - s;,.
Here an elementary move is the replacement of a substring s;s;s; - -- of length m;
in the given expression by the string s;s;s;--- of the same length. We refer to
Section 8.1 in [36] for the details. As a consequence, according to Theorem [2.59] the
automorphism

To=To T,

of Uy(g) depends only on w and not on the reduced expression for w.
Note that we have T, (K,) = K, for all 4 € P by Theorem m

2.7.4. The Poincaré-Birkhoff-Witt Theorem. Let w € W and let us fix a reduced
expression w = s;, - - - 8;,. If w # e then the roots B, = s;, -+ s, 0y, for 1 <r <t
are pairwise distinct and positive, see 5.6 in [36]. We define the root vectors of
Uq(g) associated to the reduced expression w = s;, - - s;, by

Eﬁr:ﬂl.'.’nr—l(E' )7 Fﬁrzﬁl'“,];r—l(Fi)

ir

for 1 < r < t; in the special case w = e we declare 1 to be the unique associated
root vector. Let us point out that these vectors do depend on the choice of the
reduced expression for w in general, see for instance the discussion in Section 8.15
of [39].

Our first aim is to show that the root vectors Fg_ associated to a reduced ex-
pression for w are contained in Uy(ny). For this we need some preparations.

Lemma 2.60. Leti # j and assume w is contained in the subgroup of W generated
by s; and s;. If wa; € AT then T, (E;) is contained in the subalgebra of Uy(ny)
generated by E; and E;, and if wey = oy, for some 1 < k < N then T, (E;) = Ek.

Proof. Let us remark first that wa; = ay, can only happen for & =i, j.

Without loss of generality we may assume w # e. The proof will proceed case-by-

case depending on the order m of s;s; in W. Let us write (s;, s;) for the subgroup

of W generated by s;, s;.

m = 2: In this case s; and s; commute, and the only nontrivial element w € (s;, s;)
satisfying wa; € A1 is w = s;; note that s;ja; = «;. The formula in
Theorem m gives Ty, (E;) = T;(E;) = E;.
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m = 3: In this case we have s;s;s; = s;5;5;, and the nontrivial elements w € (84, sj>
satisfying wa; € A" are w = s; and w = s;s;; note that in this case
(si,s;) = S3. Using the computations in the proof of Theorem we
obtain 7;]. (El) = E(El) = EiEJ — qZE]E’L and 7-57‘,5_7’ (El) = 7;73(E2) = Ej.

m = 4: In this case we have s;5;5;5; = 5;5;5;5;, and the nontrivial elements w €
(si,s;) satisfying wa; € AT are w = s;,w = s;8;,w = s;8;8;; in fact
applying these elements to «; yields two distinct positive roots. Note that
we have here (s;,s;) = Dy = S21 55, the dihedral group of order 8. This is
the Weyl group of type Bs.

If (e, ;) < (@ , ), then as in the proof of Theorem we obtain

7;J( ): ](El) —q E Eza
Teis; (Ei) = 7;7;(E,) T (Ez') = E,E; — ¢’E,Ej,
17—"9‘7'51'5‘]( ): 7;7;7;( ) E;

If (a4, ) > (e, @), we have to swap the roles of ¢ and j in the proof of
Theorem [2.59] and obtain

To,(Ei) = T;(Bi) = BB — 4B E.E; + ¢ BV E;,
Tarsy () = T (E) = T, (i) = BS By — qBBiE; + *E; B
Tsjsis; (Ei) = TyTiTi(Ei) = E;

In both cases the required properties hold.

m = 6: In this case we have s;s;5;5;5;5; = 5;5;5;5;5;5;, and for the nontrivial
elements w € (s;, ;) satisfying wa; € AT one finds w = sj, w = s;8j, w =
5j5i8j,W = $;5;8;5j,W = 5;5;5;5;5;; in fact applying these elements to o
yields three distinct positive roots. Note that we have (s;,s;) = Dg, the
dihedral group of order 12. This is the Weyl group of type Gs.

If (v, 04) < (@, ), then using the notation in the proof of Theorem

2.59 we obtain
7o, (B) = Ti(E;) = B (1),
Tais; (Ei) = TIT;(Ei) = Ej;(2),
s]sis] (Ez) = 7;7;T](Ez) = E:]_ 2)a
s 5;8i8; (E’L) - 7;7;7;7;(Ez) - 7;71(E’L) = Ey,;(l)a
s]s 5j5;5; (E’L) = 7;7;7;7;7; (EZ> = E‘Z

If (o, ;) > (o, ), we have to swap the roles of ¢ and j in the proof of
Theorem 259 and obtain

Ts; (Ei) = T;(Ei) = E5;(3),
Tois; (Bi) = TiT;(Eq) = [3151 (B (2) B (1) — ¢ Ej (D) ES (2)),
Toysis; (Bi) = TiTTi(Eq) = 8] (B, (1) E(2) — ’1E (2)E5(1))
Tovsyorsy (B) = TTTTH(E) = T, (B) = E5(3)
Tsysisssis; (i) = TiTiTTiTi(E:) = E;
In both cases the required properties hold.
This finishes the proof. (|

Lemma 2.61. Let w € W. If wa; € AT then Ty (E;) € Ug(ng), and if wa; = ay,
for some 1 <k < N then Ty (E;) = Ej.
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Proof. We use induction on the length {(w) of w, the case I(w) = 0 being trivial.
Hence suppose [(w) > 0. Then according to Section 10.2 in [35] there exists 1 < j <
N such that wa; € A7, note in particular that we must have ¢ # j. Let us write
again (s;,s;) C W for the subgroup generated by s; and s;. According to Section
1.10 in [36] we find uw € W and v € (s;, s;) such that w = wv and v, ue; € AT,
with lengths satisfying I(w) = {(u) + I(v). In particular, since u maps both «; and
a; into AT we have u # w, and we conclude [(u) < I(w). Applying the inductive
hypothesis to u we get T, (E;) € Uy(ny) and T, (E;) € Uy(ng). A similar reasoning
as above shows voy; € A7 since wa,; € AT, Hence Lemmaimphes that T, (E;)
is contained in the subalgebra of U,(ny) generated by E; and E;. We conclude
Tw(E;) = TuTo(E;) € Uy(ng) as desired.

For the second claim we proceed again by induction on I(w). Using the above
considerations, it suffices to show in the inductive step that va; is a simple root.
Indeed, the second part of Lemma [2.60] will then yield the claim. However, if vay
is not simple we can write vay; = ma; + na; with m,n € N because v € (s;, s;)
and va; € AT. Then wo; = muo; + nua; is a sum of positive roots because
Uy, uo; € AT. This contradicts the assumption that wo; = «y, is simple. Hence
va; is simple, and this finishes the proof. O

Ifwe W and w=s; ---5; is a reduced expression of w then we shall call the
vectors Egi Eg: with a; € Ny for all j the associated PBW-vectors. We will
show next that these vectors are always contained in Ug(ny).

Proposition 2.62. Let w € W and w = s;, - -+ s;, be a reduced expression of w.
Then the associated PBW-vectors Ej! --- Eg! are contained in Uy(ny.).

Proof. Since U, (ny) is a subalgebra of U, (g) it suffices to show that Ejg, is contained
in Ug(ng) for all 1 < r < ¢. As indicated earlier on, s;, ---s;,_, 0, is a positive
root. Considering the element s;, ---s,,_, € W and ¢ = i, in Lemma we see
that s, ...s;  (Ei,) is contained in Uy(n;). Moreover, observe that s;, ---s;, ,
is a reduced expression since it is part of a reduced expression. It follows that
Tsiyosi,, = Ts;y =+ Ts ., and hence Ty, .5,  (Ei.) = Ep.. This finishes the

i1’ 1 i1 1

proof. O
Next we discuss linear independence.

Proposition 2.63. Let w € W and w = s;, - -+ s;, be a reduced expression of w.
Then the associated PBW-vectors Egll e ng are linearly independent.

Proof. As a preparation, assume first that Xi,..., X, € U, (ny) satisfy 7;_1(Xj) €
Uy(ny) for all j and }°; X;E! = 0 or >, E/X; = 0. We claim that X; = 0 for
j=1...,m. ‘
In order to verify this consider the case > y E!X; = 0. Applying 7;71 yields
0= T (B ) = ST BTG = Y CREPT)
j=1

j=1 j=1

The vectors (—F;K; )7 € U,(b_) have pairwise distinct weights and 7, (X;) €
Uqy(ny) by assumption. Hence the triangular decomposition of Proposition
yields the claim. The case Zj Xng = 0 is analogous.

Let us now use induction on ¢ to prove the Proposition. For ¢ = 0, there is only
one PBW-vector, namely the element 1, corresponding to the empty word. The
assertion clearly holds in this case. Assume now that ¢t > 0. Then the PBW-vectors
have the form Ez’“1 Ti, (Xg1) where k € Ny and Xy, is a PBW-vector for the reduced
of s;,w. If ¢ are scalars with Zk,l cklEfl’El (Xgi) = 0, then

expression s;, - - S;,
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the first part of our proof combined with Proposition implies >, X = 0
for all k. By the inductive hypothesis we get cx; = 0 for all k,[, and this finishes
the proof. O

Let we W and w = s;, --- 55, be a reduced expression of w. We show next that
the subspace of Uj,(n4) spanned by the associated PBW-vectors is independent of
the reduced expression of w.

Lemma 2.64. Ifi # j and w is the longest element in the subgroup of W generated
by s; and sj, then the PBW-vectors associated to a reduced expression of w span
the subalgebra of Us(ny.) generated by E; and E;.

Proof. Note that there are precisely two reduced expressions for w, namely w =
5;558; -+ and w = s;8;5;---. Both consist of m factors, where m is the order of
5;5;. We shall proceed case-by-case depending on m.

m = 2: In this case we have T;(E;) = E;, T;(E;) = E;, the two reduced expressions
for w have associated PBW-vectors E;* E7* and E;lEfz, respectively, with
Tk, tr € Ng. Since E; and E; commute, the span is in both cases equal to
the subalgebra of U,(n) generated by E; and E;.

m = 3: In this case the situation is symmetric in ¢ and j. Hence it suffices to show
that the PBW-vectors associated with s;s;s; span the subalgebra generated
by E; and E;. From the proof of Theoremwe have T, (E;) = T;(E;) =
EiEj — qlEjE’L and 7;j3i (Ej) = 7;7;(E]) = Ei~ Then the claim is that the
vectors E;’W}(Ei)”’ E!® with r, € Ny span the subalgebra generated by E;
and Ej.

It suffices to show that the linear span of these vectors is closed under
left multiplication by F; and F;. For E; this is trivial, so let us consider
E;. Using the quantum Serre relations we get

ET;(E;) = E}E; — ¢;E,E; E;
= q; 'EiE;E; - E;E} = ¢; 'T;(E)E;,
and we have
E,Ej = qE;E; + T;(E;)

by definition. Applying these relations iteratively we see that any term of
the form E; E7' T;(E;)™ E;® can again be written as a linear combination of
such terms.

m = 4: As in the proof of Theorem we shall use the convention a;; = -2, a;; =
—1. We have ¢; = ¢ and ¢; = ¢* in this case.

For the reduced expression w = s;s;5;s; we obtain the associated root
vectors E;, T;(E;), T;Ti(E;) = T, "(E;), T;TiT;(E;) = E;. As before, it
suffices to check that left multiplication by E; preserves the linear span of
all terms of the form

BT (BT, (B E}

with r, € Ny.
To this end we observe

E:E; = ¢E;E; + T;(Ey),
and

ET;(E;) = T;(E;)E; + [21,T; ' (E)).
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The quantum Serre relations give
21,E: T, (Ej) = E}E; — (4 + 4" )4E} E;Ei + ¢*E, B, E}
=q *E}E;E; — (¢+q )¢ 'E;E;E; + E;E}
= q7?[2,T; ' (E))E:.

Moreover we have
BT, N(Ey) = ~EiF Ky =~ FiK; B = 7T, (E)) B

J
and hence
Ti(E)E; = ¢ B;T;(E).
Finally, the quantum Serre relations give
21, Ti(E))Ei = B;E} — (q+q ")qE:E; E} + ¢*E} E; B,
=q °E;E;E? — (q+q ") 'E?E;E; + E}E;
= q 12, EiTi(E;))
and hence using ’7;_1’7;_1(Ej) = Ti(E;) we get
T ENTHE) = a *Ti(B) T (B;)-
Combining these commutation relations yields the assertion for w = s;5;5;s;.
For the reduced expression w = s;5;5;5; we obtain the associated root
vectors E;, Ti(E;), TiT;(E;) = 7;-_1(Ei),7§7}7§(Ej) = E;. We check that
right multiplication by E; preserves the linear span of all terms of the form
ET(E;) T (Ef)E]!
with r, € Ny.
To this end we observe
E]‘EZ‘ = q2EzE] + 7;71(Ei),
and
T, N (E)E: = BT, N(E:) + [2],Ti(E;).

J
As above, the quantum Serre relations give
21473 (B) E; = ¢ *[2], B, Ti( E))

and

the second of which implies
T E)T(E)) = a > T E) T (Ey).
Finally, we have the relation
Ti(E)E; = —F;K;E; = —q; E;F;K; = q 2 E{T;(E;)
which implies
E;T,HE:) = q T (B E;.
Again, combining these relations yields the assertion.

: As in the proof of Theorem we shall use the convention a;; = —3,a;; =

—1. We have ¢; = g and ¢; = ¢° in this case.

Consider first the reduced expression w = s;5;5;5;5;5;. We obtain the as-
sociated root vectors Ej, Ti(Ej) = E;;(3), TiT;(E:) = E;;(2), TiT;Ti(E;) =
T, NE), TTTiT;(E) = T, ' (Ei) = E;;(1), E;. We check that right
multiplication by FE; preserves the linear span of the vectors

B EG(3) By ()™ T T () By ()™ Ej°
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with rj € Np.
We first note
E;E; = ¢*E,E; + B (1)
and
i (1)E: = aFiE; (1) + 2,55 (2).
Using
21,E,E;;(2) = E;E;;(1)E; — qE;E;E;;(1)
= ¢ P E;(1)E;E; — qE;(1)? — ' E;E;E;(1)
=q °E;;(1)’ + E;(1)E;E; — qE;;(1)* — qE;E;;(1)E;
= (¢7° - E;; (1)’ + E;()EE; — ¢E:E;(1)E,
= (¢7° = E;(1)* + [2l,E;;(2)E;
and 7}717'-71(Ei;(1)) = Tﬁl(E;;(Q)) = E..(2) we get

i J ij
207 T (EDE: = (a7° — ) E;; (2)° + 2, BT, T, (By).
In addition,
E;(2)Ei—q 'E:E;(2)
= [8,B;E - 2, E:EE® + ¢'E” B B,
— ¢ 'EEE® 4 q2,EP B E; — B, BV E;
= Bl Ei;(3),
using ¢[3], = ¢ +q+¢® = ?[2],+¢ 7 and ¢2[3], = 1+ > +¢* = ¢* +q[2],.
Finally, we recall E;(3)E; = —q_?’EiEi; (3).
Moreover E;E; (1) = q*3Ei;(1)Ej and

E;(DE;(2) = aB;(2)E; (1) + 81T, T, (B)).
We have E;T,'(E;) = E;E;(3) = —q*E}(3)E;, and since T, '(E;) =
E;;(1) we get

EZ ()T, TN (Ey) = = ° T, T (E) B (1),

ij
s + +(9) — -3+ +(2) sl
In addition, E%(3)E5(2) = ¢ °E;5(2) 5 (3) implies
T (BB (2) = ¢ B ()T T (E,).
Finally, we recall E;E}(1) = ¢*Ef;(1)E;, which gives

E;(3)E;(2) = ¢°E;;(2)E;; (3).

Now consider the reduced expression w = s;5;5;5;5;5;. The associated root
vectors are Ej, T;(E;) = Ef5 (1), TTi(Ey) = T, T T H(Ey), T T (Ei) =
E;;(2),7}7;7}7;(E]) =T YE)) = E:;(S),E, We have to check that left
multiplication by FE; preserves the linear span of all terms of the form

T + rogq—1g—14-—1 T + + 5 T
By EG()™=T T T, (B EG () B (3) B

with r; € Np.
To this end we observe

and
EiES5(1) = qEL (1) Ei + [2,E5(2),
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Next observe that ;7' T, (E;) = T, '(E;; (1)) = E5(2) and TT; i T, Ti(E;) =
E;. We obtain
[2,Ef(2)E; = E:E;(1)E; — qE;(1) EiE;
= ¢ *EE;E}(1) —qEf(1)? + ¢'Ef,(1)E; E;
= ¢ B (1)? — B EES (1) — 4B (1)° + 4B Ef (1) E;
=(¢7° =9 E5(1)? - B;EES(1) + ¢E;Ef (1) E;
= (¢7* = q)E}(1)* - [2,E, E5(2)
Using 7;’7;(E$(1)) = E$(2) we get
21,E T, T E) = (a4 ¢ ) ES(2)° — 21,717, 1T 1B Ei.
In addition,
EiE}(2)—q¢ 'Ef(2)E;
= 8,E° E; - (2B E; B, + ¢' Bi B, B
~ ¢ 'EP B;B; + q[2),E:EE® - ¢°[3],B,E
= [3]qE$(3),
using q[3lq = ¢~ +q+¢* = ¢?[2l;+q " and (3] = 1+¢*+¢" = ¢*+q[2,.
Using the quantum Serre relations we obtain
814! EiE7(3)
= E}E; — q[3),E} E, E; + ¢*[3], B} E; E} — B, E, E}
= —q E}BjE; + q *[31,E}E;E} — ¢ '[3,EiE; E} + E; B}
= —q BB (3)Ex,
taking into account [4], = ¢~ 3+¢[3], = ¢®*+¢'[3], and [4], = (¢®>+q¢2)[2],-
Moreover,
EL()E; = E;E; — ¢°E,E;E;
=q¢ °E;E,E; — E}E;
= ¢ °E;Ef(1)
using the quantum Serre relation
E:E? — (¢*+ ¢ *)E;E,E; + EZE; = 0.
We have
ES(2ES(1) = BT T T (Ey) + a ' ES (1) ES(2),
and from E:;(l)EJ = q*?’EjE;(l) we get
ESQT T TN (Ey) = T (B (1)E;)
= ¢ TT(EES (1) = ¢ T, T T H(E) Ef (2).
Using again the quantum Serre relations we compute
Blg!Ey; (3) B
= E,E} — q[3],E;E;E} + ¢°[3),E}E,E} — ¢°E}E}E;
= —q *E,E;E} + q *[3,E?E;E? — ¢ '[3],EE;E; + E}E;
= —q °[3]4'E:E;; (3),
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taking into account [4], = ¢ 3+¢(3], = ¢*+¢ (3], and [4], = (¢*+¢2)[2],-
This yields
TN (B B (1) = T (5 (3) E:)
=~ TI(BE;(3)) = —q BT T T (E).

We have
E,E;(1) = E}E; — ¢’E, E;E;
=q ’E;E,E; — E;E}
= ¢ °E;;(1)Ej,
whence

ESB3)ES(2) = T (B E;(1))
=q T (B (DE)) = ¢ B (2)E(3).
Combining these relations yields the assertion.

This finishes the proof. O

Proposition 2.65. Let w € W and w = s;, --- si, be a reduced expression of w.
The linear subspace of Ug(ny) spanned by the associated PBW-vectors Eg - -+ Eg!
depends on w, but not on the choice of the reduced expression for w.

Proof. We use induction on I(w), the cases I(w) = 0 and [(w) = 1 being trivial. Now
assume [(w) > 1 and let w = s;, - - - 5;,. be a reduced expression. Any other reduced
expression sj, ---s;, is obtained from a sequence of elementary moves applied to
Siy -+~ 8i,., S0 it suffices to show that the subspace spanned by the associated PBW-
vectors does not change if sj;, ---s;, is obtained by applying a single elementary
move to s;, --- 8. Set o = oy, and B = oy,

Assume first « = f write u = s;; w = sjw. The the inductive hypothesis
applied to u shows that the subspace U associated to u is the same for the reduced
expressions s;, - - 8;, and sj, ---s;, of u. It follows from the definitions that the
space spanned by the PBW-vectors associated to both s;, ---s; and sj, ---s;, is
the sum of the subspaces Efl Ta,; (U) for k € Ny. In particular, these spaces agree
for both reduced expressions of w.

Assume now « # (. Then the elementary move changes the first letter of the
expression s;, - - - s;., and therefore the corresponding elementary move has to take
place at the beginning of the expression. Let u be the longest word in the subgroup
of W generated by s;, and s;. Then s;, ---s; and sj, ---s;, start with the two
distinct reduced expressions for v and agree after that. Let us write w = uv with
l(w) = l(u) + l(v). According to Lemma the subspace U spanned by the
PBW-vectors associated to u is independent of the two expressions. Let us write V'
for the span of PBW-vectors associated to the reduced expression of v induced by
i, - 8i,, or equivalently s;, ---s;,. Then the span of the PBW-vectors associated
to the given expressions for w is equal to the UT,(V), in particular, it does not
depend on the reduced expressions. O

In the sequel we will write Uy(ny)[w] C Uy(ny) for the subspace spanned by the
PBW-vectors associated with any reduced expression of w.

Let us fix a reduced expression wg = s;, - - - s;,, for the longest element wy of W.
Then the positive roots of g can be uniquely written in the form 5, = s;, -~ s:._, @,
for1 <r<n.
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Definition 2.66. Fix a reduced expression wg = s;, - - - s;, for the longest element
of W. We define the quantum root vectors of U,(g) to be the associated PBW-
vectors

Eg, =T Ti,_(Ei,), Fg, =Ty Ti,_,(Fi,).

Let us now formulate and prove the Poincaré-Birkhoff-Witt Theorem for U, (g).

r

Theorem 2.67 (PBW-basis - Non-root of unity case). Assume ¢ € K* is not a
root of unity. Then the elements

b b, a [
Fgy o g K\Eg) - Byt

where bj,a; € Ng for all j, X € P and B1,..., B, are the positive roots of g, form a
vector space basis of Uy(g) over K.

Proof. According to the triangular decomposition of U,(g), see Proposition it
suffices to show that the vectors Ef! --- Eg" with a; € Ny form a basis of Ug(n).
The corresponding claim for U, (n_) can then be obtained by applying the automor-
phism w. Indeed, one checks that 7;(w(E;)) and w(7;(E;)) agree up to invertible
elements in K, for every 1 <4i,j < N.

Firstly, according to Propositionthe PBW-vectors Egi e Eg: with a; € Ny
are linearly independent. To show that these vectors span Uj(n;) we need an
auxiliary consideration. If w € W and «a; € X satisfy w™'a; € A~ then we have
E;U;(ny)[w] C Uy(ny)[w]. Indeed, in this case we find a reduced decomposition
w = 8;, -+ 8;, with 41 = %, hence the PBW-vectors start with powers of E;. Clearly,
the resulting space is invariant under left multiplication by E;.

Let us now show that the PBW-vectors span Uy(n,.). By definition, these vectors
span the subspace U, (n ) [wo]. Since wy is the longest word of W we have wg *(a;) €
A~ and thus E;U;(ny)[we] C Uy(ng)wo] for all . Hence Uy(ny)[wo)] is closed
under left multiplication by the generators Ey, ..., En. By construction, the space
Uq(ny)[wo)] also contains 1. It follows that U,(ny){wo] = Uy(ny) as desired. O

We point out that one can reverse the ordering in the basis obtained in Theorem
[2:67] That is, the vectors

b, b 2% a
F5n~ FlKAE Eﬂi

where b;,a; € Ny for all j, A € P and f,... ,Bn are the positive roots of g, form
again a vector space basis of Ugy(g). This can be seen using the anti-automorphism §
of Uy(g) which preserves all generators but exchanges ¢ with ¢~ !. One checks that
the automorphisms 7716756 act by certain scalars on the generators, and hence
diagonally on weight spaces of U,(g). Hence we have for all 1 < j < n that §(Fpg,)
is equal to Ejg, up to a scalar, and since ¢ is anti-multiplicative it follows from
Theorem that the vectors EZZ e Eg; form indeed a basis. We will frequently
make use of this fact in the sequel, and refer to the vectors Eg Egi again as

PBW-vectors. In a similar way we proceed for Fg b F gll of course.

Let us also remark that the rank 1 case of Theorem [2.67] follows immediately
from Proposition [2.14]

As a consequence of the PBW-basis Theorem, we see that the dimension of the
weight spaces Uy(ny), for v € Q* coincide with their classical counterparts. Here
we are writing Q~ = —Q%. These dimensions can be described in terms of the
Kostant partition function P : Q — Ny, defined by

Pw)=H{(r1,...,mn) €Ng | 1181+ + 700 = v}

Proposition 2.68. For all v € Q" we have dimU,(ny)y, = P(v), where P
denotes Kostant’s partition function.
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Proof. Let us only consider the case of Uy(n). According to Theorem a linear
basis for Uy(ny), for v € Q7 is given by all PBW-vectors Eg! --- Eg" such that
a1f1 + -+ - apBn = v. The number of these vectors is precisely P(v). O

Let us finish this subsection by the following result, originally due to Leven-
dorskii, which will help us to analyze the structure of Uy(ny) further below.

Proposition 2.69. If0 <r < s <n then we have

oo

ts— tr
EﬂTEBS - q(BTVﬁS)EﬁsEBT - Z Ctr«#l»nwts—lEﬂS,ll U E o

Br+1’?
Lrg1yte_1=0

with only finitely many coefficients ¢, € K in the sum on the right hand

side being nonzero. Likewise,

rt1yeebs—1

o0

ts— tr
FﬁrFBs - q(ﬁhﬁg)FBbFﬁ7 = Z dtr#»lauwts—lFﬂs,i e Fﬁ,ii’

trg1,..ts—1=0

with only finitely many d; . € K nonzero.

rplyeeybs—

Proof. According to the PBW-Theorem we can write

Es Eg, = Z .t  Bg -  EG
t1,0.tn €Ng

with only finitely many nonzero terms on the right hand side. Assume that there
exists @ < r such that some ¢y o04,,.+, # 0 with t; > 0, and without loss of
generality pick the smallest such a. If we apply 7;:1 e 7:1 to both sides of the
above equation then the left hand side, and all terms on the right hand side with
t, = 0 are contained in Uy(ny). Indeed, all these terms are products of root vectors
of the form T, , -+~ T;,_, (E; ) such that a+1 < [, recall that Eg, = T;, --- T;,_, (£;,).
The word s;,, , - - s, is a reduced expression and hence s;, ., - -+ 85,_, o, is a positive
root. According to Lemma this implies Eg, = T;, -+ Ti,_, (Ey,) € Ug(ng).

The terms with ¢, > 0 are of the form Xﬁ:l(Eia)ta for X € Uy(ny). Since

7;:1(Eia) =-F, Kfal this is a contradiction to the PBW-Theorem

In a similar way one checks that ¢, .. ¢, 0,..0 7 0 for b > s is impossible. Indeed,
assume that a nonzero coefficient of this form exists and pick b maximal with this
property. Applying ’Ti:l . 7;1_1 to both sides of the equation leads to expressions
in Uy(n_), except for the terms with ¢, # 0.

Next, consider the nonzero coeflicients ¢y, o+,.... +,.0,... With ¢, or ¢; nonzero. In
a similar way as above we apply 7;_1 e 7;1_1 and 7;_}1 ---7;1_1, respectively, and
compare both sides of the equation. The highest powers of F; or E;, appearing in
the resulting expressions must have the same degree on both sides, and this forces
t, = 1 and t; = 1, respectively. As a consequence, for any nonzero coefficient of
this form we obtain ¢; = 0 for all » < j < s by comparing weights.

It follows that we can write
o

ts— tr
EBTEﬁS - CE/BS Eﬁr = Z ct7*+1;‘-~7ts—1EﬁS,11 U EIBT:II’

try1,..ts—1=0

with an as yet unspecified constant c. In order to compute ¢ we apply 7::1 e 7:1_1
to both sides of the previous equation. Then the left hand side becomes

~F, K, 'E+cEF; K; '
where £ = T;, ., - Ti,_,(E;,). Since E has weight s; ---s;, (8) we get K;lE =
q_(o‘ir ySipSig (BS))EK’L_T:L . Moreover

— (i, i, 80, (Bs)) = (84, -+ 84, (04,), Bs) = (Br, Bs),
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using that s;, (o) = —ay,.. Accordingly, we obtain
—F;, K;'E+ cEF; K; ' = (—¢"#)F, E+ cEF;, )K"
Writing E' as a sum of monomials in the generators Ey, ..., Exy we get F; E—EF;_ €

U,(bs). Comparing with the right hand side of the formula and using once more
the PBW-Theorem yields ¢ = ¢(#54) as desired.

The claim for the PBW-vectors of U, (n_) follows by applying the automorphism
w to the formula in U,(ny) and using the fact that 7;(w(E;)) and w(7;(E;)) agree
up to an invertible element in K, for every i, j. O

2.7.5. The integral PBW-basis. Recall that the integral version U, 54(9) of the quan-
tized universal enveloping algebra is defined over A = Z[s,s~!] where ¢ = s*. Let

us fix a reduced expression wg = w;, - - - w;, for the longest element wy of W. We
define the restricted PBW-elements for Uy(ny) by

(@) . glan)
EBl o .Eﬂn ’

where 1
E(ar) — Ear
Br [ar]qm!
and gg, = ¢;,. it Eg. = T;, ---Ti,_,(E;.). That is, the difference to the ordinary
PBW-elements is that we multiply by the inverse of [a1]g, !+ [an]q,, ! In a similar

way one obtains restricted PBW-elements for Uy (n_).
Before we can state the integral version of the PBW-Theorem we need a refine-

ment of Proposition
Lemma 2.70. Let V be an integrable U,(g)-module. For any n € N we have

7;(E.§n) ’ U) = (7(11')7“01” (E;n) <— Sil(Ei(_naij))) . 7;(1))
Z(Fj,(n) ) = (Fi(—’ﬂ/aij) = Fj(n)) Ti(v)
forallveV.

Proof. Let us first consider the second formula. According to Proposition we
have the claim for n = 1. In order to prove the assertion for general n it suffices to

show (Fi(_a”) — Fj)" = Fi(_m"") — (F7') by induction. Assuming that the claim
holds for n — 1, we compute, using Lemma [2.6
Fi(_naij) N (an) _ ((Fi(—naij))(l) _ an—l) ((Fi(—naij))@) N Fj)
= > g E TR S (Y o B,
k=0
Using that Fi(_a” o, F; = 0 and the inductive hypothesis, all of the terms in
this sum vanish except when k = —a;;, leaving

plnai) (Fry = qi—aij(—(n—l)am’)(Fl(—(n—l)aij)K;lij N anfl)(Fj(—aij) — F))

K2 K2

= (P Ve o prety (RO S )

= (F ") o F)"Y(F ") Fy) = (F %) — Fy)"

as desired.
Using this result, one obtains the first formula in the same way as in the proof
of Proposition 2:54] O

Let us now present an integral version of the PBW Theorem Recall that
U;‘(ni) C U;‘(g) is the subalgebra generated by all divided powers EZ-(C“) and Fj(bj),
respectively.
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Theorem 2.71 (PBW-basis - Integral Case). The elements
(a1) (an)
E/31 o Eﬁ’n

where a; € Ng and B1, ..., By are the positive roots of g, form a free basis ofU;‘(n+).
Similarly, the elements

(bl) (bn)
F/Bl o .Fﬁn

where b; € No and 31, ..., By are the positive roots of g, form a free basis of Ué“(n,),

Proof. Recall that we can view U,;“(g) as a subring of the quantized universal en-
veloping algebra U, (g) defined over K = Q(s). Using the formulas in Theorem [2.58]
and Lemma we see that the operators 7; map U(f(g) into itself. It follows in
particular that the PBW-vectors are indeed contained in U (g).

In the same way as in the proof of Theorem [2.67] one checks that left multipli-
cation with E") preserves the A-span of the PBW-basis vectors E{"™) - .- Eéi") for

B1
all 1 <7 < N and r € Nyg. We point out in particular that the commutation rela-

tions obtained in Lemma [2.64] only involve coefficients from A, so that the integral
version of Proposition holds true. That is, the A-linear span of the restricted
PBW-vectors Egl) e E[(;:”) inside Uy(n4 ) is independent of the reduced expression
of wg. Linear independence of the restricted PBW-elements over A follows from
linear independence over Q(s).

The assertion for U,(n_) is obtained in an analogous way. t

Using Theorem we see that the triangular decomposition of U,(g) carries
over to the integral form as well. Recall that U;l(b) denotes the intersection of
UA(g) with U, ().

Proposition 2.72. Multiplication in U(;“(g) induces an isomorphism
U (no) @4 U() @4 Uz (ny) = U7 (0)
of A-modules, and we have

Q(s) ®4 UMg) = Uy(g),

where Uy(g) is the quantized universal enveloping algebra over Q(s).

Proof. Tt is easy to see that the image in UqA(g) under the multiplication map is a
subalgebra containing all generators, and therefore yields all of UqA(g). According
to Theorem and Theorem we have Q(s) ®.4 U(;“(ni) = Uy(nyg). From
Proposition we know Q(s) ® 4 U(;“(h) = U,(h). Hence the multiplication map
Ut(n_) @4 U(h) @4 U (ny) — UF(g) is injective. The remaining claim then
follows taking into account Proposition O

Proposition shows in particular that Uy!(g) is indeed an integral version of
U,(g) in a natural sense.

2.8. The Drinfeld pairing and the quantum Killing form. In this section we
discuss the Drinfeld pairing and the quantum Killing form, compare [71].

2.8.1. Drinfeld pairing. Let us start by defining the Drinfeld pairing. We assume
that K is a field and that ¢ = s* € K* is not a root of unity.

We recall that a skew-pairing of Hopf algebras L and K means a bilinear map
p: L x K — K such that

p(xy, ) = p(z, fy)p(y, f2)), p(x, fg) = p(xy, 9)p(T(2), f),
p(L, f) = ex(f), p(x,1) = e ().
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Proposition 2.73. There exists a unique skew-pairing p : Ug(b_) @ Uy(by) — K
determined by
dij
p(Ka, Kg) = ¢, p(Ka, E)=0=p(F;,Ks),  p(Fj, Ei) = ﬁ

foralla,peP andi,j=1,...,N.

Proof. Uniqueness of the form is clear since the elements K, F; and Kg, F; generate
U,(bs) and U, (b_), respectively.

We define linear functionals ky, ¢; € Uy(b)* for A€ Pandi=1,...,N by

rA(EpX) = ¢MPe(X)
for X € Uy(ny) and
1 .
¢i(KpE;) = P $i(KpX) =0 if X € Uy(ny)y,y # ;.
i~ 4;

Consider the convolution product on U, (b4 )* dual to comultiplication on U, (b ),

namely

e = (p®¢') oA, for ¢, ¢" € Uy(bs)*.

With this product, ) is convolution invertible with inverse /1;1 = K_). Moreover,
we claim that

kg = q TN k.

Indeed, for X € Uy(ny) we have (ka¢jry ')(K,X) = 0= ¢;(K,X) if X € Uy(ny)g
for B # a; and
(rx05) (K Ej) = mA(Ku) ¢ (KuEj) + ra (K Ej)6; (K K;)
= ™, (K,E))
= ¢~ N (¢ (K (KuEj) + 6 (K By)ma (K K;))
= ¢~ N (gjr) (K Ey).
It follows that we obtain an algebra homomorphism 7 : U,(b_) — U,(b,)* by
setting 7(K») = wy and (F;) = ¢;. Here U,(b_) denotes the algebra without
Serre relations discussed in Section 2.21
We define p(Y, X) = (Y)(X). Then we have p(YZ,X) = p(Y, X1))p(Z, X(2))
by construction. In order to show p(Y,WX) = p(Y(2), W)p(Y1y, X) it suffices to
consider generators in the first variable, since the relation holds for p(Y1Ys, WX)
for arbitrary W, X iff it holds for all (Y7, WX) and p(Ya, WX), for arbitrary W, X.
Let By = E;,---E;,,E; = Ej,---E;, and p,v € P be given, and consider
p(Kx, K, E; K, Ej). If either one of E; or Ej is different from 1 we get
P(EN, Ky Ei Ky Ey) = 0 = p(Kx, Ky Ey)p(Kx, K, Ex).
Otherwise we get
PN K Ky) = ma(KuKy) = M) = iy (K )ka(KL) = A, K,)p(E, K ).

Moreover we have

p(Fr, K B K, Ey) = ¢n( K EiK Ey) = 0= (¢p @ 1+ k" ® ¢3) (K, B @ K, Ey)
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unless precisely one of the terms Ej or Ej has length one. In these cases we obtain
p(Fr, K, BiK,) = $r(KuEiK,) = ¢~ ¢y (K, K, E;)

1
=g @)gy,
a4 —q; ot
= (o @1+ k" @ ¢p) (K, @ K,E)

= p((Fr) 1y, Ko)p((Fr) 2y, K Ey)

and
p(Fy, Ky Ky Ej) = o (K, K, Ej)
e 1
= ]kiqj — q;l
= (¢ @1+ K, @)K, B @K,)
= p((Fi) 1), Ko Ej) p((F) (2), K)
respectively.

Next we claim that
17(1“'
-~ 1— (73] 1—a;
Fuy) = D (1)k[ k j} i "0t =0,
q

k=0

[

where we recall that the Serre elements u;; were introduced in Subsection
For this, notice that the individual summands vanish on all monomials in the Fj
except on terms of the form K, E] E; E‘z1 ~%7" According to Proposition and
the relation p(Y,WX) = p(Y(a), W)p(Y(1), X) for all W, X € Uy(by) established
above we have

plus, WX) = plug, W)pk; k7, X) + 5L W)i(ug;, X)

zg’
for all W, X € Uy(by), therefore the claim follows from degree considerations. We
conclude that the map 4 factorises to an algebra homomorphism ~ : U,(b_) —
Uq(b4)* such that v(Ky) = ky and y(F;) = ¢;. We define p(Y, X) = (Y)(X).
By construction, we have p(Y'Z, X) = p(Y, X(1))p(Z, X(2)) for all Y, Z € U, (b_
and X € Uqy(by), and the relation p(Y, WX) = p(Y(2), W)p(Y1), X) for Y € Ugy(
and W, X € U,(b,) is inherited from p. Moreover, we notice that p(1,X) = €
because v is an algebra homomorphism. Finally, p(Ky,1) = k(1) = 1 = é(K)
and p(F;,1) = ¢;(1) = 0 = é(F;), which implies p(Y,1) = é(Y) for all Y € Uy (b_
This finishes the proof. D

Note that the form p satisfies
p(Y,X)=0 for X € Uy(ny)a, Y € Uy(n_)g, a # —p.

In the sequel we will work both with p and the closely related form 7 defined as
follows.

Definition 2.74. We shall refer to the skew-pairing 7 : U,(by) ® Uy(b-) — K
given by
T(X,Y) = p(5(Y), X).
as the Drinfeld pairing.
Lemma 2.75. The Drinfeld pairing T satisfies

(Ko Kp) = a0, r(BLK) =0=r(Kp By, (B Fp) ==
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foralla,8€P andi,j=1,...,N. Moreover
(XK, YK,) = ¢ "7 (X,Y) for X € Uy(ny),Y € Uy(n_).

Proof. The formulas in the first part of the Lemma are verified by direct computa-
tion from the definition of p.

For Y =1 € Uy(n_) the second claim follows immediately from 7(XK,, K,) =
p(K,; ', XK,). For Y = F; we see that 7(X K, F;) and 7(X, F};) vanish unless X
is a multiple of E;, and we compute

T(B;j Ky, Fy) = 7(Ej, Fy)T (K, 1) + 7(Ej, K )7 (K, Fy)
1
- (BB
qj — 4;
We get the formula for general Y by induction, using
T(XK,, F;YK,) = 1( XK, YK )7(X(9) Ky, Fj)
= q M7 (X 1), Y)T(X(2), Fj)
=q "7 (X, FY),

in the inductive step. Notice here that A(X) is contained in U,(ny) ® U,(by). O

A crucial property of the pairings p and 7 is that they can be used to exhibit
U,(g) as a quotient of the Drinfeld double U, (b_) > U, (b ).

Lemma 2.76. For all X € Uy(by) andY € Uy(b_) we have

XY = p(Ya), X1) Y2y X(2)0(8 (V3)), X(3))
= 7(S(X(1), Y)Yy X2 7 (X(3), V13))
in Uy(g).
Proof. Tt suffices to check this on generators. We compute
KK, = K,K, = q(“”’)Kl,Kuq_(“”’),
EK, =q "K,E
= (K, VK Eip(S(Ky), Ki
= p(Ku, DKL Eip(S(Ky.), Ki) + p(K, B K Kip(S(K,), Ki)
+ p(Ky, 1)KHP(S(KIL)7EZ')7
E;F; = FjE; — 6, Ki_l_l +6i; K"_l
qi — q; 4 — q;
= p(K;  DEEip(S(1), K3) + p(K; DE p(S(Fy), Ei)
p(Fj, Ei)K;p( A(l)aKi)-

This yields the claim. (]

S(K,), K,
S(

We note that we can rephrase the commutation relation of Lemma [2.76| as
XY r(Yie) X2) = p(Y0), X)) Yi2) X2)

for X € Uy(by) and Y € Uy(b_).
In the double Uy (b_) b U, (b4 ) we shall denote the Cartan generators of Uy (b))
by K, and the Cartan generators of Uy (b_) by K .
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Corollary 2.77. The two-sided ideal I of the Drinfeld double Uy(b_) > Uy(by)
generated by the elements K, — K;\' for X € P is a Hopf ideal, and there is a
canonical isomorphism

(Uq(b-) paly(by))/1 = Uy(g)
of Hopf algebras.

Proof. The canonical embedding maps U,(b1) — Uy(g) and U,(b_) — U,(g) de-
fine a Hopf algebra homomorphism f : (Uy(b_) > Uy(by))/I — Uy(g) according
to Lemma Conversely, we obtain an algebra homomorphism g : Uy(g) —
(Ug(b_) > U, (by))/I by setting

since the defining relations of U,(g) are satisfied by these elements. It is evident

that f and g define inverse isomorphisms. O

2.8.2. The quantum Killing form. Using the above constructions we can define the
quantum Killing form on U,(g) in terms of the Rosso form for the Drinfeld double.
In this subsection, we will need a slightly stronger assumption on ¢, namely ¢ =
52l € K*, again not a root of unity.

According to Definition the Rosso form on the double U, (b_) 1 U, (b ) is
given by

H(Yl > Xl, }/2 > XQ) = T(S(Xl), YQ)T(XQ, S(Yl)),
for X1,Xo € Uy(by),Y1,Ys € Ug(b_), or equivalently
k(Y1 b STHXY), Yo §(Xy)) = 7(X1, Ya)7(X2, V7).
These formulas inspire the following definition.

Definition 2.78. Assume that ¢ = s>/ € K*. The quantum Killing form for U, (g)
is the bilinear form & : Uy (g) x Uy(g) — K given by

)
k(Y1 K, S7HX1), VoK, S(X2)) = ¢/ 21( X1, Ya)T(X2, Y1),
for Xl,XQ € Uq(n+),Y1,Y2 S Uq(n_),u,u cP.

We remark that we need here a slightly stronger requirement on ¢ than usual
in order for the terms ¢»*)/2 to be well-defined. The factor of % is needed to
compensate for the doubling of the Cartan part in U, (b_) > U, (by), see also the
remarks further below.

Heuristically, the formula in Definition [2.78| can be explained by formally writing

K(Y1K 0 2 K, 2S7 (X1), Ya K,y 15 0 K, 98(X2))
= k(Y1 K, o 00 STHXIK _0), Yo K, o 0 S(X2 K, p9))
= ¢ 21 (X1, Ys)T(Xa, Y1),

in the Rosso form. This amounts to “splitting up” the Cartan part of U,(g) evenly
among Uq,(by) and Uy (b_).

Proposition 2.79. The quantum Killing form k : Ug(g) x Uy(g) — K is ad-
invariant, that 1s,

K(Z = X,Y)=r(X,5(Z) = Y)
for all XY, Z € Uy(g).
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Proof. Let us consider X = YlKHS_l(Xl) and Y = YQKVS(Xg). For Z = K and
X; e Uqj(ny)p, and Y; € Uy(n_),, we get

KKy — (MK,S7H X)), Ky — (YaK35(X3)))
= M) AP t2) (v KL, STHX ), YVa KL, S (X))
= 5517—72552,—71”(YlKuSPl(Xl)a YZKVS(X2))
= k(Y1 KaS71(X1), Y2 K35(X3)).

Now consider Z = $~1(E;). We compute

E; — (Y2K,5(X5)) = E;Y2K,8(X2)8(K;) + Yo K, 8(X2)S(E;)
=P EYK,_0,5(Xs) + V2K, S(E; X5)

= g(@iF2) <T(S(Ez‘)7 (Y2) (1)) (Ya) 2y K (K, (Y2) (3)) K —a, S(X2)

+7(1, (Ya) (1)) (Y2) 2 Bi (K, (Y2) (3)) Ko, S (X2)

+7(1, (Y2) (1)) (Y2) () T (&3, (Yz)(z))KV—aiS(X2)> + Y2 K, S(E; X,)

— q(ai,ﬁz) (T(S’(E@), (}/'2)(1))(Y'2)(2)KV§(X2)

+ V2 Ei Ko, S(X2) + 7(E;, (Yz)(Q))(YQ)u)KVaiS(Xz)) + Y2 K, S(E; X>)

= ¢ "7 (S(Ey), (Ya) (1)) (Y2) (2) K S(Xa) — ¢\ %)Y, 8(E;) K, S (X2)
+ qleP) (B, (Yz)(2))(Y2)(1)Kv—aiS(X2) + Y2 K, S(EXs)
= g I (B K (V) (1) (Va) ) K S (Xa)
— glePg= (i)Y, K¢, S (XL E)
+ P (B (Y2)(2) (Ya) (1) Ko, S (X2)
+ Yo K, S(E: Xy).

In the third term, note that 7(E;,-) annihilates all PBW vectors in U, (b_) except
those of the form F; K, for some A € P. We therefore obtain

k(Y1 K,87Y(X1), B; — (Y2K,5(X2)))

= —q PRI (B KT (Ya) ) 7T(X1, (Y2) (2))7 (X2, Y7)
— gl qm ) g (X Vo) r(Xo Bi, Y1)
+ gl qlm e Rglir=ed Rr( B, (Yy) ) 7(X1, (Ya) 1)) 7(X2, Y1)
+ ¢ 21 (X1, Ya)T(Ei X2, Y1)

= —g PP (B, X, Vo) r(Xo, Y1)
— gl gm () ) P (X Vo) r(Xo Bi, V)
+ q(ai,/32)q—(um)q(uw)/%(XlEi7 Ya)7(Xo, Y1)
+ ¢ P (X, Vo) T(Ei X2, Y1),
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On the other hand, using
E; — (MK,S7Y(X))) = EV1K,S57Y(X1)S(K;) + Y1 K,S™H(X1)S(E)

= ¢ PIEYIK), 0,57 (X0) + ¢ VK, ST (X)STH(E)
= gloh) (T(g(Ei)v (Y1) (1)) (Y1) (2 Kim (K, (Y1) 3) K p—r, S~ (X1)
+7(1, (Y1) (1)) (Y1) (2) BT (K, (Yl)(3))KH—ai‘§_1(X1)

+7(1, (Y1) 1)) (Y1) 27 (Ei, (Yl)(:a))Ku—aiél(Xl)) + ¢ Y K, 8B X1)
_ gl (r<é<Ei>, (1)) (V1) K~ (X1)

+VEiK, 0,S7Y X)) + 7(E;, (Yl)(z))(Yl)(l)Kuaiﬁ_l(X1)> + ¢l )Y K, 57 E X))
(Ei

= ¢ PI(S(E), (V1)) (Y1) 2y KW S~ 1 (Xy) — ¢ @Aty 8 Y (B K5~ (X1)
+ ¢ T (B (Y1) () (Y1) () Ko S7H(X0) + ¢V K, ST (B X0)
=~ P (BT, (V1)) (V1) 2K, S ™ (X1)
—gloPrredgTenny K, 97N (X By)
+ ¢ P 7(E;, (Y1) (2) (Y1) () K, S7H(X0)
+ ¢ )Y K, ST E X,).
we calculate
K(STHUE;) = MKLSTHXL)), V2K, S(X2))
= k(B — MK,S7H (X)), Ki — (YaK,5(X5)))
= —qltB) (B - (MK,S7TH (X)), Y2K,S5(X2))

= —qlotR) (—q(o‘“ﬂl)q(“’”)/27(EiKila (Y1) (1))7(X2, (Y1) (2))7(X1, Y2)

— q(Ozi,B1+a1:)q—(ow,u)q(/w/)/27-(X27 Y1) (X1E;, Ya)
+ gleaP)grme)2glnmai) 2 (B, (Y1)(2))7(X2, (Y1) (1)) 7(X1, Y2)

+ q(ai,ai)q(H:V)/27—(X27 Yl)T(EiX17 YQ))

= —gl@2th) (—q““’ﬁ“q(“’”)“r(EiK;lXQ, V1)7(X1,Ya)

_ q(ﬂz’ﬁlJrai)q*(az‘,#)q(#vV)/QT(X% Yl)T(XlEz‘, YQ)
+ gleB) g=wea) ()20 (X, By Y )T (X 1, Ya)

+ q(aivai)q(“’y)/QT(XQ, E)T(EiXh YQ))

= ¢ 2 (B, X5, Y1) T( X1, Ya)
+ qleiB2) g @nm) )20 (X, V)1 (X By, Ya)
 glanBa) g—ad) () 20 (X, By Y3 )T(X, Ya)
— ql@B2=B0) (20 (X, V1)1 (Ei X1, Ya),

where in the first term of the last equality we are using the fact that 7(F; X2, Y7)7(X1, Y2)
is zero unless —y; = a;+ 2 and —vy = (1, and similarly for each of the other terms.
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In a similar way one proceeds for Z = §~1(F;). This yields the claim. O

Consider also the bilinear form
(X1K,5(11), Y2 K, 5(Xs)) = ¢~ W/ 20 ( X, Vo) 7(X2, V1)
= k(STHX1K,S(Y1)), Y2K,S(X2)).
on Uy(g). Using
S(X)  8(2) = $2(Z)S(X)8(Z)) = 82y X8(Zz))) = $(Z — X)
and Proposition [2.79 we get
X+2ZY)=(X,Z->Y)

for all X,Y, Z € U,(g). This will be crucial when we use the quantum Killing form
to express the locally finite part of U,(g) in terms of O(G,) in Theorem [2.113

2.8.3. Computation of the Drinfeld pairing. In this subsection we use the PBW-
basis to compute the Drinfeld pairing. For the main part of the arguments we
follow the approach of Tanisaki [72].
Let us start with some preliminaries. The g-exponential function exp, is defined
by
—-1)/2

exp, (z Z ¢ z".

Here z is a formal variable, and the expression on the right hand side can be viewed
as an element of Q(q)[[x]].

Lemma 2.80. The formal series exp,(x) is invertible, with inverse

—n(n—1)/2

exp, (x Z q (—2)" = expy-1(—x).
Proof. We formally multiply and collect terms of common powers in x, explicitly,

exp, () expy1 (—) = <i qm[(m]q )(Z R z)”)

l(l—l)/2q—(k—l)(k—l—1)/2 1

oo k
= > Y (- ! [kfl]q!xk

k=0 1=0
s k Pl kl+lk—12—1)/2
_ Z(_l)kq(—k2+k)/2 <Z(_1)lq( ' )/ [ﬂ )xk
k=0 1=0 [k]q' q
e ¢ K2+k)/2 s K
— Z(_l) <Z l kl l |: :| )J?k.
k=0 1= q
Hence the claim follows from Lemma m O

For 1 < ¢ < N and integrable U,(g)-modules V, W, define a linear operator Z;
on V®W by

Z; = equi((qZ‘ - qz'_l)(Ei ® F)).
According to Lemma [2.80] the operator Z; is invertible with inverse

Z7" = expy(—(ai — ;B @ F)).

Recall moreover the definition of the operators 7; acting on integrable U,(g)-
modules from Section 2.7
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Proposition 2.81. Let V,W be finite dimensional integrable U,(g)-modules and
1 <i< N. Then we have

Titv@w) = (T; @ Ti) Zi(v @ w)
forallveweVe@W.

Proof. Since the operators 7; and Z; are defined in terms of Uy, (g;) C U,(g) it
suffices to consider the case g = s[(2,K). We shall therefore restrict to this case in
the sequel, writing Z = exp,(—(¢ — ¢ ')(E ® F)).

Let us first show that both 7 and (7 ® T)Z commute in the same way with the
diagonal action of F and F. By Lemma [2.51] we have

T(E-(vow)) =—-K*F-T(vew)
= (-K’FRK* -1 K*F)-T(v®w).

On the other hand,

(TOT)ZE - vow)=(TRT)Z(E-v@K? w+v®E-w)
=(TOT)(E®K?) -exp,((g— ¢ NP(E® F))(v®w))
+(TOTZ(1QFE) - (vew))
= —(K’Fo K *)(T @ T)(expy((a— ¢ )’ (E® F))(v @ w))
+(TeTZ(1QE) - (vew)).

In order to compute (7T ® T)Z((1® E) - (v ® w)) consider z = (¢ — ¢ )(E ® F).
Let us prove by induction that

n—1

[xn’ 1® E] _ Z(E ® (K72q72T o K2q2r))xn71
r=0
= (7" n]g(BE® K7%) — ¢" ! [n]y(E ® K?))z" !

for all n € N. Indeed, for n = 1 one checks
(2,10 El= (- ¢ )NE®[FE])=E (K ?-K?),
and for the inductive step we compute
", 1® E] =z[z" ' 1® E]+ [z,1 ® EJz"*
= xnf(E ® (K2 —K*¢*))a"? + (E® (K = K?)z" "
e
N (E@K 2 ?-Ea K¢ )" + (E@ (K2 - K?))2" !

r=0

n—1

Z(E® (K72q72r _ K2q2T)).’En71.
r=0
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Therefore we formally obtain

qn(n 1)/2
Z1®E)= Z "(1®E)
0 qn(n 1)/2 L ) L
= (1® E)exp,(x —|—Z q "n](FE® K™ ?)a""
n(n—1)/2
_ Z q ' q”_l[n]q(E ® KQ)xn—l
ot [n]q!

q(n 1)(n—2)/2 .

n—1)(n— 2)/2
—(E® K? qi
(Be )Z [n—1],!

n=1

= (1® E)exp,(z) + (E® K~ ?)exp,(z) — (E ® K*) exp,(¢°).

2(n—1) ,n—1

q T

Summarizing the above calculations we get
(TeTZOIRE)=-1: K*F)(TeT)Z - (K*Fe K*)(TeT)Z
+(K*F® K2)(T @ T)exp,(¢°x),
and hence
(TRT)Z(E - (vew))
—(K*F @ K7*)(T ® T)(exp,((¢ = ¢ )¢*(E @ F))(v @ w))
~ (1K F)(TeT)Zveow)— (K*Fe K*)(T®T)Z(vew)
+(K*F @ K)(T @ T)exp,((q — g~ )g*(E @ F))(v@w)
~1@K?*F)T®T)Z(vew)— (K*Fo KT oT)Z(v e w).

This shows that both operators commute in the same way with the diagonal action
of E. In a similar way we compute

TF-(vew)=-EK 2% Tveuw)
=(-EK?®1-K?@FEK?) -T(veuw).
On the other hand,
(TRT)Z(F-(vow)=(TRT)Z(F-vow+K ? - v®F - w)
=(TRT)Z(F®1)- (v w))
HTOT)(K 2@ F)-exp,((g— ¢~ )g* (B @ F))(v & w))
=(TT)Z(F®1) (vew))
— (K2 @ EK?)(T @ T)(exp,((¢ — ¢ )a*(E @ F)) (v ® w)).
If 2= (¢ —q ')(F®F), then we obtain

n—1
F®1 Z K2 —2r 22r)®F) n—1

=

= (¢~ n+1[ ]qKQ QF — qn_l[n]qK_Q ® F)xn_l
for all n € N by induction. Indeed, for n = 1 one checks

2, F®1]=(q—q¢ )E,FI®@F)=(K*-K %) ®F,
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and for the inductive step we compute

", Fe1]=z" ' F1]+ [z, F® 12"}

n

|
N

((K2q72r o K72q2r) ® F)xn72 + ((K2 o K72) ® F)l‘n71

Il
M

I =
|l
S

S

((K2q72T72 . K72q2r+2) ® F)xn72 + ((K2 _ K72) ® F)xnfl

I
(]

_ ((K2q72r o K72q27') ® F)$n71

Il
- o

3 3

=
[}

We formally obtain

qnn 1)/2
Z(F®1) Z "(F®1)

© qn(n—l)/Q
= (Fotesp, () + > T
n=1
©  _n(n—-1)/2
q n— - n—
- g ¢ Hnlg(K—? @ F)z"~!
q'

a0 (R © Pt

n=1

0 (n—1)(n—2)/2
= (F ® 1) equ(z) + (K2 ® F) Z q[nil]'l'nil
n=1 T e

qn 1)(n—2)/2
K ®F Z q2(n71)1,n71

= (F®1)exp,(z) + (K2 ® F) exp,(z) — (K7° ® F)exp,(¢°x).
Summarising the above calculations we get
(TeNZFe1)=—(EK?1)(ToT)Z - (K20 EK ) (TeT)Z
+ (K* @ EK?)(T ® T) exp,(q*z),

and hence
(TROT)Z(F - (vew))

—(EK 2o (ToTNZveow)— (K2 EK (T oT)Z(vew)
+(K*@ EK ) (T @ T)exp,(¢°(q—q )NE®F)(v®w))
—(K? @ EK)(T @ T)(expy((a —a~H)a*(E® F))(v @ w))

)

—(EK?1)(T®T (v@w)—(K*2®EK*2)(T®T)Z(v®w).

\_/

That is, both operators commute in the same way with the diagonal action of F.
Let us point out that 7 and (7 ® T)Z commute also in the same way with the
diagonal action of K, for u € P, as one checks easily by weight considerations.

We show next that 7 and (7 ® 7)Z agree on V(m) ® V(1/2) for all m € N.
For m = 0 there is nothing to prove. Hence assume that m > % and consider the
tensor product decomposition

Vim)@V(1/2) 2 V(m+1/2)®V(m—1/2).

Since both operators commute in the same way with the diagonal action of U,(g)
it suffices to show that 7 and (T ® T)Z agree on the lowest weight vectors in the
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irreducible components V(m + 1/2) and V(m — 1/2) of the tensor product. Up to
a scalar, these lowest weight vectors are given by

U(=m—1/2) = V(=m) ® V(-1/2),
V(cmt1/2) = [2M]gV(—m) ® v(1/2) — @ V(ma1) © V(—1/2),

as can be checked by computing the diagonal action of F' on each.
For the case of v(_,,—1/2), note that Z fixes v(_,,) ® v(_1/2), and so Proposition

[2:49] gives
(T O T)Z(V(—m) @ v(—1/2) = (=1)*" "™ V() ® —qu(1/2),
while
T(0(m-1/2)) = (=D ™" g 419y
For v(_y,41/2), we have
Z(V(—m+1/2)) = Vemr1/2) T (@ — ¢ NE R F) - v(mi1/2)
[2m]qv(—m) ® v(1/2) — V(1) @ V(—1)2)
+ (¢ — ¢ H2m]gv (1) @ v(—1/2)
= [2m]gv(—m) ® v(1/2) = 4"V mr1) @ V(—1/2)-

Using the formulas from Proposition we get
(TOT)Z(v(—mr1/2))

= (T @ T)([2mlgv(-m) ®v(1/2) = 4" V(=mr1) ® V(-1/2))

= (=1)"¢*™ [2m]gv(m) ® v(_1/2) — (—1)*" g2,y ® (—quir2))

= (=1)*"¢*"2m] V() ® v(—1/2) — (=1)*"¢™  0(m_1) @ v(12).-
On the other hand, from the definition of 7 and Lemma we obtain

T(’U(fm+1/2)) _ (_1)2m—1q2m—1E(2m—1) V(1))

_ (_1)2m71q2m71E(2m71) . ([2m]qv(_m) ® V(1 /2) — quU(_m_H) ® v(_1/2))

= (=1 (2m] BCM Y vy @ K2 g )

_ q2mE(2m71) U mt1) ® K2(2m71) “V(_1/2)
_ q2mq2m—2E(2m—2) U mt1) ® EK2(2m—2) X 1)(_1/2))

— (_1)2m—1q2m—1[Qm}qQQm—lv(mil) ® U(1/2)

+ (=12 P 2m] oy ® ¢ MY

+ (=12 D 2 — 1] v 1) @ V(1 /2)
= (1?2 [2m] gum—1) ® v(1/2)

+(=1)*" " [2mlqu(m) @ v(-1/2)

+ (=1)2mg* ™ 2m — 1gVm—1) ® v(1/2)

= (=" o1y @ v(1y2) + (=12 2m] g0y © v(—1/2),

V(-1/2)

using
q4m—2[2m]q _ q4m—1[2m _ 1]q — q2m—1

in the last step.

Now we want to show that 7 and (7 ® 7)Z agree on V(m) ® V(n) for all
n e %NO. Since both operators commute in the same way with the diagonal action
of Uqy(g) it suffices to show that they agree on V(m) ® v(_,), where v(_,) € V(n)
is a lowest weight vector. The case n = 0 is trivial, and the case n = 1/2 follows
from our above calculations. Let n > 1/2 and assume that the assertion is proved
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for all m and all k¥ < n. Since Z(v ® v(_pn)) = v ® v(_yp) for all v € V(m) we
have to show T (v ® v(_p)) = T(v) ® T (v(—y)). To this end consider the inclusion
V(n) cV(n—1/2)®V(1/2). Then, up to a scalar, the vector v(_,) identifies with
V(—n+1/2) @ V(_1/2), and we obtain
T(0 @ V(ny1/2) ©V(—1/2) = T(V O V(—nt1/2) @ T (v(-1/2))
=TW) @T(V(ng1/2)) @ T (v(=1/2))
=T () @ T(v(-n+1/2) @ V(-1/2))

by our induction hypothesis. This finishes the proof. O

Recall that the automorphism 7; : U,(g) — U,(g) is induced by conjugation with
the operators 7; on integrable U, (g)-modules. As a consequence of Propositionm
we obtain

ATHX) = 27N T e TTHAXNTi @ T Zi = 27 (T o T, H(AX)) Z:
for all X € Uy(g).
Lemma 2.82. We have

A(Ti(Uq(b4))) € Ti(Uq(b+)) @ Uy(g),
A(Ti(Uq(b-))) C Uq(g) © Ti(Ug(b-))
and
Uqg(ny) N Ti(Uq(by)) = Uqg(ny) N Ti(Ug(ny)),
Uqg(n-) NTi(Uq(b-)) = Ug(n-) N Ti(Ug(n-)).
Proof. For the first formula we compute
ATi(X)) = (Ti @ TN ZAX) 27 )T o T
= (T T)ZAX)Z),
and if X' € Uy(b.) the term on the right hand side is contained in 7; (U, (b)) ®U,(g)
by the explicit formula for Z;. The second formula is obtained in exactly the same
way.
For the third formula it clearly suffices to show that the space on the left hand
side is contained in the space on the right hand side. Let X € U,(ny)N7T; (U, (b4)).

Moreover let V be an integrable Uy(g)-module and v € V. If A € P and v, € V()
is a highest weight vector we have Z;(vy ® v) = vy ® v, hence the formula after

Proposition 2.81] yields
72_1(X)'(UA®U) T e T HAX)) - (v @),
Since X € Uy(ny) we have

A(X)_1®X€ @ Ug(ny)p @ Ug(by),
neQH\{0}
and combining this with X € 7;(U,(by)), the first formula of the present Lemma
yields
AX)-1®X € @ (Ug(ny)p N Ti(Ug(b4))) @ Ug(by).
neQt\{o}
Hence

(7;1@7;1)(A(X))—1®7;1(X)6Uq(h)< D Uq(n+)ﬂ>®Uq(9)»

neQt\{0}
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observing that the automorphism 7'1-71 preserves the sum of all nonzero weight
spaces in U,(g). We conclude

T X)) (a@v)=Z (e T, (X)) v) =T, H(X) - v

Since 7, H(X) € U,(by) we can write
7;71(X) = Z X, K,
reQt
for elements X, € Uy(ny). Then
THX)  (a®v)= > X, (K, o @K, v)= Y ¢"Voy@ X, K, v.
reQt rveQt
On the other hand,
oA @ (T, HX) v) =0\ ® Z X, K, v,
reQt
and thus
Z q(””\)w\ RQRX, K, v=1\® Z X, K, -v.
veQt veQt
This holds for all v € V, where V is an arbitrary integrable U, (g)-module. Therefore
we get
Z (1 - q(%)\))XVKV =0
veQt

for all A\ € P*. This implies X, = 0 for v # 0, and thus 7, *(X) € U,(n}). In
other words, we obtain X € T;(U,(n4)) as desired.
The final formula is obtained in a similar way. t

Lemma 2.83. We have

AUy(ny) NTi(Ug(n4))) € (Ug(ny) N Ti(Uyg(ny))) @ Ug(bey),
A(Uq(n—) NTi(Ug(n-))) CUy(b-) @ (Ug(n—) N T;(Ug(n-)))
for1<i<N.

Proof. According to the first formula of Lemma [2.82] we obtain

A(Uq(ny) NTi(Ug(ny))) € (Ug(ng) N Ti(Ug(b4))) © Ug(by).
Hence the third formula of Lemma [2:82]yields the first claim. The second assertion

is proved in the same way using the second and fourth formulas of Lemma[2.82] O

Lemma 2.84. We have
Ug(ny) NTi(Ug(ny)) = {X € Ug(ny) | 7(X, Ug(n-) F;) = 0},
Ug(n-) NTi(Ug(n-)) ={Y € Ug(n-) | 7(Ug(ny)E;,Y) = 0}
for1<i<N.

Proof. Assume first X € U,(ny) NT;(Uy(ny)). Using the skew-pairing property we
have

T(X, YFl> == T(X(l), FZ')T<X(2), Y)
for any Y € Uy(n_). According to the first part of Lemma the first tensor
factors of A(X) consist of sums of terms Z,, € Uy(ny) NT;(Uy(ny)) of weight v for
some v € (QT Ns;Q")\ {0}. Since v # «;, we must have p(Z,, F;) = 0 for any
such Z,, and thus 7(X,Y F;) = 0.
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Assume conversely that X € U,(ny) satisfies 7(X,U,(n_)F;) = 0, and let us
show X € 7;(Ug(ny)). According to Lemma it suffices to prove 7, *(X) €
Uq(by), and for this it is enough to verify

T UX)va@V)Cua@V

K3

for all integrable modules V and vy € V() for A € P*. Let us define X, € Uy(by)
for r € N by

A - rexaie( @ U sus),

reN HEQT\Nay;
For Y € Uy(n_) and m € N we get
0=7(X,YE™) = 7(Xqy, F")7(X(2), Y)
=3 T(E]LFMT(X,K]Y) =Y 7(E], F/")7(X,,Y).
reN reN

Since 7(ET, F/™) = 0 for m # r we deduce X,,, = 0 for all m € N, using the
nondegeneracy of 7 obtained in Proposition [2:92] Hence

A @ U)oU),
pneQ+t\Ney;
On the other hand, we have Uy(ny),EF™ C > Ug(0)E Ug(ng)y—ra;- Iy €
Q1 \ Noa; we thus get U, (ng ), F™ - vy = 0.
We now compute

THX) - (e V) =27 (T o T, HAX) - (Ti(w) @ V))
= Z7 (T @ T Y(AX) - (N oy @ V)

(2

using the formula for the coproduct of 7~ 1( ) obtained after Proposition m
and the definition of the action of 7; on a highest weight vector. From our above
considerations we get

AX) - (FY 0 V) = (10 X) - (FNY oy@ V) c FY p o V.
Hence
THX) - eV) C 27 (T ES Y o) @V) = 27 (e V) =n eV
as desired.
The second assertion is proved in a similar way. O

Lemma 2.85. The multiplication of Uy(g) induces linear isomorphisms

@Kfm J(00) N Ti(Uy(n4))

EBKFT n) N 7i(Uq(n-)))

for each 1 <i< N.

Proof. Let wg = s;, -+ s;, be a reduced expression of the longest word of W be-
ginning with 4; = ¢. Then according to Theorem w the vectors EJ Eg2 - -- Eg"
form a basis of Uy(n4.). By construction, the linear span of E§* - - Eg" is contained
in Uy(ny) NT;(Uy(ny)). Moreover, the multiplication map @~ , KE! @ (Ug(ny) N
Ti(Uq (n+))) — U,(ny) is injective because T, '(E;) € U,(b_) by the definition of
T; and T, (U, (ny) N Ti(Uy(ny))) C Uy(ny). This yields the first claim.

The second isomorphism is obtained in a similar way. (]
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Using the notation Uj,(ny)[w] which we introduced before Definition we
may rephrase the assertion of Lemma as

Ug(ny) N Ti(Uqg(ny)) = Ti(Ug(ng)[siwo)),
Ug(n—) N Ti(Ug(n-)) = Ti(Ug(n-)[sswo])
for all 1 <1i < N, where wy € W is the longest element of W.

Definition 2.86. The Harish-Chandra map is the linecar map P : Uy(g) —
given by € ® id ®€ under the triangular isomorphism U, (g) = Uy(n—) @ Uy(h) @
Ug(ny).

Proposition 2.87. Let v € Q" and assume X € Uy(ny),,Y € Ug(n_)_,. Then
PXY)-r(X,Y)K_y€ > KKy .
reQt\{0}
Proof. Let us write

Ax)=> xMeoxPK,, Ay)=) K ,;vMeoyl
where 7,6, € QF and XM € U,(ny),,, X € Uy(ny)y_.,, and similarly V' €

Uq(n,),WHS,Ysm € U,(n_)_s,. From the structure of the comultiplication we see
that

(id ®A)A(X ZX @K, @ XPK,

is contained in Uy(ny) @ Uy(h)(Uy(n ) Nker(é)) ® Uy (by). Similarly,
(A @id)A(Y) - ZK s Yo K 5 ovA

is contained in Uy(b_) @ (Ug(ng) N ker(e))Uq(f)) ® Uq(n_). Hence according to the
commutation relations in Uy(g) from Lemma and the definition of P we obtain

P(XY) =7(Xq), 371(Y(l)))P(Y@)X@))T(X(:z),Y(3))
= Z 1] S K s Y[ ]))K'yr—tSsT(Xv[ﬂQ]K%st[Q])

= Z 1] S K s Y[ ])) (Xp]K'wY[ ])K2’yr—’y;

here we note that only summands 7, s such that ~,. + s = 7y contribute. The term
for v, =0is
o7 K5, YIr(x, v ) = 7(X,Y).

This yields the claim. O
We prove now that the Drinfeld pairing is invariant in a suitable sense.
Theorem 2.88. Let X € Uy(ny)NT;(Ug(ny)) andY € Uy(n_)NT;(Uqy(n_)). Then
(T, HX), T, 1Y) = 7(X,Y).

K2 K3

Proof. We may assume X € Uj(ng), N ( (ny)), Y € U ( 2)oy N Ti(Uy(n2))
for some v € QT. Applying Proposition to T 1(X), L(Y), we see that it
suffices to show
P(Z_l(XY)) - T(Xa Y)K—sw € Z KKQu—swv
veQ+\{0}
since we then obtain the claim by comparing the coefficients of K_;, .
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As in the proof of Proposition [2.87] we may write

AX) =Y XM e XK, AV =Y KoV e
where v,,d; € Q" N 5;Q" and xtMe Uq(n+)%,Ys[2] € Uy(n_)_s,. According to
Lemma [2.83| we have in fact xM e Uy(ny), NTi(Uy(ng)), X2 e Uqg(n4)y—,, and
similarly vl e, (n,),7+55,}@[2} € Ug(n_)_s, N T;(Ug(n-)). Using again Lemma

and Lemma we find elements X.\v, € Ug(ny)~y, —ma; N Ti(Ug(ng)) such
that

A= 3N xl o BMK, .,
meENp
is contained in Uy(ny) @ Uy(b4)(Ug(ny) N T:(Uy(ny)) Nker(€)). Then
AidAX) =Y Y xW e B™K, ., © XPK,,
r meNy
is contained in Uy(ny) @ Uy (b)) (Ug(ng) N T3 (Uy(ng)) Nker(é)) @ Uy(by).
Similarly, we find Yia € Uy(n_)_s.4ma, N T3 (Uy(n_)) such that
A(Ysp]) - Z K*5s+maz‘ Fz(m) ® Ys[rzr]L
m&ENy
is contained in (U,(n_) N T;(Uy(n_)) Nker(é))U,(b_) @ Uy(n_), and then
(d@AAY) =" Y Ko YN @ Ko ma ™ @ Y]
s meNy
is contained in Uy (b_) ® (U,(n_) N T;(Uy(n_)) Nker(é))U,(b_) @ Uy(n_).
Due to the commutation relations from Lemmal[2.76 and the invariance properties
of 7 we get

xy -3 N (X ST VI K s e TV ET K e, (X Y

rm» am)
mENgy v-+ds=v+ma;

€ (Ug(n_) N Ti(Uqg(n-)) Nker(€))Uq(g) + Uq(9)(Uqg(ny) N Ti(Ug(n)) Nker(€)).
In the sequel, this relation will be evaluated in two ways.

Firstly, by the definition of P we obtain

PXY)= 37 (X S (YI) Ky ay, (XL V).
Yrt+ds=v
Therefore
(X Y)= Y (X STy
Vr=0,0s=7

according to Proposition [2.87]

Secondly, applying 771 to the above formula gives

THXY) = ) > (XL ST YT (XL YR <
meENy v +ds=v+ma;
Ksi(—és—&-mai)Ei(m)Fi(nl)Ksi(w—moci)
€ (Ug(n-) Nker(€))Uq(g) + Uy(9) (Uq(ny.) Nker(é)),
taking into account

1
[m]q!?

—1\m 1 m pm m m
(—KE)™(—FK7 )™ = WEZ F" = Ez( )Fi( )
N

TN EME™) =

3
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by the definition of 7;. According to the commutation relations in Proposition [2.23
we obtain

BE - [R50 e @00 (@) + (W, 00) N ex@) 0 o)

k3

where we recall that

[Ki;o] G a K g VK
m B II Jj_ = ’
q =1 q; —q;

i

Hence,

— &— Ki;O
ANC ST DI DENEC NS (C e R ] il P N
mENg vr+ds=v+may; q

€ (Ug(n-) Nker(€))Uy(g) + Uq(9)(Uq(ny) Nker(é)),

i

and therefore
PTI Y)Y =3 > (LS ) (xE v i [K;;O] Ky, -6,
mENg vr+ds=v+may qi

Observe that
K;;0 X
{ - } € K_pa, <K + ZKKQZ%)
qi leN

We may therefore write P(7,"*(XY)) as a linear combination of elements of the
form Ksi('yrfﬁs)fmaiK?lai where [ € Nj.

Let us recall that v, € QT N s;Q" by assumption, which implies s;7,. € Q.
Now 7, + §s = v + ma; yields

Yr — 0s + may = =y + 279,
and thus
5i(Yr — 0s) — Moy = =557y + 28,
Recall also that sz S Uq(mr)%,mai. Hence if ,, = 0 then X,% =0 unlessm = 0.

Combining these considerations we obtain

P<7;1<XY>>eKm( oo ST M)y rx B v+ Y Ksz)
Vr=0,0s=7 veQt+\{0}

:KM(T(X,Y)JF > KK2V>,

reQt\{0}
using our previous formula for 7(X,Y’). This finishes the proof. O
Lemma 2.89. If X € Uy(ny)[s,wo], Y € Uy(n_)[s;wo] and r, s € Ny, then
(T X)E], Ti(Y)F}) = 0rs7(Ti(X), Ti(Y))7 (B}, FY)
forany1 <i<N.

Proof. Let us first show

_ T2k —1
T(ELF) =g ”/Q[r]qi!T(Ei,w< & 7(Ei, Fy)"
k
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for » € N. For r = 1 this claim is trivially true. Assume that it holds for r, then
using Lemma [2.6] we obtain
T(B; T Y = w(B (F7 Y ) (Bi (FT ) )

? K2

=q[r+1),7(E FT K )7 (E;, F)
_ qET+1)T/2[T + } ' T(EZ,FZ)7+1

This proves the first equality, and the second is elementary.

In order to prove the Lemma we use induction on r + s. For r 4+ s = 0, that is,
r = s = 0, the claim trivially holds.

Assume now r + s = k > 0, and that the claim holds for £k — 1. Recall from
the remark after Lemma that T;(U,(ny)[siwo]) = Uy(ny) N Ti(Uy(ny)) and
T (Uy(n_)[siwo]) = Uy (n_) A T;(Uy(n_)), so that T,(X) € Uy(n2) N T;(Uy(ns)) and
Ti(Y) € Uy(n_)NT;(Ug(n_)). If r = 0 then Lemma2.84yields 7(7;(X), T;(Y) F}) =
0, and similarly we get 7(7;(X)E!, T;(Y)) =01if s = 0.

Let us therefore assume that both 7, s are positive, and let us consider the case
s > r. Lemma [2.6] yields

T(T(X)E:»Z(Y)Fis):T(WX)( (E}) @), Ti(YV)F ™7 (Ti(X) ) (B} ) vy, F)
_ ;(r—l) T
it []

According to Lemma we know A(T;(X)) € (Ti(Uy(ny)) NUy(ng)) @ Uy(by),

and so the above terms are all zero except when [ = 1. Therefore,

T(T(X)EL, Ti(Y)EY)

T(Ti(X) @ B 'K}, Ti(Y)F; O 7(Td(X) 0y i, F).

qi

= q; ' [q,m(To(X) @ B] T K, To(Y) E; D7 (Ti(X) 1) Ei, F3)
=q; g T(Ti(X) @ B Ko, Ti(Y) Fy )

(r(Td(X) 1y, F)7 (B, 1) + (T (X) 0y, K77 (B3, F))
= q; [ T(Ti(X) @ B] T Ko, Ti(Y) ;™ Y)r (7Z(X)<1>, )7T(Ei, Fi)
= ¢ g7 (Ti(X)E] ' Ki, Ti(YV)F? 1) (E;, F)
= q; ' [rlg,7(Ti(X)E] 1772( VE; 7T (Ei Fy).
Now the inductive hypothesis and our considerations at the beginning imply
;Mo (Ti (OB Ti(Y)Fy ) r(Ei Fy)
= 0r5d; [Pl T(T(X), To(Y))r (B[ Y EF )7 (B, Fy)
= 0rag] g VTP = 1 (T(X), TOY)) (B, ) (B, )
= 0r o7 (Ti(X), Ti(Y))7(Ef, ).
This yields the claim. O

\]

Theorem 2.90. The PBW-basis vectors are orthogonal with respect to the Drinfeld
pairing. More precisely, we have

T(Eg - B Fp -

Bn Fbl H 5ak,bk Eak Fbk)

B’

Proof. We shall prove more generally that the PBW-vectors associated to any re-
duced expression w = s;, ---s;, of w € W satisfy the above orthogonality relations.
This clearly implies the desired statement.
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We use induction on the length of w. For I(w) = 0 the claim is trivial, and for
I(w) =1 it follows immediately from the construction of the pairing. Assume that
[(w) > 1 and write

X = (To - Tis EL) - Ty (B B
Y= (7;2 T ﬂnfl)(Fz’Stt) T 7;2(F153,3)Fl22
Since 7;, (X) € Uy(ny) the remark after Lemma shows that X € Uy (ny)[s;, wo)

where wy is the longest element of W. Similarly we obtain Y € U,y (n_)[s;, wo).
Hence by Lemma |2.89 and Theorem [2.88| we calculate

1 b1 1 by
(T, (X)ER T, V) E) = 7(T5, (X), Ti, (V) (ET F7Y)
= 7(X,Y)T (B FY) = b0y oy T(E FYOT(X,Y).
Now we can apply the induction hypothesis to s;;w = s;, ---s;,. This yields the
claim. 0
To conclude this subsection we complete the description obtained in Theorem
with the following formula. We use the notation

qp = q(ﬂ,ﬂ)/2

for any root 8 € A.

Lemma 2.91. For any 1 <k <n andr > 0 we have

- ["]s,
T(Ey  F5 ) = (—1)g,m D/ b
B Br B (qu _ qﬁkl)r

and therefore

an a b, b - ar ar(ar—1)/2 [ak}q !
T(EBTL"'EB;’F/Bn"'FﬂI): H‘Sak,bk(*l) qu:( k=1)/ = B_kl —.
k=1 (g5, dg, )

Proof. According to Theorem [2.88]it suffices to prove the first assertion in the case
that 8, = «a; is a simple root. In this case, the computation in the proof of Lemma

[2.89] combined with Lemma yields
(B FD) =P m(B F)T = (—1)7q] P!

3

1
(i —gq; )"
as desired. O

2.8.4. Nondegeneracy of the Drinfeld pairing. The computations of the previous
subsection are key to proving nondegeneracy of the Drinfeld pairing and the quan-
tum Killing form. We keep the assumptions and notation from above.

Theorem 2.92. The Drinfeld pairing 7 : Uy(by) x Ug(b_) — K and the quantum
Killing form k : Uy(g) x Uy(g) — K are nondegenerate.

Proof. For the first claim it suffices to show that the restriction of 7 to Uy(b4)g X
Uy(b_)_p is nondegenerate. From Lemma we know that 7 is diagonal with
respect to the tensor product decomposition Uy(by)is = Uy(ns)ap @ Uy(h).

Since ¢ is not a root of unity the characters x,, of U,(h) given by x,(K») = ¢
for ;1 € P are pairwise distinct, and hence linearly independent by Artin’s Theorem.
It follows that the restriction of 7 to Uy (h) is nondegenerate. Hence the claim follows
from Theorem 2.90] combined with the PBW-Theorem 2.671

The second assertion is verified in a similar way using the triangular decomposi-
tion of U,(g) and nondegeneracy of 7. O
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We remark that Theorem shows also that the Rosso form on U,(b_) <
U,(b4) is nondegenerate. In particular, this form does not pass to the quotient
Uq(g). Therefore the quantum Killing cannot be obtained directly from the Rosso
form on the double.

2.9. The quantum Casimir element and simple modules. In this section
we resume our study of finite dimensional weight modules for U,(g). We define
a Casimir element  in a certain algebraic completion of U,(g) in order to prove
irreducibility of the modules L(x) constructed in Theorem Throughout we
assume that ¢ = s¥ € K* is not a root of unity.

According to Theorem [2.92] the restriction of the Drinfeld pairing 7 to Uy(ny.), X
U,(n_)_, is nondegenerate for every v € Q*t. Therefore, we can choose bases
consisting of b] € Uy(ny), and a; € Uy(n_)_, such that 7(b},a]) = d;;. For
v € QT we define

c, = Za} ®b), Q= Zg’l(a;’)b},
J J

in particular we obtain C, = 1 ® 1 and €2, = 1 for v = 0. By definition, the
quantum Casimir element is the formal sum

0= > Q,

YEQT

which is not an element of Uy (g), but rather of a suitable completion of this algebra.
We shall not discuss any completions here, instead we will only consider the “image”
of © in End(V') for representations V' of Uy(g) in which for any v € V" all but finitely
many terms €2, for & € QT act by zero. Note that this applies in particular to all
Verma modules, and hence also all quotients of Verma modules. Indeed, if v € M ()
for some A € b} then we have Uy(ny), -v = 0 for all v € Q% sufficiently large.
Hence the Casimir operator  yields a well-defined endomorphism of M ()).

Lemma 2.93. Let v € Qt. Then we have
(l® Fi)o’y o C’y(l ® F;) = Cy o (F oK)= (Fi® Ki_l)c')’_ai
for all 1 < i < N, where we interpret Co_o, =0 if v —a; ¢ QT.

Proof. For v — a; ¢ QT the element F; commutes with all b} since the latter must
be sums of monomials in E,..., Ex not containing any powers of F;. Hence the
equality holds in this case.

Consider now the case that v = 8 + a; for some 8 € Q. Since the pairing
7 is nondegenerate it is enough to compare the pairing of both sides against X €
Uq(ny)a,+p with respect to 7 in the first tensor factor. For the left hand side this
yields

> r(X,al T FL 0T = [Fy, X] = FiX — XF.
J

To compute the right hand side let us write A(X) = > cWX,[Yl] ® X2

,BJrai*VK'Y
with monomials XLl],X [[i]L o,—~ i1 the generators Fj of weight v and 8 + a; — 7,
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respectively, and coeflicients c,. We obtain

(X, af FOV K, = 7(X. Fra) K0

:chXL”,Fl—) (XL Ky a) ) K = er (X, ayr (XL, Ky, PR

2 1 1 _
_Z Cor ——= (X ) K 4 cg———— (X[, o K1)

1
- (cangQ]Ki — K X)),
qi — g,
using Lemma [2.75] in the second step. Moreover, combining
ARIDAF) =Feo191+K '9oFel+ K 'oK 'oF,
with the commutation relations from Lemma gives
XF; = ca,m(S(XW), F)XPK: + FX + cor(XP K, F) K XY
= —co, 7 (XU F)XP K, + FiX + cor(X12, F) K X))
1 1
= CaiileEQ]Ki + FZX — Cﬁiflengl],
qi — g; qi — q;
taking into account that X&li] =F = X([i] in the last step. Comparing the above
expressions yields the claim. O

Lemma 2.94. Let A € by. Then for all B € Q" and Y € Uy(n_)_p we have

Oy — q2(p,ﬁ)—(575)YQK2,B

Proof. Assume that Y7 € Uy(n_)_p,, Y2 € Uy(n_)_g, for B1, B2 € QT satisfy the
above relation. Then

QYL Y, = q2(p,/31)—(ﬂ17ﬂ1)yng2ﬂly2

— qQ(pvﬁl)_(Blaﬁl) —(251,52)Y19Y'2K261

2(P B1)— (ﬁhﬁl)q (281,82) 2(P B2)—(B2,B2) Y1YQQK2([31+62)

_ q2<p,ﬁ1+62)—<61 B2 BB Y O Ky 5, 1)

Hence using induction on the length of 3 it suffices to consider the case Y = F; for
some 1 < ¢ < N. Notice that in this case § = «; and 2(p, ;) = (o, ;). Hence the
desired relation reduces to

OF;, = FOK?.
This in turn is a consequence of Lemma Indeed, if we apply S~1®id to the
relation from Lemma [2.93] and multiply the tensor factors, we obtain

ZS V)Eb) — 571 (a] )b,

= SN F)S N a] TN = ST (a) ) ST H(F) KT

for all v € Q*. Summing over ~ this yields
S SR Y SRRSO,
v€EQt J 7EQT J
which implies QF; = F;QK? as desired. ]
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Let us say that v € b7 is a primitive weight of a weight module M if there exists
a primitive vector v € M of weight ~.

Lemma 2.95. Let A € b;. If v is a primitive weight of M(X) then v = X\ — 3 for
some B € QT satisfying
RSO CONEY

Proof. If v € M()) is a primitive vector then Q - v = v since all the terms €, for
a # 0 act on v by zero in this case. At the same time we have v =Y - vy for some
Y € Uy(n_)_p. Hence

v=0-v=QY v, = q2(p’ﬁ)_(ﬁ’5)YQK2@ sy = g2PtAB=(B.8),,
by Lemma [2:94] This yields the claim. O
Lemma 2.96. Let A € P™ and assume v = X\ — 3 for some B € Q" satisfies

(v +pv+p)=A+p,A+p).
Ifvy+p € Pt theny= .

Proof. The given relation can be rewritten as
A=A +p)+(+p A=) =A+p,A+p)+ (Y +p, A =7 —A—p)=0.

Note that we have A+ p € PT. If y+p € PT then since A — € QT it follows that
both terms on the left hand side are positive, and therefore vanish separately. The
equality (A —~v, A+ p) = 0 implies A — vy = 0, since A\ + p is a linear combination of
fundamental weights with all coefficients being strictly positive. O

Theorem 2.97. Let ;€ PT. Then the largest integrable quotient module L(11) of
M () is irreducible, and hence L(p) =V (p).

Proof. If L(u) is not simple then it must contain a proper submodule V. Inside
V we can find a primitive vector v of highest weight v = u — 3 for some 3 € Q.
Note that 4 € P* by Theorem [2.43]

Then Lemma implies 2(8, 1+ p) — (B, 8) = 0 and thus
(Y+py+p)=W+p=B,u+tp—P)
=u+ppt+p)=20B,p+p) +(B,8) = (k+p,pu+p)
According to Lemma we conclude v = p. This means V' = L(u), contradicting

our assumption that V is a proper submodule. Hence L(u) is indeed simple, and
therefore the canonical quotient map L(p) — V(i) is an isomorphism. O

We write 7, : Uy(g) — End(V (1)) for the algebra homomorphism corresponding
to the module structure on V' (u).

Lemma 2.98. For every u € Pt we have 7,(Uqy(g)) = End(V (p)).

Proof. Assume that C' € End(V (u)) is contained in the commutant of 7, (U,(g)), or
equivalently, C' is an intertwiner of V(1) with itself. Then C' must map the highest
weight vector v, to a multiple of itself. It follows that C acts as a scalar on all of
V(1) because vy, is cyclic. Now the Jacobson density theorem yields the claim. [

2.9.1. Complete reducibility. Having determined the irreducible finite dimensional
weight modules over Uy(g), we obtain the following complete reducibility result in
analogy to the situation for classical universal enveloping algebras, compare also
the proof of Proposition [2.40

Theorem 2.99. Every finite dimensional integrable module over Uy(g) decomposes
into a direct sum of irreducible highest weight modules V (i) for weights u € PT.



102 CHRISTIAN VOIGT AND ROBERT YUNCKEN

Proof. We show that every extension 0 - K — F — @) — 0 of finite dimensional
integrable modules splits. Notice that the extension automatically admits a Uy (h)-
linear splitting since all the modules involved are weight modules.

In the first step consider the case that K = V(u) and @ = V(\) are simple. If
@ = A then we can lift the highest weight vector of V(\) to a primitive vector in
E, which induces a splitting of the sequence by the characterisation of V' (\) as the
largest integrable quotient of M () from Theorem [2.97]

Assume now p # A. If A £ pu, that is, we do not have A = u — v for a nonzero
element v € QT then X does not appear as a weight in V(u). Again we can lift
the highest weight vector of V() to a primitive vector in E and obtain a splitting.
Finally, assume p £ A, that is we do not have A = yu + v for some nonzero element
v € Q. We consider the dual sequence 0 — V(\)Y — E — V()Y — 0. Since
V()Y =2V () and V(X)Y = V(A\) we obtain a splitting by our previous argument.
Applying duality again shows that the original sequence is split as well.

In the second step we consider arbitrary K and @ and show the existence of a
splitting by induction on the dimension of E. For dim(F) = 0 the assertion is clear.
Assume that every extension of dimension less than n splits and let dim(E) = n.
If K = 0 or @ = 0 there is nothing to prove. Otherwise both K and @ have
dimension < n and hence are direct sums of simple modules. Considering each
simple block in ) and its preimage in F independently we see that we can restrict
to the case that @ is simple. If K is simple then the claim follows from our above
considerations. Otherwise there exists a proper simple submodule L C K. Then
0— K/L - E/L — @ — 0 is an extension, and since dim(F/L) < n it is split.
That is, @ is a direct summand in E/L. Considering 0 - L - E — E/L — 0, we
thus obtain a splitting ) — F according to the first part of the proof. This map
splits the sequence 0 - K — E —  — 0, which finishes the proof. (]

As a consequence of Lemma [2.41] we immediately obtain the analogous result
for finite dimensional weight modules.

Corollary 2.100. Every finite dimensional weight module over U,(g) decomposes
into a direct sum of irreducible highest weight modules V' (X) for weights \ € P;’.

Using Theorem [2.99] we can also strengthen Theorem [2.46]

Theorem 2.101. The representations V(i) of Uy(g) for p € Pt separate points.
More precisely, if X € Uy(g) satisfies m,(X) =0 in End(V(n)) for all p € PT then
X =0.

Proof. According to Theorem [2.46] the finite dimensional integrable representations
separate the points of U,(g). However, every such representation is a finite direct
sum of representations V'(u) by Theorem [2.99} This yields the claim. O

2.10. Quantized algebras of functions. We define quantized algebras of func-
tions and discuss their duality with quantized universal enveloping algebras. It is
assumed throughout that ¢ = s € K* is not a root of unity.

Definition 2.102. Let g be a semisimple Lie algebra. The quantized algebra of
functions O(G,) consists of all matrix coefficients of finite dimensional integrable
U,(g)-modules, that is,

0(G,) = €D End(V(n))",
nepP+
with the direct sum on the right hand side being an algebraic direct sum.

The direct sum decomposition of O(G) in Definition [2.102] is called the Peter-
Weyl decomposition.
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By construction, there exists a bilinear pairing between U, (g) and O(G,) given
by evaluation of linear functionals. We will write (X, f) for the value of this pairing
on X € Uy(g) and f € O(G,), and we point out that this pairing is nondegenerate.
Indeed, (X, f) =0 for all X € Uy(g) implies f = 0 by Lemma On the other
hand, (X, f) =0 for all f € O(G,) implies X =0 by Theorem

We define the product and coproduct of O(G) such that

(XY, f) = (X, f) Y, f2), (X, f9) = (X2), /)Xy, 9),
and the antipode S, unit 1 and counit € of O(G,) are determined by

(S(X), £)=(X,S7f),  (STHX), f) = (X,S(f))

and
€X)=(X,1), e(f)=(11)

for X,Y € Uy(g) and f,g € O(G,). We shall write A for the coproduct of O(G,),
and in the above formulas we have used the Sweedler notation A(f) = f1) ® f2)
for f € O(G4). With the above structure maps, the quantized algebra of functions
becomes a Hopf algebra.

Using the transpose of the canonical isomorphism End(V(u)) = V(p) @ V(u)*
we obtain an isomorphism

0G) = @ Vi) @ Vin).

pept

More precisely, if v € V(u) and v* € V(u)* we shall write (v*|e|v) € V(u)*®@V (u) C
O(Gy) for the matrix coefficient determined by

(X, (7] o [v)) = 0™ (m,(X)(v))-

The right regular action of U,(g) on O(G,) given by X — f = f1)(X, f(2)) corre-
sponds to X — (v*|e|v) = (v*| e |X -v) in this picture. The left regular action given
by X - f=f—8(X)= (S'(X),f(l))f(g) corresponds to X - (v*|e |v) = (X -v*| e |v).
Here we work with the action (X - v*)(v) = v*(S(X) - v) on the dual space V (u)*
as usual.

If ef,... el is a basis of V(u) with dual basis e,,... el € V(u)*, so that
er,(ef) = dij, then the matrix coefficients uf; = (e],[o[€/) form a basis of End(V'())*.
Notice that we have

n
A(“Z) = Z“?k ® U’;ij
k=1

for all p € P and 1 < 4,5 <n = dim(V(u)). By the remarks preceding Definition
this shows that O(G,) is a cosemisimple Hopf algebra. By Proposition [I.10} it
admits a left and right invariant integral ¢ : O(G4) — K, specifically

¢(U%):{1 if u=0

0 else.

Since O(G,) is a cosemisimple Hopf algebra, and hence in particular a regular
multiplier Hopf algebra with integrals, it admits a dual multiplier Hopf algebra
D(Gy), compare Subsection m Explicitly, we have

D(Gy) = @ End(V(n)),
peP+

such that the canonical skew-pairing (z, f) for z € D(G,) and f € O(G,) corre-
sponds to the obvious pairing between End(V (1)) and End(V(u))* in each block.
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The product and coproduct of D(G,) are fixed such that
(-Ty, f) = (:177 f(l))(ya f(2))7 (IZ’, fg) = (3’](2), f)(x(l)a g)a
and the antipode S, counit ¢ of D(G,) and unit 1 € M(D(G,)) are determined by

(S(z), f) = (@, 57" (), (57 @), f) = («.5(/))

and
€($):($,1), €(f):(1af)

for z,y € D(G,) and f,g € O(G,). We shall write A for the coproduct of D(G,),
and use the Sweedler notation A(z) = z) ® x(9) for x € D(Gy).
It follows immediately from the construction that there is a canonical homomor-
phism U, (g) - M(D(G,)) of multiplier Hopf algebras, namely
X ] mu(X).
pneP+
This homomorphism is injective according to Theorem [2.101} In the sequel it will
often be useful to view elements of U,(g) as multipliers of D(G,).
Given a basis of matrix coefficients uj; as above, the algebra D(G,) admits a
linear basis wj; such that
(wfj7uzl) = (5#,}51']@5]'1.
Note that with respect to the algebra structure of D(G,) we have
wiiWiy = 0 0kW};
that is, the elements w;; are matrix units for D(G).
We note that the algebra O(Gy) can be viewed as a deformation of the coordinate
ring of the affine algebraic variety associated with the group G corresponding to g.

2.11. The universal R-matrix. In this subsection we discuss universal R-matrices
and the dual concept of universal r-forms. We derive an explicit formula for the
universal r-form of O(G,) in terms of the PBW-basis of Uy (g).

2.11.1. Unidversal R-matrices. Let us first define what it means for a regular mul-
tiplier Hopf algebra to be quasitriangular.

Definition 2.103. Let H be a regular multiplier Hopf algebra. Then H is called
called quasitriangular if there exists an invertible element R € M(H ® H), called
a universal R-matrix, such that

A%P(z) = RA(zx)R ™!
for all x € H and
(A X ld)(R) = Ri13Ra3, (ld ®A)(R) = Ri3R12.

Here AP denotes the opposite comultiplication on H, given by AP = gA,
where 0 : H® H - H® H, o(x ®y) = y @ x is the flip map. Also, we are using
the standard leg-numbering notation, whereby Ri2 = R ® 1, Re3 = 1 ® R and
ng = (0®id)R23 in M(H@H@H)

Notice that the final two relations in Definition [2.103]imply

(e®id)(R) =1 = (id ®€)(R).
Moreover we record the formulas
(S®id)(R) =R~ = (ideS™H(R),

obtained using the antipode property applied to the final two relations in Definition
2.103| and the previous formulas.
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From a technical point of view it is sometimes easier to view the R-matrix as
a linear functional on the dual side. If H is a Hopf algebra and [,k : H — K are
linear functionals on H we define the convolution [ * k to be the linear functional
on H defined by

(L= k)(f) =1(f))k(f(2))

for f € H. It is straightforward to check that the counit € is a neutral element
with respect to convolution. Accordingly, we say that [ : H — K is convolution
invertible if there exists a linear functional k£ : H — K such that

L(f)k(fi2)) = €(f) = k(f))l(fi2))
for all f € H. In this case the functional k is uniquely determined and we write
k=11

Definition 2.104. Let H be a Hopf algebra. Then H is called coquasitriangular
if there exists a linear functional r : H ® H — K, called a universal r-form, which
is invertible with respect to the convolution multiplication and satisfies

a) r(f®@gh)=r(fo)®g)r(fe @h)

b) r(fg®h) =r(f @ h)r(g® ha))

c) r(fa) ® 90 f)9¢2) = 9 fyr(fi2) ® 92))

for all f,g,h € H.

If H is a cosemisimple Hopf algebra then it is in particular a regular multiplier
Hopf algebra with integrals. Moreover, the linear dual space H* identifies with
M(H) in a natural way, and similarly (H @ H)* = M(H ® H). In particular, a
linear map r : H ® H — K corresponds to a unique element R € M(ﬁ ® ﬁ) such
that (R, f ® g) = r(f ® g). With these observations in mind, the relation between
universal r-forms and universal R-matrices is as follows.

Lemma 2.105. Let H be a cosemisimple Hopf algebra and let r : H ® H — K be
a linear form, and let R be the corresponding element of M(H ® H) as explained
above. Then

a) r is convolution invertible iff R is invertible.

b) r(f @gh) =7r(fa)®g)r(foy ®h) for all f,g,h € H iff (d®A)(R) = R13R12-

c) r(fg@h) =7r(f @he))r(g®@hq) forall f,g,h € H iff (A®id)(R) = Ri3Ra3.

d) r(fa) @ 90))9f) = fognr(fe) ® g9w@) for dl f,g,h € H iff A<P(z) =
RA(z)R™Y for allz € H.

In particular, r is a universal r-form for H iff R is a universal R-matriz for H.

Proof. a) This follows immediately from the definition of convolution. The convo-

lution inverse 1 of r corresponds to the inverse R~! of R.

b) Using nondegeneracy of the pairing between H ® H and HeoH , this follows
from

r(f®gh) = (R, f @ gh) = (([d®A)(R), f @ h @ g)
and
r(fy @ g)r(fo) @ h) = (R, f1) @ 9)(R, f2) ® h) = (R13R12, f @ h @ g)

for f,g,h € H.
¢) This follows from

r(fg®h) = (R, fg@h)=((A®id)(R),g® f @ h)
and
T(f @ h@)r(g@ha)) = (R, f @h@)(R,g®ha)) = (Ri13Ra3, g ® f @ h)
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for all f,g,h € H.
d) For any y € H and f, g, h we compute

r(fa) ® 90) (¥ 9@ f2y) = (R, fay @ 90) (A(), fr2) @ g2)) = (RA(y), f ® g)

and
(v, fy9))r(f2) @ 92)) = (AW), 901y @ f1)) (R fi2) @ g2)) = (A“P(y)R, f @ g).

Since the pairing between H and H is nondegenerate, the relation RA(z) =
AP(z)R for all x € H is equivalent to

r(fa) @ 91))92) fo) = faygayr(fie) ® 9e2))
for all f,g,h € H. O

2.11.2. The R-matriz for Uy(g). The quantized universal enveloping algebra U,(g)
is not quite quasitriangular in the sense of Definition [2.103] but the multiplier Hopf
algebra D(G,) is. We assume that ¢ = s© € K* is not a root of unity.

Define O(BF) to be the image of O(Gy) under the natural projection Uy(g)* —
Uy(b1)*. Then there is a unique Hopf algebra structure on C’)(B;t) such that the
projection maps O(Gy) — O(Bjt) are Hopf algebra homomorphisms.

Recall the definition of the Drinfeld pairing from Definition

Proposition 2.106. The Drinfeld pairing T induces isomorphisms v+ : Ug(by) —
O(B[) of Hopf algebras, such that

(X)) =7(5(X),Y), - (V)(X) =7(X,Y),
forall X € Uy(by), Y € Uy(b).

Proof. By Theorem [2.92] 7 is a nondegenerate skew-pairing, so the maps ¢4 :
Uqg(bs) = Uy(bs)* are injective algebra homomorphisms.
To show that ¢4 is an isomorphism, we consider the direct sum decompositions

Uq(b+) = @ Agps

BEPT, nueP
OB;)= P Bsw
BePT, ueP
where
Agu = Sil(Uq(“+)5Ku) = {gil(XKu) | X € Uy(ny)p}
and

Bg = {0t e|w™) [w" € V(A)_,, v € V(A)}, 5 for some A € PT}

We claim that ¢4 restricts to an isomorphism between the finite dimensional sub-
spaces Ag ,, and Bg, for each § € P*, € P.

Let X € Ugy(ny)s. Using Lemma we see that for every Y € Uy(n_) and
vebPbP,

(ST XK)(YK,) =7(XK,, YK,) = ¢ ®7r(X,Y)
=q "I7(XK,Y)
=q " (STHXEL)(Y)

Therefore, by the orthogonality of the PBW basis (Theorem [2.90)), the functional
0 =14(STHXK,)) € Uy(b_)* satisfies

O(YK,) = 83,4~ Hp(Y) for every Y € Uy(n_)_,, yEPT, veP. (2.1)
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Conversely, any linear functional ¢ € U,(b_)* satisfying the property (2.1) is com-
pletely determined by its restriction to Uy (n_)_g, so the orthogonality of the PBW

basis implies that it is the image of a unique element S'_I(XKM) € Ag,pu.
Therefore, it suffices to show that the set of ¢ satisfying (2.1) agrees with the
subspace of matrix coefficients (v*t| e [w*) with wt € V(A)_,, vt € V(A% 4, as
claimed. For such a matrix coefficient, we have
(YK,,(v"|ew)) =0T (YK, -wh)
= g Y ) = O (0 ),

so that it satisfies ([2.1). Conversely, let ¢ € Uy(b_)* satisfy ([2.1). By Lemma [2.45]
we can choose A € P sufficiently large such that, after fixing an arbitrary nonzero

wt € V(X)_,, the map
Um_)_p = V(N)—pu—sp, Y=Y wh
is injective. Therefore we can find v+ € V()\);*H_ﬁ such that
(Y, (vF] o wh)) = oY)

for every Y € Uy(n_)_p. Since (v*| e |w™) vanishes on U,(n_)_, for all v # 3 by
weight considerations, it follows that (v*| e |[w') = ¢ as an element of U,(b_)*.
This completes the proof for ¢ .

A similar argument shows that ¢ is an isomorphism.

Finally, using again the skew-pairing property of 7 it is straightforward to check
that the maps ¢+ are compatible with the comultiplications. O

Since U,(b+) = O(B[), the Drinfeld pairing 7 : Uy(by) ® U,(b-) — K induces
a pairing O(G,) ® O(G,) — K as follows, compare [29].

Proposition 2.107. The linear map r: O(G4) @ O(G,) — K given by
O(Gq) ® O(Gy) —— O(B; ) @ O(Bf) =2 Uy(by) @ Ug(b_) — K

is a universal r-form for O(Gq). Here the first arrow is the flip map composed with
the canonical projection, and T is the Drinfeld pairing. That is

r(f@g) =703 (9), 21 ()

where, by slight abuse of notation, we identify f and g with their images in O(B;)
and O(B,), respectively.

Proof. Since 7 is a skew-pairing we see that r is a convolution invertible linear map
satisfying conditions a) and b) of Definition [2.104]
It remains to verify condition ¢) of Definition [2.104] That is, we have to check

r(fy ® 90))9@ fe) = fgnr(fiz) @ g9e)

for all f,g € O(G,). Since the canonical pairing between U,(g) and O(Gy) is
nondegenerate, it suffices to show

r(fy @ 9)(X, 92 f2)) = (X, fyg)r(f2) @ 9¢2))

for all X € U,(g). Moreover, since U,(g) is generated as a Hopf algebra by U, (by)
and U, (b_), it suffices to consider X € U,(b). Abbreviating Z = t=*(f) € U,(b_)
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and taking X € U,(by), we indeed compute

r(fa) ® 9) (X, 92y f2) = 7 (91))» e 2 (Fy))T(X, e 2 g2y f2)
Haw)s 2 fay ))T(X<1 Hfo)T(X @, 2 (9@)
H9w)s Z@) (X, Ze2))m(X (200~ (902))
(5(Zay), 90)7(X 1), <2>>(X<2> 9)
P(S(Z@)) W)(S(Z1) X2, 9)

(X 1)5( 2)),9)p (S(Z(l)) )

T(y
aOn
Sz

(X 1))(X(1) gy)(S (Z(z)%g(z))

T(X2), Z)T( X1y, = (9) (5 (92)s Z(2))

(X2t~ )T (X ey, e = 9T (92), = (f2))
T(X, Lz (f(1)9(1)))T(L+ (92)), =" (f2)))

(X, fyga)r(f2) @ 9¢2))s

using Lemma A similar argument works for X € Uy(b_). This finishes the
proof. O

Let us now give an explicit formula for the universal r-form of O(G,). We will
use the notation H; € h (1 < ¢ < N) for the simple coroots of g, identified with
a € QY via the pairing:

)‘(Hi) = ()"a;/)
for all A € P. We also fix quantum root vectors Fg,,...,Eg_, Fg,,...,Fg, associ-
ated to a reduced expression of wy € W, as in Definition [2.66

Theorem 2.108. The multiplier Hopf algebra D(G,) has a universal R-matriz
given by

R = g P T expy (g0 — 35" (Ba © Fa)
aceAT
where Hy,...,Hn are the simple coroots of g, the matriz (B;;) is the inverse of
(Cij) = (d;laij), and qo = q; if a and «; lie on the same W -orbit. Moreover the
factors on the right hand side appear in the order B1,..., Bn.
Equivalently, the above formula determines a universal r-form for O(Gy).

Proof. The formula requires a little explanation. Note that C;; = (o ,a]) =
(H;, Hj), so that

N N N
> By(Hi®H) =Y How=>y = H,,
ig=1 i=1 i=1
where we recall that the fundamental weights wo; form the dual basis to the simple
coroots H;. The term qzl j=1 Big (Hi@Hj)
in M(D(G,) ® D(Gy)) such that

should thus be interpreted as the element

qZrim B (H®H) () 0 0) = (09 @
whenever V' and W are integrable U, (g)-modules and v € V, w € W have weight
w and v respectively,
We shall show that the universal r-form obtained in Proposition is given
by the stated formula. It is technically more convenient however, to compute the
inverse r~1, given by

HF@g) =750 (). 2N ) = e M), 1 (9)):
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Note that according to Lemma the inverse of the element R above is given by

R = ( IT byt (~(0a — aa")(Fa® Fa») g S B,
acAT
where now the ordering of the positive roots in the product is reversed to 3,, ..., 8.
To compute r~! it is sufficient to consider r~*(f ® g) for elements of the form
f=1(Fp - FiK,), g=14(S" (B} - B3 K,)).

Using the orthogonality relations for the Drinfeld pairing in Lemma [2.91] we cal-
culate

T @g) = (B B Fy - By g

oo
— QAn a An a —1
= ) T(Eg - ERLFgre--F)
ai,...,an=0
x T(Eg - B By e Fgt) (B - B By
7ak(ak71)/2

3 H(—lw%mk — gzl

ay,...,an=0k=1 aBy "
% (Fg: . --FELQ) (Egz . -~EZLf)Q‘(“’”)
([T epy=r(—(ga — 02")(Ea ® Fu)), f @ g)g~ %),

aEAT

Now, according to the proof of Proposition [2.106] we have
f=@elw™), g={"|efuw")
where w™ has weight —v and w™ has weight —pu. Therefore

fay ® gaylq™ Zei= Buli®H) g0 @ gi0)) = ¢ f @ g,
and we conclude that

. .Féi)q—(uw

ri(feg =R fog).
This completes the proof. O

According to Theorem we have in particular A®P(X) = RA(X)R™! for
all X € U,(g) C M(D(Gy)). Since M(D(G,)) can be viewed as an algebraic
completion of U,(g) this makes the latter share most properties of Hopf algebras
which are quasitriangular in the precise sense of definition In the literature
this is often phrased by saying that U,(g) is quasitriangular, however note that the
universal R-matrix R from Theorem is not contained in U,(g) @ U,(g).

Let us next introduce I-functionals.

Definition 2.109. For f € O(G,), we define the I-functionals I*(f) on O(G,) by
(f)h) =R,k f), (@ (f)h)=R" f@h).

Since R is contained in M(D(G,) ® D(Gy)) these functionals can be naturally
viewed as elements of M(D(G,)). We can strengthen this observation as follows.

Lemma 2.110. For any f € O(G,) the l-functionals I=(f) are contained in
Uq(g) € M(D(Gy))-

Proof. Consider the case where g = (v| @ |w), h = (v'| @ |[w’) are matrix coeflicients
with v € V(A)*, w € V(N), v' € V(N)*, w’ € V(X) for some A\, N € PT. Suppose
moreover that w and w’ have weight p and v, respectively. As in the proof of

Theorem we calculate
(QZi,j Bij(Hi®Hj),h ®g) = q(“’”)e(h)e(g) — (g(g)Kwh)_
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From this we easily deduce [T(f) € U,(g) for any f € O(G,).
The proof for [~ (f) is analogous. O

The conclusion of Lemma [2.110] is one of the reasons to work with the simply
connected version of Uy(g) with generators K, for all 4 € P. The corresponding
assertion fails if one considers the version of the quantized universal enveloping
algebra with Cartan part containing only elements K, for u € Q.

We record the following basic properties of I-functionals.

Lemma 2.111. The maps I* : O(G,) — U,(g) are Hopf algebra homomorphisms.
Explicitly, we have

= (fg) = =(f)I*(9)
AWE()) = FE(fa) @ 12 (frz)
S(E(f)) = 1=(S(f))

for all f,g € O(Gy).
Proof. For h € O(G,) we compute

(I (f9):h) = (
= ((id ®A)('R) h®g® f)
= (R13R12,h®@ g ® f)
= (R,hay® f)(R,h(z) ® 9g)
= (" (NI (9), ),

and similarly

AU, 9@h) = (A2id)(R),g®h f)

(

= (R13R23,9 ® h ® f)

= (R, 9® f))(R.h @ f(2))
= ("(f) @1 (f2)), 9 @ D).

The relation concerning the antipodes follows from these two formulas; explicitly
we calculate

(ST (), h) = (S ®id)(R),h@ f) = (([d®@S)(R),h® f) = (I*(S(f)), h).

The assertions for [~ are obtained in a similar way. O

2.12. The locally finite part of U,(g). In this subsection we discuss some results
on the locally finite part of Uy(g). For more details we refer to Section 5.3 in [41]
and [8], [16]. Throughout we assume that ¢ = s>/ € K* is not a root of unity.
Recall that U,(g) is a left module over itself with respect to the adjoint action
given by
d(X)(Y)=X =Y =X1)YS(X2)

for X,Y € Uy(g). The space of invariant elements of U,(g) with respect to the
adjoint action is the centre ZU,(g) of Uy(g).

The locally finite part FU,(g) is the sum of all finite dimensional U, (g)-submodules
of U,(g) with respect to the adjoint action. In contrast to the classical case it turns
out that FU,(g) is a proper subspace of U,(g).

Lemma 2.112. The locally finite part FU,(g) is a subalgebra and a left coideal of
Uy(9), that is, A(FU,(g)) C Uy(g) @ FU,4(g).
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Proof. The fact that FU,(g) is a subalgebra follows from the fact that the adjoint
action is compatible with multiplication. Now let Y € FU,(g) and X € U,(g).
Note that

Yo) @ (X = Yig) = S(X0)) X»Y0)S(X5)) X () @ X<3>Y<2>5(X<4>)
= (5(X(1)) @ DA(X () = V) (X3 @ 1).
Since Uy(g) — Y is finite dimensional it follows that A(Y) € U,(g) @ FU,(g). O
Recall that the anti-automorphism 7 of U,(g) defined in Lemma satisfies
(X = Y)=7(X1)YS(X2))
(S(X@)T(YV)7(X())
T(S(X2))T(Y)S(7(S(X1))))
(5(X)) = 7(Y)

for all X,Y € U,(g). In particular, the involution 7 preserves the locally finite part
FU,(g) of Uy (g).

More generally, for an arbitrary U,(g)-module M we shall denote by FM C M
its locally finite part, that is, the subspace consisting of all elements m such that
U,(g) -m is finite dimensional. We shall say that the action of U,(g) on M is locally
finite if FM = M. Of course, this is the case in particular if M = V(p) for u € PT.

Let us also define the coadjoint action of Uy(g) on Uy(g)* by

(X = ) = f(S(X1)Y X2))

for X,Y € Uy(g) and f € Uy(g)*. If f = (v| o |w) € O(G,) is a matrix coefficient,
then

T

T

X = (v] e w) = (X - v] @ [X2) - w).

Therefore the coadjoint action preserves O(G,) and is locally finite on O(Gy). Note
that for f € O(G,),

X =NHY)=,X =)
for all X,Y € U,(g).

We define a linear map J : Uy(g) — Uy(g)* by

J(X)(Y) = r(STH(Y), X)
where £ is the quantum Killing form, see Definition[2.78] Using .J we can determine
the structure of FU,(g), compare Section 7.1 in [4I] and [§].

Theorem 2.113. The linear map J defines an isomorphism from FU,(g) onto
O(Gy) compatible with the adjoint and coadjoint actions, respectively. Moreover

FU,(9) = €D Uy(g) = Koy
peP+
as a subspace of Uy(g).
Proof. We follow the discussion in [16]. According to Theorem the map J :

Uy(g) — Uqy(g)* is injective. Moreover J intertwines the adjoint and coadjoint
actions since by the ad-invariance of k from Proposition [2.79 we obtain

(X = J(V)(Z) = J(V)(S(X1)ZX(2))
= k(57! <X<2>>s Y2)X1),Y)
=r(STHX) = 871(2),Y)
=x(S71(Z )X—>Y)
=J(X = Y)(Z)
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for all X,Y,Z € U,(g).

Let u € PT and let wg € W be the longest element of the Weyl group. Using
the definition of the quantum Killing form we check that J(K_3,,,) vanishes on
monomials XK, S(Y) for which X € U,(n;) or Y € U,y(n_) is contained in the
kernel of é. With this in mind, if v* is a lowest weight vector of V(i) and v is the
highest weight vector in V(u)* such that v¥(v#) = 1, one can confirm that

J(K —gwop) = (vk] @ [v")

by comparing both sides on U,(h).

Since V(u) is irreducible, the vector (vl| e [v#) is cyclic for the coadjoint action.
We conclude that J induces an isomorphism Uy(g) = K_24,, = End(V (1))*. Since
the spaces End(V (u))* form a direct sum in O(Gq) C Uy(g)* it follows that the
sum of the spaces Uy(g) = K _2u,u is a direct sum, and the resulting subspace of
FU,(g) is isomorphic to O(Gy) via J.

To finish the proof it suffices to show that J(FU,(g)) is contained in O(G,). For
this let f € J(FU,(g)) be arbitrary. Consider the left and right regular actions of
Uq(g) on Uy(g)* given by

(X-NHEY)=f¥VX),  (f- X)) =FXY)

for X,Y € Uy(g). Inspecting the definition of the quantum Killing form shows that
Uqg(b_)- fand f-Uy(by) are finite dimensional subspaces of Uy(g)*. Moreover f is
contained in the locally finite part of U,(g)* with respect to the coadjoint action,
so the relation X - f = X(9) — (f - X(1)) shows that U, (b,) - f is finite dimensional
as well. Hence U,(g) - f is finite dimensional.

From the definition of the quantum Killing form & it follows that the linear
functional J(Y K»S(X)) € U,(g)* for X € Uy(ny),,Y € Uy(n_) has weight v —
%)\ € %P C b, with respect to the left regular action. In particular, J(U,(g)) is
a weight module with respect to the left regular action, and therefore the same
holds for U,(g) - f. According to Corollary we conclude that U,(g) - f is
isomorphic to a finite direct sum of modules V' (y;) for p,...,u, € P;‘, and since
P/ N3P =P7", we have in fact pi1,...,p, € P*. In particular, we get X - f = 0
for any X € I(p1) N---NI(pr), the intersection of the kernels of the irreducible
representations corresponding to fi1,. .., . Therefore 0 = (X - f)(1) = f(X) for
all such X, which means that f can be viewed as a linear functional on the quotient
Ug(g)/I(p)N---NI(pr)) 2End(V (1)) @ -+ - @ End(V (). In other words, we
have f € O(G,) as desired. This finishes the proof. O

As a consequence of Theorem [2.113|we obtain the following properties of F'U,(g).

Proposition 2.114. The intersection of Uy(h) and FU,(g) is linearly spanned by
the elements Ky for A € 2P™.

Proof. Let us first show

Ef — K\ = H(1 — q(k_(k_l)o‘f’af))E;K/\,mj,
k=1

using induction on r € N. We have

E; = Ky = [E;, K\|K; ' = (Bj = KAE;K ) Ky o, = (1 - ¢M)Ej Ky o,



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 113

and in the inductive step we compute

Ej — K\ = [E;, E} ' = K)K; !
r—1
= H(l — gD )Y (B BT R s tyay Koy — B K- (r—1y0, B K —a,)
k=1
r—1
= H(l - q(A_(k_l)aj7aj))(E;K)\—raj - q()\_(r_l)ajﬂj)E;K)\—rozj)
k=1

= H (1 _ q(A_(k_l)ajaaj))E‘;_'K)\iraj’
k=1

so that the formula indeed holds.

Since ¢ is not a root of unity it follows that £7 — K, = 0 for some r € N iff
(aj, A) = nj(ey, a;) for some integer n; > 0. Writing A = My + -+ - + Aywy this
amounts to

A= (o), \) = (aj, A) = 2n;.
J J (O(j’ aj) J J
We conclude that Ky € FU,(g) implies A € 2PT. In fact, the argument shows
more generally that an element of U, (h) which is contained in FU,(g) is necessarily
a linear combination of elements K with A € 2P.
Conversely, according to Theorem [2.113[the elements K for A € 2P* are indeed

contained in FU,(g). This finishes the proof. O

Observe that Proposition shows in particular that FU,(g) in not a Hopf
subalgebra of U,(g).

The following result illustrates that the subalgebra FU,(g) C U,(g) is reasonably
large. For more precise information in this direction see Section 7.1 in [41].

Lemma 2.115. We have U,(g) = FU,(9)Uq(h) = Uy(h) FU,(g).

Proof. We first note that K, ,FU,(g)K_,, = ad(K,)(FU,(g)) = FUy(g) for all
pw € P, and hence FU,(g)Uqy(h) = Uy(h)FUy(g). It follows that the latter is a
subalgebra.

In order to finish the proof it therefore suffices to show that the generators F;, F;
are contained in FU,(g)U,(h) = U,(h)FU,(g). From the computation in the proof
of Proposition 2.114] we conclude that

Ej — Kop=(1—q**NE;Kop o, = (1 - ¢})E;Kop_a,
is contained in FUy(g), and hence E; € FU,(g)Uq(h). In the same way we see that
Fj = Kop = —KopFj + F Koy = (1= ¢~ 7)) Bj Ko, = (1 - q; %) E; Ko,
is contained in FU,(g), and hence F; € FU,(g)U,(h). O

Recall next the definition of the I-functionals I*(f) for f € O(G,) from Definition
2.109 We define a linear map I : O(G,) — Uy(g) by

I(f) = U (fa)lt (S(fiz)))-
For the following result compare [§].

Proposition 2.116. The map I induces an isomorphism O(G,) — FUy(g), and
this isomorphism is the inverse of the isomorphism J : FU,(g) — O(G,) con-
structed above.
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Proof. By the definition of the [-functionals we have
(I(f),9) = (RZRa . f @ 9)

for f,g € O(G,). Here we write R12 = R and Ro; = o(R) where o is the flip map.
Using

AX)REG Ry = Rip AP(X) Ry = Ry Ryt A(X)
for all X € U,(g) we compute

Xa
Xa

(I(X = f),g9) = fa)I(f2), 9)(X2), f(3))

)

)RRy »f(z ® 9)(X(2), f(3))
)
(A

U

X))y f) (Riz Rt A(X 2)), fa) © 900y (S(X(3)) 92))
X)) F) A (X)) R Rat, fo) © 901)(S(X(5)), 9(2))
X1y, 91)) (Riz Rt f ® 92)(S(X(2)), 9(3)

X1y, 90) (), 92)(S(X(2)), 93)) = (X = I(f), 9)

5(X(1)),
(X)),
5(X(1)),
5(X(1)),

(5
= (
= (5
= (5
= (
= (

for f,g € O(G,). Hence I is U,(g)-linear with respect to the coadjoint and adjoint
actions, respectively. This means in particular that the image of I is contained in
FU,(g) since the coadjoint action on O(G,) is locally finite.

Let v* € V(i) be a lowest weight vector and v € V(u)* a highest weight vector
such that vk (v*) = 1. From the explicit description of the R-matrix in Theorem
we see that [~ ({(vl| e [v)) = (vi, v )K_ww for all v € V(u). Similarly, we
obtain It ((v*| e [vH)) = (v, V") Ky, for all v* € V(u)*. Taking a basis vy, ..., v,
of V(u) with dual basis vj,...,v} € V(u)* this shows

I({(v*] o |v™)) Zl (] o oI (S((v}] @ [0")))
= Z U*vvj K*QU)O# K*QWO#'

Combining this with the results from Theorem [2.113] we conclude that I is indeed
the inverse of J. In particular [ is an isomorphism. Il

Let g, f € O(G,). Using that I is compatible with the adjoint and coadjoint
actions and properties of [-functionals we compute

I(g)I(f ) I(g)l~ (f)l" (S(f2)))

(STHI (fay) = L@ (S(fis))

I(STH () = 9T (S(fs)))

(57 (f) = QI (SUSTHT (f) = D) (S(f))
= ST (fa) = D)) (S (S (f0) = 9) @)
:I(f(zg 1( (f(l))) 9)-

—~

I
~
|
-
N
=
— S~— ~— ~—
=
|
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In a similar way we obtain
I(f)I(g ) =1 (fa)l™ (S(fi2)))I(9)
I (fa) (I (S(f3)) = L@ (S(f2)))
I (fa) I (S(fs))) = DI (S(fi2)))
I (fa)l™ (I (S(f3)) = )T (SUTT(S(f3))) = 9) @) (S(f2)))
= (f(1)(l+(5(f(3)))ﬁg)(1)) (S(fy (T (S(f3)) = 9 )
= I(fayS~ (I (f2))) = 9)-

for all f,g € O(Gy).

In particular, the map I : O(G,) — FU,(g) is not an algebra homomorphism.
However, assume that g is an element of the invariant part O(G,)% of O(G,) with
respect to the coadjoint action. Then the computation above shows that I satisfies
the multiplicativity property

I(fg) = I(£)1(9) = I(9)I(f)

for all f € O(G,). In particular, we obtain the following.

Proposition 2.117. The map I induces an algebra isomorphism between O(G,)%

and ZUy(g).

2.13. The centre of U,(g) and the Harish-Chandra homomorphism. In this
section we describe the structure of the centre ZU,(g) of Uy(g). For more details
we refer to [9]. Throughout we assume that ¢ = s € K* is not a root of unity.

Recall from Proposition that we have an algebra isomorphism O(G,)% =
ZU,(g). Therefore, we start by studying the algebra O(G,)%

Definition 2.118. Let V be a finite dimensional integrable U, (g)-module V. The
quantum trace ty € O(Gy) is defined by
tv(X) = trv(XK,QP)

for all X € U,(g), where try denotes the unnormalized trace on End(V). If V =
V() for some p € PT, we will write ¢, for ty ().

Lemma 2.119. The set of quantum traces t, for p € P is a linear basis of
O(Gy)%.

Proof. First, one checks that an element f € O(G,) is invariant for the coadjoint
action if and only if

(S*(X)Y. [) = (YX, [)
for all X,Y € U,(g). Recall from Lemma that §Q(X) = Ky, XK_5,. Using
this, and f - Ko, = (K2, f(1)) f(2), we see that the above condition is equivalent to
(vaf : K2,o) = (KQprv f) = (KQpYX» f) = (YX,f : KZp)

for all X,Y € U,(g). This holds if and only if f - K5, is a linear combination of
traces try(,)- [l

Note that the quantum traces satisfy
tvow = tv +tw, tvew = tviw,

for all finite dimensional integrable modules V, W. It follows that O(G,)% is
isomorphic to the polynomial algebra K[ty , ..., twy]-

For i € PT let us define the Casimir element z, € Uy(g) by 2z, = I(t,). As a
direct consequence of Proposition and Lemma we obtain the following
result.
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Theorem 2.120. The centre ZU,(g) of U,(g) is canonically isomorphic to the
polynomial ring Klzw, , ..., 2my]. A linear basis of ZU,(g) is given by the Casimir
elements z, for p € PT.

Recall that the Harish-Chandra map is the linear map P : U,(g) — Uy(h)
defined by P = € ® id ®€ with respect to the triangular decomposition Ug,(g) =
Us(n_) @ Ug(h) @ Ug(ny). Our next goal is the quantum analogue of Harish Chan-
dra’s Theorem, which says that P restricts to an algebra isomorphism of ZU,(g)
onto a subalgebra of U,(h).

In order to specify this subalgebra, we will need to introduce a shifted Weyl
group action on Uy(h). Note that there is a standard action of W on Uy(h) by
algebra automorphisms, defined by

w(K,) = Ky,
for w € W and p € P. The shifted version of this action is defined as follows.
Definition 2.121. Let v be the algebra automorphism of Uy(h) defined by
1K) = ¢ K, (L eP).

The shifted action of W on U, (h) is the conjugate of the standard action above by
~. Specifically, the shifted action of w € W is given by

w. K, = q(p,wu—u)K#.
forw e W.
Note that the automorphism « of U,(l) induces a map v* on the group of char-

acters of Uy(lh) and hence on the parameter space by Specifically, for the character
X associated to A € b7 we have

¥ O0) () = xa(7(K)) = Ao

for all 4 € P, so that 7" acts on b by translation by p.
We also introduce the algebra homomorphism 7 : K[P] — U,(h) defined by

T(,LL) = K2u

for 1 € P. Note that the subalgebra im(7) C U,(h) is preserved by the shifted Weyl
group action.
The following result appears in various frameworks in [70, [19] 2], see also [67].

Theorem 2.122. The Harish-Chandra map P : Uy(g) — Uy(h) restricts to an
algebra isomorphism ZU,(g) = im(7)V, the fized point subalgebra of im(7) under
the shifted Weyl group action.

Proof. Tt is equivalent to prove the the map v~! oP defines an algebra isomorphism
of ZU,(g) onto the fixed point subalgebra of im(7) under the standard action of
W.

Let u € PT and consider the central element z,. Fix a basis e}, ..., e# of weight
vectors for V(u) with dual basis e}, ..., el and put uf; = (e},| ® [¢) so that the
quantum trace is

n
= 3 (K oz, ufy )l
j=1

Then
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Note that {~(ut,) is contained in U,(b_), and similarly [T (S(uk,)) is contained in
U, (bs). Inspecting the explicit form of the universal R-matrix in Theorem [2.108
we get

Pl= Y dTIKLK L= Y (K,
veP(V(w)) veP(V ()

where v runs over the set of weights P(V (u)) of V' (1), counted with multiplicities.
We obtain

771 OP(Z#) = Z K o,

veP(V (1))
which is obviously in im(7) and invariant under the standard action of W. Moreover,
for any A\, u € P we have
Z K72u’ K72V”

(v o P(2u) (7T 0 P(2n))
v EP(V (),

v eP(V (X))

= Z K_j,

veP(V(1)®V (X))

= ’771 © 'P(ZHZ,\),

so v ® P is an algebra homomorphism.

Using an induction argument with respect to the partial ordering on P*, one
checks that the elements v~ o P(z,) for up € PT form a basis of the fixed point
subalgebra of im(7) with respect to the standard action. Combining this with
Theorem finishes the proof. O

Let us illustrate these considerations in the case of U, (sl(2,K)). In this case one
can check directly that the Casimir element 2, /5 associated with the fundamental
representation V' (1/2) is, up to a scalar multiple, given by
qK2 + q—lK—Q

(¢—q')?

Let us verify that C is in the centre of U,(sl(2,K)). We compute
¢ 'K?’E 4+ ¢K2E

C=FE+

EC = [E,F|E + FEE +

(g—q7')?
_rpp. WG DEE4 (T —qK?E | ¢ UKPE 4 gK?E
a " (g—q71)? (g—q71)?
2 -1 —2
—rEE+ & (E”_lg E_ck,
q—q

similarly we get

IFK? 4 qFK~?
CF = F[B,F| + FFE + 4 T4

(g—q')?
_pppy O COFEP 4 (¢ —FK™? g ' FK? 4 gF K
(¢—q')? (¢—q')?
2 —1 -2
— FFE + qFK( * q_ll;K — FC,
q-q

and the relation CK = KC' is obvious.
Let us now return to the general theory. Consider a Verma module M()) for
A€ by If Z € ZUy(g) and vy € M(]) is the highest weight vector, then Z - vy is
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again a highest weight vector, and therefore must be of the form &, (Z)vy, for some
linear map &) : ZU,(g) — K. Note that

Z - Uy = P(Z) cU)\ = X)\(P(Z))U)\,
where x is the character given by yx(K,) = ¢ for all v € P, and therefore

Ex=xaoP.
Moreover, since v, is a cyclic vector for M () it follows that Z acts by multiplication

by £x(Z) on all of M()\). It is easy to check that &x(YZ) = 60 (Y)ExN(Z) for all
Y,Z € ZU,(g), which means that {, is a character.

Definition 2.123. Let A € b;. The character £y : ZU,(g) — K defined above is
called the central character associated with A.

From the previous considerations it follows that if M () C M()) is a submodule
then &, = &

We shall now introduce the notion of linkage, which is designed to analyze the
structure of Verma modules. For a classical complex semisimple Lie algebra g, two
Verma modules M () and M (u) with highest weights A, p € h* have the same
central character if and only if A and p are in the same orbit of the shifted Weyl
group action, in which case they are called W-linked, see [37]. For U,(g) the group
W needs to be enlarged slightly to take into account the existence of elements in
b of order 2.

Definition 2.124. We define Y, = {¢ € b} | 2¢ = 0}.

If characteristic of the ground field K is not equal to 2, there is a canonical
isomorphism
Y, =Q'/2Q
which associates to the class of ¥ € QY the character (,v € b} defined by
q(Cav,u) _ (_1)(av,u)7

for p € Q. Here we are using the g-exponential notation for by from Definition
2.26] This formula is well-defined since the character ,v is trivial if a¥ € 2QV.
Moreover, if ¢ € by is any element of order two then we have ¢&m) = +1 for all
u € P, which implies that there exists ' € QY such that ¢ = (,v, as given by the
above formula.

In the case where the ground field is C, where we make the identification b =
h*/ih~1QY, the natural identification is Y, = 1in"1QV /in~1QV.

Note that if K is an exponential field and if there exists z € K such that ¢* = —1
then we have (,v = za. Here we are using the canonical map h* — b, described
in Subsection 2.3.11

Now we define the extended Weyl group, see Section 8.3.2 in [41]. Note that the
action of the Weyl group W' on by restricts to Y.

Definition 2.125. The extended Weyl group W is defined as the semidirect prod-
uct

W=Y,xW
with respect to the action of W on Y.

Observe that the extended Weyl group is a finite group. Explicitly, the group
structure of W is

(G v)(n,w) = (¢ + vy, vw)
forall (,n €Y, and v,w € W.
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We define two actions of W on by by
(C,w) A =wA+¢
and
(Cw)A=wA+=wA+p)—p+¢,
for A € b;. The latter is called the shifted action of W on by

Definition 2.126. We say that u, A € b7 are W-linked if .\ = w for some w € w.

Notice that W—linkage is an equivalence relation on hy. This should be compared
to the usual notion of W-linkage, see [37]. Indeed, the two notions coincide if we
restrict our attention to integral weights.

Lemma 2.127. Two integral weights p, A € P C by are W -linked iff they are
W -linked.

Proof. If p, A € P with ((,w).A = w.A+( = p then ¢ € P C h;. But then for all
v € P, we have ¢(¢*) € s and also ¢(¢*) = £1. Since ¢ is not a root of unity, this
implies that ¢ = 0. (]

We shall now state and prove the following analogue of Harish-Chandra’s Theo-
rem, compare Section 1.10 in [37].

Theorem 2.128. Two elements u, A € b are W -linked iff £ = &

Proof. Assume first that A and p = .\ are linked, where w = (,w) € W. In
order to show &4\ = &) it suffices due to Theorem to show xu.n = X, where
both sides are viewed as characters on the fixed point subalgebra im(7)" under the
shifted Weyl group action. If

K = Z CVKZV = Z qu(p’wa_QV)KQwu
veP veP

is contained in im(7)" then we obtain

() = s (K) = 3 aq#2vr-20gleaczu)

veP

— Z qu(p,Qwu—Ql/)q(w.)\,Zwu)
veP

= 3 ¢, qPi2ur =20 w0k —p2un)
veP

= Z €, q(P 2 g(whp)2ww)
veP

= Z qu(p,721/)q(>\+p,2v)
veP

=2 e =x(K)
veP

as desired.

Let us now assume that @ and A are not W-linked. This implies that the shifted
Weyl group orbits W.(2u) and W.(2)A) are disjoint. Let us write 2W.pu U 2WA =
{2m1,...,2n,} C by. Each element of this set corresponds to a character P — K*

sending v € P to ¢7). Therefore Artin’s Theorem on linear independence of
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characters allows us to find elements vy, ...,v, € P such that the matrix (¢(27:¥))
is invertible, and hence scalars c1, ..., ¢, € K such that

ioq(mﬂw) _ 1 ifmgeWp

= 0 ifn e WA

i = , _ 1 . . - w
If we write K = >, ¢; K, then L = W > wew w-K is contained in im(7)".
Moreover, since

Xn; (wK) = Z CiXn; (w'K2v_7‘)
J

— Z qu(p,2wl/j*2Vj)q(7]i,2u)l/]‘)
J

— chq(w_l(nﬁp)*pﬁw) - chq(w_1~ni,2w) = X1, (K)
J J

we have x,, (L) = 1 for n; € W.u and x,, (L) = 0 for n; € W.A. Taking the preimage
Z € ZU,(g) of L € im(7)" under the Harish-Chandra isomorphism therefore gives
éx(Z) =1and ,(Z) =0. Hence &, # &x. d

Let us conclude this subsection with the following result on the structure of
characters of ZU,(g).

Proposition 2.129. Assume that K is an algebraically closed field. Then any
character x : ZU,(g) — K is of the form &y for some A € by .

Proof. Using Theoremwe can identify ZU,(g) with the W-invariant part AW
of the Laurent polynomial ring A =im7 = ]K[Kziwl17 o ,KziwlN], where W is acting
by the shifted Weyl group action. It suffices to show that any character y : AW — K
is of the form x = x for A € b.

Since W is a finite group the ring extension A" C A is integral, that is, each
element of A is the root of a monic polynomial with coefficients in A" . In fact,
given f € A we may consider p(z) = [[,cw (z — w.f).

To proceed further we need to invoke some commutative algebra for integral ring
extensions. More precisely, due to Theorem 5.10 in [4] the maximal ideal ker(x) is
of the form ker(y) = A" Np for some prime ideal p of A, and Corollary 5.8 in [4]
implies that p is a maximal ideal. Since K is algebraically closed we conclude that
p = ker(n) for some character  : A — K extending x.

Using once again that K is algebraically closed, we can find A € b such that
n(K,) = ¢ = x\(K,,) for all elements K, € A. Clearly this yields xy = x» as
desired. O

2.14. Noetherianity. In this section we show that U,(g) and some related algebras
are Noetherian. We assume throughout that ¢ = s* € K* is not a root of unity.

2.14.1. Noetherian algebras. Recall that an algebra A is called left (right) Noether-
ian if it satisfies the ascending chain condition (ACC) for left (right) ideals. The
ACC says that any ascending chain I1 C Iy C Is C --- of left (right) ideals of A
becomes eventually constant, that is, satisfies I, = I,,41 = I,42 = --- for some
n € N. The algebra A is called Noetherian if it is both left and right Noetherian.
We will have to work with graded and filtered algebras. Let A be an algebra
and P an additive abelian semigroup, and assume that there exists a direct sum

decomposition
A=P A,
neP
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into linear subspaces A, such that 1 € Ag and 4,4, C A4, forall y,v € P. In
this case we call A a graded algebra. A left (right) ideal I of a graded algebra A is
called graded if I = €D, p I, where [, = A, N 1.

Assume now in addition that the abelian semigroup P is ordered, that is, equipped
with an order relation < such that p < v implies p+ A < v+ X for all y,v, A € P.
We shall also assume that P has cancellation, so that p + A = v + A for some
A € P implies p = v. A P-filtration on an algebra A is a family of linear subspaces
FH(A) C A indexed by p € P such that 1 € FO(A), F*(A) C FY(A) if u < v,

U 74 =

HEP

and FH(A)F¥(A) C FrT¥(A) for all p,v € P. In this case we also say that A is a
filtered algebra. If A is a filtered algebra, then the associated graded algebra is

grr(A @f” )/ F<H(A),

pnePrP

where

FH(A) =) F (A
v<p
and we write v < p if v < p and v # p. The associated graded algebra is indeed a
graded algebra in a natural way with graded subspaces grz(A), = F*(A)/F<H(A)
labelled by P.

Recall that P is called well-founded if every subset of P contains a minimal
element. This is equivalent to the descending chain condition: any infinite sequence
t1 > pe > --- in P is eventually constant.

We say that a filtration F*(A) of an algebra A is locally bounded below if for
each nonzero element ¢ € A the set of all p € P with a € F#(A) has a minimal
element. Recall also that an algebra A is called a domain if it has no zero-divisors,
that is, if ab =0 in A implies a =0 or b = 0.

Let us record the following basic fact, compare Appendix 1.12 in [I5] and Chapter
V in [38].

Lemma 2.130. Let A be a filtered algebra with a filtration (F*(A))uep with respect
to an abelian semigroup P. Then the following holds.

a) Suppose P is well-founded. If the associated graded algebra grz(A) is left (right)
Noetherian then A is left (right) Noetherian.

b) Suppose P is totally ordered and the filtration is locally bounded below. If grz(A)
is a domain then A is a domain.

Proof. a) We shall consider left ideals only, the proof for right ideals is completely
analogous.

Note that if I C A is a left ideal then setting F*(I) = I N F*(A) for p € P
defines a filtration of I, with associated graded

gr7(I) = P grr(Du = B F(1)/FHI).

HEP HEP

There is a canonical inclusion of F#(I)/F<H(I) into F*(A)/F<H(A), and in this
way grr(I) becomes a graded left ideal of grx(A).

Assume now that Iy C Is C --- is an increasing chain of left ideals in A. Then the
associated graded left ideals fit into an ascending chain grz(I1) C grr(l2) C
By assumption, this chain stabilizes eventually, so that grz(I,) = grr(In4+1) =
for some n € N.
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We shall show that in general if T C J are left ideals of A such that grz(I) =
gr#(J) then I = J. This will clearly imply that our original chain I; C I C --- is
eventually constant.

Suppose I # J. Since P is well-founded, we can find p € P minimal such that
FH(I) # FH(J). Choose a € FH(J)\ F*(I). Since grr(I) = grr(J), there exists
b € F*(I) such that b —a € F<#(J) = F<#(I). But then a = b+ (a — b) € F+(I),
contradicting the choice of a. Therefore I = J as claimed.

b) Assume a,b € A are nonzero elements such that ab = 0. Since P is locally
bounded below we may pick p, v € P minimal such that a € F#(A) and b € F¥(A).
The corresponding cosets in grz(A) multiply to zero, so that a + F<#(A) = 0 or
b+ F<¥(A) = 0 in grr(A). This means a € F<F(A) or b € F<(A). Since P
is totally ordered this implies a € F*(A) for some A < p or b € F(A) for some
n < v, contradicting the choice of y and v. Hence A is a domain. O

We remark that in the proof of part a) it suffices to assume that grz(A) is
Noetherian for graded ideals. It follows that a graded algebra A is Noetherian if
and only if it is Noetherian for graded ideals. For we may equip A with the filtration
F given by

FrA) =P A,
v<p
so that A 2 grz(A) as graded algebras. Then the proof of Lemma a) im-
plies that A is left Noetherian if grz(A) = A is Noetherian for graded left ideals.
Conversely, if A is left Noetherian then it is clearly also Noetherian for graded left
ideals.

Let A be an algebra and let 6 € Aut(A) be an algebra automorphism. Given 6 we
can form the semigroup crossed product A Xy Ny, which has A ® K[t] as underlying
vector space, with elements written as a ®t™ = a x t™, and multiplication given by

(@ xt™)(bxt") =ad™(b) x t™ "
for a,b € A and m,n € Ny.

Lemma 2.131. Let A be an algebra, let 0 € Aut(A) and let A x9 Ny be the
associated semigroup crossed product.

a) If A is left (right) Noetherian then A xg Nq is left (right) Noetherian.
b) If A is a domain then A xg Ny is a domain.

Proof. a) The argument is a variant of the Hilbert Basis Theorem, for a proof see
Theorem 1.2.9 in [59).

b) Let a =Y " ga; xt',b =3 1 b; x ¢/ be nonzero elements of A xg Ny, and
assume without loss of generality that a,, and b,, are nonzero. Observe that

ab = i i aﬂl(bj) X tiJrj.
=0 j=0

Since 6 is an automorphism we have 0%(b,) # 0 for all k € Ng. However, ab = 0
implies a,,,0™(b,) = 0, contradicting our assumption that A is a domain. It follows
that A xy Ng is a domain. O

Let us call an algebra A a skew-polynomial algebra if it is generated by finitely
many elements y1, ...,y and relations

YiY; = 4ijY;Yi,
where ¢;; € K* are invertible scalars for all 1 <4, j < m with ¢;; = qj_i1 and ¢; = 1
for all ¢, j.

Lemma 2.132. Any skew-polynomial algebra is a Noetherian domain.
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Proof. We use induction on the number of generators. For m = 0 we have that
A =K, so that the assertion is obvious. Assume now that the claim has been proved
if &k < m for some m € N, and let y1,..., ¥y, be generators of A as above. Then
the subalgebra B C A generated by y1,...,Ym—1 is a skew-polynomial algebra and
hence a Noetherian domain by the inductive hypothesis. Moreover, it is easy to
see that 0(y;) = ¢m;y; defines an algebra automorphism of B. one checks that the
corresponding semigroup crossed B xg Ny is isomorphic to A. Hence the assertion
follows from Lemma 21311 O

The following result is Proposition 1.8.17 in [I5], which we reproduce here for
the convenience of the reader.

Proposition 2.133. Let A be an algebra generated by elements uq, ..., Uy, and
assume that there are scalars g¢;; € K* and af;, fjt € K such that
j—1 m
UUj — GijUjU; = Z Z ozf;usut + ﬁgutus
s=1t=1
forall1 < j <i<m. Then A is a Noetherian.

Proof. The idea is to construct a filtration F™(A) for n € Ny of A such that grz(A)
is generated by elements y1, ...,y such that y;y; = g;;y,y; for all 1 < 4,5 <m.

To this end let ‘

di — 9m _ gm—i
fori=1,...,m,so that dy < ds < --- < d,,. For 1 < j < m we have

2m—j—1 + 2m—j _ (1 + 2) X 2m—j—1 < 4. 2m—j—1 < 2m—j+1 +1,
and hence
dj1+ dp =2 —2m7It . om
=2mth _(mitl 1) <ot (2Tl L oMy = d 4 + d.
We thus get for ¢ > j > s and any ¢ the relation
ds +dy <dj_1 +dp, <djp1+d; < d; +dj,

using the fact that ds; < d;—; and d¢ < d,,, in the first step.

Define F°(A4) = K1 and let F4(A) for d > 0 be the linear subspace spanned
by all monomials w;, - - - u,;, such that d;; +---+d;, < d. It is straightforward to
check that this defines an Ny-filtration on A. Let y; be the coset of u; in grz(A).
Each nonzero homogeneous component of grz(A) is spanned by the cosets of those
monomials u;, - --u;, such that d;; + -+ d;, = d. In particular, the elements
Y1, -, Ym generate grr(A) as an algebra. Since u;uj — g;u;u; for ¢ > j is a linear

combination of monomials usu; and usus with s < j, and all such monomials have
filtration degree strictly smaller that d; + d;, we see that

YiYj — Y% =0
in grz(A). That is, grz(A) is a quotient of a skew-polynomial algebra, and accord-

ing to Lemma [2.132] this means that grz(A) is Noetherian. Due to Lemma [2.130)
this implies that A itself is a Noetherian. (]

2.14.2. Noetherianity of Uy(g). In this subsection we use the PBW-basis to show
that U,(g) and a few other algebras we have encountered in our study of quantized
universal enveloping algebras so far are Noetherian. These results are originally
due to de Concini-Kac, see Section 1 in [20].

Proposition 2.134. The algebras Uy(ny),U,(b1) and Uy(g) are Noetherian do-
mains.
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Proof. We will prove the claim for A = U,(g), reproducing the argument in 1.6
of [I5]. The other cases are treated in a similar manner. Let us remark that the
characteristic zero assumption made in [I5] is not needed.

We have the PBW-basis vectors

X(tps) = Bfp - F KB B
where t = (t1,...,tp),8 = (S1,...,8,) € N§. If v = > ;04 € Q then we define
the height of v by ht(v) =11 + -+ + vy € Z. Let us define moreover the height of
X(t, u,8) by

ht(X (t, p,8)) = (t1 + s1)ht(B1) + -+ (tn + sn)ht(BN),

so that the height of this vector is the difference of the heights of its graded pieces
in Uy(ny). We define the total degree of a PBW-basis vector by

A(X (t,11,8)) = (Spy- -y S1stny .oy t1, BE(X (t, 1y8))) € Ng"“.

Let us give the additive semigroup P = Ng”“ the lexicographical ordering from
right to left, so that e; < ex < -+ < egpq1, wWhere ¢; € Ng”“ denotes the j-
th standard basis vector. This turns P into a well-ordered abelian semigroup, in
particular P is totally ordered and well-founded. Moreover let F™(A) C A for
m € N2""! be the linear span of all PBW-basis vectors such that d(X(t, ,s)) <
(my,...,mapy1) = m with respect to the lexicographical ordering.

We claim that the spaces F™(A) for m € P define a locally bounded below
filtration of A. Most of the required properties are straightforward, except that
Y € F™(A),Z € F*(A) implies YZ € F™t2(A). The main point to check here
is what happens when monomials in the Eg. or Fjs, need to be reordered. Note
that the formula obtained in Proposition shows that Eg, Es. — q(Bi’BJ)Egj Eg,
for ¢+ < j is a sum of monomials of the same height as Ejs, Ej,. According to the
definition of the order in P, all these monomials have strictly smaller total degree
than Egj Eﬁi'

Using this observation we see that the associated graded algebra grz(A) is the
algebra with generators Eg,,...,Es, ,K,, Fg,,...,Fs, and relations

K.K, = K,K,,

K, Es, = ¢"P)Es K,
K, Fs, =q Wy K,
Ep Fp; = I, B,
Ep,Bp, = ¢ By, Ep,,
Fp,Fg, = ¢\%"%) Fy, Fp,

for all y,v € Pand 1 < i < norl < i < j < n, respectively. Therefore
grr(A) is a skew-polynomial ring in the generators Eg,,...,Eg,, Fp,,...,Fp, and
Kg,,.-., Kgy. Assuch it is a Noetherian domain by Lemma and hence the
same holds for A by Lemma O

2.14.3. Noetherianity of O(G,). We show here that the coordinate algebra O(Gy)
is Noetherian, again following the proof in Section 1.8 of [15]. The techniques de-
veloped in this context will be used again in the next subsection to obtain Noethe-
rianity of FU,(g).

We need some preparations. For any A € PT we fix a linear basis of weight
vectors e}, ..., e, for V(X) with dual basis e},...,ef* € V(\)*. We write ¢; for
the weight of e;‘, and we may assume without loss of generality that the vectors are
ordered in a non-ascending order, so that €; > €; implies ¢ < j. Let us denote by

u;\j = (e}| e |e§‘) the corresponding matrix coefficients.
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Proposition 2.135. Let u,v € P* and 1 < 4,j < m,1 < kIl < n. With the
notations as above, there are scalars ai9* Bkl ¢ K such that

rs
m m
q (e5,€1) ’LL ukl +§ E az]kl ,U« .=q —(€is€k) U ’LL + E § ﬁz]kl Zlu
ij
r=1s=I[+1 u=1+1v=1

in O(Gy). Moreover o' = 0 unless €, > ¢; and e5 < ¢;. Similarly BIF = 0 unless
€y < € and €, > €.

Proof. From general properties of the universal R-matrix we obtain

fwan (R, fo) ® 92)) = (R, fr1) ® 901))92) fr2)

for all f,g € O(Gy). Inspecting the description of the universal R-matrix in Theo-
rem [2.108[ for f = u - and g = uf; yields the desired formula. O

Theorem 2.136. The algebra O(G,) is Noetherian.

Proof. Note that the modules V(w1),...,V(wy) generate all irreducible finite di-
mensional weight modules of U,(g) in the sense that any V(u) for p € PT is a
submodule of a suitable tensor product of the V(w;). Let us pick bases of weight

vectors ef, ..., e" nk for each V(wy) with dual bases e},...,ep*, and write ¢; for
the weight of €. The matrix elements uf; = (e}| o |e}) for k = 1,...,N and

1 <1i,j < ny generate O(G,) as an algebra.

Let X be the collection of all these matrix elements uf] We shall order the
elements of X in a list uy,...,u,, such that the following condition holds: For
Uq = U”,Ub = ug, we have b < a if either €, < ¢;, or e = ¢; and € > €;. According

to Proposition [2.135| we then obtain scalars ¢;; € K* and o] S]t € K such that

Z]’

j—1 m
UG = QiU U; + Z Z ozf;usut + Bf;utus
s=1t=1
for all 1 < j <4 < m. Therefore Lemma [2.133| yields the claim. O

2.14.4. Noetherianity of FU,(g). In this subsection we discuss Noetherianity of the
locally finite part of U,(g). Joseph [41] relies on tricky filtration arguments for this,
we shall instead give a proof based on the link between FU,(g) and O(G,) obtained
in Theorem 2113

Theorem 2.137. The algebra FU,(g) is Noetherian.

Proof. From the calculations after Proposition it follows that we can identify
the opposite algebra of FU,(g) with O(G4) = A, if the latter is equipped with the
multiplication
feg=faS ' (fu) =
where
X = g=(5X1)):91))9¢2)(X(2), 9(3))
is the coadjoint action of U,(g) on O(G,). Equivalently, according to Lemma
and the definition of the [-functionals we can write
feg= (l_(f(Q))»g(l))f(S)g(Z)( YU (f)), 963))
= (Ril, f(g) ® g(l))f(g)g(z)( 7f(1) ® 5(9(3)))
=90 fe (R fo) ® 92) (R, fa) @ S(93)),

using properties of the universal R-matrix in the final step.
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We shall construct a certain filtration of A as follows. The ordered semigroup
will be
P={(u,\) € PT x P | \is a weight of V(u)}

with the product ordering, namely
(1, ) < (W, N) iff p < pand X <N
Note that this partial order is well-founded.
To define the filtration, we begin with a P-grading on the underlying vector

space of A. Let us write C(pu) = End(V(n))* C O(Gy) for the space of matrix
coefficients of V(u). Thus, as a linear space we have

A=0(G,) = P Cw
neP+
and this determines a PT-grading on A. At the same time we have a P-grading on
the underlying vector space of A given by the right regular action of U, (h), namely,
f € O(Gy) has weight X with respect to this grading if

K,—f = fa)(Kv, f2) = ¢V f
for all v € P. Let us write O(G,)x for the subspace of all vectors of weight A and
C(n)r = C(p) NO(Gy)a. We therefore obtain a direct sum decomposition

A= P Cua,

(p,N\)EP
and the P-filtration of A is defined by

FeNa) = P Cn
(1 M) (s N)
We claim that this is an algebra filtration of A. Suppose f € C(u1)x, and
g € C(p2)r,- Note that f e g € C(u1)C(u2). Since the irreducible components of
V(p1) ® V(uz) have highest weights less than or equal to p; + pg, we see that

fege B Cw).

p<p1tp2
Moreover, the description of R ™! in the proof of Theorem [2.108| shows that

fog= (R fo)®91)f3)9¢2) (R, fa) ® S(g3)))
is a sum of terms whose weights with respect to the right regular action of Ugy(h)
are of the form \; + Xy — v with v € Q.
Therefore
fege D Clu=Flrmdag)
(1, ) < (p1+p2,A1+A2)
as required.

We write B = grz(A) for the associated graded algebra. We again have B =
D 0ep Clu)r = O(Gy) as a vector space, and we write f o g for the product in
B of f,g € O(Gy). Then for f € C(u1)x, and g € C(p2)r,, we have that f o g is
the projection onto C(p1 + p2)xa,+x, of f @ ¢g. In order to give an explicit formula
for this multiplication, we introduce the notation f-g € C'(u+v) for the projection
of the usual O(G,)-product fg onto the component C(u + v), where f € C(u) and
g € C(v). Using the above formula for f e g and again considering the formula for
R~ from Theorem [2.108 we obtain

fog=R™ fra) ® g fs) - 9oy (q=ri=r BaH®H) [ § 0@ gy
= 90) - fo)(R™% f3) @ gioy) (q=is=1 BPsH®HD) £y @ g(3)).
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Let us calculate this product in terms of matrix coefﬁcients Let €f,... ek be

a basis of weight vectors for V(u) with dual basis e, ..., e € V(u)*. We write ¢;

for the weight of e“ , and assume that the vectors are ordered in a non-ascending

order, so that ¢ > ¢; implies ¢ < j. Write uj; = (e},|  |¢) for the corresponding
matrix coefficients. Similarly, for v € P we ﬁx abasis ey, ..., e¥ of V(v) with dual
basis el,...,e? € V(v)* with the same properties. Using this notation one obtains
m
r=i+1s=1
i— jkl
(Elve 67) V + Z Z B;]v ukv zu
u=1v=Il+1

with certain scalars ai/F! Bikl ¢ K. Moreover aid* = 0 unless €, < ¢; and €, > €.
Similarly Bf}fl = 0 unless €, > ¢; and €, < €.

The above formulas show in particular that the space C(u) o C(v) is contained
in C(u) - C(v). Using an induction argument on the first of these formulas, we also

obtain

m
1% v _  (ei,e1—eg ijkl H
“ijoukz—q(” " “up + § E Vrs Upj O

r=i4+1 s=1

for certain coefficients 4% € K with v4* = 0 unless €, < ¢; and €; > €;. This
implies C(u) - C(v) C C(p) o C(v) and thus C(u) o C(v) = C(u) - C(v) = C(n+v).

In a similar way, the second formula for the product o from above, with the roles
of ufj and uf; swapped, yields

m k -1 m
(ej,e—e1) u ijkl , p
ukl ° U =q I ukl 6rsuvurv ° U‘
r=i s=1u=1v=5+1

for certain coefficients 6¥%! € K with §%k! = 0 unless €, > €, €, < €j, €, < ¢; and

€5 > €. Setting g r = q(fﬁe“e’“’e") this yields

m k -1 m
gy o Uy — ut’ o uf, SURL Yk oY,
kl qijkl i kl — rsuv “ro
r=i¢ s=1u=1 v:j+1
m

Z Zqul’Y]l - V

r=i+1 s=1

We now wish to show that B satisfies the hypotheses of Proposition 2.133] Con-
sider the matrix coefficients u” (b, leles®) for k=1,...,N and 1 <4,j < ny.
From the relation C(u) o C(v) = C(u+v) for all u,v € PT one sees immediately
that these elements generate B as an algebra.

Let X be the collection of all the elements uf] We list the elements of X
in an ordered sequence u,...,u, such that the following condition holds: For
Uq = ujj, up = uy; we have b < a if either €} < €;, or €, = ¢; and ¢ < €;. According

to our above considerations we obtain elements ¢;; € K* and oﬁt € K such that

j—1 m
2
U; O Uj = Qi5U; O Uj + E E agjusout

s=1t=1

for all 1 < j < i < m. Therefore Proposition [2.133| shows that B is Noetherian.
According to Lemma [2.130] it follows that A is Noetherian. O
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Since FU,(g) C U,(g) is a subalgebra it is immediate from Proposition
that FU,(g) is a domain as well.

Let us remark that Noetherianity of U,(g) can be deduced from Theorem
as follows, independently of Proposition Firstly, extend FU,(g) with abstract
Cartan generators L, for ¢ € P, commuting with the elements of F'U,(g) like the
Cartan generators K, of Uy(g). The resulting algebra B is Noetherian by Theorem
and Lemma and hence Noetherianity of U,(g) follows by observing
that U,(g) is naturally a quotient of B.

2.15. Canonical bases. In this section we give a brief summary of the theory
of canonical bases. This theory, due to Lusztig [65] and Kashiwara [46], [45], is
devoted to studying the ¢ — 0 limit of the quantized universal enveloping algebra
Uq(g). For our purposes we only need relatively basic aspects of the theory. A
thorough exposition can be found in [57], see also [34].

In the literature on canonical bases the deformation parameter ¢ is usually taken
to be a transcendental variable over Q. We will also be interested in the specializa-
tion to non-root of unity invertible elements in an arbitrary ground field K.

2.15.1. Crystal bases. In this subsection we discuss without proofs the existence
and uniqueness of crystal bases for integrable U, (g)-modules.
We shall work with the following definition of an abstract crystal.

Definition 2.138. Let I = {1,..., N} be a finite set. A crystal is a set B together
with maps &;, f; : BLI{0} — BU{0} for all i € I such that the following conditions
hold.

a) &(0)=0=f;(0) forall i e I.

b) For any i € I and b € B there exists n € N such that &*(b) = 0 = f*(b).

¢) For any i € I and b, ¢ € B we have ¢ = f;(b) iff &(c) = b.

Given crystals By, Ba, a (strict) morphism from B to Bg is a map g : By U {0} —
B, 11 {0} such that ¢g(0) = 0 and g commutes with all operators é;, fi.

In the above definition, the symbol U stands for disjoint union. For an element
b € B one sets

ei(b) = max{n > 0 () £0},  @i(b) = max{n >0 | f(b) £ 0}.

Let P be the free abelian group abstractly generated by elements w1, ...,wy. If
B is a crystal we define a map wt : B — P by
wt(b) = 3 (i(b) — (b)),
iel
and refer to wt(b) as the weight of b.

If By, Bs are crystals then the direct sum B; @ Bs is the crystal with underlying
set By U By, with the operators ¢é;, ﬁ : B; U By U {0} = B; U By U {0} induced by
the corresponding operators for B; and Bs.

If By, By are crystals then the tensor product By ® Bs is the crystal with un-
derlying set By x Bs, and elements written as (b1, b)) = b1 ® b, together with the
action

. o €; (bl) ® by if ©i (bl) Ei(bg)
ez(bl ® b2) - {bl ® él(bg) if (Pi(bl) Ei(bg)
. A @by if i (b1) > €(bo)
filbr ®b2) = {b1 ® filba) if @i(br) < ei(bs)

where we interpret by ® 0 = 0 = 0® by for all by € By,by € By. The tensor product
B, ® Bs is again a crystal, and the operation of taking tensor products is associative.

2
<
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Given a crystal B, an element b € B is called a highest weight vector if €;(b) = 0
for all 7. Similarly, b € B is called a lowest weight vector if fl(b) =0 for all 1.

For the rest of this subsection we work over the field K = Q(s) where s is an
indeterminate and ¢ = s” as before, deviating slightly from most of the literature
in which Q(q) is taken as base field. We fix the semisimple Lie algebra g associated
with a finite Cartan matrix A = (a;;). Our choice of Q(s) is necessary because we
work with the simply connected version of U,(g); however this does not affect the
constructions and arguments in a serious way.

Given an integrable U, (g)-module M and 1 < ¢ < N, one can write every element
m € M of weight A\ € P uniquely in the form

m = Z Fi(") - My,

where m,, € M)1nq, satisfies F; - m,, = 0, and we recall that Fl-(n) = F]"/[n],,!. On
a vector m € M) written in the above form, the Kashiwara operators are defined
by

é;(m) = Z Fi(n_l) “My

n>1

fz(m) = Z Fi(n+1) * My,

n>0

and this is extended linearly to all of M. Hence we obtain linear operators é;, ﬂ :
M — M fori=1,...,N in this way.

Consider the algebra Ay obtained by localizing the polynomial ring Q[s] at the
maximal ideal generated by s, corresponding to the point s = 0 on the affine
line. Explicitly, the elements of Ay can be written in the form f(s)/g(s) where
£(s),9(s) € Qls] and g(0) # 0.

Let us also recall that 8 denotes the field automorphism of Q(s) which maps s
to s71, and define Ao, = B(Ag) C Q(s). This can be viewed as a localization at
0o, which will be more convenient for us than localization at 0.

The following definition of crystal bases corresponds to the notion of basis at co
in the sense of Chapter 20 in [57].

Definition 2.139. Let M be an integrable U,(g)-module. A crystal basis (£, B)

for M is a free Aoo-module £ C M such that Q(s) ® 4 £ = M, together with a

basis B of the vector space £/s~ 1L over Q such that the following conditions hold.

a) For any p € P, the space £, = M, N L satisfies Q(s) ®4.. L, = My, and
B,=BNL,/s 'L, is a basis of L,,/s™'L,, over Q.

b) The Kashiwara operators é;, f; on M leave £ invariant and induce on L/s7IL
operators which leave B U {0} invariant, such that B becomes a crystal.

Consider the simple module M = V(\) for A € P and let £()\) be the A-
submodule of V() spanned by all vectors of the form f;, - - - fi, (vx) where iy, ..., €
I and fi,..., fn denote the Kashiwara operators. Moreover let B(\) be the col-
lection of all nonzero cosets in £(\)/s~'L()\) of the form f;, --- f;,(vy). The fact
that (L(\), B(\)) is a crystal basis for V() is crucial in the proof of the following
foundational result due to Lusztig and Kashiwara, see [45].

Theorem 2.140. For every integrable Uy (g)-module M there exists a crystal basis
(L,B). Moreover, if (L1,B1),(La,B2) are crystal bases of M then there exists an
automorphism f: M — M of U,(g)-modules which restricts to an isomorphism of
crystals f : By — Bs.
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The proof of Theorem [2.140| relies on the grand loop argument. We refer to [45]
for the details, see also [34] and Chapter 5 in [4I]. At the same time, one can
construct suitable crystal bases for Uy(n_) and for all Verma modules.

2.15.2. Global bases. In this subsection we describe how to use crystal bases to ob-
tain global bases for U,(g)-modules in the case of an arbitrary base field K provided
that ¢ = s € KX is not a root of unity. We follow the exposition in Chapter 6 of
3.

Initially, we shall work over K = Q(s) and consider several subrings of this
field. Note that we may view Q(s) as the ring of all fractions f(s)/g(s) with
f(s),g9(s) € Z[s] and g(s) # 0. Note also that the localization Ay of Q[s] at
s = 0 can be identified with the localization Z[s]y of the ring Z[s] of polynomial
functions with integer coefficients at s = 0. That is, elements of Ay can be written
as fractions f(s)/g(s) where f(s),g(s) € Z[s] such that g(0) # 0. Let us also define
Ao = B(Ap), where we recall that 5 : Q(s) — Q(s) denotes the field automorphism
determined by 3(s) = s~!. The ring A, can be thought of as localization of Q[s™!]
at s = oco. We shall write A = Z[s, s71] as before. Note that Ag, A, A C Q(s) are
naturally subrings.

In the sequel we shall consider various lattices in the sense of the following
definition.

Definition 2.141. If R C S is a subring and V is a free S-module, then a free
R-submodule £ C V is called a free R-lattice of V' if the canonical map S®grL — V
is an isomorphism.

Assume that V is a finite dimensional Q(s)-vector space, and let Lo, Lo, and V4
be free Ap-, Aoo- and A-lattices of V', respectively. Even if no compatibility between
these lattices is assumed a priori, we automatically have the following properties,
compare Section 6.1 in [34].

Lemma 2.142. In the above situation, the canonical map Ao @zs) (VAN L) — Lo
is an isomorphism of Ag-modules. Similarly, the canonical map A ®zps-1) (Va4 N
L) = Loo is an isomorphism of Ax.-modules.

Proof. We shall only prove the assertion for Ly, the proof for £, is analogous. Since
Ao and A are localizations of Z[s], we see that the inclusion map V4 N Ly — Lo
induces injective maps A ®z5 (Va4 N Lo) = A ®zq Lo and A @715 (Va N Lo) —
Ao ®z15] Lo The latter identifies with the canonical map Ag ®zs (V.4 N Lo) = Lo
since Ap ®z[s] Lo = Ao ®a, Lo = Lo.

Hence it suffices to show that the map Ay ®z[s (Va4 N Lo) — Lo is surjective.
Since V4 C V is an A-lattice any element of V', in particular any element v € Ly,
can be written in the form 58“ where f(s),g(s) € Z[s],g(s) # 0and u € V4. That
is, there exists a nonzero element g(s) € Z[s] such that g(s)v € V4. Since V4 is an
A-module, upon dividing by a suitable power of s we may assume without loss of
generality that g(0) # 0. Hence we have

1
@ ® g(s)v € Ay ®Z[s] (VA n Eo),

and this element maps to v under the canonical map as desired. O
Let us introduce the notion of a balanced triple.

Definition 2.143. Let V be a finite dimensional Q(s)-vector space. Moreover
let Lo C V be a free Ap-lattice, V4 C V a free A-lattice, and Lo C V a free
Aso-lattice. If we define

L=LNViN L
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then (Lo, V4, L) is called a balanced triple for V provided the following conditions
hold.

a) L is a free Z-lattice for the Ag-module L.
b) L is a free Z-lattice for the A-module V4.
¢) L is a free Z-lattice for the A-module L.

The conditions for (Lg, V4, L&) to be a balanced triple mean that £ has finite
rank, and that the canonical multiplication maps induce isomorphisms

Ao @z LE Ly, ARz L=V, Ax®zL=Ls.

Proposition 2.144. Let V be a finite dimensional Q(s)-vector space. Moreover
let Lo C V be a free Ag-lattice, Vo4 C V a free A-lattice, and Loo C 'V a free
Aoo-lattice. Then the following conditions are equivalent.

a) (Lo, Va, L) is a balanced triple for V.
b) The canonical map L — Lo/sLy is an isomorphism.
¢) The canonical map £ — Loo/s Lo is an isomorphism.

Proof. a) = b) We have canonical isomorphisms
L= Z®Z£ = Z®A0 AO ®Z£ = Z@_AO Co = Ao/SA() ®_A0 Co = ﬁo/sﬁo.

This yields the claim.
b) = a) We shall first prove by induction that the canonical map my : L —
LoNVanskLy, given by my(v) = s¥v induces an isomorphism

(@ Zsk) Rz LELyNVANS" Lo
k=0

for any n € Ny. For n = 0 this is obvious, so assume that the assertion holds for
n — 1 for some n > 0. Then we have a canonical isomorphism

(@ Zsk> Rz LEsLoNViNs"Lo
k=1

and a commutative diagram

0—— (@Z—l Z5k> Qg L — (@Z—O Zsk) Rz L L 0

§ | 5

OﬁsﬁoﬂVAﬁs",COO 4%600‘/‘,408”[/00 4)50/81:0

with exact rows. Hence the 5-Lemma shows that the middle vertical arrow is an
isomorphism, which yields the inductive step.
As a consequence, we have

b—a
(@ Zsk) Q7 LY LoNVaNs®™ Lo
k=0

for all b > a, which implies

b
(@ Zsk) ®z L2 s"LoNVans" Lo
k=a
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under the canonical map. Since L is an A -lattice in V' we have UZOZO "L =V,
and hence the above yields

Z[s| @z L=V N Ly,
Zls,s Y @z L= Vy,
Zs @z L.2VAN Loo.
The first of these isomorphisms implies
Ao ®z L= Ay ®zq L[s] @z L = Ag ®z15) (V4N Lo) = Lo,
using Lemma |2.142| in the last step. In the same way one obtains
Ace @7 L= A @gp11 Z[s ™1 @7 L = Ace @517 (VAN L) = Lo,

and we conclude that (Lo, V4, L) is a balanced triple.
a) & ¢) is proved in the same way. O

Assume that (Lo, V4, L) is a balanced triple for the finite dimensional Q(s)-
vector space V, and let G : Lo /s 'L, — L be the inverse of the isomorphism
L = L /s L. obtained in Proposition If B is a Z-basis of Lo/s L
then the vectors G(b) for b € B form an A-basis G(B) of V4 and a Q(s)-basis of V.
Indeed, writing £ = &, .z ZG(b) we obtain

Va=A®zL=Ax; PLGO) =@ AG®),
beB beB
and the claim for V follows similarly from V = Q(s) ® 4 V4. One calls G(B) the
global basis associated to the local basis B.

We continue to work over K = Q(s). Recall the definition of the integral form
U (g) of Ug(g) from Definition and that U;*(n_) is the A-subalgebra of Uy (n_)

generated by the divided powers Fi(m) fori=1,...,N and m € Ny. The automor-
phism 3 of U,(g) defined in Lemma restricts to an automorphism of U;*(g)
preserving U;‘(n,). Moreover, for A € P* we obtain a well-defined Q-linear au-
tomorphism Sy (y) @ V(A) — V(X) by setting By )(Y -wvx) = B(Y) - va, for any
Y € Uy(g). Indeed, view V(A) as a module over U, (g) with action X -0 = 5(X)-v,
and write V(\)? for this module. Then V())? is irreducible and of highest weight
A, and hence must be isomorphic to V(X) as Uy(g)-module. The corresponding
intertwiner is precisely the desired map By (y)-

Let (L(A), B(A)) be the crystal basis of V() as discussed before Theorem
and let us also write L(A) = Loo(A). If we define Lo(X) = By (x)(L(N)), then Lo(N)
is a free Ag-lattice of V' (X). Moreover set

V()\)A = U(;A(g) sV = U(;A(n,) U
Then we have By ) (V(A)a) = V(M) a.

Theorem 2.145. Let A € PT. With the notation as above, (Lo(N), V(A) 4, Loo(N))
is a balanced triple for V(\).

The proof of Theorem [2.145| can be found in [45], see also Chapter 6 of [34] and
Section 6.2 in [41]. According to the discussion after Proposition [2.144] we obtain
global basis elements G(b) for b € B(\) such that

Va= @D AG),
beEB(N)

and the elements G(b) also form a basis of V(\) as a Q(s)-vector space.
Let us now consider the case where K is arbitrary and ¢ = s¥ € K* is not a
root of unity. We write U,(g) for the quantized universal enveloping algebra over
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K. Then the canonical ring homomorphism A = Z[s, s7!] — K induces an A-linear
map from the A-module V() 4 as defined above into the K-vector space V (), the
irreducible highest weight module of U,(g) corresponding to A € P*. The image of
the resulting K-linear map ¢y : K® 4V (A)4 — V(A) is a nonzero submodule of V' (A),
and hence ¢y is surjective by the irreducibility of V(). Conversely, K® 4 V(A) .4 is
clearly an integrable U,(g)-module, and hence a quotient of V(\) by Theorem m
and Theorem It follows that ¢y is in fact an isomorphism.
We thus obtain the following result.

Theorem 2.146. Let K be a field and assume ¢ = s© € K* is not a root of unity.
For any A € PT the elements G(b) for b € B()\) form a basis of V(A) as a K-vector
space.

2.16. Separation of Variables. In this section we prove a key result on the struc-
ture of the locally finite part of Uy(g), originally due to Joseph and Letzter [43], see
also Section 7.3 in [41]. We follow the approach developed by Baumann [§], [10].
Throughout this section we assume that ¢ = s* € K* is not a root of unity.

2.16.1. Based modules. The key part of the proof of separation of variables further
below relies on some results involving canonical bases. We shall collect these facts
here, and refer to [57] for the proofs. In this subsection we work over K = Q(s)
with ¢ = s as before.

Let us first introduce the notion of a based module, see Section 27.1 in [57].
By definition, an involution on a U,(g)-module M is a Q-linear automorphism
Bar : M — M such that

Bu (X -m) = B(X) - Bar(m)

for all X € U,(g) and m € M, where 3 is the bar involution of U,(g) as in Lemma
2.19, For instance, if M = V()) for A € P* and vy € V() is a highest weight
vector then the map By defined by By (X - vy) = B(X) - vy for X € Uy(g), as
discussed before Theorem defines an involution of M.

Definition 2.147. An integrable U,(g)-module M with involution Sas together
with a Q(s)-basis B is called a based module if the following conditions hold.

a) BN M, is a basis of M, for any p € P.

b) The A-submodule M4 generated by B is stable under U;*(g).

c) We have By (b) =b for all b € B.

d) The A-submodule L), generated by B together with the image B of B in
Lar/s 1Ly forms a crystal basis for M.

A morphism of based modules from (M, Bas) to (IV, By) is a Ugy(g)-linear map
f: M — N such that f(b) € By U{0} for all b € By and B Nker(f) is a basis of
the kernel ker(f). In this case the kernel of f naturally inherits the structure of a
based module.

For any A € P, the simple module V (), equipped with the involution fixing vy,
together with the corresponding global basis as in Theorem [2.146|is a based module.
In this way simple integrable U, (g)-modules can be viewed as based modules.

Let us now sketch the construction of a suitable based module structure on the
tensor product M ® N of two based modules M, N, see Chapter 27.3 in [57]. One
first defines an involution Sy ey on M ® N out of the involutions Sy and Sy
and the quasi-R-matrix for U,(g). Note here that the ordinary tensor product of
the involutions Bas and By is not compatible with the U,(g)-module structure on
M ® N in general. The construction of an appropriate basis for M ® N is then
characterized by the following result, see Theorem 24.3.3 in [57].



134 CHRISTIAN VOIGT AND ROBERT YUNCKEN

Theorem 2.148. Let (M, B) and (N, C) be based modules. Moreover let L be the
Z[s™1]-submodule of M ® N generated by all elements b ® ¢ for (b,c) € B x C.
Then for any (b,c) € B x C there exists a unique element b o c € L such that
Buen(boc) =bocandboc—b®c € s L. Moreover, the elements bo ¢ form
a basis Bo C of M @ N which turn the latter into a based module with involution

5M®N~

The basis of the tensor product M ® N as in Theorem [2.148| will also be referred
to as the canonical basis.

Recall that if M is a finite dimensional U,(g)-module then the dual module is the
dual space M* with the U, (g)-module structure defined by (X-f)(m) = f(S(X)-m)
for all m € M. We have (M ® N)* &2 N* @ M* naturally if M, N are finite
dimensional.

Assume that N = V(i) for some p € P* with highest weight vector v,. Then
M =V (u)* is an irreducible U, (g)-module with lowest weight —u, and we denote by
vt € V(p)* the lowest weight vector satisfying v#(v,) = 1. Since V() is a simple
Uq,(g)-module there exists a unique U,(g)-linear map ev,, : V(u)* @ V(1) — K such
that ev, (v ®v,) = 1.

For p, A € P let pyy : V(p) @ V(A) = V(u+ A) be the unique U, (g)-linear
map satisfying p,x (v, ® va) = vuqa. Similarly, let 4,5 @ V(p+A) = V(p) @ V(A)
be the unique Ug(g)-linear map satisfying i, (v,41) = v, ® vy. By construction
we then have p,xiun = id. The transpose of p, determines a U,(g)-linear map
Pin: V(p+N)* = (V(n)@V(N)* = V(A)* @V (u)* satisfying pr, (v ) = v* @uH.
Similarly, the transpose of i, determines a Ug(g)-linear map iy, : V(A)*®@V ()" =
V() @ V(N)* = V(u+ N)* satisfying i;"M(v}‘ ® vH) = pHtA,

Let us define T : V(u + A)* @ V(u+ ) = V(p)* ® V(i) as the composition

. )
Pxp@tan evy

Vip+ ) @V(p+X) ——= V() @ V(A @V(A) @ V(p) —— V() @V (p).

Notice that T maps v*1t* ® Vu4+x to v* ® v,. Since the vector v ® v, generates
V(n)* @V (u) as a Uy(g)-module we see that T is surjective. We also observe that
T\o Ty = Txyy for any A, N € PT asamap from V(u+A+XN)*@V(u+ A+ N)
to V()" @V (u).

The following result is a translation of Proposition 27.3.5 in [57].

Proposition 2.149. The map T is a morphism of based modules.

For any v € P* we shall identify V(v) = V(v)** such that v, is mapped to the
linear form which evaluates v” to 1, and consider the corresponding U,(g)-linear
isomorphism

V) aVe) =2vVe) aVe)" =Vw) @ V(v).

Then the transpose of T identifies with a Uy(g)-linear map dy : V(p)* @ V(u) —
V(p+A)* @V (p+ A) satisfying

(" @) (VA @ v,4n) = 1
More precisely, we have
(v @v,) = v @ v,
=iy, (" ® ) @ pap(vr @ vy,)
= (i3, ® pan) (id ®evy @ id)(v* ® v,,)

with these conventions.
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Consider the partial order on P+ given by declaring u < v if v — u € PT. Note
that P* with this partial order is a lattice, in particular, every pair pu,v € P has
a least upper bound.

The following Lemma is a reformulation of Lemma 5 in [I0], which is based in
turn on Proposition 25.1.10 in [57].

Lemma 2.150. Let u € PT. For each vector y in the canonical basis of the based
module V(pu)* @ V(1) there exists a greatest element X\(y) in the lattice P+ with
respect to the partial order < such that Txy)(y) # 0.

Note that the weight A(y) in Lemma [2.150|is uniquely determined by y, due to
the fact that greatest elements in partially ordered sets are necessarily unique.

2.16.2. Further preliminaries. In this subsection we collect some additional prepa-
rations for the proof of the main theorem presented in the next subsection. Through-
out this subsection the ground field K is arbitrary and ¢ = s* € K* is not a root
of unity.

Let us first discuss a certain filtration of O(G,). We define

hi(p) = pa+ -+ pw

if u=pro1+---+punyay € P. For u € Q this agrees with the height as in the proof
of Proposition however, we allow here arbitrary p € P. It can be shown that
ht(p) € 3N for all p € P, compare Table 1 in Section 13.2 of [35].

We obtain an algebra filtration of A = O(G,) indexed by %NO by setting

FMA) = @ Viw eV
ht(p)<m
for m € $Ny. We call this filtration the height filtration of O(Gy).

The associated graded algebra E = grr(O(G,)) is canonically isomorphic to
O(Gy) as a left and right Uy(g)-module, and thus also as a U,(g)-module with
the coadjoint action from Section We will always view O(G,) and E as a
U,(g)-module with this action in the sequel.

Let us write
E= P Ew
pept

with E(p) = V(p)* @ V(p). Using the maps py», ¢, introduced before Proposition
2.149| we can write the product x - y € E of elements x,y € E as follows.

Lemma 2.151. With the notation as above, the multiplication of E restricts to
linear maps E(p) @ E(A) — E(u+ ) for u, X € P, explicitly given by the formula
(fleolv)-(gle|w) = (i3, (f @ g)l® |pru(w @ v))

for fe V() ,veV(n),g € V(N weV(A).
Moreover, right multiplication with the quantum trace ty € E(X) identifies with the
map Oy defined above, up to multiplication by q27Y) .

Proof. Using the identification of E with O(G,) as vector spaces and the pairing
between U, (g) and O(G,) we have

(X, (fev) - (g ®[w)) = (9@ f)(iru(X - pru(w @ v)))
= (X, (i3, (f @ g)] @ [pru(w @ v)))

for X € Uy(g), since multiplication in E only takes into account the highest weight
component of the product in O(Gy).

Next, recall that in our present conventions we identify V(A)** with V(\) such
that highest weight vector vy € V(\) pairs with v* € V(A\)* to give 1. This
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means, more generally, that a vector v € V() corresponds to the form on V(A\)*
given by evaluation on q(*Q”’)‘)Kgp -v. It follows that the quantum trace t) €
V(A)*®@V(A) from Definition[2.118evaluates on f@v € V(A)*®@V () as tA(f@v) =
¢ 2P Nevy (f ® v). That is, we have evi(1) = ¢»Vt,, and combining this with
the computations at the end of the previous subsection yields the claim. O

Let us next review some facts about graded vector spaces. Recall that if A, B
are vector spaces filtered by Ny then a linear map f : A — B is called a morphism
of filtered vector spaces if f(F"(A)) C F*(B) for all n. In this case f induces a
map gr(f) : gr(A) — gr(B) of the associated graded vector spaces. Moreover, f is
an isomorphism provided gr(f) is an isomorphism.

If A, B are vector spaces filtered by Ny we obtain a filtration of A® B by setting

F'(A@B)= Y FHA) o F(B)
k+l=n
Moreover, the canonical map gr(A4) @ gr(B) — gr(A® B) is an isomorphism in this
case.
Combining these observations we obtain the following basic fact.

Lemma 2.152. Let H, Z and A be Nq-filtered vector spaces and let m : HRZ — A
be a morphism of filtered vector spaces. If the induced map gr(m) : gr(H)®gr(Z) —
gr(A) is an isomorphism, then m is an isomorphism as well.

Finally, we need a result on the structure of certain mapping spaces.
Lemma 2.153. Let u,v, A € P*. Then the linear map
¢ : Homy, (g)(V(A) @ V(v)", V(i) = V(p)r-
given by ¢(f) = f(vx ® v¥) is injective and
im(e) = {ve V() | BV 0 =0 foralli=1,...,N}.

Proof. From weight considerations we see that ¢ is well-defined, that is, f(vy®v”) is
indeed contained in V(u)x—, for f € Homy, (4)(V(N) @ V(v)*, V(11)). Since vy @ v”
is a cyclic vector for V(\) ® V(v)* it follows that ¢ is injective.

In order to determine the image of ¢ let us abbreviate

U={veV(uir,| Ei(y’o”v)Jrl cv=0foralli=1,...,N}.
We observe that EF - (vy ® v¥) = vy ® EF - v” for all k € Ny, hence the smallest
power of F; killing vy ® v agrees with the smallest power of F; killing v”. This is
determined by the weight of v with respect to Uy, (g:) C Uy(g), and equals Ei(u’a" )+
It follows that im(¢) is indeed contained in U.
To prove the reverse inclusion U C im(¢) we construct a linear map
Y : U — Homy, () (V(A) @ V(v)", V() = Homy, (g)(V(N), Hom(V (v)*, V(1))

as follows. Let w € U be given and define a Uy(ny)-linear map T'(u) : N(—v) —
V() by T(u)(X -v_,) = X -u for X € Uy(ny). Here N(—v) is the universal lowest
weight module with lowest weight —v generated by the lowest weight vector v_,,.

Since Ei(l"o”v)-‘_1 cu=0foralli=1,..., N, it follows from Theorem that T'(u)
factorizes through V(v)*. Moreover, for any v € V(v)* we have

(Ky = T(w)(v) = ¢ AT () (0) = VT (u)(v),

(B = T(w))(v) = B; - T(u)(K; " - v) = T(u)(Ei K- v) =0
forn €e P and i = 1,...,N. We conclude that T(u) € Hom(V(u)*,V(,u)) is a

highest weight vector of Welght A. Since Hom(V (v)*,V(u)) is integrable, Theo-
rem [2.97] shows that setting ¢(u)(vy) = T(u) determines a well-defined element
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Y(u) of Homy, (qy(V(A), Hom(V (v)*,V(11))). Using the canonical identification
with Homy, gy (V(A) @V (v)*, V(1)) it is straightforward to check that ¢(i(u)) = u,
and we thus conclude im(¢) = U as desired. O

As a consequence of Lemma we see that Homy, (g)(End(V (\)), V(u)) for
i, A € PT can be identified with the subspace of V(1) consisting of all vectors
v satisfying Ei()"%v)+1 v =0 for ¢ =1,...,N. If the coefficients mq,...,my
in A = Zil m;w; are sufficiently large the latter condition becomes vacuous. In
particular, we have [End(V(X)) : V()] = dim(V (u))o for all A of the form A = p+n
forn e PT.

2.16.3. Separation of Variables. We shall now prove the main result of this section,
originally due to Joseph and Letzter [43]. As mentioned above, we follow closely
the approach by Baumann [§], [10].

Theorem 2.154 (Separation of Variables). Assume q € K* is not a root of unity.
There ezists a linear subspace H C FU,(g), invariant under the adjoint action, such
that the multiplication map H® ZU,(g) — FUy(g) is an isomorphism. Moreover,
for any p € PT we have [H : V(p)] = dim(V(u)o) for the multiplicity of the
isotypical component of type p of H.

Proof. Due to Theorem [2.116| and the remarks following it, it suffices to find a
linear subspace H C O(G,), invariant under the coadjoint action, such that the
multiplication map H ® O(G,)% — O(G,) is an isomorphism.

As explained in the proof of Theorem the algebra Z = O(G,)% has a
linear basis consisting of the quantum traces ¢ty for A € PT, and can be identified
with the polynomial algebra K[ts,,...,twy].- In view of Lemma it will be
convenient to rescale ¢ty and work with 8, = ¢®>*V¢, instead, and to identify
Z = K[lm,,...,0my]. If F denotes the height filtration of O(G,) discussed in
the previous subsection, then each 6, can also be viewed as an element of the
associated graded algebra E = grr(O(Gy)) in a natural way. We have 6,0, = 6,4,
in gr7(O(Gy)) for all \,n € PT, and Z = grz(O(G,)%) can be identified with the
polynomial algebra K[0,,...,05,] as well.

Let 4 € Pt and recall the notation E(u) = V(u)* ® V(u) C E introduced
before Lemma According to Lemma the map 0y : V(p)* @ V(n) —
V(A+ p)* @ V(A + p) obtained by the transposition of T identifies with the map
my : E(u) = E(A+ u) given by my(z) = z - 0, for any A\ € P*. We note that m
is injective since T) is surjective.

Let us momentarily work over K = Q(s). With the identification E(u) =V (u)*®
V()™ = (V(p)*®V(1))* used in the discussion after Proposition [2.149] we obtain
a linear basis B(u) of E(u) dual to the canonical basis of V(u)* ® V(u). If we set

B= J B(w),

nepP+

then Proposition [2.149] shows that m) restricts to an injective map my : B — B
for all A € PT.

If z is an element of the canonical basis of V(u)* ® V(i) let us write 2V for the
dual element of B, determined by the relation x¥(y) = d,, for all canonical basis
elements y. We define a map € : B — B by stipulating €(z") = Ty ()", where
A(x) € Pt is the weight determined in Lemma Then we have

2V (Y) = Oay = 01, 1) (2) Taier () = @) (2) (Ta@) (9) = mir(a) (Taa) (2)¥)(y)



138 CHRISTIAN VOIGT AND ROBERT YUNCKEN

for any y, so that ¥ = my ) (e(z")) = €(z") - Or(). Let us define
By = {e(b) | be B}
Bz = {9)\ | AE P+}

Note that since 6( (b )) e(b) for all b E B we can write By = {b € B | €(b) = b}.
Now assume zV = y¥ - 0, for some y¥ € By and 6, € Bz. Then 1 = zV(z) =
mx(yY)(x) = yV(Tx(z)) implies that T(x) = y is nonzero. Due to Lemma
we thus have )\ =< A(x). Since y¥ € By we also get Thi,(z) = T,(y) = 0 for any
nonzero element y € P*. This implies A = A(z) and hence y = T, (), or equiv-
alently y¥ = e(zV). Summarizing this discussion, we conclude that multiplication
in F induces a bijection m : By x Bz — B.

Let E4 C E be the A-linear span of the basis B. Similarly, let H4 C E4 the
A-linear span of By, and let Z4 C E be the A-linear span of Bz. From our above
considerations we conclude that multiplication in £ induces an isomorphism

HaA®aZa— Ea

of A-modules.

Now let K be again an arbitrary field and ¢ = s € K* not a root of unity. We
write O(Gy) for the K-algebra of matrix coefficients, and let Z = O(G,)% C O(G,)
be the invariant subspace with respect to the coadjoint action. As before we denote
by E = grr(O(G,)) the associated graded algebra for the height filtration of O(G,).
The canonical bases from Theorem determine K-bases for the U, (g)-modules
V(p)*®V (), and we write By for the dual K-basis of O(G,;), and hence of E, which
is obtained in this way. Mapping the elements b € B C E 4 to the corresponding
basis vectors of Bk in F yields a K-algebra isomorphism £ 4 ® 4 K 2 E by Lemma
2151

Let H C O(G,) be the K-linear span of the image of By in O(G,). If H =
grr(H) C E denotes the associated graded of H and Z = grz(Z) C E the as-
sociated graded of Z, then we have Z4 @4 K =2 Z and Hyq ®4 K = H under
the identification F4 ® 4 K =2 E. Hence the isomorphism Hy ®4 Z4 — E4 of
A-modules induces an isomorphism

HRZ—FE

of K-vector spaces, given by multiplication in E. Therefore, we may apply Lemma
2.152| to conclude that multiplication in O(G,;) induces an isomorphism

H®0(G)% =H®Z— 0(G,)

as required.

In order to determine the multiplicity of V(1) inside H observe that [H : V(u)] =
[gre(H) : V(u)] = [H : V(u)]. Thanks to the decomposition By x Bz = B
described above, for any A € PT the canonical basis vectors b € B()\) which belong
to submodules of E()) of highest weight 1 € PT can all be written in the form
b = €(b) - 6, for some v € PT, where €(b) € By belongs to a submodule of H of
highest weight u. It follows that the multiplicity [H : V()] is given by the maximal
value of [End(V(A)) : V(u)] as A runs through P*. According to the remarks after
Lemma [2.153] we thus obtain [ : V(1)) = dim(V (11))o. This finishes the proof. [

We remark that each basis element of the space H C FU,(g) corresponding to
H C O(G,) constructed in the proof of Theorem is contained in a subspace
of the form U,(g) — Koy for some A € PT. Note finally that since ZU,(g) C
FU,(g) commutes pointwise with all elements of FU,(g), Theorem shows
that multiplication also induces a U, (g)-linear isomorphism ZU,(g) @ H = FU,(g).
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3. COMPLEX SEMISIMPLE QUANTUM GROUPS

In this chapter we introduce our main object of study, namely complex semisim-
ple quantum groups. We complement the discussion with some background material
on locally compact quantum groups in general, and on compact quantum groups
arising from ¢-deformations in particular.

Throughout this chapter we work over the complex numbers C. If H is a Hilbert
space we write IL(#H) for the algebra of bounded operators on H, and denote by
K(#) the algebra of compact operators. If A is a C*-algebra we write M (A) for the
multiplier algebra of A in the sense of C*-algebras; this needs to be distinguished
from the algebraic multiplier algebra M(A) in chapter |1} By slight abuse of nota-
tion, we use the symbol ® to denote algebraic tensor products, tensor products of
Hilbert spaces, minimal tensor products of C*-algebras, or spatial tensor products
of von Neumann algebras. It should always be clear from the context which tensor
product is used. If X is a subset of a Banach space B we write [X] C B for the
closed linear span of X. For general background on C*-algebras and von Neumann
algebras we refer to [61].

3.1. Locally compact quantum groups. In this section we review some basic
definitions and facts from the theory of locally compact quantum groups [54].

3.1.1. Hopf C*-algebras. Let us start with basic definitions and constructions re-
lated to Hopf C*-algebras.

Definition 3.1. A Hopf C*-algebra is a C*-algebra H together with an injective
nondegenerate #-homomorphism A : H — M (H ® H) such that the diagram

H—2 s MH®H)

lid RA
A®id

MH®H)— MH®H®H)
is commutative and [A(H)(1Q H)]=H® H = [(H ® 1)A(H)].

Comparing Definition with the algebraic definition of a multiplier Hopf al-
gebra in Definition we note that the density conditions in the former can be
thought of as a replacement of the requirement that the Galois maps are isomor-
phisms in the latter.

If H is a Hopf C*-algebra we write H°P for the Hopf-C*-algebra obtained by
equipping H with the opposite comultiplication AP = gA.

A unitary corepresentation of a Hopf-C*-algebra H on a Hilbert space £ is a
unitary X € M(H ® K(£)) satisfying

(A ®id)(X) = X13Xo3

in M(H®H®K(E)), where we are using leg-numbering notation as described after
Definition[2.103] More generally, we may define a corepresentation of H with values
in a C*-algebra A as a unitary X € M(H ® A) satisfying (A ®id)(X) = X153X23.

A universal dual of H is a Hopf-C*-algebra H together with a unitary corep-
resentation X € M(H ® H ) of H with values in H satisfying the following uni-
versal property: for every Hilbert space £ and every unitary corepresentation X €
M(H®K(E)) there exists a unique nondegenerate *-homomorphism 7x : H — L(E)
such that (id ®@7mx)(X) = X.

We shall be exclusively interested in Hopf C*-algebras arising from locally com-
pact quantum groups.
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3.1.2. The definition of locally compact quantum groups. The theory of locally com-
pact quantum groups has been axiomatized by Kustermans and Vaes [54].

Let ¢ be a normal, semifinite and faithful weight on a von Neumann algebra M.
We use the standard notation

M;‘ ={z € M |¢(x) < oo}, Ny ={x € M|p(z"z) < oo}

and write M for the space of positive normal linear functionals on M. Assume
that A: M — M ® M is a normal unital x-homomorphism. The weight ¢ is called
left invariant with respect to A if

¢((w @ id)A(x)) = d(x)w(1)
for all z € /\/l;f and w € M. Similarly, a normal semifinite faithful weight 1 is
right-invariant if

P((id@w)A(z)) = P(z)w(1)
forallxe./\/l;' and w € M.

Definition 3.2. A locally compact quantum group G is given by a von Neumann
algebra L*°(G) together with a normal unital x-homomorphism A : L*®(G) —
L>*(G) ® L*(G) satistying the coassociativity relation

(A ®id)A = ([d®A)A,

and normal semifinite faithful weights ¢ and ¢ on L°°(G) which are left and right
invariant, respectively. The weights ¢ and ¢ are called the left and right Haar
weights of G.

Our notation for locally compact quantum groups is intended to make clear how
ordinary locally compact groups can be viewed as quantum groups. Indeed, if G is a
locally compact group, then the algebra L°°(G) of essentially bounded measurable
functions on G together with the comultiplication A : L*®(G) — L*(G) ® L*(G)
given by

A(f)(s,t) = f(st)
defines a locally compact quantum group. The weights ¢ and 1 are given by
integration with respect to left and right Haar measures, respectively.

For a general locally compact quantum group G the notation L*°(G) is purely
formal. Similar remarks apply to the C*-algebras Cf (G), Ci(G) and C{(G), C§(G)
associated to G that we discuss below. It is convenient to view all of them as
different incarnations of the quantum group G.

Let G be a locally compact quantum group and let A : Ny — L?(G) be the GNS-
construction for the weight ¢. Throughout we shall only consider quantum groups
for which L?(G) is a separable Hilbert space. One obtains a unitary Wg = W on
L?(G) ® L*(G) such that

W (A(z) © Aly)) = (A@ A)(A(y)(z @ 1))
for all z,y € Ny. This unitary is multiplicative, which means that W satisfies the
pentagonal equation
WiaWi3Waz = WasWia.
From W one can recover the von Neumann algebra L*°(G) as the strong closure
of the algebra (id ®L(L?(G)).)(W) where L(L?*(G)). denotes the space of normal
linear functionals on L(L?(G)). Moreover one has
Alz) =W*(1®z)W

for all x € M. The algebra L°°(G) has an antipode which is an unbounded,
o-strong*® closed linear map S given by S(id@w)(W) = (id®@w)(W*) for w €
L(L*(G))«. Moreover there is a polar decomposition S = R7_;/» where R is an
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antiautomorphism of L (@) called the unitary antipode and () is a strongly con-
tinuous one-parameter group of automorphisms of L>°(@G) called the scaling group.
The unitary antipode satisfies 0(R @ R)A = AR.

The group-von Neumann algebra £(G) of the quantum group G is the strong
closure of the algebra (L(L*(G)). ® id)(W) with the comultiplication A : £(G) —
L(G) ® L(G) given by

Aly) =W (1 ey)W,
where W = SW*Y and ¥ € L(L?(G) ® L*(@)) is the flip map. It defines a locally
compact quantum group G which is called the dual of G. The GNS construction
for the left invariant weight ¢E of the dual quantum group can be identified with a
map A T NG — L2(G) such that we have £(G) = L=(G).

We will mainly work with the C*-algebras associated to the locally compact
quantum group G. The algebra [(id ®L(L*(G)).)(W)] is a strongly dense C*-
subalgebra of L>°(G) which we denote by C§(G). Dually, the algebra [(L(L?(G)).®
id)(W)] is a strongly dense C*-subalgebra of £(G) which we denote by C;(G).
These algebras are called the reduced algebra of continuous functions vanishing
at infinity on G and the reduced group C*-algebra of G, respectively. One has
W e M(C{(G)®C}(G)). Restriction of the comultiplications on L*°(G) and L(G)
turns Cj(G) and C}(G) into Hopf C*-algebras.

For every locally compact quantum group G there exists a universal dual C{ (G)
of Cf(G) and a universal dual Cf(G) of C*(G), respectively [52]. We call C}(G)
the maximal group C*-algebra of G and Cf(G) the maximal algebra of continuous
functions on G vanishing at infinity. Since L?(G) is assumed to be separable the
C*-algebras C§(G),Cy(G) and C;(G),Cf(G) are separable. The quantum group
G is called compact if Cf(G) is unital, and it is called discrete if C;(G) is unital.
In the compact case we also write Cf(G) and C"(G) instead of C§(G) and C}(Q),
respectively.

In general, we have a surjective morphism 7 : C{(G) — C}(G) of Hopt-C*-
algebras associated to the left regular corepresentation W € M (Cy(G) ®@ C}(G)).
Similarly, there is a surjective morphism 7 : C{(G) — C§(G). We will call the
quantum group G amenable if 7 : Cf(G) — C}(G) is an isomorphism and coa-
menable if 7 : Cf(G) — C§(G) is an isomorphism. If G is amenable or coamenable,
respectively, we also write C*(G) or Cy(G) for the corresponding C*-algebras. For
more information on amenability for locally compact quantum groups see [I1].

3.2. Algebraic quantum groups. The analytical theory of locally compact quan-
tum groups simplifies considerably if one restricts attention to examples that are
essentially determined algebraically. This is the case for the class of algebraic quan-
tum group in the sense of van Daele [74]. The concept of an algebraic quantum
group is a variant of the notion of a regular multiplier Hopf algebra with integrals
in which one adds -structures.

3.2.1. The definition of algebraic quantum groups. Recall the notion of a regular
multiplier Hopf algebra with integrals from Definitions [I.6] and [I.9] Let us now
introduce the notion of a multiplier Hopf x-algebra [74].

Definition 3.3. A multiplier Hopf #-algebra is a regular multiplier Hopf algebra
H which is equipped with a s-structure such that A : H - M(H ® H) is a *-
homomorphism.

Let H be a multiplier Hopf *-algebra. Then the counit ¢ : H — C is a *-
homomorphism and the antipode S : H — H satisfies

S =1
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for all f € H, see Section 5 in [73]. Let us remark that the regularity condition
in the definition of a regular multiplier Hopf algebra is in fact automatic in the
x-algebraic situation.

Definition 3.4. An algebraic quantum group is a multiplier Hopf x-algebra H =
€2°(@G) such that there exists a positive left invariant integral ¢ : H — C and a
positive right invariant integral ¢ : H — C. We will also refer to the virtual object
G as an algebraic quantum group.

Here a linear functional w : H — C is called positive if w(f*f) > 0 for all f € H.
We note that (positive) left/right invariant integrals are always unique up to a
(positive) scalar, see Section 3 in [74].

In a similar way as in the definition of a locally compact quantum group, our
notation H = €2°(G) is meant to suggest that H should be thought of as an algebra
of compactly supported smooth functions on an underlying object G, and by slight
abuse of language which we will sometimes also refer to the latter as an algebraic
quantum group. In contrast to the situation for locally compact quantum groups
the situation is not quite as clean here; for instance, if G is a Lie group then the
algebra C2°(G) is typically not a multiplier Hopf algebra.

The duality theory for a regular multiplier Hopf algebra with integrals H dis-
cussed in Section [1.3]is compatible with the positivity requirement for Haar func-
tionals, see [74]. In particular, if H is an algebraic quantum group and we consider
the #-structure on H defined by

(@* f) = (x, S(f)*)

for f € H and x € H , then the dual H is an algebraic quantum group as well.
When using the notation H = €°(G) we will write either H = ®(G), which we
refer to as the group algebra of G, or H = Q:SO(G), where G is called the Pontrjagin
dual of G.

One has the following version of Theorem [1.14

Theorem 3.5 (Biduality Theorem for algebraic quantum groups). Let H be an
algebraic quantum group. Then the dual of H is isomorphic to H as an algebraic
quantum group.

Let us note that for an algebraic quantum group H, the modular element § €
M (H) of Subsection is a positive element, see [53]. We write 6 € M (H) for
the modular element of the dual H.

3.2.2. Algebraic quantum groups on the Hilbert space level. In this subsection we
explain how to associate a locally compact quantum group to any algebraic quan-
tum group. A detailed exposition of this is material can be found in the work of
Kustermans and van Daele [51], [53].

Let G be an algebraic quantum group and let ¢ : €2°(G) — C be a left invariant
integral. We write L?(G) for the Hilbert space completion of €2°(G) with respect
to the scalar product

(f.9) =o(f"9),

and we let A : €°(G) — L?(G) be the GNS map. Then one can define a unitary
operator W on L?(G) ® L?(G) by

W(A(f) ® Alg)) = AS™ (9)) f) ® Agez))s
using the inverse of the antipode S of €3°(G). The inverse of W is given by

WHA(S) © Mg)) = Mg f) @ AMg),
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which formally agrees with the definition given in the case of locally compact quan-
tum groups. It is straightforward to check that W is multiplicative, that is, we have
the pentagon relation WioWi3Was = Wo3 W14 as in Section @

Note that the action of €°(G) on itself by left multiplication induces a x*-
homomorphism A : €°(G) — L(L?(G)), explicitly given by

A(F)(A(g)) = A(f9g)

for f,g € €°(G). To see this we first claim that the left regular action of €2°(G)
on €2°(G) C L?(G) can be written in the form

)‘(f) = (id ®wf(*1)’3(f<2))x)(w)7

where x € €°(G) is any element satisfying ¢(x) = 1, and wy, 1 (T) = (A(h), TA(k))
for all h, k € € (G). Indeed, we have

(1d @, 070 WA(R) = AS(S(Fa)bxca)h) iy S( )Xo
=A(S™ 1( (fe)x@)ho(f1)S(f2))x2)
= AT (x) f)d(x @)
= A(fR)o(x) = A(f)A(R)
for all h € €(G). In particular, A(f) extends naturally to a bounded operator

on L?(G). It is then straightforward to check that A yields in fact a faithful -
representation of €2°(G) on L*(G).
Moreover we have
Af) =W (1 HW
for all f € €5°(Q), where we identify f with A(f) € L(L?(G)). Indeed, one computes
(W (18 HW)(Alg) ® AR)) = (W (1 A (hng) © Alhez))

= W*(A(S™H(h(1)9)) © A fhe)))

= A(fy9) ® A(f2)h)

= A(f)(Alg) @ A(h))
for all g, h € €°(G).

We shall next identify the dual multiplier Hopf algebra ®(G) inside L(L?(Q)).
Recall from Section [1.3| that €2°(G) is linked with its dual ©(G) by Fourier trans-
form. We will also write ©(G) = €°(G) for the dual. We shall sometimes refer to
D(G) as the group algebra of the algebraic quantum group G.

Lemma 3.6. Let G be an algebraic quantum group. The Fourier transform F :
€°(G) — D(G) given by F(f)(h) = ¢(hf) induces an isometric linear isomorphism
L*(G) — L*(G).

Proof. For f,g,h € €°(G) we have
(F()Fg)h) = (F()" b)) d(hz)9)
= (F(f)" ha)g92)S™ (9(1)))¢(h(2)9(3))
= (F(N)", 57 gm))e(hg)
o971, No(hg(2))
= o(f"91))(F(92)): 1)

Hence we obtain

HF () F(9) = oI 90)6(Fl92)) = 6(f*9)
for all f,g € €2°(G). This shows that F extends to an isometric isomorphism with
respect to the canonical scalar products. 1
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Using the Fourier transform from Lemma we can transport the left regular
representation of €°(G) = D(G) on L*(G) to L2(G) as follows. Define a linear
map A from D(G) to the space of linear endomorphisms of €2°(G), viewed as a
subspace of L?(G), by the formula

A@)A(f) = (S(@), fa))Mfe) = (@, 57 (f1)Af2),
for v € ®(G), f € €°(G). Then for all h € €°(G) we have

(FA@AF), h) = (x, S (fay)o(hf(2)
= (2, ST (S(h)h@ fa))d(h) fz)
= (=, h(l))¢(h(2 f)
= (@, h(y))(F(f), hz))
= (zF(f),h),

which means that FA(z)F ! corresponds to the GNS-representation of ¢2°(G) on
L2(G). In particular, we obtain a faithful s-representation A : (@) — L(L2(G))
using the above construction.

In terms of the multiplicative unitary W, the comultiplication A for D(Q) is
determined by the formula

Al) =W (1 ®z)W
where W = SW*¥, and we identify = with A(z) € L(L*(G)).

Inspecting the above formulas we see that we obtain Hopf C*-algebras C{)(G) and
C# (@) = Cy(G) inside L(L3(G)) by taking the closures of A(€2°(@)) and A(D(G)).
These algebras identify with the legs of the multiplicative unitary W. Moreover,
these constructions are compatible with the multiplier Hopf algebra structures of
€2°(G) and ©(G), respectively. In a similar way one obtains von Neumann algebras
L>*(G) and L(G) with comultiplications by taking the weak closures of A(€°(G))
and A\(D(G)), compare the constructions in Section

The key result due to Kustermans and van Daele is that these operator algebras
define a locally compact quantum group with multiplicative unitary W, see Section
6 in [5I]. Let us phrase this as follows.

Theorem 3.7. Let G be an algebraic quantum group. With the notation as above,
the left /right invariant integrals on €°(G) extend to left/right invariant weights on
L>(G). In particular, G canonically defines a locally compact quantum group.

To conclude this subsection, let us verify that the unitary W = SW*Y indeed
corresponds to the fundamental multiplicative unitary for G under Fourier trans-
form. For any f,g € €°(G), we have

(F @ F)(EWE)(A(f) @ Ag)) = (F @ F)(A(f2)) © A f1)9))
= AF(f»)) @ MF(fy9)).
Now, for any h, k € €°(G) we can compute

(F(fi2) ® F(f1y9), h @ k) = d(hf2))o(kf1y9)

o(
= ¢(h@3) f2))p(kS(h))h(2) f(1)9)
= ¢(kS(h(1y)g)o(h )f)
F(9), kS(hay))(F(f)s hz)

= (F(9) )
(7(9)(1),5@(1 NFES)s h2)(F(9)2), k)
= (STHF(9) ) F(f) ® Fl9)2). h @ k),
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and therefore the previous calculation gives
(F @ F)EWE)(A(f) ® Alg) = AF(f ))) AF(f1)9))
(A®A)( (f(g)(l) (f) @ F(9) )
WAF(f) © AF(9))).

This yields the claim.

3.2.3. Compact quantum groups. In this subsection we briefly sketch the theory of
compact quantum groups. For more information we refer to [76], [58] and [48].

There are various ways in which the concept of a compact quantum group can
be defined. In our set-up, it is convenient to consider compact quantum groups as
a special case of algebraic quantum groups as in Definition Historically, the
development took place in the opposite order, in fact, the invention of algebraic
quantum groups was strongly motivated by the theory of compact quantum groups
and attempts to generalize it, see [74].

Definition 3.8. A compact quantum group is an algebraic quantum group H such
that the underlying algebra of H is unital.

We shall also write H = €>°(K) in this case and refer to K as a compact quantum
group. Note that the comultiplication is a *-homomorphism A : H - H ® H, so
that H is in particular a Hopf x-algebra.

Moreover, by definition there exists a positive left invariant integral ¢ : €>°(K) —
C and a positive right invariant integral ¢ : €>°(K) — C such that ¢(1) = 1 = ¢(1).
We have

o(f) = o(f)(1) = ((Id®@P)A(f)) = (¥ ® P)A(f) = ¥(f)¢(1) = ¥(f)
for all f € H, so that in fact ¢ = ¥. We refer to this left and right invariant
functional as the Haar state of €*°(K).
In particular, due to Proposition the Hopf algebra €°°(K) is cosemisimple.

That is, we can write
K) =P M,,(C

A€A
as a direct sum of simple matrix coalgebras. Moreover, this ibomorphism can be
chosen so that the standard matrix coefficient functionals u € M, (C)* satisty

(uy)* = S(uj;) for all A € A. Equivalently, the matrix u* ( upy) € My, (€°(K))
is unitary for all A € A.

For each A € A there exists a unique positive invertible matrix F\ € M,, (C)
such that S%(u*) = Fyu*Fy ! and tr(Fy) = tr(Fy '), Here we write S?(u?) for the
matrix obtained by applying S? entrywise to u*, and we consider the unnormalized
standard trace tr on M,, (C).

If we fix matrix coeflicients u;\] as above then we have the Schur orthogonality
relations
(F5 ri

F .
( 5)1] ¢((uzﬁ])*uzl) _ 5B'y§]l U?TB),

tI‘(Fg) ’
compare for instance Chapter 11 in [48].

The Schur orthogonality relations imply that the dual algebraic quantum group
D(K) can be written as a direct sum

= @ M,,(C)

AEA

(u;(uy)") = S50

of matrix algebras, such that the pairing (z, f) for z € D(K), f € €>°(K) is given
by evaluation in each component. As usual, we write X —h = (X, h(g))h(1) and
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h—X = (X, h(1))h) for the natural left and right actions of ®(K) on €°(K). If
we define the element

F=@PF eD(K),
AEA
where the matrices F) are those from the Schur orthogonality formulas above, then
the Haar state satisfies

$(fg) = Sg(F = f+—F)) = ¢(F~' =g=F~)f)

for all f,g € €°(K).
We obtain a basis of D(K) consisting of the functionals wj; defined by

H ny —
(wij,ukl) = 5ltn§ik6ﬂ'

With this notation, the multiplicative unitary W € M(€>®(K) @ ©(K)) can be

written as
_ E : M I3
W = U5 X Wi

Hytsd
Indeed, we compute

S (Auth) @ MDA @ Al9) = 3 (@l S (g)A(s ) @ Algia)

= A5 (g)f) @ My)

for all f,g € €°(K). In a similar way one obtains

W=D S @wj = @ 57w
2,7 X%
for the inverse of W.
Positive left and right invariant Haar functionals for ©(K) are given by

dla) =D tr(F)te(Fle), () =D tr(F,) tr(Fu),

BEA HEA

respectively. Note here that the positive matrices Fy € M,, (C) are naturally
elements of ®(K), and that FAﬂx is contained in M,, (C) C ®(K) for any x €
D(K). We note the formulas

p(zy) = p(FyF '), P(zy) = H(F'yFu),

for all z,y € ®(K). We remark finally that 5 = F? is the modular element of the
dual quantum group ©(K). In particular, ®(K) is unimodular iff F' = 1.

3.2.4. The Drinfeld double of algebraic quantum groups. In this subsection we dis-
cuss the Drinfeld double construction in the framework of algebraic quantum groups.
The Drinfeld double of regular multiplier Hopf algebras was already treated in Sec-
tion[I.4] Here we shall explain how to incorporate *-structures in the construction,
and also approach it from the dual point of view.

Let K and L be algebraic quantum groups with group algebras ©(K) and D (L),
respectively. Recall from Section that in order to form the Drinfeld double
D(K) < D(L) one needs a skew-pairing 7 : D(K) x D(L) — C. We shall say that
the skew-pairing 7 is unitary if

T(z%y") =77z, y)

for all z € D(K),y € D(L), where 7-1 denotes the convolution inverse of 7 as in
Section 4

Let us also introduce the notion of a unitary bicharacter.
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Definition 3.9. Let K and L be algebraic quantum groups. A (unitary) bichar-
acter for K, L is a (unitary) invertible element U € M(E€X(K) ® €°(L)) such
that
(AK X 1d)(U> = Ui3Us3, (ld ®AL)(U) = U 3Uq2
and
(eg ®1id)(U) =1, (id®er)(U) = 1.

In the same way as in the discussion of universal R-matrices in Section [2.11]one
checks that a bicharacter U satisfies

(Sk @id)(U) = U = (id=S; H)(U).
The notion of a bicharacter is dual to the concept of a skew-pairing in the fol-
lowing sense.
Proposition 3.10. Assume that K and L are algebraic quantum groups. If U €
M(EX(K) ® €°(L)) is a bicharacter then 1y : D(K) x (L) — C given by
7—U(‘/Ea y) = (.’E ® Y, U_l)
is a skew-pairing. Every skew-pairing ©(K) x D(L) — C arises in this way from a

bicharacter. Moreover U is unitary iff the skew-pairing Ty is unitary.

Proof. Let us sketch the argument. If U is a bicharacter then one can check in the
same way as in the proof of Lemma that 7y yields a skew-pairing.

To see that every skew-pairing arises from a bicharacter let 7 : ®(K)x®D(L) — C
be given. Using regularity one checks that the formulas

(z@y, U (f®9) =120, y2) (@) ) Ya.9)
(z@y, (fo U ") = (2@, Ny, )T, y)
determine an invertible multiplier U, € M(€X(K)®€(L)). Moreover, one checks
that this multiplier satisfies the conditions in Definition [3.9] The skew-pairing 7 is
reobtained by applying the above construction to U;.
For the last claim use the relation (Sx ® S1)(U) = U to compute
(e, ) = (@ @y, U = (@ ® y, 5k © S0 ) = @ 99,0 1))

and

' (2y) = (e @y, U).
Comparing these expressions yields the assertion. O
Let K and L be algebraic quantum groups and assume U € M(€°(K)®€°(L))
is a bicharacter. As in Section [[.4] we can then construct the Drinfeld double

D(K) 1 ©(L) using the skew-pairing 7y from Proposition Recall that this is
the regular multiplier Hopf algebra

DK< L) =9D(K)=xD(L),
equipped with the tensor product comultiplication and the multiplication given by

(x5 £)(y > g9) = 270y, F0))¥e) > foy o (Sx (W), f3)9
=270 (ya), f)e > foru(e), S (fe).
The counit of ®(K i L) is given by
€xnar (x4 f) = éx(x)eL(f)
for x € D(K), f € D(L). The antipode of D(K < L) is defined by
Skcvar (04 f) = (14 Sp(f))(Sk () > 1)

= 10 (S(@(3)), SL(f(3)) Sk (2(2)) 0 SL(f2)) 70 (Sk (1)), fa))-
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If U is unitary we can define a #-structure on ®(K < L) by

*

(200 f)" = 700y, f1) ey 2 iy 7o (35, fi) = (o2 f) (@ b 1),
To check antimultiplicativity of this -structure one computes
(@ > )y < 9))* = (x70(ya), fa)vee) > oo e, fs)9)"
= 0(ya) F) (@) 2 f@9) 75 (o). o)
= 7'1;1(2/?1)7 ) (@yee) ™ fi2)9) 10 (Y(3): [3))
=75 Wy I )(1 51 9"V 70 (Ylays £l (Ul 29 £s))

X Ty (y(4 W)@ =< D70 (Y5, fis))
= (1=g")(y" )(SE*Nl)
= (Loag)(y" 1)1 o f5) (2" 1)
= (yag)*(z e f),

where we use
ru(z, f) =15 (=" @ f).
For involutivity note that
(@ f)™ = (Lo fr)(a" = 1)) =z f
using that * is antimultiplicative. Similarly, to check that A Ksar, is a *-homomorphism
one calculates
Agpar ((@pa £)7) = (163 f1)) @ (103 f5))) (275 1) @ (2fy) > 1))
= ($2<1) > f(*1)) @ (x?Z) > f(*Q))
= AKNL(I' > f)*

Finally, a left Haar integral for ©(K > L) is given by

Srvar (w4 ) = b (2)$1.(f),

where ¢ and ¢y, are left Haar integrals for ® (K) and D (L), respectively. Similarly,
a right Haar integral for D(K < L) is given by the tensor product of right Haar
integrals for ©(K) and ©(L).

If L is a discrete quantum group then it is not hard to check that the resulting
functionals are positive provided one starts from positive integrals for K and L,
respectively. For the question of positivity in general see [21].

From general theory, we obtain the dual multiplier Hopf algebra €3°(K < L) of
D(K > L). Sometimes this is referred to as the Drinfeld codouble, but we shall call
€ (K < L) the algebra of functions on the Drinfeld double K <t L. Explicitly, the
structure of €°(K > L) looks as follows.

Proposition 3.11. Let K and L be algebraic quantum groups and assume that
Ue M(€X(K)®€X(L)) is a unitary bicharacter. Then the algebra

€ (K L) = CF(K) @ €X (L),
equipped with the comultiplication
Agpar, = ([d®o ® id)(id ®ad(U) ® id)(Ax @ AL)

is an algebraic quantum group. Moreover, the counit of € (K <1 L) is the tensor
product counit €xsr, = €x ® €1, and the antipode is given by

Sksar(f @ x) = U (Sk(f) © Sp(x)U = (Sk @ SL)(U(f @ 2)U ™)

The algebraic quantum group €°(K 1 L) is dual to the double D(K) <1 D (L), the
latter being constructed with respect to the skew-pairing Ty corresponding to U.
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Proof. Note first that ad(U) is conjugation with the bicharacter U and o denotes
the flip map in the above formula for the comultiplication.

Let us abbreviate G = K 1 L. In order to prove the Proposition we shall show
that the dual of (G) = D(K) > D (L) can be identified as stated.

Firstly, using ¢ (z 4 f) = ¢ (2)¢1(f) we compute
Falyag)(zoa f) = dalato(yay, Fu)ve) > foy o (e, f3)9)
= 10 (Y1), f1)) 0 (2y2))OL (f2)9)T0 (Sk (Y(3)): fi3))

= 70 (y(1), Sp(90) P x (2Y(2)) L (F1)9(2)) 70 (Sk (Y3), fi2))

=10 (y), 51 (901) 0k (2y(2))SL (F1)92)) 70 (U3), S (F2)93)SL(94))))
= 70 (y), 51 (901) Pk (2y(2) b (F9(2)) 70 (U3), 93)0L ")
= (2 ® f,75 " (W 90) Fr (W) @ Frlge)m (W), 9601 )
for all 2,y € D(K), f,g,€ D(L). Here 1, denotes the modular element of D(L).
This implies
ﬁG(TU(y(l)a 91))Y(2) X 9(2)751(9(3), 9(3)521)) = Fr(y) ® Fr(g).
In particular, we can identify the underlying vector space of the dual quantum
group of ®(G) with the space €°(G) = €2°(K) ® €2°(L) such that the canonical
pairing between ©(G) and €2°(G) becomes
(y>ag, fox)=(y,f)g, )
for all y e O(K), f € € (K),g € D(L),z € €°(L). Moreover, from the definition
of the comultiplication in ®(G) it is clear that the algebra structure of the dual
multiplier Hopf algebra €2°(G) = €°(K) ® €°(L) is the tensor product algebra
structure.
Let us next identify the comultiplication of €3°(G). By general theory, this is
determined by
((y>1g9) @ (24 h), Aa(f @ 2)) = (y70(2(1), 901)) 2(2) X 9270 (23), 9(3))hs [ © )
= (@ 1 (21), 901))2(2) M 92) @ 77 (2(3), 93)hs (Ax @ Ar)(f @ x))
= (y® (21) ® 91), U™ z(2) ™M g2) @ (23) @ g3), U)h, (Ax @ Ap)(f @ )
=(y®zegeh, (ldeadU) ®id)(Ax © AL)(f © z))
=((y=xg)® (zxh), (ild®o ®id)(id®ad(U) ® id)(Ax @ AL)(f ® x)),
so that we obtain
Ag = (ld Ko & ld)(ld ®ad(U) ® ld)(AK ® AL)

as claimed. Remark that it is immediate from unitarity of U that Ag : €°(G) —
M(€X(G) ® €2°(@)) is indeed an essential *-algebra homomorphism.

The formula e¢ = ex ® €r, for the counit of €2°(G) can also be deduced from
duality. Alternatively, we may check the counit property of €5 directly and compute

(e¢ ®id)Ag = (ex ® e, ®id®id)(id ®o ® id)(id ®ad(U) @ id)(Ax @ AL)
(ex ®id ®er, ®id)(id ®ad((id ®eL)(U)) @ id)(Ax @ AL)
(ex ®1d®er, ®1d)(Ax ® AL)

(id®ex ®id®er)(Ax @ AL)

(id ®ex ®id ®er)(id ®ad((ex ®1d)(V)) @ id)(Ax @ AL)

(

(

id®id ®ex @ ep)(id ®o © id)(id ®ad(U) @ id)(Ax ® Ar)
id ®eg)Ag,
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using the relations (ex ®id)(U) = id and (id ®er,)(U) = id.
To verify the formula for the antipode we check
ma(Se ®id)Ag = ma(Se ®id)(id ®o ® id) (id ®ad(U) ® id)(Ax ® Ar)
= (mg @mr)(Sk ®id®Sy ® id)ad(U13Ua3) (A @ Ap)
= (mrg ®@mp)(Sk ®id®Sy ®id)ad((Ax ®id)(U)123)(Ax @ Ar)
mp (S ®id)(ex @ Ap)

=g Ve,

using the antipode axioms for K and L, respectively. A similar computation shows

mea(id®Se)Ac = ma(id ®S¢)(id ®0 ® id)(id ®ad(U) @ id) (Ax @ Ap)
= (mg @ mp)(id @Sk ®id ®SL)ad(UsaUss)(Ax @ AL)

(mg @ mp)(id @Sk ®id @St )ad((id ®AL)(U)234) (Ax @ AL)
my(id®@Sk)(Ax ®er)

—€exg KE€r,.

According to [2I] and the duality theory for algebraic quantum groups, there
exists a positive left invariant functional and a positive right invariant functional
on €°(@). Hence €2°(G) is again an algebraic quantum group. O

Explicitly, the left Haar functional for G = K < L are obtained by combining
the left Haar functional for K and a twisted version of the left Haar functional for
L, depending on the modular properties of the quantum groups and the pairing
involved. We refer to [6] for a detailed analysis.

In the special case of the Drinfeld double of a compact quantum group we will
write down an explicit formula for a (left and right) invariant integral further below.

3.3. Compact semisimple quantum groups. Let g be a semisimple Lie algebra.
In order to pass from the algebraic theory of quantized universal enveloping algebras
developed in Chapter [2| to the analytical setting one has to introduce a *-structure
on Uy(g) and O(Gy).

In the case of U,(g) we shall work with the s-structure defined as follows.

Lemma 3.12. Assume q € C* is real and q # £1. Then there is a unique *-
structure on Uy(g) satisfying

E; = K;F;, Fr = EK;*, K} =K,

fori=1,...,N and A € P. The comultiplication A is a x-homomorphism for this
x-structure.

Proof. This is done in the same way as for the definition of the algebra antiauto-
morphism 7 in Lemma [2.16} note that x acts in the same way on generators. The
only difference is that * is extended anti-linearly, whereas 7 is extended linearly to
general elements. O

Definition 3.13. We will write U} (€) to signify U,(g) with the Hopf s-structure
of the lemma above.

Here, U, qR (¢) should be viewed as the universal enveloping algebra of the complex-
ification of the Lie algebra £ of the compact real form K of the simply connected
group G corresponding to g.

We have the following compatibility of the R-matrix with the x-structure.
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Lemma 3.14. The universal R-matriz of Ug(g) = U; (€) satisfies

(S @ 8)(R*) = Ran,
where Ro1 is obtained from R by flipping the tensor factors.

Proof. Due to Theorem the universal R-matrix is the product of the Cartan
part qzﬁ\fizl Bii(Hi®H;) 3nd the nilpotent part [Tocat €xpy, (9o — 42" ) (Ea ® Fy)).
Since the antipode and the x-structure are both antimultiplicative, it suffices to
show that applying the x-structure followed by S ® S to each individual factor
of these elements switches legs in the tensor product. For the Cartan part this is
obvious since S® introduces two minus signs which cancel out, and the *-structure
leaves the Cartan generators Hy, fixed.
For the nilpotent factors note that

(S S)((Ei® F)*) = (S®8)(K:F; @ E;K; ")
= (K. FK ) o (-KEK; ")
=FQ®FE
for all ¢ = 1,..., N. This yields the claim for all factors corresponding to simple
roots.

For the factors corresponding to arbitrary positive roots we use Theorem
and the relations

—2F,

K2

S(E;K Y = Ki(—E; K1) = —q(**) B, = —?E,.

S(E) = 8(KiFy) = (—K;F) Kt = —q~ (@) Fy = —¢

S(FY)

More precisely, we compute
GT(S(E) = -Ti(F) = iK' = K 'B; = =S((K.Fy)*) = S(Ti(E:)")
and

¢“ITi(S(E))) = —a;" 45 *Ti(Fy)

@i — — —a;i—k k
=—q; qu 2 Z(fl)k%’ kFi( ! )FjFi( )
k=0

—a;j

— Qi — 7(11']'7]6 —a;i 2a.;j — 7(1”'7]6 k
=3 (—1)meR, (—1)" w2 2 Vppk)

= 3 () RSB B B

= (D S(EN BB = S(Ti(E))")

K2 7

for i # j. Similarly, one obtains
¢ IT(S(F})) = S(Ti(Ey)")
for all 7,j. An induction argument then yields
(5® 8)((Ba ® Fa)*) = Fa ® Eq

for all positive roots a. O
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Recall the definition of O(G,) from Section By construction, there exists
a canonical bilinear pairing between U () and O(G,). We shall introduce a -
structure on O(G,) by stipulating

(@, f*) = (51 (2)", f)
for all 2 € UF(¢). In this way O(G,) becomes a Hopf -algebra.
Definition 3.15. We write €*°(K,) to denote O(G4) with the above %-structure.

The canonical pairing between U (€) and € (K,) satisfies

(zy, f) = (mvf(l))<yaf(2))7 (z,fg) = ($(2)7f)(37(1)’9)

and

(S(@), /) =(57'(f), (S @),f) =(=5()
for f,g € €°(K,),z,y € U]R (£), and the compatibility with the *-structures is given
by

(@, f*) = (SN @) f), (@, ) = (= S()).
In addition,
(Ial) :g(l‘), (laf) :E(f),
for f € €°(K,) and z € UqR(E). We may summarize this by saying that the
canonical pairing is a skew-pairing of the Hopf *-algebras UL (€) and € (K,).

We will also need to make use of the skew-pairing between € (K,) and U (k)
defined by

(f,2) = (8(2), ) = (&, 571(f))
for f € €*(K,) and z € U; (¢). Then

(f*2) = (S(@), [7) = (@*, ) = (5(S(2x)*), ) = (f,5(x)*),
so that this pairing is again compatible with the *-structures. Asin Subsection[1.3.2]
we stress that our skew-pairings U (€) x €°(K,) — C and €>°(K,) x Uy (t) - C
need to be distinguished, and in particular (f,z) # (z, f) in general.
Recall from Definition [2.102 that the Hopf algebra € (K,) is defined as the span
of the matrix coefficients of the irreducible integrable representations V(1) of UL (¥)

for p € P*. In particular, it is cosemisimple and so admits a left and right invariant
integral ¢ given by projection onto the coefficient of the trivial corepresentation, see
Proposition In order to see that €>°(K,) defines a compact quantum group
K, it remains to check that ¢ is positive.

Following the discussion in Section 11.3 of [48], this is equivalent to proving that
the irreducible integrable representations V(u) of UqR(E) are all unitarizable. Here,
a representation V is called unitarizable if it admits a positive definite sesquilinear
form which is invariant in the sense that

(X -v,w) = (v, X* - w)

for all X € UF(¢) and all v,w € V.

Let us explain how this can be done. First, we claim that each module V(1)
for ;1 € PT can be equipped with an essentially unique invariant sesquilinear form
(, ). Indeed, let V(1)* be the U,(g)-module defined on the conjugate vector space
of the dual V' (u)* by setting (X - f)(v) = f(X*-v) for all v € V(i). Then V(pu)* is
an irreducible highest weight module of highest weight p, and hence V' (p)* = V().
In particular, there exists a unique hermitian sesquilinear form (, ) on V(1) such
that (v,,v,) = 1.
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Proposition 3.16. Let ¢ # 1 be a strictly positive real number. For each p € PT
the hermitian form (, ) on V(u) constructed above is positive definite.

Proof. We shall use a continuity argument in the parameter ¢q. In order to emphasize
the dependence on g we write V(p), for the irreducible highest weight module of
highest weight p associated with ¢. Then V(u); = V(p)a ®4 C where V(p) .4 is
the integral form of V(i) and s € A acts on C such that s* = g. Let us write
(, ) =1{(, )q for the hermitian sesquilinear form on V'(u), satisfying (v,,v,)q = 1.

Choosing a free A-basis of V(1) 4 we see that the forms (, ), can be viewed as
a continuous family of hermitian forms depending on ¢ € (0,00) on a fixed vector
space.

Recall from Proposition @l that the specialisation Uy (g) of U,;“(g) at 1 maps
onto the classical universal enveloping algebra U(g) of g over C. This map is
compatible with *-structures if we consider the *-structure on U(g) given by

Ef=F, F'=E Hf = H;

K

fori=1,..., N, corresponding to the compact real form or g.

The representation V (u); of U, 54 (g) at ¢ = 1 correspond to the irreducible highest
weight representation of weight u of the classical Lie algebra g. In particular, the
sesquilinear form ( , ); is positive definite. By continuity, we conclude that {, ),
is positive definite for all ¢ € (0, 00). O

Let us specify the element F' € ©(K,) which appears in the Schur orthogonality
relations, see Subsection [3.2.3]

Lemma 3.17. We have F' = K_s,,.

Proof. Let us fix an orthonormal weight basis (e;) for V(u) and let M = (M;;)
denote the matrix of K_o, acting on this basis, so that M;; = (e;, K_o, - €;) =
(K_gp,ufj). We will show that M satisfies the defining properties of F), from
Subsection [3:2.3] Clearly, M is positive. If wy € W is the longest element of the
Weyl group then wgp = —p and so by the Weyl group invariance of the set of
weights of V'(u) we have

tI‘(M) = Z q(—QP,l/) — Z q(2p,w0u) _ tI‘(M_l)’
veP(V(p)) veP(V (1))

where the sum is over all weights of V(i) counted with multiplicities. Finally, using

Lemma [2.7| we have for any X € UJ(¥),
(X, 52(’“%)) = (S_Q(X)vuZ)

= (K_QPXKQp, UZ)

= | X, Z(K,zp, iy )y (K2p, wp))
kol

It follows that S?(u*) = Mu#*M~'. This completes the proof. O

We shall write C(K,) for the Hopf C*-algebra of functions on K, obtained as
the completion of €>°(K,) in the GNS-representation of the left Haar weight. Let
us remark that K, is coamenable, so that there is no need to distinguish between
maximal and reduced algebras of functions in this case, see Corollary 5.1 in [7].

To conclude this section, let us explain how the classical maximal torus T of
K appears also as a quantum subgroup of K,. Let Uf(t) be Hopf algebra U,(h)
equipped with the #-structure induced from Uj(¢). Define €*(T) C UZ(t)* to
be the restriction of elements of €*°(K,) C US(8)* to Uz (t). In light of definition
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2.102] the image of this restriction map is the set of linear combination of characters
of the form

XA (Ky) = g
with A € P. We therefore have a canonical isomorphism of €*°(T") with the group

algebra C[P] which is isomorphic to the polynomials on the maximal torus T of K.
This homomorphism induces a surjection C(K,) — C(T') on the C*-level.

3.4. Complex semisimple quantum groups. In this section we define our main
objects of study, namely g-deformations of complex semisimple Lie groups. The
construction of these quantum groups relies one the Drinfeld double construction.
We also discuss some variants of the quantum groups we will be interested in,
related to connected components and certain central extensions. Throughout this
section we fix a positive deformation parameter ¢ = e different from 1.

3.4.1. The definition of complex quantum groups. The definition of complex semisim-
ple quantum groups is a special case of the Drinfeld double construction explained
in Section

Definition 3.18. Let GG be a simply connected semisimple complex Lie group and
let K be a maximal compact subgroup. The complex semisimple quantum group
G, is the Drinfeld double

Gy =K, <K,
of K, and its Pontrjagin dual K, with respect to the canonical bicharacter W €

M(E>®(K,) ® D(K,)) given by the multiplicative unitary of K.

Let us explicitly write down some of the structure maps underlying the quantum
group G, based on the general discussion in Section By definition, G, is the
algebraic quantum group with underlying algebra

on(Gq) = Q:OO(KQ > Kq) = Qtoo(Kq) ® :D(Kq)v

equipped with the comultiplication

Ag, = ([d®o ®id)(id ®ad(W) @id)(A @ A).
Note that we can identify
€ (Gy) = @ € (Kq) @ L(V (1)),
pept
so that the algebraic multiplier algebra of €2°(G,) is
€ (Gg) = M(EX(Gy) = ] €*(K,) @ L(V ().
peP+
The counit of €*°(G,) is the tensor product counit e¢ = € ® ¢, and the antipode is
given by
Se,(f @) =W H(S(f) @ S@)W = (S H(W(f @)W ™).

Like its classical counterpart, the quantum group G, is unimodular [63].
Proposition 3.19. A positive left and right invariant integral on €°(G,) is given
by

vc,(f@x) = o(f)Y(x),
for f € €°(K,), r € D(K,).
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Proof. Tt follows from the end of Subsection that the right invariant Haar
integral ¢ on ®(K,) is given by

U(@) = ¢(F?x)
for all € D(K,), where ' = K_5, is the invertible element obtained from the
Schur orthogonality relations, see Lemma [3.17] Moreover, observe that

Z(F‘léufj;F )@ Fwj; F = Zu“@w
Hy%5J 14,1,

due to the dual basis property of W. This implies
(@AW (f @) =) o(F ! —uly—F ') f)p(Fuwl;Fz)

o5

=Y o(full)p(F awt)

Moty

=Y o(ful)i(awly)

= (e ((f®2)W)

for all f € €°(K,),z € D(K,).
Since (id ®A)(W) = W13W12 we thus obtain

(id@oa)Ac(f @ z) = (id ®¢¢)(id ®0 © id)(id ®ad(W) @ id)(A © A)(f @ x)
= (id®¢ @ id ®)ad(Was)(A @ A)(f @ z)

(id @¢ © id ©¢)ad (W' (id @A) (W)234) (A @ A)(f © @)
(id ¢ ® id @¢)ad((id @A) (W)234) (A @ A)(f @ x)
(id ®¢ ® ¢)ad(Was)(A ® id)(f @ x)
(
=(

id @ @ ¥)(A @id)(f ® )
pRP)(f®1) = da(f @)

for all f € €X(K,),z € D(K,) as desired. Hence ¢¢ is left invariant. Similarly,
since (A ® id)(W) = W13Wa3 we obtain

(pa @id)Ag(f ® z) = (pg ®id)(id ®o @ id)(id ®ad(W) @ id)(A @ A)(f @ z)
= (¢ ® id @) ®id)ad(Was)(A ® A)(f @ )
= (¢ @ id @Y @ id)ad(Wy5 (A @ id)(W)128) (A @ A)(f @ )

= (¢ ®id®¢ @ id)ad((A @ id)(W)123) (A © A)(f ® )
= (¢ ® ¢ @ id)ad(W12)(id @A) (f ® z)
(
(

= (¢@¢ ®id)([deA)(f @)
= (¢ P)(f o) =do(f®2),
which means that ¢g is also right invariant. O
The dual ®(G,) of € (G,) in the sense of algebraic quantum groups is given by
33(Gq> = 33(qu) > COO(I(q)v
equipped with the tensor product comultiplication and the multiplication given by
(00 )y < 9) = (Y1), Fa)uee) 2 Foy (S W) fa)g
(Y1), f))ye) > fo) (Y, S~ (f)9s
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using the natural skew-pairing between D (K,) and €>°(K,).
It is important to note that when relating €2°(G,) with ©(G,) one should work
with the pairing
(f@z,yrag) = (fy)(z,9),

for f,g € €°(K,),z,y € D(K,), where we recall that we write (z, g) = (g, S(x)) for
x € D(K,) and g € €°(K,). The appearance of the antipode in this context is due
to the fact that the comultiplication of ®(G,) is supposed to be the transpose of
the opposite multiplication on €2°(G,), so that one has to flip the roles of €>°(K,)
and D (K,) in the second tensor factor of the pairing.

The antipode of D(Gy) is defined by

S(xpa f) = (1paS(f))(S(x) pal)
= (5(z3)), S(f3)))5 (x2)) 24 S(f2))(S(z (1)), f1)),
= (2(3), f3))S(2(2)) >4 S(f2)) (S (1)), fiay),
and the s-structure on D(G,) is given by

(@b )" = (Lo f*) (" pa 1) = (1), f{1))2(o) >4 Fo) (S (2(3))s [5))-
A left Haar integral for ©(G,) is given by

b, (x> f) = d(z)s(f)

where ¢ and ¢ are left Haar integrals for D(K,) and € (K,), respectively. Similarly,
a right Haar integral for ®(G,) is given by the tensor product of right Haar integrals
for D(K,) and €*°(K,).

Since G is an algebraic quantum group, the general theory outlined in Section
[3:2] implies that it defines a locally compact quantum group. Explicitly, the Hopf
C*-algebra of functions on G, is given by

CO(Gq) = C(Kq) & C*(Kq)~

Note that since the compact quantum group K is both amenable and coamenable
there is no need to distinguish between maximal and reduced versions of C'(K,)
and C*(K,) here. The quantum group G, is coamenable as well because € ® € is a
bounded counit for Cy(G,) = C§(G,), so that Cf(G,) = C5(G,), compare Theorem
3.1 in [I1].

The full and reduced Hopf C*-algebras C{(G,) and C}(G,) may be constructed
using the general theory of locally compact quantum groups, or more directly as
completions of ®(G,). We remark that the maximal and reduced group C*-algebras
of G4 are not isomorphic, that is, the quantum group G, is not amenable.

It is not apparent from Definition why G, should be understood as a quan-
tum deformation of the complex Lie group G. Nevertheless, this is indeed the case,
and it is a basic instance of the quantum duality principle, see [25]. From this point
of view, the discrete part Kq of the Drinfeld double corresponds to the subgroup
AN 1in the Iwasawa decomposition G = KAN of G. In fact, the group G can be
viewed as the classical double of the Poisson-Lie group K with its standard Poisson
structure, see [49]. As we shall discuss further below, the deformation aspect of
the theory of complex quantum groups is most visible if one works with algebras
of polynomial functions instead. This is in fact the starting point taken by Podles
and Woronowicz in [63].

3.4.2. The connected component of the identity. Although the classical group G is
connected, the quantization G, defined above behaves more like an almost con-
nected group. Specifically, we shall see here that each of the quantum groups G,
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admits a quotient to a finite classical group. This has implications in the repre-
sentation theory of G,. In particular, it leads to a finite group of one-dimensional
representations.

Recall that we are using GG to denote the connected, simply connected Lie group
associated to the complex semisimple Lie algebra g. The centre Z of G is a finite
subgroup of the maximal compact torus 7" in K. As such, we can identify Z also as a
quantum subgroup of the compact quantum group K, via the surjective morphism
of Hopf *-algebras mz : € (K,) — €>(T) — €>(Z).

There is a canonical isomorphism between Z and the quotient group PY/QV,
where

V={peb*|(ua)€Zforal acQ}

denotes the coweight lattice associated to the root system of g. We can explicitly
realize PY/QY as a central quantum subgroup of K, as follows. Consider the finite
subgroup (ih~'PV)/(ih=*QV) of b;. The corresponding algebra characters K1,
with v € PY/QY have the property that if f = (v'| e |v) € End(V(p))* is a matrix
coefficient of any simple module V(u), with v a vector of weight v then

(Kin1y, ) = ¢ O (0, v) = e2mOW)e(f) = 200 (f),
since 4 — v € Q. That is to say, K;;-1, evaluates on any matrix coefficient in
End(V(u))* as a constant multiple €27 (7#) of the counit. Tt follows that

Kih_l’yéf = f(l) (Kih_l'ya f(Z)) = (Kih_l'yv f(l))f(Z) = fl_Kih_l'y
for all f € €>*(K,), and thus that K;,-1, is a central group-like element in
M(D(K,)). The subalgebra of M(D(K,)) spanned by these elements is a Hopf
x-algebra isomorphic to the group algebra D(PY/QY) = D(Z). The above calcu-
lation also implies that the projection 7z : €°(K,) — €>°(Z) satisfies

7z(f)) ® foy = mz(f2)) ® f1)
for all f € €(K,).
Proposition 3.20. The linear map ®(G,) — D(Z) defined by
@y D(G,) =D(K,) €2 (K,) — €(Z) =D (2)
is a surjective morphism of algebraic quantum groups.

Proof. Let x> f,y > g € D(K,) > €°(G,). Using the above property of 7z, we
have

(@ mz)((x = f)(y=9) = (W) fy) (SWe)): fa) €@ye)mz(f2)9)
= Wy, fy) (SWes) feo)) €@)ee))mz(fi3))mz(g)
=(y 1)5( ))>f(1) (ﬂf)ﬂz(fz))ﬁz(g)

= é)é(@)mz(f)mz(g)
= (@mz)(xpa f)(E@mz)(y>dg).

The map € ® wz clearly respects the coproduct, and is therefore a morphism of
multiplier Hopf-algebras. It is surjective since the quotient map €*°(K,) — €(2)
is surjective, and it respects the involution since

(@) ((20a )*) = (6 ® 72)(1 50 FN)(E @ 72)(a* 00 1)) = A (F)"
for all z>a f € D(Gy). O

Since the elements K;;-1, for v € PY/QY are group-like in ©(Z) = ex(2),
we can use the morphism of Proposition to define a finite group of algebra
characters of D(G,), indexed by Z = PV /QV, as follows.
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Definition 3.21. For each v € PV/QV, we define a character é, : ©(G4) — C by
& (@0 f) = (Kin-1y, (€@ 7z) (2 >4 f)) = €(x)(Kip-1+, f)-

These are non-degenerate *-characters, so they correspond to one-dimensional
unitary representations of the quantum group G,. Note that we have (é7®€¢)oA =
vy for all v,7" € PV/QY.

We shall denote by PK, the quotient quantum group PK, = K,/Z. Explicitly,
PK, is defined via its algebra of functions

C*(PKg) ={f € €*(K,) | ([derz)A(f) = f@ 1}
= P Endv(u)-
neP+nNQ

Geometrically, this corresponds to the projective version of K, which is a quan-
tization of the group of adjoint type associated with €. The dual multiplier Hopf
algebra is

DPE) = (P End(V(n),

neP+tNQ
and the obvious projection 7 : ®(K,;) — D(PK,) defines a morphism of algebraic
quantum groups.
Let us define the “connected component” GS of G4 to be the quantum double

Gg =K, ﬁ[\(q. That is,
Q:EO(GS) = Qoo(Kq) ®©<PKq)

with the coproduct twisted by the bicharacter U = (id @7)(Wk,), where Wg, €
M(E€*(K,) ® D(K,)) is the fundamental multiplicative unitary for K, and 7 :
D(K,) - M(®D(PK,)) is the projection homomorphism. The dual algebraic quan-
tum group D(GY) = D(K,) > € (PK,) satisfies

D(GY) = {u € D(Gy) | &(u) = ég, (u) for all y € PY/QV},

which is to say that the one-dimensional representations of G from Definition [3.21]
all become trivial upon restriction to the quantum subgroup GS.

3.5. Polynomial functions. Our next aim is to describe the Hopf *-algebra of
holomorphic and antiholomorphic polynomial functions on the complex quantum
group G,. We keep our general assumptions from the previous section.

Using the universal R-matrix of U,(g) we obtain a skew-pairing 7~ between
O(Gy) and O(G,) given by

rHf.9) =R f®g),
see Section We also set 7(f,9) = (R, f @ g) = r~1(S(f) ® g). The functional
r will be referred to as the universal r-form on O(G,).
Starting from the universal r-form, we may form the Hopf algebraic quantum
double of O(Gy). More precisely, we shall consider the Hopf algebra
OR(Gq) = 0(G,) = O(Gy),

with underlying vector space O(G4) @ O(G,) together with the tensor product
coalgebra structure and the multiplication
(frag)(heak) = (R™Y, hay ® g)) fhiz) X g2)k(R, hes) © g3))-

Lemma 3.22. The algebra O%(G,) = O(G,) <1 O(Gy) becomes a Hopf *-algebra
with the *-structure

(foag) =g v fr
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Proof. Due to the relation (S®5)(R*) = Ra1 obtained in Lemmathe universal
r-form on O(G,) = O%(K,) is real, that is,
(R.ff®9")=(R.g®f).

We compute

((fag)(hpak))” = (R, hay @ g1)) (K" gla) 2 hin) [*) (R, hiz) @ g(3))

= (R 90y © h(1)) (K" g(ay b hin) ) (R, g(3) @ hisy)

E* s h*)(g* > f)
=(h=k)* (fg)

~—~ o~ —~~

using
(R7Lg"®h") = (R, 57 (g") @ h")
=(R,S(g9)" @ h")
=(R,h®S(9)=(R1,h®g).

Hence O%(G,) is indeed a *-algebra with the above *-structure. It is clear that the
comultiplication on O®(G,) is a *-homomorphism. O

The Hopf *-algebra O%(G,) should be thought of as a quantum version of the
algebra of polynomial functions on the real Lie group underlying G. The two copies
of O(G,) inside O%(G,) may be interpreted as holomorphic and antiholomorphic
polynomials.

We recall from Lemma that the [-functionals on O(G,), given by

FHh)=R1ef), 1(fHh) =R feh)

for f € O(G,), satisty A(f)) = I=(f) ® (i) and 2(fg) = (£(f)I*(g) for
f7 g S O(Kq)

Lemma 3.23. For f € ¢>°(K,) we have
() =17/
in Uy (t).
Proof. We compute
(I5(f), 5(n)*)

(h)* @ f)

@) h) =

(R,S

= (R, f* @ 5(h))
(R™ )
(

Lfreh
= (7 (f"), h).
Similarly,

=(f), S(h)*)
R f@S(h)%)

()7 ) =(
= (
=(R,f&h)
= (
= (

R,h® f*)
I7(f),h)

as claimed. 0
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The following result should be viewed as a quantum analogue of the fact that
complex-valued polynomial functions on the group G embed into the algebra of
smooth functions on G, compare [33].

Proposition 3.24. The linear map i : O%(G,) — €2(G,) = M(€X(G,)) given
by

i(frag) = fayga) @1 (f)l* (9¢2))
is a nondegenerate homomorphism of multiplier Hopf x-algebras.

Proof. Let f,g,h,k € O(G,). Recall from Lemma [2.105| that we have the relation
(R, fay ® 901))92) fo) = fy9a) (R, f2) ® g(2)) and hence

(R fay @ 90) f2)9e2) = 900 f(y (R, f2) © g(a))-

Moreover, from the calculation

(R, f) @ 91)) T (92)l™ (f2)): )

= (R, f) ® 91)) (R, k) @ g2)) (R™, fi2) © kay)
= (R kwyfa) @ 9) (R7Y, fi) @ k()

=(R™ 7f(1) ® k) (R, f)ke) ® 9)

= (R, fa) ® ka)) (R, f2) ® 92)) (R, k2) ® g(1))
= (" ( ) T(91)) k) (R, fio) © 92))

we obtain the exchange relation

(R, f) @ 9ol (9l (f2)) = 1~ (Fa)l T (90) (R, fi2) © 9(2))-

With these formulas, we compute

i((f o g)(h k)
= (R7 h1) ® g1)) i(fh2) > g2)k) (R, bz @ g(s))
= (R ha) ® 901)) fayh@ 9@k @1 (f)l (b))l (9@ (k) (R, hay © geay)
= fmygmhaykay (R he) ® g2)) @ (R sy @ ga)) 1 (F)l T (gl (hay)It (k)
= fygmhmka) @1 (f)lT (921 (b))t (ko)
=i(feag)i(h k).

We conclude that ¢ is an algebra homomorphism.
To check the coalgebra homomorphism property it is enough to consider elements
of the form f <1 and 1 g. Using Lemma [2.111] we compute

Ag,i(fral) =Aq,(foy @1 (fr2)))

(id®o ®id) (fa) @ W(fo) @ 1 (fa) )W @17 (fra))
= (fa)y @l (f2) @ (f3) @1 (fa))

(i ®0)(f1) 1@ fig) 1)

(1 ®@9)A(f = 1)
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for f € O(Gy), using

W (fwy @l (f))),x @ h) = (W, z1) @ hn))(f) @ 1 (fi2)), 22) @ hy2))
hay, @) (fa), 2@2) (f2), )
hayfay, ) (R, fo) © hay)

L fa) © hay) (f)hee), )
= (f U>Mnﬂﬂm7 ) (hez), 2(2))

U (fy), o1y @ hay)) (W, 22y @ hyz))

= ((f(z) U (foy))W,z @ h).

In the same way one checks Ag, i(1dg) = (i ®4)A(1 > g) for g € O(Gy).
For the *-compatibility notice that we have

i((f®g)") =ilg"® f)
9 Fay @1 (g (fi)
= (f9w)* @1 (92) 1" (fi2)"
=i(f®g)",

(
= (
= (
=(R”
= (
= (fe

due to Lemma [3.23]
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O

3.6. The quantized universal enveloping algebra of a complex group. In
this section we introduce the quantized universal enveloping algebra of the complex
quantum group G, and discuss some related constructions and results. We keep

our general assumptions from the previous section.

Recall that the group algebra ®(G,) can be identified with the Drinfeld double

Q(Gq) = 33(qu) > Coo(qu)

with respect to the canonical pairing between ®(K,) and €*°(K,).

Proposition 3.25. The linear map v : D(Gq) = M(D(K,) @ D(Ky)) given by

Wz s f) = A@) (1 (fa) ® 1 (f2))
is an injective essential algebra homomorphism.
Proof. We compute
(2 ea £)(y > 9)) = @Yy, F)ye) > Fo) (SWe), fi3)9)
(?/(1) f(l)) (353/(2))( (y(3)) f(4))( (f(2)g(1)) ® l+(f(3)9(2)))
= A@) (Y, F) Alye) (S (3/(3)) Fa) (™ (f)l (90)) @ T (f3))1 (9(2)))
= Az) (1~ (f(l))®l+(f(2))) (W)™ (901)) @ 1*(9(2)))
= (x> fe(y = g)
for x> f,y g € D(G,), using
(yys F) Awe) (7 (f2)) @ 1T (f(3))), h @ k)
= (Y1), f0)) W@, kyh) (R f2) @ hi2)) (R, k) @ fis))
= (v, k(1)h(1 Fa) R fi2) @ hi2)) (R k) @ fs))
= (R, fay @ h()) (R, k) @ f2))(y, fiy kyhe)
= (R~ ) @ b)) (R, k) @ f2))(Y), k(z)h(2))(y(2)7f(3))
= (" (f(1)) D1 (f))Aya) W), f3), h @ k).

Hence ¢ is an algebra homomorphism, and it is evident that ¢ is essential.
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We next show that ¢ is injective. For this, note that the image of ¢ belongs to
the space

M={me M®D(K,) @9(Ky)) | (z@1)m eD(K,) @ D(K,) for all z € D(K,)}
Note that the Galois map on D (K,) ® D(K,) defined by
z@y = 2S(ya) © Y

extends to a linear isomorphism v : M — M. It suffices therefore to prove the
injectivity of the composition

i:D(G,) = D(G,) = M 1 M,
where the first map is the linear isomorphism sending x <1 f to (1 &< f)(z > 1).
We calculate

iz ) =17 (fa)lT (S(f) @ I (fz))x = I(fa)) @ 1 (f(2))-
where I : O(G,) — FU,(g) is the isomorphism of Proposition
Consider then an element in the kernel of . We can write it as a finite linear

combination
I 2
D D =l

HEPT j.k
where ué‘ L= (e? | ® |el) are the matrix coefficients with respect to an orthonormal

weight basis (e//) of V'(1), and 2 are some elements of D (k). Then by assumption

we have
i( Do D whoeau) = Y0 Y I(uh) @1 (uy)ag, = 0.

peP* 4.k ueEPT jorik

Since [ is an isomorphism and the u?r are linearly independent, this implies that
for all fixed p, j, 7,
Zﬁ(uﬁk)fﬁ- =0.
k

Let us write ¢, for the weight of €}. From the form of the universal R-matrix,
see Theorem we see that [T (ul,,) = 0 unless e, > €. Moreover, I (uf,) is
invertible in U,(g), while I (u},,) = 0 if exr = € but &' # k.

Fix g and j and suppose xik # 0 for some k. Choose k' with €, maximal
amongst all e; where z’; # 0. In this case we have I™ (uy,, )2, = 0 for all k except
k = k' and hence xgk, = 0, a contradiction. It follows that x?k =0 for all u, j, k, as
desired. O

Let us now give the definition of the quantized universal enveloping algebra of a
complex group.

Definition 3.26. The quantized universal enveloping algebra of the real Lie algebra
underlying g is

Uy (9) = Uy () b €2 (Ky),
equipped with the standard Hopf *-algebra structure.

Explicitly, the multiplication in U}f (g) is given by
(X o f)(Y b1 g) = X (Yiay, f)) Yoy 4 ) (8(Yis))s fi))9
for X,Y € UqR(E) and f,g € €°(K,) and the *-structure is given by
(X o0 )" = (Loa f5) (X" 1) = (X(1), f(y) Xy 23 Fy (S(X () £3)-

We view U, (Hf(g) as a substitute of the universal enveloping algebra of the real Lie
algebra g. Note that Uy (g) C M(D(G,)) naturally.
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The following result is originally due to Kriahmer [50] and Arano [3].

Lemma 3.27. The linear map v : U, (g) — Uy(g) ® Uy(g) given by

UX > f) = AX)( (f) @ T (fz)))

is an injective algebra homomorphism, and its image is

(U (9) = (FUy(8) © D)A(Uq(9)

= (1® 571 (FU,(8))A(Uy(9)
= A(Uy(9))(FUy(g) ® 1)
= A(Uy(9))(1® 571 (FU,(9)))-

In particular, we have an algebra isomorphism
U}}Q(g) = FU,4(g) »x Uy(o)
where Uy(g) acts on FU,(g) via the adjoint action.

Proof. Since U (g) € M(D(Gy)) it follows from Proposition that ¢ defines an
injective algebra homomorphism Uy (g) — Uy(g) ® Uy(g). This fact was proved in
a slightly different way in [50].

For the second claim compare Section 4 in [3]. We have

(1o )X 1)) = (7 (fay) @ U (fi))AX)
= (Fat™ (( I (fa)) @ T (fiay))A(X)
(I(fay) ® DA (fo))AX) € (FU(8) @ DAU,(9)),

where [ is the isomorphi§m from Proposition [2.116] This proves the inclusion
UUS(9)) C (FU4(g) ® 1)A(Uqg(g)). Conversely, for X = I(f) € FU,(g) and Y €
U,(g) we have

(I(f) @ DA(Y)

I (FaIT(S(f) @ DA(Y)
(I~ (f) @ I (F)) T (S(fw)) @ 1T (S(fis) AX) € o(Ug (g)).
Using the relations X ® 1 = (1 ® S~'(X(3)))(X(1) ® X(z)) and 1 ® S~1(X) =

(X3 ® 1)(S~ Y X)) @5~ 1(X(1))), and the fact that FU,(g) satisfies A(FU,(g)) C
U,(g9) ® FU,(g) we obtain

(FU,(g) ® DA(Uy(9)) = (1@ S™H(FU,(9))A(Uqy(9))-

The remaining equalities follow from the fact that L(Uq]R (g)) is an algebra, combined
with

for Y € FU,(g) and X € U,(g).



164 CHRISTIAN VOIGT AND ROBERT YUNCKEN

Finally, we have a linear isomorphism FU,(g) x U,(g) — (FU,(g) ® 1)A(Uq(g))
given by v(X 1Y) = (X ® 1)A(Y), and since

(X 1Y) X ) Y')) = 9(X V1) X'S(Vig)) % Vi)Y
= XYy X'Y(}) @ Y)Yy
= (X DAX)X' @ DAY') =~4(X 3 Y)y(X' xY')
the map ~ is compatible with multiplication. U

We remark that ¢ is not a homomorphism of coalgebras; in fact there is no
bialgebra structure on U,(g) ® U,(g) for which ¢ becomes a homomorphism of
coalgebras. Let us also point out that ¢ is not a *-homomorphism in a natural
way.

Using Lemma we can determine the centre of UL (g).

Lemma 3.28. The centre ZU} (g) of U (g) is isomorphic to ZU,(g) @ ZU,(g).

Proof. Lemma shows that ZU,(g) ® ZU,(g) C Z(im(v)), where ¢ : U¥(g) —
U, (g9) ® Uy(g) is as above.

Conversely, any element X € im(¢) which commutes with im(:) must in particular
commute with the elements Ko, ®1 and 1@ K_o, for p € P*. It follows that X has
weight 0 with respect to the diagonal action of U,(h) on both left and right tensor
factors. Hence X commutes with U,(h)FU,(g) = U,(g) in both tensor factors, and
therefore is contained in ZU,(g) @ ZU,(g). O

We have a bilinear pairing between U,(g) ® Uy(g) and O(G,) > O(G,) given by
(X @Y, frag) = (X, 9)(Y, f).

Using this pairing, elements of U,(g) ® U,(g) can be viewed as linear functionals on
O(Gq) > O(Gy). For X »a f € U (g) and g > h € O%(Gy) we compute

(X b f)gpah) = (Xayl™ (fa) @ Xl ™t (fi)), 9> h)
= (Xa), h1) (R, fi) ® h))(X(2), 901)) (R, 92) ® fr2))
= (X2),91)) (X (1), h1)) (R7 92 @ STHf2) (R, S f(1)) ® h2))
= (X, gyh)) ™ (g2 (h2)), ST ()
= (X > f,9)yhy @1 (gl (hzy))
= (X f, (9 > h))

for X a f € Uf(g) and g h € O(Gy) > O(G,).

3.7. Parabolic quantum subgroups. In this section we describe briefly how to
obtain quantum analogues of parabolic subgroups in complex semisimple Lie groups.
We continue to use the notation introduced in previously.

Recall that ¥ = {aq,...,an} denotes the set of simple roots, and let S C ¥ be
a subset. We obtain a corresponding Hopf x-subalgebra UqR(ES) C U}F(E) generated
by all Ky for A € P together with the generators E;, F; for «; € S. Notice that
Ui(es) = UR(€) and Uj(8)) = U5 (t). The inclusion U (ks) — U (t) induces a
map U (£)* — Uy (ts)*, and we denote by € (K, s) the Hopf x-algebra obtained
as the image of €°(K,) under this map. In this way, K, s is a closed quantum
subgroup of K. Notice that K, s = K, and that K ¢ = T is the classical maximal
torus inside K.

We define the parabolic quantum subgroup P, C G, associated to the set S as
the Drinfeld double

Q:EO(Pq) =r

C

(Kqﬁ > f(q) = €Oo([(q,S) ® 33(qu)



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 165

with the coproduct induced from €2°(G,). That is, in the formula for the comultipli-
cation of €2°(G,) one has to replace W by (7 ®id)(W) € M(€>® (K, 5) @D (K,)),
where mg : €°(K,) — €>°(K, ) is the canonical quotient map.

In a similar way we construct the quantized universal enveloping algebras of the
corresponding real Lie groups. More precisely, we define the Hopf *-algebra Uf(p)
associated to the parabolic quantum subgroup P, by

Uq (p) = Uy (£s) 2 €(Ky)
where the pairing between Uy (£s) and €>°(K,) used in the definition of the double

is induced from the canonical pairing between U} (€) and € (K,). By construction,
we have a canonical inclusion homomorphism U (p) — U (g).

The quantum Borel subgroup B, C G, is defined to be the parabolic subgroup
corresponding to S = (). Explicitly,

CX(By) = €X(T = K,) = €(T) 9 D(K,)
with the comultiplication twisted by the bicharacter as explained above. The cor-
responding quantized universal enveloping algebra is
R R
U, (b) = U, (t) > €F(K,).

In the study of principal series representations we will only work with the Borel
quantum subgroup and its quantized universal enveloping algebra.
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4. CATEGORY O

In this chapter we study some aspects of the representation theory of quantized
universal enveloping algebras with applications to the theory of Yetter-Drinfeld
modules and complex quantum groups. Our main goal is a proof of the Verma
module annihilator Theorem, following the work of Joseph and Letzter. We refer
to [28] for a survey of the ideas involved in the proof and background.

In this chapter, unless explicitly stated otherwise, we shall work over K = C and
assume that 1 # g = e’ is positive. We shall also use the notation i = % Recall
that in this situation, we have the identification b = h* Jih~1QY, see Subsection

231

4.1. The definition of category O. In this section we introduce category O for
U,(g), compare Section 4.1.4 in [4I] and [, [37].
We start with the following definition, compare [I].

Definition 4.1. A left module M over U,(g) is said to belong to category O if

a) M is finitely generated as a U,(g)-module.
b) M is a weight module, that is, a direct sum of its weight spaces M) for A € by
¢) The action of Uy(ny) on M is locally nilpotent.

Morphisms in category O are all U,(g)-linear maps.

Note that category O is closed under taking submodules and quotient mod-
ules. Specifically, finite generation passes to submodules by Noetherianity of U, (g),
see Proposition and submodules and quotients of weight modules are again
weight modules. Local nilpotency is obvious in either case.

Due to finite generation, any module M in category O satisfies dim M) < oo for
all A € hy. We define the formal character of M by setting

ch(M) = Y dim(My)e?,
AEh?

here the expression on the right hand side is interpreted as a formal sum.

More generally, we will consider formal sums of the form Aeb: f(\)e* where
J 1 by — Z is any integer valued function whose support lies in a finite union of
sets of the form v — Q™ with v € by For such formal sums, there is a well-defined
convolution product given by

DI gwet | = > F)g(uetr.

\eb; ey A u€by
In particular, let us define
o]
p= T (X e) - 3 o
BeA+ \m=0 veQt
where P is Kostant’s partition function,
Pw)=[{(r1,...,mn) ENg | P14+ - +10fn =V}.

Ifpeb;and M = M () is the Verma module with highest weight u then Propo-
sition [2.68 immediately shows that the character of M is given by

ch(M(p)) = etp.
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4.1.1. Category O is Artinian. In this subsection we discuss finiteness properties
of category O.

Let us first show that every module M in O admits a finite filtration by highest
weight modules, compare Section 1.2 in [37]. Recall that a U,(g)-module M is
called a highest weight module of highest weight A if there exists a primitive vector
vy in M which generates M. Recall also that we have a partial order on b defined
by A < u if and only if u — XA € QT, see Section

Lemma 4.2. Let M be a nonzero module in O. Then M has a finite filtration
O=MycCcM;C---CM,=M
such that each subquotient M;/M;_y for 1 < j <n is a highest weight module.

Proof. According to condition a) in Definition we see that M is generated by
finitely many weight vectors. Consider the U,(ni)-module V' generated by a finite
generating set of weight vectors, which by condition ¢) is finite dimensional.

We prove the claim by induction on dim(V'), the case dim(V') = 1 being trivial.
For the inductive step pick a weight in by which is maximal among the weights
appearing in V. Then we can find a corresponding primitive vector v € M and
obtain an associated submodule My = U,(g) -v C M. The quotient M/M; is
again finitely generated by the U,(ny)-module V/Cv. We can therefore apply our
inductive hypothesis to obtain a filtration of the desired type for M /My, and pulling
this filtration back to M yields the assertion. O

Recall that a module M over a ring R is called Noetherian (Artinian) if every
ascending chain My C My C M3 C --- of submodules (every descending chain
M; D My D --- of submodules) becomes stationary, that is, if there exists n € N
such that M, = M, 11 = Mp10="---.

We show that every module in O is Artinian and Noetherian, compare Section
1.11 in [37].

Theorem 4.3. Every module M in category O is Artinian and Noetherian. More-
over dimy, ()(M, N) < oo for all M, N € O.

Proof. According to Lemma |4.2] any nonzero module M in O has a finite filtration
with subquotients given by highest weight modules. Hence it suffices to treat the
case where M = M()) for A € b} is a Verma module.

Consider the finite dimensional subspace V' = @i M(N)w.x of M = M()),
where we recall that W is the extended Weyl group defined in Section Assume
that Ny C N is a proper inclusion of submodules of M. Then ZU,(g) acts on
Ni, Ny and N3 /Nj by the central character . Since Ny C M the module No/N;
contains a primitive vector v, of some weight 11 < A. Therefore £, = £5. According
to Theorem this implies p = w.\ for some w € W. We conclude No NV #0
and dim(Ne NV) > dim(N; N V). Since V is finite dimensional this means that
any strictly ascending or descending chain of submodules will have length at most
dim(V). In particular, every module M in O is both Artinian and Noetherian.

Any U,(g)-linear map M — N is determined by its values on a finite generat-
ing set of weight vectors. Since the weight spaces of N are finite dimensional we
conclude dimy, (g) (M, N) < oo for all M, N € O. O

Of course, Noetherianity of modules in O follows also from the fact that U,(g)
is Noetherian, see Theorem [2.134]

Due to Theorem one can apply Jordan-Holder theory to category O. More
precisely, every module M € O has a decomposition series 0 = My C M; C --- C
M,, = M such that all subquotients M;1/M; are simple highest weight modules.
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Moreover, the number of subquotients isomorphic to V(\) for A € b is independent
of the decomposition series and will be denoted by [M : V/(A)]. Note that this gives
the formula
ch(M) =Y [M: V(\)]ch(V(A)

Xeb:
for the character of M, with only finitely many nonzero terms on the right hand
side.

In particular, for any p € b the character of the Verma module M () can be
written as
(M () = 3 [M () - VO] eh(V ().

Aeby
Note that [M(u) : V(u)] = 1, and moreover [M () : V(A)] = 0 unless A < p and A
is W-linked to 1, due to Theorem [2.128] It follows that the character of the simple
module V(1) can be expressed in the form

ch(V(p) = > mach(M(\))
xeW.p

for certain integers my. For p € P these coefficients are given as follows.

Proposition 4.4. Let u € PT. Then we have

(V) = 37 (~1)) ch(M(w.p)).
weW

Proof. The above discussion shows that

ch(V(p)) = > My ch(M(w.p1))
weWw
for some integers m., . We need to show that m,, , = (—1)Hw),
Recall that ch(M(u)) = etp where p = [[5ca+(1 + e P +e?4..0) We
introduce the formal sum

q= H (eﬂ/2 _ 6,5/2) — P H (1—e "),

peA+t pBeA+

and note that the right hand expression gives pg = e”. Therefore, we obtain

ch(V()g =Y muwpu€"pg= Y muy "
weW wew

Consider the Weyl group action on finite formal sums defined by we* = e“* for

w € W and A € h;. Note that ¢ is alternating with respect to this action, meaning

that wq = (—1)(®)q for all w € W. Moreover, ch(V (u)) is W-invariant by Propo-
sition Therefore, ch(V (i))q is alternating, and hence m,, , = (—1)(*)m,, for
all w € W. Since m,, = 1, the result follows. O

As a consequence, the weight spaces of the irreducible module V (u) for u € P™
have the same dimensions as in the classical case, and the dimension of V() is
given by the Weyl dimension formula.

4.1.2. Duality. The appropriate duality operation in category O is different from
the usual duality for modules over Hopf algebras defined in terms of the antipode.
We define duals in category O in the same way as we did for general weight
modules in Section [2:3] Namely, if M is a module in category O we let the dual of
M Dbe the Uy(g)-module
MY = @ Hom(M,,C),
AED
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with the left U,(g)-module structure given by
(X)) = f(7(X) -v),

where 7 is the involution from Definition Notice that we have a canonical
isomorphism MYV = M since all weight spaces are finite dimensional and 7 is
involutive. If 0 - K — M — @ — 0 is an exact sequence of modules in category
O then the dual sequence 0 — Q¥ — MY — KV — 0 is again exact.

Let us show that the dual M"Y of a module M in category O is again in category
O. It is clear that MV is a weight module such that (M), = Hom(My, C). Local
nilpotency of the action of Uy(ny) follows from the fact that the elements in MY
are supported on only finitely many weight spaces.

To see that MV is finitely generated we argue as follows, see [37]. Assume MY
is not finitely generated. Then we can find a strictly increasing infinite sequence
0=UyCcU; C---C MV of finitely generated submodules U, C MV. Setting
Q; = MV /U; we obtain a corresponding infinite sequence M"Y = M"Y /0 — Q1 —
Q2 — --- of quotient modules of MV and surjective module maps. By exactness
of the duality functor this in turn leads to a strictly decreasing infinite sequence of
submodules of M. As we have seen in the proof of Theorem this is impossible.

In summary, we conclude that sending M to MV defines a contravariant involu-
tive self-equivalence of category O.

4.1.3. Dominant and antidominant weights. In this subsection we discuss the no-
tion of dominant and antidominant weights in analogy to the classical theory, see
Chapter 10 in [37]. There are some new features in the quantum setting due to the
exponentiation in the Cartan part of the quantized universal enveloping algebra.

Recall from Definition that the extended Weyl group is defined as W =
Y, x W, where Y, denotes the subgroup of elements of order at most 2 in bhj.
Under the identification b} = §*/ih'QY we have Y, = $ih~'QY/ih"'QV. The
extended Weyl group acts on by by

(Cw)A = wA + ¢,
for ¢ € 3ih1QY/ih 1QY, w € W and A € b5, and also by the shifted action
(Cw) A= wA+C=whtp)— ptC.

Two elements of by are W-linked if they lie in the same orbit of the shifted W-action.
Following the notation in [37], we define

A[)\] = {a €A | q((l)\’av) € :I:qg}.

Here we are writing ¢4 to denote ¢ for ;s € P. Note that Ay = Apy if
p € A+ P, so we may equivalently characterize Ay by

Apj={acA] qu‘“”av) € :I:qg}.
Next we define
Wiy = {w € W [ WA — )€ Q}.
Note that if g = A + v with v € P then for any @ = ({,w) € W[,\] we have
(Cwp—p=(wA+( =)+ (wr —v) = (((,w)A = A) + (wv —v) € Q.
It follows that W[u] = W[,\] whenever € A + P, and therefore

Wy ={weW |[w.)— )€ Q).
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We define W)y as the image of W[ »] under the canonical projection W — W. Note
that Wi N (3ih71QY /ihi~'QY x {e}) is trivial, so the projection map Wiy — Wiy
is in fact an isomorphism. Explicitly, we have

Wy ={weW|wr-AeQ+iin'QY/in~'Q"}
={weW|w.A-XeQ+3in'QV/ih 'Q}.

In the next proposition, we write E for the R-span of the root system A C b*.
For A € bh* we write A = Re(\) +iIm(\) where Re(\), Im(\) belong to E. Similarly,
we decompose A € b, under the understanding that Im()) is only defined modulo
r1iqQY.

Proposition 4.5. Let A € b;. Then Ay is a root system in its R-span E(\) C E,
where E(X) is equipped with the inner product induced from E. Moreover Wy is
the Weyl group of Ay

Proof. In order to verify that Apy is a root system in £(X) it is enough to check
sgA C Apy for all § € Apyy. So let a € Apy and observe that (sga)¥ = sga”
since the action of sg on E is isometric. Therefore

A (sga)V \,sga av)— v oV
q( (5)):(1((1 B ):q((j\., )—(XBY)(B, )eiqﬁ

[}

as desired, using that both o and 3 are contained in Apy). Since qo = gs;a this
shows sga € Apy.

In order to prove that W[y is the Weyl group of Ay we proceed in a similar way
as in Section 3.4 in [37]. We show first that o € A satisfies o € Ay iff 5, € Wy;.

Indeed, we have s4.A— A = —(A+p,a¥)a in b3, and the condition q,(yM'p’av) € +¢%

is equivalent to —(A + p,a¥)a € Q in b;/%ih’lQV. Thus, the Weyl group of Ay
is contained in Wiy}, and to complete the proof it suffices to show that Wiy is
generated by the reflections it contains.

We first consider the case A € E. We introduce the affine Weyl group W, =
Q x W, where Q acts upon F by translations and W by the standard Weyl group
action. Note that an element w € W belongs to Wy if and only if (3, w)A = A for
some € Q. By Theorem 4.8 of [36] the subgroup of W, which fixes any A € FE is
generated by its reflections, and the result follows.

Now let A € b7 = h*/ih~1QV be arbitrary, and lift it to an element Ao +i)\; € b*
with Ao, A\; € E. An element w € W belongs to W}y if and only if

who — Ao € Q and wAi — A € 271QY.

By the previous case, the first condition is equivalent to w € Wy}, which is the
Weyl group of the root system Ajy,) in the subspace E(Ao).
Consider the rescaled coroot system

A'={in'aY |a € Ay} C E(N).

It is a root system with the same Weyl group Wiy,. We write Q' for the lattice
it generates and W) = Q' % Wix, for the associated affine Weyl group. Let us
decompose A as

M=XN+XNcEN)DEMN)".
Since Wy, fixes E(X\o)*, we see that if w € Wi, then the above condition on Ay
is equivalent to

w1 — A =wA] — A € LATIQY N E(N) = Q,
and therefore (v, w)\; = A\| for some v € Q'. As before, the subgroup of W/ fixing

A] is generated by its reflections. Thus W, is generated by its reflections, and the
result follows. O
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Let us now introduce the concept of dominant and antidominant weights. We
recall that we use the convention N = {1,2,...} and Ny = NU {0}.

Definition 4.6. Let A € h;. Then

a) A is dominant if g e’ ¢ +q; N for all a € AT,
b) A is antidominant if g ) ¢ +q) for all a € AT,

We remark that —p is both dominant and antidominant. Note that A € by is not

Vv
dominant iff there exists some o € A+ such that ¢4\ 7" € +q. N, or equivalently,

such that (A + p,a") = —m + 2ih 'Z for some m € N, where we are using the
notation i, = dyh. Similarly, A € by is not antidominant iff there exists some

a € AT such that q((f‘er’av) € +q;", or equivalently, such that (A + p,a¥) =

m + 3ihg'Z for some m € N.

We remark that the terminology introduced in Definition [£.6]is in tension with
standard terminology used for dominant integral weights. More precisely, A € P is
dominant in the sense of Definition iff (A+p,a¥) >0 for all @ € A, whereas
A is dominant integral if (A\,«a¥) > 0 for all « € AT. We shall refer to weights in
P+ as dominant integral weights, which means that being dominant and integral
is not the same thing as being dominant integral.

Let us introduce some further notation for reflections in the extended Weyl group
W= Y, x W, where we recall that Y, = $iA71QY/ih 'QV. If k € Zand a € Ay,
we write sg o = (gihilav, Sa) € W. Explicitly, this element acts on v € by by

Sk V = Sq.V + %ih_lav.
Note that s o = Sk42m,o for all m € Z, so we shall frequently parametrize sj o by
k € Zs.

In the sequel we will use the notation A < p in b;/%ih_le to say that u— A is
congruent to an element of QT modulo %ihile. In other words, this corresponds
to the natural order relation in the quotient b;/%ih_lQV of by.

Proposition 4.7. Let A € b;. Then X is antidominant if and only if one of the

following equivalent conditions hold.

a) A+ p,a) <0 in C/Lih™*Z for all o € Aff\], that is, the real part of (A + p,a)
is mon-positive, and the imaginary part of (A + p, ) is contained in %hilZ.

b) A <sq.Xinb}/5ih QY for all a € A[Jg\].

c) A< wA in h;/%ihilQV for all w € Wpy).

d) If w € Wiy satisfies w.\ < X in b then i = e.

Proof. Recall that a € Ay if and only if ¢ ) € 4¢Z. Therefore A is antidom-

\%
inant if and only if for every a € A[Jg\] we have in fact q((x)‘ﬂ) @) ¢ +q;No. This is
equivalent to condition a).

Now we prove the equivalence of the four listed conditions.
a) < b) For any root o € At we have
Sad=SaA+p)—p=A—A+pa)a=A—(A+pa)a’.

This shows the desired equivalence.

¢) = b) is trivial.

b) = c¢) We use induction on the length of w € W}y, For w = e the claim
obviously holds. Hence assume w = vs; for some v € Wy with I(v) < I(w) and
s; the reflection associated to some simple root «; in Afy). Note that, in this case,

wa < 0. We have
A—wA=(A—vA)+ (A= s;.0),
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where in the second term v is acting by the unshifted action. The first term satisfies
A —v.\ <0 by our inductive hypothesis. For the second term we obtain

V(A = 8.0 = w(sp A —A) = —(A+ p, o) )wa; <0

as well.
c) = d) Assume w = (8Y,w) satisfies w.A < A. We have

WA—A=wA— A+ 2in 1BV,

so that w.A < Ain h;/%ihilQV. Hence condition ¢) implies w = e. Now (8Y,e).\ =
A+ 2in~1BY < A yields Y = 0.

d)=a) Fixa € A[*;\] and consider the affine reflection si o = (ka",s,). Since
Ska € W[,\] we automatically have

—A+pa)a+EinlaY =500 — A €Q

inside h;/%ih_lQV, that is, (A + p,a¥)a € Q C b;/%ih_lQV. In particular,
(Im(A) + p, ) € 2ih™1Z. If (Re(A) + p, ") > 0 then we get sgo.A < A for suitable
choice of k, which is impossible by d). Hence (Re(\) + p, ") < 0.

This finishes the proof. ([

An analogous result holds for dominant weights.

Proposition 4.8. Let A € by. Then A is dominant if and only if one of the
following equivalent conditions hold.

a) (A +p,a)>0in (C/%ih’lZ for all o € A[*;\], that is, the real part of (A + p, @)
is non-negative, and the imaginary part of (A + p, @) is contained in %h_lZ.

b) X > sq.Xin b} /3ih QY for all a € A[J;\].

c) A>w.Ain b;/%ih_le for all w € Wpy.

d) If w € Wy satisfies w.A > X in b then i = e.
Proof. This is a direct translation of the proof of Proposition O

4.2. Submodules of Verma modules. In this section we examine the existence
of submodules of Verma modules. We shall discuss in particular an analogue of
Verma’s Theorem and a necessary and sufficient condition for the irreducibility of
Verma modules.

The socle Soc(M) of a module M is the sum of all simple submodules of M.
Recall from Theorem that the algebra U,(n_) is Noetherian without zero-
divisors. Since M(A) for A € b is a free Uy(n_)-module, the following result
follows from general facts, see Section 4.1 in [37].

Lemma 4.9. Let A € b;. Any two nonzero submodules of M(X) have a nonzero
intersection.

Proof. Assume M, N C M(X) are nonzero submodules. Then M D U,(n_)m - vy
and N D Uy(n_)n - vy for some nonzero elements m,n € Uy(n_). Since Uy(n_) is
Noetherian and has no zero divisors, the left ideals Uy(n_)n and Uy(n_)m must
have nontrivial intersection, see Section 4.1 in [37]. O

We recall that V(u) denotes the unique simple quotient of the Verma module
M (p).

Lemma 4.10. Let A € b;. Then the socle of M()) is of the form
Soc(M (X)) = V(n) = M(u)
for a unique weight p < \.
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Proof. According to Lemma the socle of M(X) must be simple, therefore of
the form V(u) for some p € h;. From the weight space structure of M()) it is
immediate that p < A. Moreover V(i) C M()) is necessarily a Verma module
since M () is free as a Uy(n_)-module. Hence V(1) = M (). O

Let us remark that since M (\) has finite length it is not hard to check that
Soc(M (X)) = M(u) C V for any submodule V' C M (A).

We shall now study more general Verma submodules of M (A). Recall the affine
reflections sy, o, defined before Proposition [£.7}

Lemma 4.11. Let A € b and assume Sk o, -A < A for some 1 <i < N and k € Zs.
Then there exists an embedding of M (s q;.A) into M(X).

Proof. Note that
A= Spar A=A+ p.a) )y — Ein oy,

so the assumption sj o, .A < A implies

Re(A + p, o)) € Ny,

Im(\, o)) =Im(A + p,a)) = Er71d; " (mod h'd;'Z).
Put m = Re(A+p, ) = Re(A, ) )+1. We claim that the vector F/™v) is primitive.
Indeed, for j # i we have

E;F"vy = F"Ejuvy =0,

while for j = 4, Lemma [2.36| gives
—mAlg, gl

EiF" v\ = F["Ev\ + [m]qum_lqi 1 S UN
qi — g,
—diRe(A,ay) M) diRe(A,aV) —(N\a)
q g q q —
= [mlq =) F"™ oy
qi — 4;
—ilm(X, ;) _ 4Im(X, )
q" q -
= [mlq 1 1 ooy
q; — g,

=0.
The weight of F/™ - v, is
A—=Re(A+ p,af )i = si A+ Im(X + p, o )i = Sp.0,-X € b
Hence we obtain an embedding as desired. 0

Let us recall some definitions related to the Weyl group W, see Appendix A.1 in
[41]. For w € W set
Sw)={ac At |lwac A"} =ATNnw A",

If u,v € W and a € At we write v & v or simply u <+ v if u = s,v and
I(u) = I(v) — 1. In this case one has & € S(v™!). The Bruhat order on W is defined
by saying that v < v if u = v or if there is a chain u = wy, + -+ + w, = v. As
usual we write u < v if u < v and u # v.

Lemma 4.12. Let p € P and assume u,v € W are such that u < v for the
Bruhat order. Then there exists an embedding of M (v.u) into M (u.p).

Proof. We use induction on the length of v. The case {(v) = 0, corresponding to
v = e is trivial. For the inductive step assume s;v < v for some i. Then

si-(v.p) —v.p = siv(p+p) —v(p+p) = —(v(p+p), ) = =(p+p,v~ ) >0,

which means v.pu < s;.(v.p). Hence M (v.p) is a submodule of M (s;v.u) according
to Lemma [£.17]
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Properties of the Bruhat order imply that we have either u < s;v or s;u < s;v,
see for instance Proposition A.1.7 in [41].

In the first case we obtain an embedding M (s;v.u) C M(u.u) by our induc-
tive hypothesis since s;v has length I(v) — 1. Combining this with the embedding
M (v.p) C M (s;v.u) obtained above yields the claim in this situation.

In the second case we may assume s;u < u, since otherwise we are again in the
previous case. Consider the embedding 7 : M (v.u) — M (s;v.u) — M(s;u.u) ob-
tained from the inductive hypothesis. Let 2 be a highest weight vector for M (v.u).
Note that K; - z = ¢(*V* g with

(i, 0.p) = (07 Hw), p+ p) = (i, p) < 0.
Therefore, repeated application of Lemma m shows that E]F] - x is a nonzero
multiple of x for all » € Ny. On the other hand, let y be a highest weight vector
for M (s;u.u), and note from the proof of Lemma that a highest weight vector
of the submodule M (u.p) C M(s;u.p) is given by F™y for some m € N. Since
m(z) € Uy(n_) -y, repeated application of the Serre relations shows that for r > 0
we have F]w(z) € Uy(n_)F]" -y = M(u.p). Therefore, n(ETF] - z) € M (u.p) and
hence m maps M (v.u) into M (u.u), as desired. O

Definition 4.13. Let pu, A € b;. We say that u T A if u = A or if there exists a
chain of positive roots aq,...,a, € AT and kq,..., k. € Z such that

= Ski.an " Skyyarn A < Skyas " Sk A < < Sk an A <AL
We say that p is strongly linked to A if pu 1 .
Note that s o.v < v for some k € Z if and only if
A\
Q) € g,

We are now ready to prove the following analogue of Verma’s Theorem, compare
section 4.4.9 in [4I] and Section 4.7 in [37].

Theorem 4.14. Let p, A € b;. If p is strongly linked to X then M () C M(X), in
particular [M(X) : V(u)] # 0.

Proof. In order to prove the claim it is enough to consider the case y = sj o.A for
\
some o € AT with q&“"’“ ) e +ql).

For o € At and n € N consider the sets
Ana ={A€b] | g0 = x4}

and
Xna=1{X€ by | Homyy, (g (M (X — na), M(X)) # 0}.
Note that X, o C Ay o. Our aim is to show X, o = Ay 4.
We begin by showing that PN A, . C X, . Let A € PNA,,, and choose
w € W such that u = w='s,.A € P*. Then also w™'s,. A+ p € PT and

(wlse X+ p,wtaY) = (wlsa(A+p),wtaY) = =(A + p,a") = —n,

which means w™la € A~. This implies w > s,w, so we obtain M(s,.\) =
M(w.pu) C M(sqw.p) = M(A) by Lemma Hence A € X, ., and we con-
clude PNA, o CXpa

To complete the proof, we use a Zariski density argument. If B = Clay,...,z4]/]
is a commutative algebra then the algebraic variety Spm(B) is the set of all points
= (z1,...,24) € C?such that f(x1,...,24) = 0 forall f € I. Observe that by can
be identified with the variety Spm(B) of B = U,(h) such that A € b corresponds
to the point of Spm(B) given by the character x, on B. Clearly, A, o is a Zariski
closed subspace.
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We claim that X, o C by is also Zariski closed. Indeed, for each v € QT fix a
basis Y{',...,Y,;” of Uy(n_)_,. From the defining relations of U,(g) it is clear that
we can find Laurent polynomials pfj in the generators K, ..., Ky such that

2R A
J
Now consider Y € Uy(n_)_, and write Y = > ¢;Y;". Then we have

ELY -ox = [Bp, Y] on =Y V)"l o =) coxalpiy) Y] - oa
] 0,J
Since M(A) is a free Uy(n_)-module it follows that Y - vy is the highest weight
vector for a submodule M (X —~) € M(XA) iff 32, eixa(pf;) = 0 for all k,j. Thus
A € X,, o if and only if there exists a nontrivial kernel of the linear map

(ci)i = (Z CiXA(?Z’)) )
i g,k

whose coefficients are polynomial in the character x . The existence of such a kernel

is determined by the vanishing of the determinants of minors of the corresponding

matrix (XA(P?j))(j,k)m Applying this to v = na we conclude that X, , is an
algebraic subset of Spm(B).

According to our above considerations X,, o NP = A, o NP. Since PN A, o C

Ay o is Zariski dense we conclude X, o = Ay, as desired. O

As a consequence of Theorem [4.14] we obtain the following characterization of
simple Verma modules, compare Section 17.4 in [I§].

Theorem 4.15. Let A € b;. The Verma module M(X) is simple iff A is antidomi-
nant.

Proof. If X\ is not antidominant there exists an o € AT such that (A + p,aV) €
m + %z‘h;lZ for some m € N, where as before we use the notation h, = d,h. In
this case sj o.A < A for suitable k, and according to Theorem there exists an
embedding M (s o.A) < M(N). In particular, M ()) is not irreducible.
Conversely, assume that A is antidominant. Then due to Proposition [4.7] the
weight A is minimal in its W[,\]—orbit. By Harish-Chandra’s Theorem [2.128] all
irreducible subquotients of M (\) must be of the form V(1) for some g < A in the
W[,\]—orbit of \. We conclude p = A, and hence M () is irreducible. O

Let us also characterize projective Verma modules, compare Section 8.2 in [37].

Proposition 4.16. Let A € h;. Then the following conditions are equivalent.
a) M(X) is a projective object in O.

b) If Homy, (g (M (), M (1)) # 0 for > X then A\ = pu.

¢) A is dominant.

Proof. a) = b) Assume f : M()\) — M (u) is a nonzero homomorphism and p > A.
Note that f is injective and set M = M (u)/f(I(\)), where I()) is the maximal
proper submodule in M (X). Then f induces an embedding V' (A) C M, and hence
a surjection MY — V(\). Since M () is projective we get a nonzero map M (\) —
MV lifting the canonical projection M(\) — V()), or equivalently, a nonzero map
M — M(X\)V. This induces a nonzero map M () — M(M)Y. This is impossible,
since the p-weight space of M (\)Y is trivial.

b) = ¢) Assume X is not dominant. Then according to Proposition there
exists some p > A such that A T u, and hence an embedding M(A\) — M(u) by
Theorem This contradicts condition b).
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¢) = a) Assume that 7 : M — N is a surjective morphism in O and let f :
M(X\) — N be given. We may assume that f is nonzero. Moreover, since the centre
acts by £y on M(\) the same is true for the action of ZU,(g) on f(M())). Using
primary decomposition we may assume that Z — £,(Z) acts nilpotently on M and
N for all Z € ZU,(g).

Let v € M be a vector of weight A such that 7(v) = f(vx) andlet V = Uy(ny)v C
M be the U, (ny)-submodule of M generated by v. Since M is in O the space V is
finite dimensional. Choose a primitive vector v, € V, for some weight > A. Then
&x = &, from which we conclude that p and A are W-linked. Due to dominance of
A this means g = . Hence v itself is a primitive vector, which means that there
exists a unique homomorphism F' : M (A) — M such that F(vy) = v. Clearly F is
a lift for f as desired. O

4.3. The Shapovalov determinant. In this section we study the Shapovalov
form for U,(g). This form and its determinant are important tools in the study of
Verma modules. We refer to [32] for the analysis of Shapovalov forms in greater
generality.

Let us recall from Lemma[2.16]that the involutive algebra anti-automorphism 7 of
Uq(g) keeps Uy (h) pointwise fixed and interchanges U, (b)) and Uy (b_). Recall also
that the Harish-Chandra map is the linear map P : U, (g) — U,(b) given by é®id ®¢
with respect to the triangular decomposition U,(g) = U, (n_) @ Uy (h) @ Uy(ny), see
Proposition

We shall call the bilinear form Sh : Uy(n_) x Uz(n_) — Uy(h) defined by

Sh(X,Y) =P(r(X)Y)

the Shapovalov form for U,(g). One checks that Pt = P, and using 72 = id this
implies immediately that Sh is symmetric. Moreover we have Sh(X,Y) =0if X, Y
are of different weight.

We denote the restriction of Sh to the weight space Uy(n_)_, for p € Q" by
Shy,. In the following, we will use the determinant of the form Sh, as follows.
Fix a basis x1,...,2,, of Uy(n_)_,, and denote by det(Sh,) the determinant of
the matrix (Shy(zs,2;)) € M,,(Uy(h)). This only depends on the choice of ba-
sis up to multiplication by a nonzero scalar in C, which we shall disregard in the
following discussion. Moreover,by inspecting the definition of 7 and the commuta-
tion relations for E; and F}, one sees that the Shapovalov determinant det(Sh,,)
is in fact contained in the subalgebra of U,(h) generated by the elements Kjil for
j=1,...,N.

Let A € h;. The contravariant bilinear form on M () is defined as the unique
bilinear form Sh* : M(A) x M(\) — C satisfying Sh*(vx, vy) = 1 and

Sh*(7(X) - v,w) = Sh*(v, X - w)
for all v,w € M(X) and X € Uy(g). Different weight spaces of M (X) are orthogonal
with respect to the form, that is, we have ShA(M()\)M,M()\)Z,) =0 for u # v.
Notice that
Sh*(X vy, Y - vy) = xa(Sh(X,Y))
for all X,Y € U,(n_), where we recall that x,(K,) = ¢#).

The radical of Sh* is the subspace R* C M(\) consisting of all u satisfying

Sh*(u,v) = 0 for all v € M(N).

Lemma 4.17. Let A € b;. The radical of Sh? agrees with the maximal proper
submodule I(X\) of M(X).

Proof. From the invariance property of Sh* it is clear that the radical R* is a sub-
module of M (\). It is also clear that the highest weight vector v is not contained in
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R*, and hence R* C I()\). Assume that the quotient M (\)/R* is not simple. Then
M()\)/R* must contain a primitive vector, that is, a nonzero vector v of weight
A — p for some p € Q* \ {0} which is annihilated by U, (ny) Nker(é). This implies

ShA (v, Ug(n) - v3) = ShA(Uy(ny) - v,02) = 0

and hence v = 0 by nondegeneracy of the induced form on M()\)/R*. This is a
contradiction, so that M(\)/R* must be simple. Hence we obtain R* = I()\) as
claimed. 0

Instead of working with the form Sh(X,Y’) it is sometimes technically more
convenient to consider the modified form S : Uy(n_) x Uy(n_) — Uy(h) given by

S(X,Y) = PO(X)Y),
where € is the algebra anti-homomorphism from Lemma As before, if v € QT

we write S, for the restriction of S to U,(h)_,. The determinant of Sh, differs from
the one of S, only by an invertible element of Uy (h).

Lemma 4.18. Let v € QT and X,Y € Uy(n_)_,. Then

> CKs,.
ByeQT
B+y=v
Proof. We may assume without loss of generality that both X and Y are monomials
in the generators Fy, ..., Fy. Let us proceed by induction on the height ht(v) =
v+ --+vy of v =101 + - + vyan. Note that for ht(v) = 0 the claim is
obvious.

Fix m > 0 and assume that the claim holds for all terms of height m. Let
X, Y € Uy(n_)_, be monomials in Fi,...,Fy with ht(r) = m + 1, and write
X = F,Z for suitable i and Z € Uy(n_)_,1q,. Let 7 be the total number of factors
F; appearing in the monomial Y. If 1 < k < r then for the k-th occurrence of F; in
Y we decompose Y = Yk(a)FiYk(b), where Yk(a)Yk(b) are monomials in the generators
Fy, ..., Fy containing a total number of factors F; one less than for Y. We obtain

ZP )Y OE, FlY\") e Z CK; + CE;)PQ(2)Y V).

The latter is contamed in

(CK; + CK; ") > CKp_r = Y CKs,
BYEQT Bty=v—a; BEQT,B+y=v
according to our inductive hypothesis. This yields the claim. U
Let us enumerate the positive roots of g again as (1,...,05,. Recall that the

Kostant partition function P : Q — Ny is given by
Pw)=[{(r1,...,mn) ENg | mf1+ - +7nfn =V}.
Lemma 4.19. We have an equality of weights
dim(Uy(n-) )y =Y Y P(v—mp;)B;

j=1m=1
for any v € Q7.
Proof. According to the PBW-Theorem the space Uy(n_)_, is spanned by all
PBW-vectors Fgll e Fg: such that r181 + - -+ + 7,8, = v. Therefore,

dim(Ug(n_) )y = Y 111+ + rnfn.

(r1,.-,rn) ENY
with 7181+ -+rnBn=v
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Separating the coeflicients of 3; in this sum gives

ZZ H{(r1,...,mn) €NG | 7161 + -+ -+ rpfn = v with 7; = m}| mp;

j=1m=1

7ZZ|{T1?"'7 6NO|T1[31+ +Tnﬂn:VW1tth2m}|ﬂja
j=1m=1
7ZZ|{T17"'7 €N0|Tlﬂl+ +rnﬂn:l/7mﬁj}|ﬂja
j=1m=1
=33 Po-mBs,
j=1m=1
as claimed. (]
We will also need a result from commutative algebra. Let B = C[zy,...,24]/I be

a finitely generated commutative algebra over C. Recall that the algebraic variety
Spm(B) of B is the set of all points p = (p1, ..., pg) in C? such that f(p1,...,ps) =0
for all f € I. The elements of B can be viewed as polynomial functions on Spm(B),
and we write b, for the value of b € B at p € Spm(B).

If y(z) € Blz] is a polynomial we write y(0) € B for its image under evaluation
at 0, and we use the same notation for matrices with entries in Bz].

The following two Lemmas are taken from [32].

Lemma 4.20. Let B be an integral domain and Y € M, (B[z]) for some n € N.
Then there exist 0 < k < n, matrices My, Ms € M, (B) with nonzero determinants,
a matriz M € M, (B[z]) and a nonzero element b € B such that

M1YM2 =aM + ka

where Dy, = diag(1,...,1,0,...,0) is the diagonal matriz projecting onto the first
k coordinates.

Proof. Let Quot(B) be the field of fractions of B. By linear algebra there exist
invertible matrices Cq,Cy € M, (Quot(B)) such that

C1Y (0)Co = Dy,

for some 0 < k < n. Let by, by be nonzero elements such that M; = b;C; and My =
byCy are contained in M, (B). Write Y = Y (0) + 2Y” for suitable Y’ € M, (B(z)).
If we set b = biby and M = MY’ M, then the claim follows. O

The rank of a matrix Y with entries in an integral domain B is denoted by
rk(Y'); by definition this is the usual rank of Y where Y is viewed as a matrix over
the field of fractions Quot(B).

Lemma 4.21. Let B be an integral domain which is at the same time a finitely
generated commutative algebra over C, and let n € N. If there exists 0 < r < n
such that Y (z) = (yi;(z)) € M, (B[z]) satisfies rk(Y (0),) < r for all points p in a
nonempty Zariski-open subset of the affine variety Spm(B) of B, then det(Y (x)) =
2™ "b for some b € Blx].

Proof. According to Lemmal[4.20| there exists 0 < k < n such that M;Y My = 2 M+
bDy, for matrices M;, My and b € B such that det(M;),det(Msy) are nonzero. Let
V be a non-empty Zariski-open set of Spm(B) such that det(M7), # 0, det(Ma), #
0,b, # 0 and rk(Y(0),) < r for all p € V. This exists by assumption since Spm(B)
is irreducible. Since rk(Y(0),) < r for p € V we get k < r. Hence

det(My) det(Y) det(Msy) = 2™ "¢
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for some ¢ € Blx]. Since det(My),det(Ms) € B and B is an integral domain we
conclude det(Y') € 2" " B[z]. O

For the following result compare Theorem 1.9 in [20] and Theorem 8.1 in [32].

Theorem 4.22. For v € Q%, the Shapovalov determinant det(Sh,) of U,(g) is
given, up to multiplication by an invertible element of Uy(h), by

o0
det(Sh,) = H H (qé(P’B )KB _ qmeﬁ—l)P(ng)’
pBeA+ m=1

where P is the Kostant partition function.

Proof. Note first that if v € Q% is fixed, then for any 3 € AT the expression
P(v — mp) is zero for large values of m. Therefore the right hand side of the
asserted formula is in fact a finite product.

As explained before Lemma it suffices to prove the claim for the form S,
instead of Sh,.

Let D denote the dimension of Uy(n_)_, and fix a basis z1, ..., zp for this space.
From Lemma [£.18 we have

Sv(xiaxj) € Z (CKB—’)H
ByEQT,B+y=v
and so the determinant det(S,), which is an order D polynomial in these terms, is
contained in the linear subspace

L, = > CKg_, C Uy(h).
BYEQT,B+y=Dv
For all 1 < j <n and m € N the polynomials
2(p,B}) _
q5jp Kﬂj - q2§nK5j1
have mutually distinct irreducible factors. According to Lemma the double
product in the theorem is contained in L, as well. Therefore it suffices to show
det(S,) # 0 and that each term (qZEp’Bf )KB]_ - qg]m B_jl)P(V*mﬁj) divides det(S,).

Let V' C b be the affine subvariety of b defined by det(S,) = 0. Then A € V' if
and only if

X (det(Sh(x;, z;)5)) = det(Sh)‘(a:i SN, T4 - Ux)is) = 0.

By Lemma this implies that M ()\) is not simple, so by Theorem A is not
antidominant. Thus
2(p,B7) - 2(p,8Y) v Z0B,
(s, Kp, — a3 Kg ) =g gD — g3 M)

- 2(p+X,85) m
—q (m)(qﬁp g ):o

J Bj

for some 3; € AT and some m € N. It follows that V is a subset of the union of
varieties defined by the zero sets of the polynomials
\2
q;ﬁp,ﬂ] )Kﬁj _ q2;nK/;jl
forj=1,...,nand m € N.
Using that det(S,) is contained in L,, and hence a linear combination of terms
of the form Ksp_p, for 3 € QF, we conclude that there exists an element f €

C[Ki{!, ..., Ki'] which is invertible on V such that

n o0
2(p,6}) e 1 N (o Be
ders) = 1T TL60 1, iy o

j=1m=1
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for certain exponents N(v,3;,m) € Ny. It follows in particular that det(S,) is
nonzero. In order to finish the proof it suffices to show N (v, 8;,m) = P(v —mp;)
forall j=1,...,n and m € N.

Fix1 <j <nandm € N, and choose w € W and 1 < ¢ < N such that 8; = wa.

Consider the algebra A = C[KZl ..., KEl ]. Moreover set
+1 +1 +1 +1
B=CIKEL . KEL Ky KEL L KEL .

2( ’6]\/) m g —
If we put « = qﬁjp Kg, — q%j Kﬁj1 then A = Blz]. Let Y = (S, (2;,2;)) €

Mp(A) = Mp(Blz]), and write Y(0) € Mp(B) for the image of ¥ under the map
induced by evaluation at 0.
If X € b} is an element in the variety of A/(z) = B then we have

2(p.6)) —
(s, K, —ai" Kzl = 0.

By a calculation similar to that above, this implies
k. _
(A +p,B)) =m+ 52%_71

for some k € Z, and so s g,.A = A —mf; < A. According to Theorem there
exists a submodule M (XA — mf;) C M(A). This submodule is contained in I(\),
and hence the radical of S, evaluated at A contains a subspace of dimension

dim(M (A —mB))r—) = dim(Uy(n_)-psms,) = P(v —mp)).

In other words, the rank of Y (0) evaluated at a point p of the variety of B = A/(x)
satisfies 7k(Y (0),) < D — P(v —mp;). Hence det(Y) = 27@=m8:)p for some b € B
according to Lemma In particular, 27=™5%) is a factor of det(S,). This
finishes the proof. O

4.4. Jantzen filtration and the BGG Theorem. In this section we discuss the
Jantzen filtration and the BGG Theorem for U,(g), giving us information about
the composition factors of Verma modules.

We shall first formulate the Jantzen filtration. Consider B = C[T,T~!], that is,
the algebra of Laurent polynomials with coefficients in C. Informally, we will think
of T as s' where s € C such that s* = ¢ and ¢ is an indeterminate. The ring B
is a principal ideal domain, and we write I for its field of quotients. Then L and
q € L™ satisfy our general assumptions in the discussion of the quantized universal
enveloping algebra in Chapter Let us write U,]JL(g) for the quantized universal
enveloping algebra defined over L. If A € b = b* Jih~1QV is a weight with respect
to the ground field C, we define a character ., : Ug“(f)) — L by the formula

X(Ku) — q(#v)\)TL(MP) _ q(u,A+pt)’

where the second equality is obtained by formally writing 7" = s°.

Let M be a free module of finite rank over B. We write M = M ®pg C for the
vector space induced from the evaluation homomorphism € : B — C,e(f) = f(1).
IfS: M x M — B is asymmetric B-bilinear form let us set

Mi={xeM|S(x,M)cC (T -1)B},

and similarly M? = M’ ®p C for all i. For any x € B let v(x) € Ny be the largest
number n such that z can be written in the form = = y(T' — 1)" for some y € B.

With this notation in place we have the following result, which is a special case
of the Lemma in Section 5.6 of [37].

Lemma 4.23. Let M be a free module of finite rank over B = C[T, T~]. Assume
that S : M x M — B is a nondegenerate symmetric B-bilinear form on M, and
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let det(S) be its determinant with respect to some basis of M. Then the following
holds.

a) We have v(det(S)) = >, dime(M?).
b) For each i >0 the map S; : M* x M* — B given by

Si(x,y) = (T —1)7'S(x,y)

is well-defined and induces a nondegenerate B-bilinear form on M®/M**1 with
values in C.

Proof. We follow the treatment in [37], adapted to the special case at hand for the
convenience of the reader.

a) Assume that M is free of rank r. The dual module M* = Hompg(M, B)
is again free of rank r, as is the submodule MY C M* consisting of all linear
functionals of the form =¥ where zV(y) = S(z,y) for x € M. Using the structure
theory for modules over principal ideal domains we find a basis eq,...,e, of M
and elements di,...,d, € B such that d;e’ is a basis of MY, where e!,...,e" of
M* is the dual basis defined by e’(e;) = ;5. We then obtain det(S) = d; - - - d, up
to an invertible scalar. Moreover, there is another basis fi,... f,. of M such that
[ =die'. If f =3 a;f; € Mand n; =v(d;) we get f € M"iff v(S(ej, f)) > i for
all j iff v(a;) > i —n; for all j. Hence M® is spanned by the elements f; for which
i <nj and the (T'— 1)*~" f; for which i > n;. In particular M* = M' @5 C =0
for sufficiently large i. Moreover we obtain

o(det(8)) = Y my = D7 {5l < mj}l = 3 dim(3r)

i>0 i>0
as desired.
b) By construction, the form S; takes values in B C L. We need to check that it
descends to a form on M?. For this consider x = (T — 1)y € M* and compute
Si(z, M%) c (T —1)"'S(x, M*) c (T — 1)~ (M, M%) c (T —1)B,

so that S;(z, M?) = 0in B&gC = C. Hence S? induces a bilinear form M?® x M* —
C. In order to compute the radical R* C M? of the latter notice that M**+! C R’
Moreover, the coset of f; as above is contained in R’ iff i < n;. Since the f; with
i < n; form a basis of M? we see that the form is nondegenerate on Mi/M“‘l, SO
that R* = M**1. O

If M is a Uy(g)-module then a bilinear form on M will be called contravariant if
(7(X) -m,n) =(m,X -n)
for all z € U,(g) and m,n € M.
Theorem 4.24 (Jantzen filtration). Let X € b;. Then there exist a filtration
M) =M\’ DM\ > MMA)?D -
of M(X\) with M(\)® = 0 for i large, such that the following conditions hold.

a) Each nonzero quotient M(X)'/M(A)**! has a nondegenerate contravariant bi-
linear form.

b) M(A)t = I()\) is the maximal submodule of M ().

¢) (Jantzen Sum Formula) The formal characters of the modules M(\)* satisfy

> ch(MN)) = D ch(M(sga-N).

i>0 acAT keZ,
Skya A<
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Proof. We work over B = C[T,T~!] and its field of quotients L as above. Given
A€ by = h*/ih~1QY consider the character x,, where \x = X\ + tp. We claim
that M(Ar) is a simple Uy(g)-module. Indeed, by Theorem any submodule
of M(Ar) must have highest weight in the same W—linkage class as Ap. But if
W = (¢,w) € W is nontrivial then

W.(A+1tp) — (A +1tp) = (WA +wp —A—p+ () +t(wp—p) ¢ Q,

so the W—linkage class of Ay is trivial. Hence the unique contravariant bilinear form
on M (M) with values in L such that (v, vy) = 1 is nondegenerate.

Using the PBW Theorem we obtain from the B-form U (g) = B® U,(g) a
B-form M(Ar) of the Verma module M (Ar) in which all weight subspaces are free
of finite rank. For p € Q% define

MOAT)sp -y = {2 € MOT)rr—p | (2. M(A7)rr—p) € (T —1)'B}

and

M) = > MOA)s, -
neQt
It is straightforward to check that M(Ar)" is a UP (g)-submodule of M(Ar), and
that these submodules form a decreasing filtration.

Setting T = 1 yields a decreasing filtration M(A\)® = M(Ar)?/(T — 1)M (A1)’
of M () such that M°(\) = M()). Thanks to Lemma the quotients of this
filtration acquire nondegenerate contravariant bilinear forms. Since M (\) has finite
length we see that M(A\)® = 0 for 4 > 0. This proves part a).

For part b) we only need to observe that the contravariant form on M (\)/M (\)*
is nondegenerate, and therefore M(A\)* = I(\) by Lemma

It remains to prove the Jantzen Sum Formula in part ¢). Consider v € Q* and
denote the determinant of the Shapovalov form of M(Ar) on the Ay — v weight
space by det(Sh, ). Since B contains C, the formula for the Shapovalov determinant
in Theorem continues to hold over U, f (g). More precisely, we obtain

Xap(det(shy)) = T ] (g2Otertee) — griea)Pmma),

acAt m=1
up to an invertible element of B. Applying v to the term

2 = POFrtte) _ gm@a) — 20vtpa) p2L(pa) _ gmia.e)

gives 0 unless ¢™(®®) = g2A+r.2) " or equivalently, unless (A + p,a¥) = m modulo
%ih;lZ, where as usual A, = d,fi. In this case we get v(z) = 1. The contribution

of the (A — v)-weight space to the valuation is therefore P(v — (A + p,a)a), where
P denotes Kostant’s partition function. Using Lemma we obtain

Z ch(M(\)Y) = Z Z Py — (A +p,a¥)a)e™”
i>0 veQT ac At kel
Skya A<

Z Z P(V)ek—(A—&-p,av)a—u

acAt keZ, veQt
Sk,a~/\<>\

= 3 (M(spaN)

acAT keZ,
Skya A<

as desired. O
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Notice that the Jantzen filtration reduces to the trivial filtration M (\) = M(A\)° D
M(M\)! = 0 in the case that M()) is simple. The Jantzen sum formula does not
provide any information in this case.

Let p, A € h. Recall that p is strongly linked to A, written p T A, if u = A or if
there exists a chain of positive roots a1,...,0, € AT and ky,...k, € Zy such that

=Sk ar " koA < Skasas  Skran A <t < Sk an A < A

Using the Jantzen filtration we shall now prove an analogue of the BGG Theorem,
compare Section 5.1 in [37].

Theorem 4.25 (The BGG Theorem). Let p, A € b;. Then [M(X) : V(1)] # 0 iff
W is strongly linked to \.

Proof. From Theorem we know that g 1 A implies [M(X) : V(u)] # 0.

For the converse let us use the Jantzen filtration and induction on the number k of
weights p linked to A satisfying p < A. If £ = 1 then X is minimal in its linkage class,
so there is nothing to prove. Assume now that the claim is proved for all weights
and some k. Suppose [M(A) : V(u)] > 0 for u < A. This means [M (M) : V(u)] >0
for the first step M (\)! in the Jantzen filtration of M (). The sum formula in
Theorem M forces [M(sk,a-A) : V(u)] > 0 for some a € A[J;],k € Zy. By our

inductive hypothesis, there exist a,...,a, € AT, ki, ..., k. € Zy such that
B= Skyyar * " Skpyan Skar A < Skyan 1 SkearSkia A <t < Sk, a, Sk A < SkarA

Appending this chain with si o.A < A yields 1 1 A as desired. O

4.5. The PRV determinant. In this section we discuss the Parthasarathy-Ranga
Rao-Varadarajan determinants of Ug(g). In the classical setting they were intro-
duced in [62]. For more information on the quantum case we refer to [41].

4.5.1. The spaces F Hom(M, N). Before discussing the PRV-determinants we will
need a couple of preparations regarding the spaces F Hom(M, N), which we now
describe.

Let M, N be U,(g)-modules. The space of C-linear maps Hom(M, N) becomes
a Uy(g)-module by setting

(X = T)(m) = Xy - T(S(Xz)) - m)

for T € Hom(M,N), X € Uy(g) and m € M. We will refer to this as the adjoint
action of U,(g). We denote by F'Hom(M, N) the locally finite part of Hom (M, N)
with respect to the adjoint action.

We can also define a U,(g)-bimodule structure on Hom(M, N) by

(Y -T-Z)(m)=Y -T(Z-m).
for Y,Z € Uy(g), T € Hom(M, N), m € M. By restriction, F Hom(M, N) becomes
an FU,(g)-bimodule. Indeed, notice that
X = (Y-T-Z)(m)=Xu)Y -T(Z8(X(2) - m)
for all m € M. Hence if Y, Z € FU,(g) and T € FHom(M,N), then Y - T - Z is
again contained in F Hom(M, N).

The FU,(g)-bimodule structure on F Hom(M, N) is compatible with the adjoint
U,(g)-action in the following sense.

Definition 4.26. Let V be an FU,(g)-bimodule, with left and right actions denoted
by X -v and v- X for X € FU,(g) and v € V, respectively. We say that a left
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module structure of U,(g) on V, written X — v for X € Uy(g) and v € V, is
compatible if

(X(l) —)U)-X(g) =X-v

for all X € FU,(g) and v € V. Equipped with such a structure, V' will be called a
Uq(g)-compatible F'U,(g)-bimodule.

Note that the formula in Definition makes sense since F'U,(g) is a left coideal,
see Lemma [2.112] Morally, the compatibility condition can be written as

X —=sv= X(l) s - S(X(Q)),

however, the right hand side of this formula might not be well-defined, even if we
consider X € FU,(g). Nevertheless, inspired by this formula, we shall always refer
to a compatible action of U,(g) on an F'U,(g)-bimodule as the adjoint action.

Next, we introduce similar structures associated to the linear dual (M ® N)*,
where again M and N are in category 0. Recall the algebra antiautomorphism
and coalgebra automorphism 7 of U,(g) from Lemma We introduce a Uy, (g)-
module structure on (M ® N)* by

(X = 9)man)=9(S(Xw) me7(Xq) - n)

for X € Uy(g), p € (M @ N)* and m®@n € M ® N. Again, we refer to this as the
adjoint action of Uy(g) on (M @ N)*. We also have a U,(g)-bimodule structure on
(M ® N)* given by

Y- Z)men)=p(Z -ma7(Y)-n),

for Y, Z € Uy(g).

We denote by F((M ® N)*) the locally finite part of (M ® N)* with respect
to the adjoint action of Uy(g) defined above. The following lemma shows that by
restricting the above actions, F'((M ® N)*) becomes a U,(g)-compatible FU,(g)-
bimodule in the sense of Definition 26l

Lemma 4.27. Let M, N be in category O. Then there exists an isomorphism of
FU,(g)-bimodules

FHom(M,NY) 5 F((M & N)*),

which is Uy(g)-linear for the adjoint actions denoted by — above. Euxplicitly, the
isomorphism is the restriction of the natural map v : Hom(M,N*) — (M ® N)*
defined by

Y(T)(m ®@n) = T(m)(n)
for T € Hom(M,N*) and m € M, n € N.

Proof. To begin with, let us show that F Hom(M, NY) = F Hom(M, N*). Here, we
are equipping N* with the obvious extension of the U,(g)-action on NV, namely

(X - f)n) = f(r(X)-n),  feN", X eUyg), neN.
Let T € FHom(M, N*). For K € Uy(h), we have
K- (T(m)) = (Kq) = T) (K@) - m).

Since T is locally finite and m € M is contained in a finite sum of weight spaces, we
see that T'(m) generates a finite dimensional U, (h)-submodule of N* and so must
belong to NV.
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Now consider the linear map v : Hom(M,N*) — (M ® N)* defined above.
General facts about tensor products imply that « is a linear isomorphism. Since
(X = A(D)(m@n) =v(T)(S(X) - meT(Xa)) n)
=T(5(X(z)) - m)(1(X(1)) - n)
= (X - T(5(X(2) - m))(n)
— (X = T)(m@n)
for X € Uy(g), m € M,n € N we see that v is U,(g)-linear and so restricts to an
isomorphism on the locally finite parts.
Finally, for any Y, Z € U,(g), T € Hom(M,N*) and m®n € M ® N we have
Y - A(T)-Z)(m@n) =+(T)(Z-m7(Y) n)
=T(Z -m)(r(Y)-n)
= (Y -T(Z-m))(n)
=y  -T-Z)(m®n).
Since F Hom(M, NV) is invariant for the left and right actions of FU,(g), we deduce
that the same is true for F((M @ N)*), and v : FHom(M,NV) — F((M ® N)*) is
an isomorphism of FU,(g)-bimodules. O

Consider the automorphism § = 78 = S~!7. It is an algebra homomorphism
and a coalgebra antihomomorphism. Note also that 6 is involutive, since §2 =
78S~ lr = 72 =id.

Lemma 4.28. Let M, N be in category O. Then the flip map M @ N - N @ M
induces a linear isomorphism

a:F(M®N)")—= F(N®M)")
such that
aY - Z)=1(2) a(p) 7(Y),  a(X —=¢)=0(X)—ale)

for allY,Z € FU,(g) and X € Uy(g).
Similarly, there exists a linear isomorphism

8 : FHom(M, N) — F Hom(N", M")
such, that
BY T -2)=7(Z)-B(T)-7(Y),  BX —=T)=0(X)—B(T)
for allY,Z € FU,(g) and X € Uy(g).

Proof. We define a: (M @ N)* — (N ® M)* by a(p)(n®@m) = p(m®@n). Clearly
« is a linear isomorphism. To check that this isomorphism is compatible with the
locally finite parts we compute

0(X) = a(p)(n@m) = a(p)
a(p)
P(S(

(

(07

5(0(X1)) - n@T(0(X(2)) - m)
(X)) n®S(X@) -m)
S(X(2)) - m@7(X(1)) - n)

X = ¢)(n®@m).

(
(
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Hence « restricts to an isomorphism F((M ® N)*) — F((N ® M)*). Moreover we
have

oY ¢ - Z)n@m) = o(Z-mo7(Y)-n)
— a@)(r(Y) n® Z-m)
— (7(2) - a(g) - 7(Y))(n ®m)

for all Y, Z € FU,4(g).

In order to prove the second assertion it suffices to construct an isomorphism
B : FHom(M,NV) — FHom(N, M") with the claimed properties. This can be
done by combining the map « from the first part of the proof with the isomorphism
7 from Lemma [£:27] O

4.5.2. Conditions for F Hom(M, N) = 0. In this subsection we use Gelfand-Kirillov
dimension as a tool to derive sufficient conditions for F Hom(M, N) = 0 for certain
modules M, N € O. For background on the Gelfand-Kirillov dimension we refer to
[14].

Let A be an algebra over C and let V' C A be a linear subspace. We write V" for
the linear subspace generated by all n-fold products ay - - - a,, with a1,...,a, € V,
in addition we set V9 = C. Assume that A is finitely generated and that V is a
finite dimensional generating subspace, so that | J;-, V"™ = A. Moreover let M be a
finitely generated A-module with generating set M°, so that UZOZO M™ = M where
M™ =V"™. M°. Then the Gelfand-Kirillov dimension of M over A is defined by

log(dim(M™
da(M) = limsup log(dim(M™))
n—oc log(n)
It is not hard to check that this does not depend on the choice of the generating
subspaces V and MP°.
Let us collect some general facts regarding the GK dimension.

Lemma 4.29. Let A be a finitely generated algebra.

a) If0 » K — E — Q — 0 is an extension of finitely generated A-modules then
da(K) < da(E) and da(Q) < da(E).

b) If I C A is a left ideal containing an element a € I which is not a right zero
divisor then da(A/I) < da(A) — 1.

Proof. a) Pick a generating subspace K° for K and extend it to a generating sub-
space E° for E. Then K™ C E™ for all n and hence dim(K"™) < dim(E"™). Similarly,
if 7 : E — Q denotes the quotient map then Q° = 7(E°) is a generating subspace
for @, and we have dim(Q") < dim(E"™) for all n. This yields the claim.

b) We follow the proof of Theorem 3.4 in [14]. Without loss of generality we may
assume that d4(A) is finite. Let V' C A be a finite dimensional generating subspace
containing 1. For each n let D,, C V™ be a complement of V" NI. If 7: A— A/I
is the quotient map then we get 7(D,,) = m(V™).

We claim that D,, + D,a+ - D,a™ is a direct sum for all m € N. Indeed, from
xo+z10+ -+ xpa™ =0 with z; € D, for all j we get m(xo) = 0 because a € I.
Hence x¢p = 0, and since a is not a right zero divisor we deduce x1 + zoa + -+ - +
Tma™ = 0. Therefore the assertion follows by induction.

Next observe D,, + Dypa + --- Dya™ C V" so that dim(V?") > ndim(D,,) =
ndim(m(V™)). Since W = V2 is again a generating subspace for A and W" = V2"
we conclude

3 2n . n

da(A) = Tim sup BEIVT) o gup 08 dim(r (V™))
n—oo log(n) n—so0 log(n)

as desired. O

= 1+da(A/D)
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We will be interested in the case that A = Uy(n_) or A = U,(b) and M is a
U,(g)-module contained in O, viewed as an A-module. Note that d4(M) will be
the same for both choices of A, and we will write d(M) = da(M) in either case.

In the next lemma, recall that wg denotes the longest element of the Weyl group.

Lemma 4.30. Let A= Uy(n_).

a) If X € by then d(M (X)) = l(wo)-

b) If Q is a proper quotient of a Verma module then d(Q) < l(wy).
c) If M is in O and p € P we have d(M @ V(1)) = d(M).

Proof. a) Every Verma module is a free A-module of rank 1. Hence the claim can
be obtained by invoking a filtration of A as in the proof of Proposition [2.134] taking
into account Satz 5.5 in [I4].

b) This follows again from the fact that every Verma module is a free A-module
of rank 1 combined with A having no zero-divisors and part b) of Lemma m

¢) We use that M, being in O, is finitely generated as an A-module. If V' C A is
the linear span of 1 and the generators Fi,..., Fy then V is a generating subspace
of A. Let M° be a finite dimensional generating subspace of M over A. Then
M° ® V() is a generating subspace for M ® V (i), and we have

V(MO V() C VMY @V (n) = M"®V(w),

which implies d(M @ V(u)) < d(M). If v* € V(1) is a lowest weight vector then
M ® v* is isomorphic to M as an A-module, so that d(M ® V(1)) > d(M). Hence
we get d(M @ V(u)) = d(M) as desired. O

Lemma 4.31. For M, N in O, the following are equivalent:
a) FHom(M,N) =0.

b) Homy, (q)(V (1) ® M,N) =0 for every p € P*.

¢) Homy, (gy(M,V(p) ® N) =0 for every p € P+,

Proof. The map & : Hom(M, N) @ V(u)* — Hom(V (1) ® M, N) defined by
KT @ f)lv@m) = f(v)T(m)

is a Uy(g)-linear isomorphism

(X = k(T f))(veam)=f(S(Xa)) v) X T(S(Xew)) m)
= (Xq) = T)(m) (X — f)(v).

Therefore, if Hom(M, N) contains a finite dimensional U,(g)-submodule of highest
weight p then Hom(V () ® M, N) contains a trivial submodule, and conversely.
An element of Hom(V () ® M, N) spans a trivial submodule if and only if it is
Uq(g)-linear. This proves that a) and b) are equivalent.

A similar argument proves the equivalence of a) and ¢). U

Note that V(u) ® M can be replaced by M ® V(i) in b) and ¢) of the above
lemma, since they are isomorphic as U,(g)-modules.

Proposition 4.32. Let M, N be in category O.

a) If d(M) < d(K) for every simple submodule K of N we have F Hom(M, N) = 0.
b) If d(N) < d(Q) for every simple quotient Q of M we have F Hom(M,N) = 0.

Proof. a) By Lemma it suffices to show Homy, (g)(M @ V (1), N) = 0 for all
pe Pt Let f: M®V(u) - N be a nonzero U,(g)-linear map. According
to part ¢) of Lemma we have d(M @ V(u)) = d(M), and we have d(f(M ®
V(p) < dM @ V(p) = dM) < d(K) for all simple submodules KX C N by
assumption. On the other hand, if K C f(M ® V(u)) is a simple submodule then



188 CHRISTIAN VOIGT AND ROBERT YUNCKEN

d(K) < d(f(M ® V(1)) by Lemma This is a contradiction, thus giving the
claim.

b) In a similar fashion it is enough to show Homy, (qy(M,V(u) ® N) = 0 for
all p € P*. Let f : M — V(u) ® N be a nonzero Uy(g)-linear map. Using
V() @N = NV (u) we have d(N) = d(V(p) ® N) according to part ¢) of Lemma
and hence d(V(u) ® N) < d(Q) < d(f(M)) for every simple quotient @ of
f(M) by assumption. In addition, d(f(M)) < d(V (1) ®N) by Lemma[4.29 because
f(M) CV(u) ® N is a submodule. Again we obtain a contradiction. O

As a consequence we arrive at the following result.

Proposition 4.33. Let A € b;. If Q) is a proper quotient of a Verma module then
FHom(Q, M(X\)) = 0. Similarly, if M(\) is simple then F Hom(M (), Q) = 0.

Proof. If Q) is a proper quotient of a Verma module then d(Q) < I(wg) according to
Lemma In particular, we have d(Q) < d(K) for the unique simple submodule
K = Soc(M(X)) € M()), see Lemma Hence the first assertion follows from
Proposition a). Similarly, the second claim follows from Proposition m
b). O
4.5.3. Multiplicities in F Hom(M, N). If V' is any U,(g)-module and A € by, then
V@ M(A) is a free Uy(n_)-module. To see this, let V denote V equipped with the
trivial action of U,(n_) and observe that the isomorphism V, @ M(A\) 2V @ M())
defined by
vRY vy '—)Y—(l) "U®Y—(2) S UN,
forveV,Y € Uy(n_) is Uy(n_)-linear.
Lemma 4.34. Let A € b and v € PT. Then there erists a finite decreasing

filtration

VwyeMAN=My>DM; D---DM;D0
with quotients isomorphic to M (X + «y), where v runs over all weights of V(v)
counted with multiplicity.

Proof. We can filter V(v) = V5 D V3 D ---V; D 0 as a U,(bs)-module by one-
dimensional quotients C., where U, (by) acts on C, by the character x,. Using the
above observations, tensoring this filtration with M (A) yields the claim. O

Recall that if M is an integrable U,(g)-module and v € P* we write [M : V (v)]
for the multiplicity of V(v) in M.
Proposition 4.35. Let \,n € h; and v € PT. The the following properties hold.
a) We always have
[E((M(N) @ M(n)") : V(¥)] = dim(V()y—x)-
b) If M(n) is simple then
[FHom(M(X), M(n)) : V(v)] = dim(V (v)n—x)-
¢) If M(X) is projective then
[F"Hom(M (A), M (1)) : V()] = dim(V (), -»).

Proof. a) Recall that the appropriate U, (g)-module structure on (M(X) @ M(n))*
is given by

(X = @)(m®@n) =p(S(X@z) -me7(Xq) - n)
for X € Uy(g), ¢ € (M(X\) ® M(n))* and m ®n € M(X\) @ M(n). This can be
rewritten as

(X = p)(m@n) = (S(X) - (m @ n)),
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if we define the U,(g)-action on M(A) ® M (n) by
X -(men)=X1 -me® ST(X(Q)) -n
Similarly, let us define a U, (g)-action on U,(g) ® Uy(g) by
X (Y & Z) = X(l)Y ® ST(X(Q))Z
for X,Y,Z € U,(g). Using the triangular decomposition, see Theorem one
can check that this action induces an isomorphism
Uq(g) QU (h) (Uq(h+) ® Uq(b+)) = Uq(g) ® Uq(g)
XY 2)—»X - (Y®Z2)
of left U,(g)-modules.
We obtain isomorphisms of left U, (g)-modules as follows
(M(X) @ M(n))*" = Homy, (v, )0,(64) (Ug(8) ® Ug(g), (Cr @ Cy)")
= Homy, (v, )sU, (b4) (Ug(8) @u, ) (Ug(by) @ Ug(by))), (Cr @ C;))¥)
= Homy, (1) (Ug(9), (CA ® Cy)"),

where the Hom spaces are spaces of morphisms of right modules. In the last line,
the right U,(h)-action on Cy @ C,)) is given by
(pv)-H)(vew) = (6&¢) (xa(H) )o@xn(ST(H2)w) = Xy (H)(929) (vow),
so that the second factor is isomorphic to C3_ , 8sa right Uy (h)-module. Thus
(M(A) @ M(n))" = (Ug(9) ®u,m) Camp)”
We now have
Homy, (4)(V(v),(Uqg(8) ®u,5) Can)™)
= Homy, (g)(V(¥) @ (Uq(8) ®u, () Ca—y), C)
= Homy, (5)((Ug(9) ®u, (v) CA n) ®V(v),C)
= Homy, (g)(Uq(9) ®@u,(5) Ca—ny V(¥)")
= Homy, () (Ca—y, V(v)7)
:HomU ( n—XA V(v)).
This yields the first claim.
b) If M (n) is simple we have M (n)Y = V(n) = M(n). Hence Lemma yields
F((M\) @ M(n))") = F((M(X) @ M(n)")") = F Hom(M(X), M(n)),
and part a) implies [F Hom(M (X\), M (n)) : V(v)] = dim(V (v)),—x for all v € PT.
¢) Using Frobenius reciprocity we obtain
[F" Hom(M (A),M (1)) : V(v)]
= dim Homy, g)(V(u) Hom(M(X), M(n)))
= dim Homg, (g) (V' (v) © M(X), M(n))
= dim Homy;, (g (M (X), V(v)* @ M(n)).
By Lemma the module V(v)* ® M(n) admits a finite length filtration with
quotients isomorphic to M (n + v), where v runs over all weights of V(v)* counted

with multiplicity. If M()\) is projective, this yields a corresponding filtration of
Homy, ()(M(N),V(v)* @ M(n)), and therefore

[FHom(M(A\),M(n): V()] = > dimHomy,q(M(X), M(n+7)),
EP(V(1)")
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where P(V(v)*) denotes the weights of V(v)* counted with multiplicity. Using
Proposition we have

dim Homy, (g) (M (X), M (1 + 7)) = x4
We therefore conclude that

[F Hom(M(X), M(n)) : V(1)] = dim(V ()5 _,) = dim(V (1)_).

Note that Proposition implies in particular
[F((M(X) @ M(n)*) : V()] =0

for all v € Pt if n—\ is not contained in P. That is, we have F(M(A\)®@M (n))*) =0
in this case.

4.5.4. Hilbert-Poincaré series for the locally finite part of Uy(g). In this subsection
we collect further auxiliary considerations needed for the description of the PRV
determinant. We follow closely the treatment in [41].

Let us first recall that the height of a weight y € P is defined by ht(u) =
c1+--+ecn € %Z if 4 =craq + -+ eyan, and that ht(u) > 0 for up € P*. For
our purposes below it will be notationally convenient to work with the degree of
defined by deg(u) = 2ht(u) = ht(2u) instead. The advantage of deg over ht is that
the former takes only integral values for u € P.

We define an Ny-filtration of the vector space FU,(g) by

]:k(FUq(g)) = @ Uqg(g) = Koy,
uePt
deg(p)<k
for k € Ny, and refer to this as the degree filtration of FU,(g). In fact, this is
essentially the filtration of O(G,) used in the proof of Theorem transported
to FU,(g) via the isomorphism from Proposition We note that the degree
filtration is not compatible with the algebra structure of F'U,(g) in an obvious way.
The associated graded components of the degree filtration are

gri(FU,(9)) = F*(FU,(9))/F" 1 (FU,(g)),

observing that F~!(FU,(g)) = 0. We note that the graded components gry(FU,(g))
are finite dimensional for all k¥ € Ny. Using the isomorphism FU,(g) 2 H® ZU,(g)
in Theorem[2.154] we obtain an induced Ny-filtration of the vector space H &~ H®1 C
FU,(g). We shall write

Hi = (F*(FU,(9)) "H)/(F*~1(FU,(g)) N H)

for the corresponding graded components.

As for any filtration with finite dimensional graded components, we may define
associated Hilbert-Poincaré series as the generating function of the corresponding
graded dimensions as follows.

Definition 4.36. Let y € P*. With the notation as above, the y-Hilbert-Poincaré
series of FU,(g) and H are the formal power series defined by

hiUe®(2) =3 lgru(FUL(9) : V(Y. i) = Y [Hy: V()"
k=0 k=0

respectively.
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Recall from the proof of Theorem that U,(g) — K2 is isomorphic to
End(V(—woA))* = (V(A)* @ V(A)* =2 V() @ V(A)* = End(V(N)) as a Uy(g)-
module, where we are using the fact that VW = W ®V for any finite dimensional
Uq(g)-modules V, W. Therefore we can also write

ha(z) = ) [End(V(N) : V(p)]z15.
AeP+

In the remainder of this subsection we shall derive a formula for the formal
derivative of hiﬂ(z) at z = 1, presented in Proposition @ further below.

Recall that if M is in category O and M = My D My D --- D M, =0 a
filtration with simple subquotients as in Lemma[4.2] then [M : V(u)] is the number
of subquotients M; /M, isomorphic to V().

Lemma 4.37. Let u, A € P+, Then

[End(V(A): V()] = > (=D PX—wA+ p),
v,weW

where P denotes Kostant’s partition function.
Proof. If V(—=X) = V(A)* denotes the integrable simple U,(g)-module with lowest
weight —\, we have End(V (X)) =2 V(A) @ V(=) =2 V(=A) ® V(A). Using Lemma
and Proposition [£.4] we therefore obtain
[End(V(A) : V()] = [V(=A) @ V() : V(p)]
= > (DIV(=A) @ M(wA) : V(u)]

weWw

=Y Y (VM) Vp),

wEW veP(V (=)

where in the last line the sum is over the weights v of V(—\) counted with mul-
tiplicities. Since u € PT we have [M(w A+ v) : V()] =1if v = p — w.\ and
[M(w.A+v):V(u)] =0 otherwise by Theorem so that we arrive at

End(VO)) : V()] = 3 (=)' dim(V(=A)mun)

weW
= > (=D dim(V (Nwr—p)
weW
= ) ()OI PON —wA + p)
v,weW
as claimed, using that dim(V(—\),) = dim(V(A\)_,) for all weights v and Proposi-
tion [£.4] again. O

Let us write the group ring C[P] of the abelian group P additively, with basis
et for A € P.

Definition 4.38. We define
N

w w 1
QFUq(E)(Z) = Z (_1)1( ) gw-0 H e

weWw

1— Zdeg(wj)

Q') =D ('™ “’“H P

weWw

both viewed as elements of the function field F(z), where F is the field of quotients
of the integral domain C[P].
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We note that expanding the geometric series in Definition we can write

QFU (g) Z Z l(w wA—)\chg()\),

AePt weWw

N
Z Z l(w IR AfAZdeg()\) H(l o Zdeg(wj'))7
AEP+ weW j=1

as formal power series with coefficients in C[P].

In the next lemma, we will need to consider power series with coefficients belong-
ing to infinite formal series in the e* of the type introduced in Section That
is, we will be considering formal sums of the form

2= 3 fa(Nerzn,

n=0 A€by

where for each fixed n the support of f, : h; — Z is contained in a finite union

of sets of the form v — Q* for v € h;- As in Section such series admit a
well-defined convolution product.

Lemma 4.39. Let u € Pt and h,(z),h;/(z) be the Poincaré-Hilbert series for
FU,(g) and H, respectively. Then

a) hiU"(g)(z) is the coefficient of €° in ch(V (1))QFVa(8)(z).
b) hjl(z) is the coefficient of € in ch(V (1))Q"(2).

Here QFV4(9)(2) and Q¥(2) are viewed as formal power series.

Proof. a) Recall from Section that we defined the formal series
= ch(M Z P(v
veP
Using Proposition [£.4] we can write

Ch(V(M))QFUQ(g)(Z) _ Z (—1)l(w)pew'“QFU‘1(9)(z)

weWw

Z Z l(v)+l(u;) e ;/,+U.>\—)\Zdeg()\)

AeP+ v,weW

_ Z Z w) ch( (/\))ew(wrp)fpﬂ\zdeg(/\)

AePt+ weW

For each n € Ny, the coefficient of 2™ is the above series is a finite formal sum,
so we may consider the action of the Weyl group upon it, given by w(e?) = e*?.
Moreover, the €? term in each summand is invariant under the Weyl group action,
so the coefficient of € in the above sum is the same as the coefficient of € in

Z Z l(?ﬂ) ch(V ()\))eu+p—w71(p+>\)zdeg(>\)

AeP+ weWw

_ Z Z l(w Ch ()\))eyfw_l)\zdeg()\)

AePt weW

Z Z l(v)—i—l(w) el Aeu—ufl.)\zdeg(k)

AeP+H v,weW

_ Z Z Z l(v )+1( w)P( ) 'u)\fw_l)\Jr,ufuzdeg()\),

veP \cPt v,weW
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where in the second equality we have again used Proposition [£.4] Replacing w by
w~! in the sum and using Lemma [£.37 we calculate the coefficient of e® to be

Z Z D@ Py X — w. X 4 p)z3sN)

AePt v, weW

= " [End(V(V) : V()]edes™.
AeP+

From the formula immediately after Definition this is h,(2).
b) Using Theorem [2.120] it is easy to see that the centre ZU,(g) has Hilbert-

Poincaré series
hZUq (g) H (Z Sk deg(wj)>

with respect to the degree filtration of FUy(g), and therefore
hZUq(g) H 1— Zdeg(wj) ev.

Due to Theorem we therefore get

2

hﬁl(z) = hH YhZVa(9) (4 H zdeg(@s)) hEUq(G) H zdes(@i)y,
j=1 j=1

Hence the assertion follows from a). O

Lemma 4.40. The derivative of the rational function Q™ (2) defined above satisfies

N —ay
0:QM)(1) = ) = deg(w) S S e eyl
j=1

j=1n=1

Proof. For every A € PT the stabilizer over A with respect to the action of W is
generated by the simple reflections it contains, see Theorem 1.12 (a) of [36]. In
particular, the stabilizer of w; is the subgroup generated by all s; for ¢ # j. Hence
for each w € W with [(w) > 1 there are at least two fundamental weights w; for
which ww; # w;. As a consequence, the product

N _ pdeg(w;)

H — ]~ Wj
]. chg wj e’wW‘ wj
Jj=1

vanishes at z =1 to at least order 2 when I(w) > 1.

It follows that only the summands with I(w) = 1 in the definition of Q™ (%)
contribute to (9.Q™)(1). Using s;.0 = —a; and siw; = wj — 00 we therefore
obtain

N -
)
(0.Q™) Z o deg(w@;),
Jj=1
as claimed. Expanding the geometric series on the right hand side of this formula
yields the second equality. O

Lemma 4.41. Let p € PT and n € N. Then we have

N
Zdim(V( )na; ) deg(wo;) Z dim(V () na) deg(a).

ozGAJr
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Proof. We begin with the case where g is a simple Lie algebra, so that the root
system A is irreducible. In this case, any two roots of the same length are con-
jugate under the Weyl group action, see Lemma C in Section 10.4 of [35], so the
decomposition of A into W-orbits is given by A = Ag U A, where A is the set
of short roots, meaning roots of minimal length, and A; is its complement, the
possibly empty set of long roots. We shall show that the contributions of all roots
of a given length on both sides of the claimed formula agree.

More precisely, denote by A and A" the sets of short and long roots in AT,
respectively, and let Xy = AT NY and 3; = Af N3 be the sets of short simple roots
and long simple roots. Since the dimension of weight spaces is constant on Weyl
group orbits we have dim(V (1t)nq,) = dim(V (1t)no) for any a; € ¥ and a € AF,
oraj € ¥y and o € Al*. Hence it suffices to show

PIREE I DD SR

;€ acAT aj; €Y acAf

For the first equality, write ps for the right hand side and notice that a simple
reflection s; satisfies sjps = ps — o5 if 5 € X, and s;ps = ps otherwise. Hence
(o), ps) = 1 for a; € X, and (a, ps) = 0 otherwise. However, the same relations
characterize the sum on the left hand side.

The second equality can be proved in the same way, or by using the first formula
and the fact that the sum of all fundamental weights equals the half-sum of all
positive roots.

Finally, if A is not irreducible, then the two sums in the Lemma can be de-
composed into sums corresponding to each of the irreducible components, and the
result follows. O

Assembling the above results we obtain the following formula.

Proposition 4.42. Let € PT. Then we have

1 .
(0:=hy)(1) = 5 Yo D dim(V()na) deg(a).
n=1lacA+
Proof. According to Lemma we know that (8.h,)(1) equals the coefficient of
e in ch(V(1))(0.Q%)(1). Due to Lemma this coefficient is given by

N oo
0> dim(V()na,) deg(w;).

j=1n=1
Hence the claim follows from Lemma [£.41] O

4.5.5. The quantum PRV determinant. According to Theorem [2.154] there exists
a U,y (g)-invariant linear subspace H C FU,(g) such that the multiplication map
H® ZU,(g) — FU,(g) is a U,(g)-linear isomorphism. For u € P* let

H = @V(u)

be the p-isotypical component of H. It is also shown in Theorem that the
multiplicity m is given by m = [H : V()] = dim(V (u)o). Choose a basis vy, ..., vy,
of the zero weight space of V (), and write v;; € H* for the vector v; in the i-th copy
of V() with respect to the above identification. According to the remarks after
Theorem each of the copies of V(i) in H* can be assumed to be contained
in a subspace of the form U,(g) — K»,, for some v1,... v, € PT.

If we identify H* with H* ® 1 C FU,(g) via the above isomorphism, then the
PRV determinant of U,(g) associated with p is defined as the determinant of the
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matrix P, = (P(vi;)), where P : Uy(g) — Uq(h) denotes the Harish-Chandra map.
Note that this determinant, which we denote by det(P,) € Uy(bh), is independent
of the choice of basis v1,...,v, up to an invertible scalar in C. Our aim in this
subsection is to compute det(P,), at least up to multiplication by an invertible
element of U, (h). We start with a result on annihilators, see Lemma 7.1.10 in [41].

Lemma 4.43. Let H C FU,(g) be a submodule with respect to the adjoint action,
and let A € ;. Then xx\(P(H)) = 0 iff H C annpy, (g)(V(N)).

Proof. Recall that x denotes the character of U,(h) given by xa(K3) = g Let
us write N C V() for the linear span of all weight spaces in V() apart from the
highest weight space V(\), = Cu,.

We claim that xx(P(H)) = 0 iff H - vy C N. Indeed, if H - vy C N then the
projection P(H) of H onto Uy(h) = 1@ Uy(h) ® 1 C Uy(n_) @ Uy(h) @ Uy(ny)
must satisfy xa(P(H)) = 0 since it acts on vy by the character x. Conversely, if
Xx(P(H)) = 0 then only terms in H - vy which lower weights survive, which means
H-vy CN.

Assume x)(P(H)) = 0 and let X € H be a weight vector of weight u with
respect to the adjoint action. Then

XFj =qWe) K XK Fy = ¢ (F;X — (F; — X))

by definition of the adjoint action. We conclude HUy;(n_) = Uy(n_)H. Since
Xx(P(H)) =0 implies H - vy C N this implies
H-V(\) = HU,(n_) - vy = Uy(n_)H - vy C N.

In addition, because H is ad-stable we have Uy (g)H = HU,(g) and U,(g)H -V () =
HUy(g) - V(A) = H - V(A). That is, the vector space H - V(A) C V(A) is a Uy(g)-
submodule. Since H - V(A) is contained in N and V()) is simple we conclude
H -V()\) = 0. That is, we have H C anng, (q)(V'())), and therefore in particular
H C annpy, g)(V(N)).

Conversely, if H C annpy, (g)(V(A)) we obtain H - vy =0 C N, and our initial
argument implies x»(P(H)) = 0. O

We note that Lemma implies in particular that det(P,) is nonzero for any
u € PT. In fact, otherwise we would find a nonzero ad-stable subspace H C H* C H
such that x»(P(H)) = 0 for all A € b7, and hence H would act by zero on all
irreducible modules V'(\). This is impossible due to Theorem

For o € AT and n € N let us define

Do = {A €02 [ Q7% = g2 and ¢0T777) ¢ +¢% for all B € A™, 5 # a}.
If X € I'y, , then this description implies in particular that s,.A = s¢ . is antidom-
inant, see Definition According to Theorem it follows that M (sg q.A) is
simple. Moreover the Jantzen sum formula from Theorem shows M()\)* =0
for i > 1 in this case and hence M (A\)' = M (sg,o.A). In particular M (\)/M (s o-))
is simple.
Lemma 4.44. Let A €I, . Then

[FEnd(V(A)) : V(n)] = dim(V (u)o) — dim(V (1))

for all p € PT.
Proof. Since qé)‘ﬂ)’ﬁv) ¢ :I:qgN for all 3 € AT by the definition of 'y, 4, it follows
from Proposition that M () is projective. Moreover V(A) = M(X)/M (S0,a-\)
is a proper quotient of M(A), so by Lemma we have d(V(N)) < d(M(N)) =

d(M(so,a-A)). Therefore Proposition b) shows that F Hom(M (sg,o.A), V(A)) =
0, and hence the map F End(V (), V(X)) — F End(M(X\), V(X)) is an isomorphism.
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Since M () is projective the functor F Hom(M (M), —) is exact, so applying this
functor to the short exact sequence

0—— M(s0,0-M) M(N) V() 0

gives
[FEnd(V(A),V(A) : V()] = [F Hom(M(X), M(N)) : V()]
— [F Hom(M(X), M(so.-N) : V(1))

Now Lemma yields the claim, keeping in mind that dim(V (1) —pne) = dim(V (1) na)
since +na are in the same orbit of the Weyl group action. O

Lemma 4.45. Let v € PT. Then

P(Uqy(g) = Ko)K -2, C Z CK_,, C (C[Kl_Q,...,KNQ],
yev+P(V(-wor))

where P(V (—wov)) denotes the set of weights of V(—wov) = V(v)*.

Proof. Let us first show P(X — Ko, )K_», € C[K;?,..., Ky?] for any X € U,(g).
For this it suffices to consider a monomial X = E;, --- E; KyFj, ---F; with 1 <
i1,...,0, S N;A€ePand 1 <jy,...,7s < N. Using the commutation relations in
Uq(g) one checks that Fj, ---F;, — Ky, is a linear combination of monomials of
the form KoxFj (1) Fj_ (s) where o is a permutation of 1,...,s. The same is true
after applying the adjoint action of K. In order for P(X — Kb, ) to be nonzero
it is therefore necessary that Ej, - - - E; contains exactly as many generators Ej, as
Fj, --- F};, contains generators Fj for all 1 < k£ < N. Our assertion follows now
from

LU et

a—q " ’

for 1 <i,57 < N and the fact that the adjoint action is compatible with multiplica-
tion.

In order to prove the Lemma we recall that the isomorphism J : FU,(g)
O(G,) from Theorem maps U,(g) — Kz, onto End(V (—wgv))*. Since J is
compatible with the adjoint action on FU,(g) and the coadjoint action on O(Gy)
it follows that for P(X — Kj,) to be nonzero it is necessary that E;, --- E; _is
contained in Uy (ny )., for some v € QT such that —v+~ € P(V(—wor)). Combined
with the above considerations this yields the claim. O

E,— F; =B, FK; ' =

(a3

As pointed out at the start of this subsection, the j-th copy of V(u) in H* can
be assumed to be contained in a subspace of the form U,(g) — Ky, for some
vi,...,Vym € PT. Hence if we write v = v1 + --- + 1, then according to Lemma,
it follows that det(P,) is contained in C[K;?,..., Ky?|K2, C U,(h). For
technical reasons it will be convenient to remove the factor Ky, from det(P,) in
our considerations below, and work with Det(P,) = det(P,)K_s, instead. Thus
we have Det(P,) € C[K[?,..., K5? C C[Q] by construction.

Recall from Subsection that we identify elements A € b with the associated
algebra characters x» : Uy(h) = C[P] — C. We may also restrict these to characters
of C[Q]. For A € b; we denote by my C CIKT!,..., K = C[Q] the kernel of
xx : C[Q] — C. Given f € C[Q] we shall say that X is a zero of f of order > d
if f € m¢ for some d € N. We also say that A is a zero of order d if f € m¢ and
[ mi
Lemma 4.46. Let A € b} and p € P*. Then X is a zero of Det(P,) of order
> [anng(V (X)) : V()]
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Proof. For each copy V of V(u) in anng(V'(\)) we have x»(P(V)) = 0 by Lemma
@ In terms of the elements v;; € H* defined at the start of this subsection
this means that the rank of the matrix x(P(vi;)) satisfies rk(xa(P(vi5)) < m —
l[anng (V' (X)) : V(u)]. Hence the same is true for the matrix xx(P(u;;)) where
uij = v K_a,, € C[K;?,...Kx?]. Since Det(P,) = det(P(u;;)) this yields the
assertion. g
Lemma 4.47. Let A € T, o and p € PT. Then X is a zero of Det(P,,) of order
> dim(V (1) na)-

Proof. According to our above observations we have V() = M(X)/M(s0,q-\).
Moreover the action of FU,(g) on V(X) = M(\)/M(sg,a-A) clearly defines an in-
jection of FU,(g)/ annpy, ) (V(N)) into F Hom(V (X), V(A )) Hence
[H/ anng (V/(X)) = V()] < dim(V (1)o) — dim(V (t)na) = [H: V()] — dim(V (1) na )
by Lemma [£.44 We thus obtain

fanma(VOV) V()] = 85 V()] = [/ anms(V ) 5 V()] 2 (Y (1)),

Therefore the assertion follows from Lemma [4.46| O

Lemma 4.48. Let i € PT. For each o € AT and n € N, the element
(Ko — qin—Z(P’av)Kia)dim(V(u)na)
diwides Det(P,).
Proof. We shall show that pdim(V(#)ne) divides Det(P,) where
p=1-¢" e K2 e C2Q.
Note first that in C[Q] we have the factorization p = p,p_ where
pr =1t g oK
and for A € I';, o the formula
14qi oK =14 0K =14 V9K,

shows that xx(p—) = 0 and xx(p+) # 0.

We claim that py are irreducible elements in C[Q] and that A is a zero of p_ of
order 1. This is clear if & = «; is a simple root. For general a we can use the Weyl
group action on C[Q] to transform p4 into a polynomial of the form 1+ qAMIK o !
for some simple root «;, which easily yields the claim in this case as well.

Consider the linear subspace N, = {y € b* | (y,a) = 0} of b*. The bilinear
form (', ) on h* induces an orthogonal direct sum decomposition

b* =No @ Nova
such that n € h* corresponds to (n—1(n,a¥)a, 3(n, a")a). We shall write 7 : h* —
N, for the canonical projection, given by
1
m(n) =n - 5(na”)a.

Note that when n € 2Q we have 1(n,a") € Z, so that n — m(n) € Za and
m(n) € No N Q. It follows that if we define L, = 7(2Q) C N, N Q then every
element of C[2Q] can be written in the form Zé.:flngg; for some I > 0 and
elements g; € C[Lg].

In particular, we obtain such an expression for Det(P,). It follows that we can
write

Det(P,) = K., Z £,
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where each f; is contained in C[L,] C C[Q], and we have chosen d € Ny to be the
smallest integer with f; # 0.

Consider the canonical embedding C[L,] C C[Q]. Since the restriction of the
bilinear form ( , ) to N, is nondegenerate, the assignment n +— X, induces a
surjection x : N, — Hom(L,, C*) such that the diagram

h* — Hom(Q, C*)

Na —5 Hom(L,, C¥)

is commutative. Here the right hand vertical map is induced by restriction.
For n € N let us define

Zna={Neb | (A+p,a’)=n
and (\+p,3Y) ¢ Z + Lih;'Z for all B € AT, B # a},

where we are using the notation hg = dgh. Note that under the surjection h* —
by = Hom(P,C*) the set Z, o gets mapped to I';, o. The set Z, , is open and
dense in the affine subspace

{)\Gb* | (/\er,av):n},

and it follows that 7(Z, o) is open and dense in N,. Interpreting Hom(L,,C*)
as the set of characters of C[L,] it follows easily that we find A € Z,, ,, such that
Xx(fa) is nonzero. Since the image of A in I', , is a zero of Det(P,) of order
> dim(V (1)na) by Lemma[£.47, we conclude that d > dim(V (1t)na)-

Finally, recall that Det(P,) is contained in C[2Q}, and therefore invariant under
the automorphism of C[Q] which maps K; to —K;. It follows that p? divides
Det(P,,) as well. We have thus shown that the polynomial p? divides Det(P,,), and
this finishes the proof. O

The following result is essentially the content of Theorem 8.2.10 in [41].
Theorem 4.49. For u € PT we have

e = TT T (K20 1oyt
neENacA+

up to multiplication by an invertible element of U,(h).

Proof. Recall that we may choose the decomposition of H* in such a way that the
i-th copy of V() is contained in Uy(g) — Ka,, for some v; € PT fori=1,...,m,
and we define v = v; + -+ + v,. Clearly it suffices to prove the assertion for
Det(P,) = det(P,)K_q, instead of det(P,).

According to Lemma we have

Det(P,) = f H H (1 — 2(n=(pe)) g =2)dim(V(u)ner)
neENae A+

for some element f € (C[Kl_Q, e ,Kg,z]. Our strategy is to use degree considerations
to show that f is actually an invertible scalar.

Let us first use the definition of deg to define a filtration on C[K; 2, ..., Ky’]
whereby, for a linear combination X = > ;G Ky, with n; € 2Q* and nonzero
coefficients ¢; € C, we set deg(X) = max; deg(n;). By Lemma each element
of P(Uy(g) — Ka,)K_2,, is a linear combination of monomials K_», with v €
vj +P(V(—wor;)). Since the action of —wy on P preserves the set of positive roots
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it is easy to see that deg(—2wov;) = deg(2v;), so that each element X € P(U,(g) —
Kgyj)K_gyj satisfies

deg(X) < deg(2v;) + deg(—2wyv;) = 4deg(v;).

It follows that deg(Det(P,)) < 4deg(v).
If we consider the Hilbert-Poincaré series

h(2) = [Hy : V()]2*
k=0
for H from Definition [£.36] then by the definition of the v; we have

(0 hH Z k[Hy, : =deg(v1) + - - + deg(vm,) = deg(v).

According to Proposition we therefore obtain

deg(v Z Z dim(V () na) deg(a).

nEN acAt

This implies

deg < I I (- ey )dimwm)m)) _ ddes(v).

neNacA+

Combining our above considerations yields
4deg(v)deg(f) = deg(Det(P,)) < 4deg(v),

which implies deg(f) = 0. We conclude that f is a scalar, which must be invertible
since Det(P,,) is nonzero. This finishes the proof. O

We note that Joseph establishes a slightly stronger version of the formula for the
PRV determinant given in Theorem [£.49] Namely, it is shown in Theorem 8.2.10
of [41] that the formula holds even up to multiplication by a nonzero scalar of the
ground field, and not only up to an invertible element of U,(l). We shall not need
this stronger assertion in the sequel.

In fact, our main application of Theorem is the following key result on
annihilators.

Proposition 4.50. Let A € ;. Then the Verma module M () is simple iff
annFUq(g)(V()\)) NH = 0.

Proof. From our considerations in Lemma 4.17| we know that the canonical projec-
tion M (A) — V(A) has a nonzero kernel if and only if xx(det(Sh,)) = 0 for some
Shapovalov determinant det(Sh, ) with v € Q*.

We claim that annpy, () (V/(X)) NH # 0 iff xx(det(P,,)) = 0 for some PRV deter-
minant det(7,,) with 4 € P*. Indeed, consider the space H = annpy, (g)(V (\)) NH.
Then H is invariant under the adjoint action and therefore xx(P(H)) = 0 by
Lemma Hence if H is nonzero we have x(det(P,)) = 0 for some pu. Con-
versely, if xx(det(P,)) = O there exist scalars ci,...,cn, not all zero, such that
Yo cixa(P(vi;)) = 0 for all j. Let us write V for the linear span of the vectors
Y- cvi; for j = 1,...,m. Then V is the weight zero subspace of a uniquely de-
termined U, (g)-invariant subspace L C H*. Applying again Lemma we have
L C H, so H is nonzero.

According to Theorem we find that x,(det(P,)) is zero for some p € P+
iff

\2
2@ ) _gen



200 CHRISTIAN VOIGT AND ROBERT YUNCKEN

for some @ € AT and n € N. By Theorem this corresponds precisely to
the condition for the vanishing of y(det(Sh,)) for some v € Q*. This yields the
claim. O

4.6. Annihilators of Verma modules. This section is devoted to the Verma
module annihilator Theorem of Joseph and Letzter [44], see also Theorem 8.3.9 in
[41]. We shall rely crucially on results obtained in Chapter [2|and the considerations
in previous sections.

Let A € b; and consider the associated Verma module M (\) = U,(g) ®u, (s) Ca,
where we recall that Cy denotes the U,(b)-module associated with the character
Xx- The canonical left action of elements in U,(g) on M(A) defines an algebra
homomorphism ¢y : Uy(g) — End(M(N)).

The map ¢, is U,(g)-linear with respect to the adjoint action

ad(X)(Y)=X =Y = X1)YS(X2)
on U,(g) and the action given by
(X -T)(m) = X - T(5(X(2)) - m)

on End(M(A)). In particular, ¢, induces an algebra homomorphism FU,(g) —
FEnd(M(X)), which we again denote by ¢,.

We write annpy, (q)(M (X)) C FUy(g) for the annihilator of M()) viewed as a
FU,(g)-module, that is, for the kernel of ¢, : FU,(g) — F End(M())).

Recall that ZU,(g) C FU,(g) denotes the centre of Uy(g). In a similar way we
write annz, q) (M (\)) C ZU,(g) for the annihilator of M()) viewed as a ZU,(g)-
module.

Theorem 4.51 (Verma module Annihilator Theorem). Let A € by Then

annpy, (g) (M(A)) = FU(g) annzy, () (M (X)),
and the linear map ¢ : FU,(g)/annpy, (M (X)) — F End(M (X)) is an isomor-
phism.
Proof. We first claim that
FU,(g) = H+ FU,(g) anngzy, g) (M (N)),

where H is the subspace of FU,(g) obtained in the Separation of Variables Theo-

rem [2.154] Indeed, according to Theorem [2.154] we have FU,(g) = H® ZU,(g).
Moreover, recall that the centre ZU,(g) acts on M () by the central character .

In particular, we have Z — £,(Z)1 € anngy, (g (M(N)) for all Z € ZU,(g). Hence
we can write any element h ® Z € H® ZU,(g) in the form

Qh@1+h® (Z —E\(Z2)1) € H+ FU,(g) anngy, q)(M(N))

as desired.
Assume first that M (A) is simple. Then Proposition implies

annFUq(g) (M()\)) NH = 0.

It follows that the restriction of the map FU,(g) — FU,(g)/anngy, q)(M(N)) to

H is an injective map H — FU,(g)/annpy, q)(M(N)). It is also surjective since
FU,(g) = H+FU,(g) annzy, g (M (N)) and FU,(g) annzy, (g)(M (X)) C annpy, (g)(M(A)).
Therefore, we have an isomorphism

FUqy(g)/ annpy, (g) (M (X)) = H.
Still assuming that M () is simple, Proposition implies
[FEnd(M (X)) : V(v)] = dim(V (v)o)
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for any v € PT, where [N : V(v)] denotes the multiplicity of V(v) inside N and
V(v)o is the zero weight space of V(v). From Separation of Variables in Theorem
we know that [H : V(v)] = dim(V(v)o) as well. By comparing the multiplici-
ties of all isotypical components it follows that the inclusion map

H = FU,(g)/ annpy, (g (M (\)) — F End(M (X))

is an isomorphism. This finishes the proof in the case that M ()) is simple.

Now consider an arbitrary A € h7. Then according to Lemma there exists
N < Xsuch that M(N) C M(A) and M(X) is simple. Due to Proposition we
have annpy, (g)(M(N)) NH C annpy, (g (M (N')) NH = 0. Hence we obtain

FU,y(9)/ annpy, ) (M (A)) = H.
in the same way as above. Consider the commutative diagram

FHom(M (M), M(XN)) —— FHom(M(\), M(X))

| |

FHom(M(N), M(X)) —— FHom(M(X), M(X))

induced by the inclusion M (\") C M(\). Using Proposition and exactness of
the Hom-functor we see that the two vertical maps are injections and the bottom
horizontal map is an isomorphism.

This gives us an injection F End(M(\)) = F End(M (X)) and we obtain a com-
mutative diagram

H = FU,(g)/ annpy, g) (M (X)) — F End(M (X))

| |

H = FU,(g)/ annpy, g) (M (X)) —— F End(M()\)).

The bottom horizontal map is an isomorphism since M ()') is simple. The left
vertical map is also an isomorphism. The right vertical map is therefore surjective.
Since we have shown it is injective, this map is in fact an isomorphism, and so is
the top horizontal map. This finishes the proof. O
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5. REPRESENTATION THEORY OF COMPLEX SEMISIMPLE QUANTUM GROUPS

In this chapter, we discuss the representation theory of complex semisimple quan-
tum groups. The appropriate notion of a Gj-representation here is that of a Harish-
Chandra module for G, which means an essential ®(G,)-module with K -types of
finite multiplicity, see Section In particular, the irreducible unitary represen-
tations of Gy belong to this class.

Our main focus will be the classification of irreducible Harish-Chandra modules.
This is achieved by studying the (non-unitary) principal series representations of
G4 and the intertwining operators between them. We shall begin, however, with
some results on the Verma modules for the quantized universal enveloping algebra
Uq]R(g) associated to a complex semisimple quantum group G, see Section

Although some of the constructions and results presented here work more gen-
erally, we shall assume throughout that K = C and 1 # q = e" is positive. We
identify by = h*/ih~1QY where h = % Moreover we write

¢ —-q”

[Z]q - q-— q_l
for the g-number associated with z € C, and similarly use the notation for g-
binomial coefficients as in Section 2.11

5.1. Verma modules for U (g). In this section we discuss the theory of Verma
modules for the quantized universal enveloping algebra

Uy (8) = Uy (8) 2 € (K,)
of the complex quantum group Gy, which was introduced in Section

5.1.1. Characters of Uy (b). Characters of the algebra Ug(b) = UL (t) ba €°(K,)
are parametrized by pairs of weights (u, A) where p, A € by, as we now describe.

To p1 € b} we associate the character x,, of Uy (t) = Uy(h) given by x,(K,) =
¢ for all v € P, as in Subsection

To A € b we associate a character K of €°(K,) as follows. Briefly, if A =
Yo aioy € h* with a; € C then we may define K\ = [[, K" € M(D(K,)) by
functional calculus. More explicitly, recalling that the multiplier algebra of ©(K,)
is

M(D(Ky) = € (K,) = [] End(V(y)),
yeP+
we define K € M(D(K,)) to be the element which acts on any vector v € V(7)
of weight v by
Ky-v=q*o.

This is compatible with the existing notation for elements K, when A € P, and
depends only on the class of A in h; = h*/ih~1QV. The element K, determines a
character of €*°(K,) by

f = (.fa K)\)
Note that we are using the reverse pairing (f, K)) = (K_», f) in the definition of
this character, since we will want to interpret K, as an element of the function
algebra € (K,).

We remark that K, belongs to the subalgebra M(D(T)) C M(D(K,)) where T
is the maximal torus subgroup. It is in fact the pullback of a character K of €>(T)
by the quotient map € (K,) — €>°(T'). Moreover, every character of € (K,) is
of this form, see [77]. In this way, the parameter space b is identified with the
Chevalley complexification T¢ of the torus T
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Combining the characters x, and K for any u, A € b} we obtain a character
Xux of U (b) = UZ(t) 1 €(K,) by setting

X (X >4 f) = xu(X)(f, K)).

Notice that x,,» is typically not *-preserving for the standard *-structure on U, qR(b).

Let us conclude with some remarks about the restriction of these characters to
the subalgebra U, f(t) > € (PK,), which corresponds to the Borel subgroup of the
“connected component” G of Gy that was discussed in Subsection One sees
that the character x,  restricts to the trivial character on U}f(t) > €°(PK,) if
and only if (g, \) = (0,ih~1y) for some v € PV/QV. It follows that the characters
of UX(t) >a €*(PK,) are indexed by pairs (p,A) € P x b*/ih~'PV.
5.1.2. Verma modules for U?(g). The Verma module associated to X, x is defined
by

M(p, A) = Uy (g) ®uz(o) Cus

where C,, » = C is the representation space corresponding to the character x, x
defined above. Following previous notation, we will denote by v, » the cyclic vector
1®1e M(u,A).

Recall from Lemma that we have an embedding U (g) C Uy(g) ® Uy(g) of
algebras given explicitly by

UX b f) = AX) I (fa) ® 1 (fi))-

In this way we may view modules over U,(g) ® U,(g) as modules over UqR(g).
However, it will be convenient in later sections to use a different embedding of
UE(g) in Uy(g) ® Uy(g) as follows.

Definition 5.1. We define the embedding ¢' : UF(g) — Uy(g) ® Uy(g) by

(X s f) = AX) I (fay) @1 (f2))
for X < f € U ().

Note that « and ¢/ differ only by the order of the I-functionals in the formula.
Again, ¢/ is an algebra homomorphism.
We observe that for any X > f € UqR(g) we have

J(X b f) = (S @ 8)(e((1oa STH))(STHX) 1)),
using Lemma Thus we can also write
LIZJO(S®.§)OLOS5;7
where o denotes the flip map.

In the following proposition, N(A) denotes the universal lowest weight module
of U, (g) with lowest weight A € b7, namely

N(A) =Uy(9) @u,_) Ca

where C, denotes the one-dimensional U,(b_)-module upon which U,(n_) acts

trivially and U,(h) acts by the character x». We denote the cyclic vector 1 ® 1 by
A

v,

Proposition 5.2. Let (u,\) € by x by and let I,r € by be such that
uw=1I0-r, A=—l—r.
We have an isomorphism

M(p,A) =2 M(l) @ N(—r)
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of Uf(g)-modules which sends the cyclic vector v, x to vy ®@v™". Here the action of

U(g) on M(l) @ N(—r) is that induced by the embedding ./ above.
Proof. For all v € P, the action of K, € U¥(t) onv; ® v™" is given by
K, - nev ") =K, uyK, v "
= ¢y @ ¢ =y (K )u @ o
We make a similar calculation for the action of a matrix coefficient u;; = (e} [e]e])

where 7 € P* and the e/ form a basis of weight vectors for V'(n), with dual basis
vectors e;, € V(n)*. Writing ¢; for the weight of €] we obtain

ul; - (v @v") Zl+ ) o @1 (ugy) - v"
ol ) 1 R
=0;Ke, i@ K_¢, -v~
= 054" v @ ¢ Do
=60y @07"
= (u Z],K)\)vl Qv .
Here, in the second step, we use that li(u?j) is contained in Uy(b)e, —;, and that

the vectors v_; and v, are annihilated by U,(n;) and U,(n_), respectively. Note
also that when ¢; = €; we have I*(u};) = 6;; K+,

By the definition of M (u, A), we thus obtain a U (g)-linear map ~ : M (p,\) —
M(l) ® N(—r) such that y(v,\) =v ®v~".

For surjectivity, we will prove inductively that the subspaces M(1);—, ® N(—r)
are contained in im(vy) for each v € QT. For the case v = 0, note that the action
of E; € Uy () on v @ v™" is given by

E (v ") =uFE v "

It follows that Cv; ® N(—r) C im(y). Now fix v € QT and suppose that M (1);_, ®
N(—r) C im(y) for all v/ < v. Note that M(l),_, ® N(—r) is spanned by elements
of the form F; - m ® n with m € M(I);—ytq, and n € N(—r). Using the action of
F; on n ® m we can write

(Firm)@n=F-(m®n)— K, '-m®F, ncim(y),

3

and surjectivity follows.

For injectivity, we note to begin with that U (g) is a free right U(b)-module
generated by Ug(n_) ® Uy(ny) C Ug(g) = Uy (¢) C Uy (g). That is, the map

U,n) @ Uy(ng) — M(,)); Y@ X =YX v,
is an isomorphism. Consider an element
ZY] ® X; € Ug(n-) @ Ug(ny)
J

where Yj € Ug(n_)_,r, X; € Ug(ny),y for some weights v}, v € QF. We may
arrange the sum so that 1y is maximal among those v} appearing nontrivially,

and 1 is maximal among the weights v} such that v/ = vy and (v},v}) appears
nontrivially. By considering the actions of E; and F;, one sees that

’Y(Zj YVJ/'XV;./ . ’UP«’/\) = Z] YyéXVJI'/ . (Ul ® ,U—T)

contains a nonzero term in M(l);—,; ® N(—=7)_,4,y. This completes the proof. [
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In order to convert the lowest weight module N (—r) into a highest weight module,
we may twist the action of U,(g) by the algebra automorphism

=18 = 5’717',

where 7 is the algebra anti-automorphism defined in Lemma We record the
formulas
0(E;) = —F; 0(F) =—E;,  0(K,)=K_,,
from which it follows that N(—r) is isomorphic to M (r)?, where the latter denotes
the Verma module M (r) endowed with the action obtained by composition with 6.
Let us further note that for any U,(g)-module M, we have M $* o~ , where

M5 denotes the same space with action twisted by the automorphism S2. This
is because the two modules are intertwined by the action of Kj,, see Lemma

Therefore, if we put 6’ = S7 = 520 then we also have N(—r) = M (r)?".
We immediately obtain the following.

Corollary 5.3. Let (u,\) € by x by and let I, € b7 be such that

u=1I0-r, A=—l—r.
We have an isomorphism of UqR(g) -modules

M(pu, \) =2 M(l) @ M(r)
which sends the cyclic vector v, x to vi®wv,, and where the action of X > f € Uf(g)
onm®@mn € M()® M(r) is given by

(X< f)-(m®n)=(id®0) (/' (X > f)) - (m&n).

The same is true if 6 is replaced by 0'.

We point out that for a given character x, » of U}F(b) with p, A € by, there are
2V choices for the associated parameters (I,7) € by x by, where N is the rank of G.
Specifically, if we lift 1, A to h* then we obtain the solutions for (I,r) given by

l=-1A—p)+3ih 'Y, r=-i(A+p) +iintaV,

for ¥ € QV/2QV.

In other words, if we let the extended Weyl group from Definition |2.125

W=Y,xW= i 'QV/ihi'QY) x W

act diagonally upon the parameter space b; x b» by w(l,r) = (@l,r) then the
action of the translation subgroup Y, = %ih_le /ih~1QY does not change the
isomorphism class of the associated U (g)-modules M () @ M(r).

The following criterion allows us to characterize irreducibility of the Verma

modules M (p, A) introduced above. We recall that in our conventions we use
N={1,2,...}.

Theorem 5.4. The Uy (g)-module M(u, ) is irreducible if and only if (u,\) €
by X by satisfies

qg;)\+2p,av) #q&iu,av)+2m
for all « € A and all m € N.

Proof. As in Proposition we choose [,7 € by such that p =1l —r, A= -l —r.
Then M(l) ® M(r) is irreducible as a Uy(g) ® Uy(g)-module if and only if M(I)
and M (r) are both irreducible as U, (g)-modules. According to Theorem and
Definition this is the case iff

\2 \2
qi(“””a ) ¢ QiN and qi(r+p7a ) ¢ qiN



206 CHRISTIAN VOIGT AND ROBERT YUNCKEN

for all « € AT. Using 21 = —\ + u and 2r = —\ — p, this is equivalent to the

condition
_ v v
q((y A2p,0Y) 4 q((l:tu,oc )+2m

for all o € AT, m e N.

It remains to check that M () @ M (r) is irreducible as a a Uy(g) ® U, (g)-module if
and only if it is irreducible as a U}’ (g)-module with the action induced by (§ ®id)//,
compare the argument in the proof of Theorem 3.4 in [33]. For the nontrivial
implication assume that M(l) ® M (r) is irreducible as a Uy(g) ® U,(g)-module.
According to Lemma the image of ¢/ is (1 ® S(FU,(g)))A(U,(g)). Thus,
Theorem shows that the image of (id ®8)." contains K, & Ka,n_, for all
V' € P and v € P*. It follows that any U} (g)-submodule V' C M(I) ® M(r) is
the sum of its Uy(g) ® U,(g)-weight spaces.

Let v = Zj z; ® y; € V be a nonzero vector of weight (e, ¢,) with e = ¢, + ¢,
maximal in the submodule V. We may assume that the y; are linearly independent
in M(r),. Since

Ei-(.Tj@yj) :EZ'-.’EJ'@K;l 'yj_$j®Fi'yj7
the maximality of € forces F; - x; = 0 for all 4, and so each x; is primitive. Since

M(l) is irreducible we conclude that each z; is a scalar multiple of v;, and thus
v =v; ®y for some y. Likewise, using

Fi-(uey)=F-uey-K ' -u®E .y,

the maximality of € shows that y is primitive, and hence is a nonzero multiple of v,..
By Corollary v ®v, is a cyclic vector for the U (g)-action, so V = M (1)@ M (r).
This yields the claim. (]

5.2. Representations of G,.

5.2.1. Harish-Chandra modules. In this subsection we define the main notion of
G ,-representation which we will be studying in the remainder of the chapter.

We recall that the convolution algebra of G, is D(G,) = D(K,) b €°(K,).
Recall also that a ®(G4)-module V' is called essential if the multiplication map
D(Gq) ®n(a,) V — V is an isomorphism. Using the central idempotents in D(K,)
one sees that a ®(G,)-module is essential if and only if it is an essential D(K,)-
module under restriction.

Recall from Section that the quantized universal enveloping algebra U, g{(g) =
UZ(€) 1 €°(K,) of Gy sits inside the multiplier algebra of D(G,). Let us say
that a U$(g)—module V' is integrable if it is an integrable module for the action
of Uf(¢) C Uf(g). The following result is then essentially immediate from the
definitions.

Lemma 5.5. There is a canonical isomorphism between the category of essential
D(G,)-modules and the category of integrable Uy (g)-modules.

Proof. Every essential ©(Gy)-module becomes an integrable US (g)-module via the
inclusion U (g) € M(D(G,)).

Conversely, if V is an integrable U} (g)-module then the action of UF () C Uy (g)
corresponds uniquely to an essential D (K, )-module structure on V, and the latter
combines with the action of €>(K,) C UF(g) to turn V into an essential D(Gy)-
module.

These procedures are inverse to each other and compatible with morphisms. [

A third structure which is equivalent to an essential D (G,)-module is that of a
€°(K,)-Yetter Drinfeld module. We recall the general definition.
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Definition 5.6. Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a
left H-module V' which is at the same time a left H-comodule such that

(f-v)—y @ (f-v)o) = fyv—1)S(fe) @ fr) - v

for all v € V and f € H. Here we write y(v) = v(_1) ® v(o) for the left coaction of
HonV.

If V is a Yetter-Drinfeld module over €>°(K,) then we can convert the left
€ (K, )-coaction into an essential left action of ©(K,) by the formula

T-v= (S(x),v(,l))v(o), x € D(K,).

A standard calculation shows that the resulting ® (K, )-action and the given €>° (K, )-
action satisfy the commutation relations in the Drinfeld double ®(G,). It follows
that the category of €>°(K|,)-Yetter-Drinfeld modules is isomorphic to the category
of essential ®(G,)-modules.
Since any essential ®(G,)-module is an essential ® (K, )-module V' by restriction,
it decomposes as a direct sum
V= v,

yeP+

where V7 is a direct sum of copies of the simple module with highest weight «v. The
subspace V7 C V is called the isotypical component corresponding to +.

Definition 5.7. An essential ®(K,)-module V is called admissible if each isotypical
component V' is finite dimensional. An essential ©(G)-module which is admissible
as a ©(Ky)-module will be called a Harish-Chandra module over Gy.

We remark that the term “Harish-Chandra module” has several different mean-
ings in the classical literature, in particular with or without the imposition of ad-
missibility. The imposition of admissibility in this definition avoids many technical
annoyances, and as in the classical case, all irreducible unitary G,-representations
are admissible, see the following section.

5.2.2. Unitary G4-representations. By definition, a unitary representation of G4 on
a Hilbert space H is a non-degenerate *-homomorphism C{(Gy) — L(H).

In particular any unitary representation H of G; becomes a unitary represen-
tation of K, by restriction. A vector & € H is called K,-finite if it is contained
in a finite dimensional K -subrepresentation. The Harish-Chandra module HC(#)
associated with H is the space of all K -finite vectors in H. Explicitly, this is given
by

HC(H) =9 (K,) - H=D(Gy) - H CH.
From this description it is clear that HC(H) is dense in H, and that HC(#) naturally
becomes an essential module over D(Gy).

The goal of this subsection is to show that the ®(G,)-module HC(H) associated
with an irreducible unitary representation H of G, is admissible, so that it is a
Harish-Chandra module in the sense of Definition The argument is the same
as in the classical case, based on results of Godement.

Firstly, if A is any algebra then the n-commutator of n elements aq,...,a, € A
is defined by

[a1,...,a,] = Z sign(0)aq(1) - Ao(n)-
gESy
Note that for n = 2 this reduces to the usual commutator [a1,as] = a1as — asa.
Let us say that A is n-abelian if all n-commutators [ay,...,a,] for a1,...,a, € A
vanish. Clearly, subalgebras and quotients of n-abelian algebras are again n-abelian.
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By basic linear algebra, every finite dimensional algebra A is n-abelian for any
n > dim(A). In particular, for every k € N there exists a smallest number (k) € N
such that M, (C) is r(k)-abelian.

Lemma 5.8. With the notation as above, we have r(k + 1) > r(k) for all k € N.

Proof. Put n = r(k) — 1. Then there exists x1,...,2, € Mg(C) such that X =
[1,...,25] # 0. In particular, if we write X = (X;;) then there exist indices
1 <14,j <k such that X;; # 0. Set

Yy = <%l 8) S Mk+1(C) forl=1,...n,

and Yn4+1 = €; k41 the standard matrix unit with 1 in the (j, £ + 1)-position. Then
Ynt1yr = 0 for all 1 <7 < n and thus

[y17 R 7yn+1} = [y17 DRI ayn]yn-‘rl = [yla SRR 7y7l]ej,k?+1 7é 0.
We conclude r(k + 1) > r(k) + 1 as claimed. O

We are now ready to prove admissibility of irreducible unitary representations
of complex quantum groups, compare [2].

Theorem 5.9. Let H be an irreducible unitary representation of G,. Then the
associated ©(G,)-module HC(H) is admissible, and so a Harish-Chandra module.
More precisely, for any p € Pt the multiplicity of the K,-type HC(H)* in HC(H)
is at most dim(V ().

Proof. According to Proposition the embedding ©(G,) = M(D(K,)RD(K,))
restricts to an embedding

pu®(Go)py = [ End(pu- (V(n) @ V().

n,veP+

Let v, € V(n) and v¥ € V (v) be the highest weight vector and lowest weight vector,
respectively. Then v, ® v” is a cyclic vector for V(1) ® V(v) as a U,(g)-module,
and therefore the linear map Homy, (q)(V(n) ® V(v), V(1)) — V(i) sending f to
f(vy, ®v¥) is injective. We conclude that the dimension of p,, - (V(n) ® V(v)) is at
most d = dim(V (1))?. Therefore the algebra A = p,D(G,)p, is r(d)-abelian.

Now let 7 : Cf(G,) — L(H) be an irreducible unitary representation. Then
the von Neumann algebra 7(Cf(G,))” equals L(#H) by irreducibility, and hence
w(p)m(CH(Gy)) ' w(py) = L(m(p)H). If we set A = p,D(Gy)p,, this means that
the strong closure m(A)"” of m(A) C L(p,#H) is equal to L(w(p,)H). Since 7(A) is
r(d)-abelian, the same holds for its strong closure L(7(p,)#H). We conclude that
7(pu) € L(H) is a finite rank projection of rank at most d. Hence the multiplicity
of V(1) in H is at most dim(V (u)) as claimed. O

Let 7 be an irreducible unitary representation of G, on the Hilbert space H.
According to Theorem the image of any element of ®(K,) C D(G,) is a finite-
rank operator on #. This implies that ©(G,) acts by finite-rank operators. In
particular, the associated representation 7 : Cf(G,) — L(#) takes values in the
algebra of compact operators on H.

Let us say that a locally compact quantum group G is type I if the full group
C*-algebra Cf(G) is a C*-algebra of type I. As an immediate consequence of the
above observations we obtain the following result.

Corollary 5.10. Complex semisimple quantum groups are type I.

We remark that the corresponding result for classical semisimple groups is due
to Harish-Chandra, see [31].
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5.3. Action of U} (g) on K, -types. In this section we collect some facts on the
structure of integrable U (g)-modules, following Section 9.1 in [22].

Let V be an essential ®(G,)-module. We may also view V' as an integrable
Uq]R (g)-module, see Lemma By definition, the module V' decomposes as a direct

sum
v= v
~yeP+
of its K-isotypical components.
For o € P we denote
I° = ker(n,) = ann(V (o)) C Uq]R(E)7

where 7, : U (¢) — End(V(0)) is the homomorphism corresponding to the action
on V(o). By construction we have U (£)/I° = End(V (c)). Notice that

Vi={veV|X -v=0foral X e I"}.
For 0,7 € Pt we define
R T,0 __ R T R o
Ug ()77 ={X eU,(g) | I'X CU;(g)I"}.
By construction, we have UqR(g)T"’ -V C VT for any Ujf(g)—module V.

Lemma 5.11. Let 0 € PT. With the notation as above, the following holds.

a) Ui (g)I° C UF (@)™ for all T € P+,

b) UF(9) /U ()17 is an integrable D(Gy)-module with respect to left multiplication.
Its decomposition into K-types is

Ui(9)/Us(9)1° = €D Uk(a)" /U (9)I°.
TePt
¢) For all T € P, the space Ug@(g)”’ consists precisely of all elements of UqR(g)
that map V° into V™ for any Uf(g)—module V.

Proof. a) is obvious.

b) Using U} (€)/I° = End(V (o)), one sees that the generator 1 € Uy (g) /U (9)1°
is K,-finite. It follows that U]qR(g)/U(]F(g)I" is integrable. The 7-isotypical subspace
is the subspace annihilated by I7, that is,

(U (@) /U (@) 1) ={X + U (@)I° | I"X C Uy (9)I°} = U (8)™ /U (a)I°.

This yields the claim.
c) follows from the decomposition into K,-types in part b). ([

We will mostly be interested in UqR(g)”"’ for any given o € PT. It is easy to
check that this is an algebra. It contains U}F(g)[ 7 as an obvious two-sided ideal,
and U}f(g)] 7 acts as zero on every V7. We will typically factor this ideal out.
Accordingly, for any U (g)-module V' we get a map Uy (g)7° /U (g)17 — End (V7).

Proposition 5.12. If V is a simple integrable Uf(g)-module then V7 is a simple
U ()77 -module or zero.

Proof. Let v € V7 be nonzero. By simplicity of V' we have UX(g) -v = V. More-
over, using the above observations and part b) of Lemma we get U (g) - v =
>rep+ Ug(9)™ - v. Since Ug(g)™ v C V7, we have V7 = (Uf(g) - v)7 =
UZ(9)7° - v. O
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The converse is not true, that is, simplicity of V' as a U, q]R (g)7“-module does not
imply that V is simple. Nonetheless, we will show the existence of a unique simple
U (g)-module associated to each simple U (g)”7 /U (g)I1°-module.

We start with the following construction. Let V' be a Harish-Chandra module
and o € P* such that V7 # 0. Moreover assume that W C V7 is a U (g)”°-
submodule. Then we define

min R max R o
Wi = UR(g) W, W= (v eV | UR(g) vn VT C W}

The following Proposition shows that W™ and W™a* are minimal and maximal,
respectively, among the UqR(g)—submodules V! C V satisfying (V') = W.

Proposition 5.13. We have (W™™)7 = (W™)7 = W, and for any Uy (g)-
submodule V' of V' such that (V')? = W, we have W™ C V' C Wmax,

Proof. From Lemma ¢) we have that (Uj(g) - W)NV? = Ui (g)>" - W =W,
and it follows that (W™®)7 = (W™ax)o — W. If V' is as given, then Wmin
UR(g)-W C Ul (g) - V' € W™ as claimed.

Ol

Proposition 5.14. For o € Pt define
M, = {maximal left ideals of UqR(g) containing UqR(g)I”},
L, = {mazximal left ideals of UqR(g)”"I containing UqR(g)I"}.
Then there is a bijective correspondence ¢ : M, — L, given by
H(M) = M N U (g)".
The inverse of ¢ is given by
671(L) = {z € UR(g) | UR(g)z N UR(g)" C L}.

Proof. Notice that we have a natural bijection between left ideals of U}F(g) con-
taining U (g)17 and U} (g)-submodules of Uy (g) /Uy (g)I°. If M is a maximal left
ideal of U} (g) then 1 ¢ M, and therefore M N U ()77 # Uy (g)7°.

Similarly, we have a natural bijection between left ideals of UqR(g)”’ containing
U(g)1° and U} (g)”7-submodules of (U} (g)/Ug(a)I%)°.

Now it suffices to apply Proposition to V =Ux(a)/Us(g)I°. O

Proposition 5.15. Let o € P*. Consider
S, = {simple integrable UqR(g)—modules V with V7 #£ 0, modulo isomorphism},
T» = {simple Uf(g)"’”/UqR(g)I"—modules, modulo isomorphism}.
There is a natural bijective correspondence ¢ : S, — T, given by
B(V) = V.

Proof. The map v is well-defined by Proposition [5.12

For injectivity, suppose that V,V’ are simple integrable U}F(g)—modules with
nontrivial o-isotypical component, and that f : V° — (V’)? is an isomorphism of
U (9)7° /U (g)I7-modules. Let v € V7 be nonzero and set

L = annihilator of v in U} (g)”7,

M = annihilator of v in UE(Q),

L’ = annihilator of f(v) in UéR(Q)G’Ua
M’ = annihilator of f(v) in USR(G)-
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Tgese are all maximal left ideals of UqR(g) or Uq]R(g)”’“ respectively, containing
U, (g)I7. But
R 0,0 __ R / R 0,0
MnU(g)” =L=L =MnU;(9)"7,
so by the correspondence of Proposition we deduce M = M’.
For surjectivity, let W be a simple U, jf (g)7“-module whose annihilator contains
U (g)1°. Moreover let w € W be nonzero. Put
e L = annihilator of w in U (g)”°,

e M = ¢~!(L), the maximal left ideal of U (g) such that M NUS(g)”" = L,

which is obtained from Proposition [5.14]
o V = UZ(g)/M.
Then V is simple and by Lemma b),
V= (Ug(a)/Ug () I7)7 /(MU (9)I7)°

= U (0)77 /(M N UG (9)"7)
_ R 0,0 _
=U, (9)”7/L=W.

This finishes the proof. O

5.4. Principal series representations. In this section we define principal se-
ries representations for the complex quantum group G,. As in the classical case,
the principal series is key to the analysis of the representation theory of complex
quantum groups.

5.4.1. The definition of principal series representations. Recall from Subsection
that associated to any p € b} we have a character of UJ(t) = U,y(h) given

by xu(K,) = ¢*¥). In the case where u € P is an integral weight, this character
can be obtained as the pairing of UqR(t) with an appropriately chosen matrix coef-
ficient in €*°(K,). In other words, the character y, can be viewed as an element
of the function algebra €>°(T'), compare Section We will denote this function
by e# € €>(T), so that

(Ky,e') = XM(KV) = q(l“/)v
for all v € P.

In analogy with the classical case, there is an “associated line bundle” £, over the
quantum flag variety X, = K,/T. This bundle is defined via its space of sections

[(€,) ={€ € € (Ky) | (id@mr)AE) = @ e},
where mp : €°(K,) — €>°(T) denotes the canonical projection map. Note that
I'(€,) C €°(K,) is equal to the subspace of weight p with respect to the left
U (#)-action
X—=E=¢1)(X,&2)-

The space I'(€,) is a left €>°(K,)-comodule with coaction given by A. For A € b

we define the twisted left adjoint representation of €>°(K,) on I'(€,,) by
[-&=fay&S(f3)) (K2pen, f2))-

This combination of action and coaction make I'(£,,) into a Yetter-Drinfeld module
over €*°(K,), see Definition since we have

A(f-€) = f§)S(fs) @ fi2)€@S(fa)) (K2pex, f(3))
= fén)S(f3) ® f2) - &2
for all f e €®(K,), £ € T'(EL).
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We point out that the factor of 2p in the above formula is included merely to
force a shift in the parameter A. This shift is chosen such that for purely imaginary
A the resulting Yetter-Drinfeld module is always unitary, see Section [5.10] below.

Definition 5.16. We write I'(€,, ») for the space I'(€,,) equipped with the action
and coaction of €>°(K,) as above, and call it the principal series Yetter-Drinfeld
module, or principal series representation, with parameter (u, A\) € P x by

Equivalently, I'(€,, 1) can be viewed as an essential module over ©(G,) by trans-
forming the coaction into the associated left ©(K,)-action

z- &= (S(2),£1))E)

for z € D(K,) and £ € I'(€,). Likewise, replacing z € D(K,) by X € UF(¢) in
this formula we obtain the realization of I'(£,,x) as an integrable UZ (g)-module,
see Lemma

We record the following formula for the multiplicities of Kg-types in I'(E, »).

Lemma 5.17. The multiplicities of the K,-types in T'(E,.x) are given by
[(Eun) : V()] = dim((V (v)"),) = dim(V (v) ),
for allv ¢ PT.

Proof. Note that we have

€ (K) = @@ (EndV(v) = P V) @Vw) = @ V(-ww) e V(-wpw)*,

veP+ veP+ veP+

where the left and right regular U, jf (£)-actions correspond to the actions on the left
and right tensor factors, respectively. Here, the dual modules are equipped with
the contragredient action. Therefore, we have an isomorphism of UqR(E)-modules

L) = @ V)@ (V) ),

veP+

This proves the first equality. The second equality follows from dim((V'(v)*),) =
dim((V(v)—p)*) = dim(V(v)_,). O

Thus, in our conventions, the principal series representation I';, x has a nontrivial
K -isotypical component of highest weight v if and only if v € (—u)™ + Q™T, where
(—p)* denotes the unique dominant integral weight which is conjugate to —u under
the Weyl group action. In particular, I'(€, ) has a minimal K,-type of highest
weight (—p)T and this minimal K -type occurs with multiplicity one.

5.4.2. Compact versus noncompact pictures. Definition [5.16| is referred to as the
“compact picture” of the principal series representation. One may simply accept
this definition without motivation and check that it satisfies the Yetter-Drinfeld
condition in Definition [5.6] But for more insight, we note that principal series
representations also admit an interpretation as representations of G, induced from
characters of the parabolic quantum subgroup By =T Kq.

Let C, » denote the one dimensional representation of B, with character x,, x as
in the definition of the Verma module M (i, A) in Section By definition, the
(algebraic) unitarily induced representation of G, is

ind5? (C,) = {€ € €¥(Gy) | (id@mp,)Ac, (€) = £® (" ® Kapya)}-

Here Ky, is viewed as multiplier of ©(K,) inside €*°(G,). Again, the shift by
2p is included to ensure a suitable parametrization with inner products later on.
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Observe that the coproduct of €2°(G,) induces a left ®(G,)-module structure on
indg;’ (C,,») according to the formula

x- &= (Sq,(x),£1))Eo

for x € D(G,) and € € indg;’ (Cpr)-
On the other hand, recall that
[(Eun) = {§ € (K, | ([d@mr)A(§) = £ @ e}
admits a D (G, )-action corresponding to the Yetter-Drinfeld structure from Defini-

tion 5,16l

Lemma 5.18. Let (u,\) € P x b;. The linear maps

ext : F(g,u,)\) — indg: ((Clh)\); ext(§) = f & K2p+,\
and

res - ind (Cun) = D(Eun);  res(o) = (id ®¢)(0)
are well-defined and are inverse isomorphisms of ®(K,)-modules. Moreover, the
Yetter-Drinfeld action of €°(Ky) on I'(E, x) corresponds to the natural action of
€= (K,) € M(D(Gy)) on indf (Cpy).

Proof. Let us check that ext(§) for £ € T'(E,) satisfies the correct invariance prop-
erties. Recall that we can write the multiplicative unitary W in the form

_ v v
W = E uy; ® wi;
vyi,J

where (u?;) is a basis of matrix units for €>°(K,) and and (wY;) is its dual basis.

i i

Using the definition of Ag, from Subsection we compute

(ldemp,)Ag,(ext(€) = Y &u) @ wlKapaw], @ p, (uf;&2)S (ul) @ Kapyn)

Vy1,1,35758
Z £ @ Wi Kopawy, @ mr(uf;) e mr(S(ujy)) ® Kapya
V,1,7,8
Zf ® Wi Kopawy; ® e'mrp(uf;)S(mr(uf;)) @ Kopq
v,j

= QW Kappaw; @ e @ Kopix

v,j

=(® K2p+)\ Re'® K2p+)\ = ext(f) et ® K2p+)\
in M(€°(G,) ® €2°(By)). Hence ext(£) satisfies the invariance condition in the
definition of indgz (Cun)-

Similarly, for o € indgz (Cp,x) the element res(o) = (id ®€)(0) satisfies

(id®@7mr)A(res(o)) = (ild®é @ 77 ® €)Ag, (o)
= (ld®é ® id ®€é)(id ®@mp,)Ag, (0)
= (id®€)(0) ® e"é(Kaptn)
=res(o) ® e
inside €*°(K,) @ €>(T).
It is clear that res o ext is the identity on I'(£,, ). For the reverse composition,
we begin by observing that

(ide=(x,) ®E® €@ idn(x,))Ac, = idex(a,) -
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Then for o € indgz (Cu,n) we obtain

id®é®e®id)Ag, (o)

id®é® e®id)(id®mp,)Ag, (o)
id®é®e®id)(0 @ (" @ Kapir))
id ®é)(0) ® Kapya

= ext o res(o).

(
(
(
(

Therefore ext and res are isomorphisms.
Finally, we consider the actions. The action of z = ¢t 1 a € D(G,) on o €

indg: (Cp,») is given by

(taa) o= (Sq,(t=a),00))00)

tl><1a S (0'(1)))0'(2)
t>a, (S ® S )(WU(l)Wil))O'(g)
S(t) > S(a ), WoayW o),

according to the formula before Proposition [3.19] To transfer this to the compact
picture, we consider £ € I'(€,, ») and calculate

(
(
(
= (5

res((t > a) - ext(§))
= Y (5t)=aS(a), W (&) ® wlj Kapawly ) W™ ul;€(2) S (ul,)

Vy1,2,9,7,8

= Z (S(t) > S( )? pqg(l)umn ® wpq 13K2P+>\w S ( mn))u;jjf@)s(u?s)

 vmaB,
1,7,7,8,P,q,M, N

> (Slte))s €0 (S(t))wli Kapawl ST (S (t3))), a)u;2) S (ully)

V,1,2,9,7,8

(S(tay), amy) ey, as))ac)(te) - €)S(aw)) (Kapir, ag))

= (S(tay), aq)) (ta)s as))ag) - () - €)
=t-a- 5’

where the final lines use the actions of ©(K,) and €>°(K,) on I'(€,,)) given by

t-& = (9(1),€m)é)
for t € ®(K,) and
a-&=am)§S(a))(Kzpia, a2)),
for a € € (K,), respectively. O

In our conventions, the principal series module I'(§y —2,) corresponds to the
representation of G, induced from the trivial representation of B, when disregarding
the p-shift. Geometrically, this is the algebra of functions on the flag variety G,/B,
equipped with the regular representation. In particular, this algebra contains the
constant function 1 =1® 1 € €>°(G,), which is invariant under the (G, )-action,

(xoa f) 1= (Sq,(zeaf), 1)1 =éq, (x> f)L

That is, I'(€9,—2,) contains the one-dimensional trivial representation of G, as a
submodule.
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5.4.3. The action of the centre on the principal series. Recall from Subsection [3.4.2
that the quantum group G, admits a finite group of one-dimensional unitary repre-
sentations indexed by the centre Z = PV /QV of G. Explicitly, for each v € PV /QVY
we have the unitary character €, : ©(G4) — C defined by

é’Y(:‘C > f) = é(x)(Kihfl'ya f)7
see Definition [3.2Il These characters induce an action of Z on the class of Harish-
Chandra modules for G, whereby v € Z sends a Harish-Chandra module H to the
module H ® C;5-1,, with C;5-1, being the one-dimensional module with action €.
On the principal series, this action is given as follows.

Lemma 5.19. For any (u, \) € Pxb} andy € P¥/QY, we have I'(€, \)®C;p-1, =
D(Eurtin-14)-

Proof. Using the compact picture, I'(E,, x) ®C;p-1., and I'(E,, x4i5-1-) are naturally
identified as ®(K,)-modules. It remains to compute the Yetter-Drinfeld action of
Je@(K,) onE®1 el'(En) ®Cyp-1,. Using the fact that K;p-1, — f = [+
K;p,-1, we obtain

[-(€®1) = f(1)6S(f3)) (Kapgx, fr2)) ® (Kn-14, f(a))
= f0)€S(f) (K2p+x, f2)) (Kin-14, f(3)) ® 1
= f(1)€S(f(3)) (Kopiayin-14: f2) @ 1.
This completes the proof. O

This Z-action is responsible for the appearance of certain representations of G,
which do not have classical analogues. For instance, in the case of SL4(2, C), Podles
and Woronowicz observed the appearance of a nontrivial one-dimensional represen-
tation and of a pair of complementary series [63], as compared to the classical group
SL(2,C), which has only the trivial one-dimensional representation and only one
complementary series. This is related to the action of Z = Z.

In general, the various representations in a single Z-orbit all become isomorphic
upon restriction to the “connected component” GS described in Subsection m
since the characters €, are all trivial on D(Gg). As a consequence, the natural
parameter space for the principal series representations of GY is P x b*/ih™'PY,
compare the remarks at the end of Subsection [5.1.1

5.4.4. Duality for principal series modules. One can introduce a general notion of
the dual of a Harish-Chandra module.

Definition 5.20. Let V' be a Harish-Chandra module over G, see Definition [5.7}
We equip the dual space V* with the ©(G,)-action given by

(- ¢)(v) = p(Sc, () - v).
for x € D(Gy), ¢ € V*, v € V. The locally finite part F'(V*) C V* for the D(K,)-
action is again a Harish-Chandra module over Gy, called the dual Harish-Chandra
module.

Note that this defines an exact contravariant functor on the category of Harish-
Chandra modules over G, with ©(G,)-linear morphisms. Note also that the double
dual of V is isomorphic to V. Explicitly, the double dual of V' is naturally identified
with V' as a vector space, equipped with the D(G,)-action given by precomposing
the original action by S%Q Using the relation

(Kap 1) (w0 f)(K_g, 51 1) = §2(2) 01 S*(f) = S&,_ (x> f)

for all z > f € D(Gy), we see that the two actions are intertwined by the action of
Ko,.
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Lemma 5.21. Let (p,\) € P x b*. The Haar integral ¢ on L*(K,) induces a
non-degenerate bilinear pairing

D(Eux) X T(Epn) = € (&) = ¢(&n)
which is U, (g-invariant in the sense that for all X 0 f € UF(g),

((me)fvn):(gngq(XNf)n)

Proof. Non-degeneracy and the fact that (S(X)-&,n) = (&, X -7) for X € U (®)
follow from the basic properties of the Haar integral. For f,g € €°(K,) we have
S%(f) = Kap— f+ K_s,, where we are using the notation

X—~f=(X,fo)fy [=X=X fu))fe-

We also have the modular property ¢(fg) = ¢((Kop — g K2,)f), see Subsection
[3:233] and Lemma [3:17] Therefore,

(f-&m) = (K, f2)) 6(Kap— fy€S(f(3))n)

Ky, f2)) 9(6S(fa))nfy — K-2p)

K_x,5(f2)) 9(€S(fiz))nfa) — K-2p)

K_x,S(f2)) 9(6S(fi))nK -2, —5*(f(1))

§5(f) ).

This completes the proof. O

~ o~~~

It follows that we have an isomorphism between I'(€, ) and the dual Harish-
Chandra module of I'(£_,, ), in the sense of Definition

5.4.5. Relation between principal series modules and Verma modules. Recall from
Lemma and Proposition that we have an embedding ¢ : Uy (g) — Uy(g) ®
U,(g) of algebras and an embedding O(G,) <t O(G,) — €°(G,) of multiplier Hopf
x-algebras. These embeddings are compatible with the pairings

Uy (g) x €°(Gq) = C
(X >xc,a®t)=(X,a)ct)

for a®t € €°(K,;) ® D(K,) C €°(Gy) and X ¢ € UX(€) 1 € (K,) = Ui (a),
and

(Uy(9) @ Uq(g)) x (O(Gy) 1 O(Gy)) = C,
(X ®Y, frag) = (X,9)(Y,f)

for X @ Y € Uy(g) ® Uy(g) and f 1 g € O(Gy) > O(G,), respectively, see the
remark at the end of Section B.6l

Lemma 5.22. Let (u, \) € Pxb} and consider the Yetter-Drinfeld module I'(E,, x) =
indgg (Cpx) € €®(Gy). The pairing U, (g) X indgg (Cux) — C descends to a well-
defined bilinear pairing

M (j1,2p + A) x ind 5" (T, x) — C.
This induces an injective U}f(g)—lmear map
P(En) = M1 20+ \)°
where M (11,2p + \)* is equipped with the action given by
(X -T)(m) = T(Sc,(X) - m)
Jor X e Uf(9), T € M(p,2p+ \)*, m € M(u,2p+ ).



COMPLEX SEMISIMPLE QUANTUM GROUPS AND REPRESENTATION THEORY 217

Proof. Let

X xaceU,(8) xe®(K,) = U (a),

Y e d € Uy (t) 1 €(K,) = Uy (b),
and a € I'(£,), so that

ext(a) =a® Kopyr € indgz (Cpr)-
Note that since ¥ € U (t) we have

(XY,a) = (X @Y, (id@rr)A(a)) = (X, a)xu(Y).

Using the fact that U(]}Q(t) is commutative and cocommutative, we obtain

(X )Y 5d), a @ Kapi)
= <(Y<1>v c)(5(¥i)): ¢(3) X Y(z) M ezyd,a ® K2p+x)

= Yoy, cy)(S(Ya)) ¢3)) (X Yoy, @) (c2yd, Kopir)

= (M), c))(S(Y(3))s €3))(X; @) xu (Yiz)) (K —2p—x, €(2) ) (K —2p-x, d)
= (Y—(l)K*QP*)\S(Yv(Q))a C) (Xa a)Xﬂ(Y—(B))(K72pf)m d)
= (X, a)xu(Y)(c, K2p2)(d, K2py2)
= Xp2p2 (Y > d) (X >a¢,a @ Kopyn).
This proves that the pairing is well-defined.
For the final statement, we note that, with the action of Uj(g) on €(G,) given
by
X f=(5¢,(X), fu)fz)
the pairing U (g) X €>(G,) — C satisfies

(XY, f) = (Y, 851 (X) - f).
Therefore, the map
C(Gy) = U (@) fr (e f)
is Uge(g)—linear, and this restricts to the map stated in the lemma. Moreover, this

map is injective by the nondegeneracy of the pairing. O

The above lemma will allow us to identify the principal series module I'(€,,.»)
with the locally finite part of (M(l) ® M(r))* for well-chosen values of | and r
in hy. To do so, we need to clarify the relationship between Uf(g)—modules and
FU,(g)-bimodules with compatible adjoint action of Ug[g) as in Definition [£.26]

To begin with, suppose V is any UZX(g)-module. The diagonal embedding ¢ :
U (g) = Uqlg) ® Uy(g) (zf Lemma gi\ies an isomorpA)hism of U (g) onto the
subalgebra (FU,(g) @ 1)A(Uy(g)) = (1 @ S7YH(FU,(9)))A(Uy(g)). Therefore, we
can define an FU,(g)-bimodule structure on V by

Y-v=10Y®1)w, v-Z=1"108H2))w.

Moreover, we have a U,(g)-action on V' given by the action of U,(g) = UF(¢) C
UqR(g). As usual, we refer to this Uy(g)-action as the adjoint action and denote it
by X — v for X € Uy(g) and v € V. Note that for X € FU,(g) we have

Xy = v) - Xy = N1 @S (X2)A(Xwy))v
= X®1w
=X v,
so the actions indeed satisfy the compatibility condition of Definition
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Next, recall from Subsection that we defined left, right and adjoint actions

of Uy(g) on (M ® N)* by
Y @-Z)(men)=9(Z-ma7(Y)-n),
(X = @)m@n) = p(S(X@g) meT(Xa) - n),

for X,Y,Z € Uy(g), where 7 is the algebra antiautomorphism from Lemma m
The locally finite part of (M ® N)* with respect to the adjoint action is denoted
F((M®N)*), and the above actions restrict to make F'((M ® N)*) into an FU,(g)-
bimodule with compatible adjoint action of Uj,(g), see Lemma and the discus-
sion preceding it.

These actions correspond to a Uy (g)-module structure on F((M @ N)*). Explic-

itly, we can define an action of U (g) on (M ® N)* by first embedding U} (g) into
Uq(g) ® Ug(g) via the map ¢ and then letting Uy(g) ® Uy(g) act on (M @ N)* by

(Y ®@ 2)p)(m@n) = (Y -¢-5(2))(m©n)
=¢(8(2) m@r(Y)-n)

for Y, Z € Uy(g). By the above discussion, this UL (g)-action restricts to the locally
finite part F'((M @ N)*).
With this in place, we have the following result.

Proposition 5.23. Let (u, \) € P x by and let [,r € b} such that
uw=1Il-r, A+2p=—-l—r.
Then there exists an isomorphism of UqR(g)-modules
D(Eu) = F(M(L) & M(r))"),
where F((M (1)@ M (r))*) is equipped with the U (g)-module structure defined above.

Proof. By Corollarywe can identify the Verma module M (i, A+2p) with M ())®
M(r) as a U (g)-module if we equip M () ® M(r) with the UL (g)-action given by

X - (m@n) = ((ded') o /'(X))(m @ n),
for X € Uf(g) Thus, from Lemma we obtain an injective linear map ~ :

L(Eux) = (M(1) @ M(r))*.
By the U (g)-linearity of the map in Lemma“7 we see that for any X € U (g)
and f € I'(€,,x) we have

VX - f)m@n) =5(f)(Sc,(X) - (m@n))

for all m®@n € M(l) ® M(r), where the action of S'GQ (X) on the right-hand side is
given by

86,(X) - (m®n) = (1do6) oo o ($ & §) o u(X)(m @ n)

= ((§®7)(0 0 uX)))(m @ n),
see Corollary Thus, if we write ¢(X) = Z Y, @ Z; we get
(X - film®n) Z’y ) meT(Y;) - n).

Comparing this with the formula for the U (g)-action on (M ® N)* given just
before the proposition, we see that ~ is U, (g)-linear.

Since the action of Uy (£) = Uy(g) on I'(€,,») is locally finite and v is U (g)-
linear, the image im(y) is contained in the locally finite part of (M () ® M(r))*.
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Moreover, 7 is surjective onto each K -type, since Proposition and Lemma
show that for every v € PT,

[F((M(1) @ M(r))*) : V(¥)] = dim(V(v) ) = [[(Eun) : V(V)].
This completes the proof. O

Using Lemma .27 we can also reformulate Proposition [5.23] in terms of the
spaces F Hom(M (1), M(r)¥). Here we will state the result in terms of FU,(g)-
bimodules with compatible U, (g)-action rather than UL (g)-modules, using the dis-
cussion preceding Proposition [5.23

Corollary 5.24. Let (u, ) € P x by and let I,7 € b} such that
w=1I-r, A+2p=—-l—r.
There is an isomorphism of FU,(g)-bimodules
['(E,0) = FHom(M (1), M(r)")

which respects the adjoint actions of Uy(g). Here F Hom(M (1), M(r)Y) is equipped
with the actions

Y- p-Z)(m)(n) = m)(7(Y) - n),
(X = @)(m)(n) = p(S(X(2)) - m)(7(X (1) - n)
forY,Z € FU,(g), X € Uy(g), m € M(l) and n € M(r)

( p(Z
( (
In the sequel we will often identify I'(€,x) and F Hom(M (1), M (r)"), with the
parameters matching as in Corollary [5.24]
As we noted in the remarks after Corollary the parameters (I,7) and (', r’)
correspond to the same pair (u, A) € P x by iff they differ by the diagonal action

of the translation subgroup Y, = %ih’le/ih*IQv of the extended Weyl group
W =Y, x W, that is, iff

(U,r") =+ Lin~taY,r+ ik taY)

for some oV € QV.
We also note that by applying Lemma [4.28] we have an isomorphism of U,(g)-
compatible FU,(g)-bimodules

I'(E,,2) = F Hom(M(r), M(1)Y)

where now F Hom(M (r), M(1)V) should be equipped with the actions
Y ¢ Z)(m)(n) = (r(Y) - m)(Z - n),
(X = @)(m)(n) = o(7(X)) -m)(S(X(2) - )

for Y, Z € FU,(g) and X € Uy(g).

5.5. An equivalence of categories. In this section we discuss the relation be-
tween certain categories of FU,(g)-bimodules, which are related to the Harish-
Chandra modules of Section [5.2] and subcategories of category O, following Chap-
ter 8.4 in [41]. The results are due to Joseph and Letzter [44]. The corresponding
theory in the classical setting was developed independently by Bernstein-Gelfand
n [13], Enright [27], and Joseph [40].

We first introduce certain subcategories of category O.

Definition 5.25. For [ € b let O; be the full subcategory of O consisting of all
modules with weight spaces associated to weights in [ + P C ;.
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Comparing with the set-up in [41], note that for all modules N in O the annihi-
lator annzy, (g)(IV) has finite codimension in ZU,(g). This is due to the fact that
we require modules in O to be finitely generated.

Next we introduce a category of U,(g)-compatible FU,(g)-bimodules as in Defi-
nition but with some additional structural hypotheses.

Definition 5.26. Let H be a FU,(g)-bimodule with a compatible locally finite
action of U,(g), meaning that

(X(l) —)U)-X(Q) =X v

for all X € FU,(g) and v € V. We say that H is a Harish-Chandra bimodule if the
following conditions are satisfied.

a) All isotypical components for the adjoint action of U,(g) are finite dimensional
and integrable.

b) The annihilators of both the left and right actions of ZU,(g) have finite codi-
mension.

¢) H is finitely generated as a right F'U,(g)-module.

We write HC for the category of Harish-Chandra bimodules with morphisms
being F'U,(g)-bimodule maps which are also U,(g)-linear.

Let us observe that every irreducible Harish-Chandra module V' naturally defines
a Harish-Chandra bimodule. Indeed, according to Definition [5.7] Harish-Chandra
modules are admissible as (K )-modules, so that the isotypical components of
V are finite dimensional and integrable by assumption in this case. Irreducibility
implies that the annihilators for the action of left and right action of ZU,(g) have
finite codimension because the centre must act by fixed left /right central characters.
If V is simple then every finite dimensional D (K,)-submodule W of V' generates V'
asa U qR(g)—module, and the compatibility condition in Definition implies that
W generates V even as a right FU,(g)-module.

Recall that & : ZU,(g) — C is the central character corresponding to [ € b} as
in Definition and note that ker(&;) annihilates M (1).

Definition 5.27. For [ € b let HC; be the full subcategory of HC consisting of
all objects for which the annihilator of the right action of ZU,(g) contains ker(¢;).

We shall now relate Verma modules and compatible bimodules in the Harish-
Chandra category, at least with suitable extra conditions on both sides.

Proposition 5.28. For [ € b we obtain a covariant functor F; : O — HC; by
setting
Fi(M) = FHom(M(1), M)
for M € Oy, equipped with the compatible bimodule structure
Y -@-Z)(m) =Y -p(Z-m)
(X = ¢)(m) = X1y - o(8(X(2)) - m)
forY,Z € FU,(g), X € Uy(g9), ¢ € FHom(M (1), M) and m € M(l).

Proof. Let us check that F;(M) is indeed contained in HC;. Firstly, the adjoint
action of U,(g) is clearly locally finite on the right hand side. Moreover, since
the weights of M belong to [ + P, one easily checks that the adjoint action has
weights in P, so is integrable. The annihilator of the left action of ZU,(g) has finite
codimension because M € O, and the annihilator of the right action of ZU,(g) has
finite codimension because it contains ker(&;).

For the finite multiplicity requirement, note that modules in category O have
finite length by Theorem and since every simple module embeds in a dual
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Verma module it is therefore enough to consider the case that M = M(r)Y is a
dual Verma module. In this case it follows from Lemma [£.27] and Proposition

a).
Hence F;(M) is indeed contained in HC;. Moreover F; clearly maps U, (g)-linear
maps to Uy(g)-linear FU,(g)-bimodule maps. O

Note that when M = M(r) for r € by, the bimodule structure in Proposition
.28 is exactly the same as that from Corollary [5.24] In other words, with g =1—r
and A\ + 2p = —[ — r we have

FZ(M(T’)V) = F(£/L,A)~

Let F' be the functor on Uy(g)-modules that assigns to M its locally finite part
FM. This is not an exact functor. If 0 - K — E — @ — 0 is exact then clearly
00— FK - FE — FQ — Oisexact at FK and FE. Surjectivity may fail however.
Consider for instance £ = M (p),Q = V(u), K = I(p) for p € PT. Then FE =0
and FQ = Q.

Despite this fact we have the following result.

Lemma 5.29. Let | € b be dominant. Then Fy : O, — HC; is an exact functor.

Proof. Recall from Deﬁnitionthat I € by is called dominant if q,(xlﬂ)’av) ¢ +q; N
for all @ € A*, where N = {1,2,...}. According to Proposition dominance of
[ implies that M (l) is projective. Hence the invariant part of the induced sequence
0 — Hom(M(l),K) — Hom(M(l), E) — Hom(M(l),Q) — 0 is exact. Tensoring
with a simple module V(i) for 4 € P* we see that this applies to all p-isotypical
components. Indeed, the p-isotypical component of Hom(M (1), N) is the invariant
part of

Hom(M (1), N) @ V(u)* 2 Hom(M (1), N @ V(u)*),
so exactness follows again from projectivity of M (l). O
Our next aim is to define a functor in the reverse direction. For this we need
some auxiliary considerations.
Firstly, assume that H is any FU,(g)-bimodule with a compatible action of
Uy(g), and let V' be a finite dimensional integrable U,(g)-module. Consider the

right F'U,(g)-module structure on the second factor of V ® H and the left U,(g)-
module structure given by the diagonal action

X = (v@h)=(Xa v)®(Xg —h)
for X € U,(g). Let us define a left FU,(g)-module structure on V ® H by setting
Y-(v@h) =Y v) @Yy -h
for Y € FU4(g). This makes sense since FU,(g) is a left coideal, see Lemma [2.112
Then we compute
Yoy = (v@h)) - Yoy = (Y1) - v) @ (Y2 = h) - Y3

=(Yq) v)® (Y2) - h)

=Y (v®h),
so that the resulting FU,(g)-bimodule V' ® H is compatible with the Ugy(g)-action.
Proposition 5.30. Let V be a finite dimensional integrable Uy(g)-module and as-

sume that H € HC. Then the compatible FU4(g)-bimodule V@ H constructed above
is again contained in HC. For H € HC; we have V ® H € HC;.
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Proof. We have to verify that the conditions in Definition [5.26| are satisfied for
V ® H. For condition a) notice that V is locally finite and integrable for the left
U,(g)-module structure, and that local finiteness and integrability are preserved
under tensor products.

The key point to check is condition b). For this we may assume that V =
V(w) is simple. The annihilator of ZU,(g) for the left action on H being of finite
codimension implies that we have

annzy, () (H) 2 (ker(&,) -+ - ker(g,, )"

for some weights 1, ..., € b; and r € N. Note that, thanks to the decomposition
series of V' ® M(l;) from Lemma we have

annzu, g (V (1) © ML) 2 H (annzy,g) Ml +v))°
veP(V (1)

= I (ker(&,40))°

veP(V(n))

for sufficiently large s. It follows that

annzy, (g)(V(p) ® H) 2 H H ker(flj+l,)s,
J veP(V(w)

for some s and hence annzy, (o) (V (1) ® H) has finite codimension.

Finite codimension for the annihilator of the right action of ZU,(g) is obvious
since H € HC.

Condition c) is evidently satisfied because the right action of FU,(g) on V ® H
only sees the factor H. We conclude that V ® H is contained in HC'

The final assertion regarding HC; is again immediate because the right action of
ZU,4(g) depends only on the second tensor factor of V ® H. O

Let H € HC be given. Since H is finitely generated as a right FU,(g)-module we
find a finite dimensional integrable Uy (g)-submodule V' C H such that the canonical
map V ® FU,(g) — H is surjective.

If H € HC, then the right annihilator of H contains ker(§;) C ZU,(g), and hence
Theorem implies that the the projection V @ FU,(g) — H factorizes through
V @ FEnd(M(1)).

Lemma 5.31. Letl € b and let H € HC;. The left action of FU,(g) on the first
leg of H ®py,(q) M(1) extends to a left action of Uy(g) via the formula

X-(hem)= X1 —h®Xg) - -m,
and we obtain a functor T, : HC; — Oy by setting
Ti(H) = H @ru,(g) M(1)
for H € HC;.
Proof. Note that when X € FU,(g), we have
(X-h)y@m=(Xaq) —h) - Xg@m=Xq) = h®Xqg - -m,

for all h@m € H ®py,(g) M(l). We need to show that the expression on the right-
hand side remains well-defined on the balanced tensor product when X € U,(g).
Since H is a Harish-Chandra bimodule, we have a direct sum decomposition
H = @,,cp H, into weight spaces for the adjoint action. If h € H,, m € M(I)x
then the above calculation shows (K, - h) @ m = ¢ " h @ m for every v € 2P+,
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It follows that these elements K, € FU,(g) are simultaneously diagonalizable on
H ®py,(g) M(l) with eigenspaces

(H ®@pu, M)y = P H, @ M(D)..
HEA=y

Now it makes sense to define the action of any K, € U,(h) by K, - v = ¢y
whenever v € (H ®py,(g) M (1)), and this agrees with the formula stated in the
lemma. By Lemma this action is well-defined for all X € Uy(g).

The resulting U,(g)-module 7;(H) is clearly a weight module with weights con-
tained in [ + P. According to our considerations above there exists some finite
dimensional integrable U, (g)-module V such that H can be written as a quotient
of V.® FU,(g). Hence T{(H) = H ®py,g) M(l) is a quotient of V' @ M(l), and the
latter is in category O;. It follows that T;(H) is contained in O;.

It is clear that 7; maps morphisms in HC; to morphisms in 0. O

We obtain a Frobenius reciprocity relation for the functors F; and 7.
Proposition 5.32. For H € HC; and N € Oy there is a natural isomorphism
Homy, (g)(Ti(H), N) = Hompuc(H, Fi(N)),
that is, the functor T; is left adjoint to Fj.
Proof. The standard Hom-tensor adjunction yields an isomorphism
¢ : Hompy, (g)-ru, (g) (H, Hom(M (1), N)) = Hompy, g)(H @pu,(g) M (1), N),

sending f € Hompy, (g)-ru, (g) (H, Hom(M (1), N)) to ¢(f) given by ¢(f)(h®@m) =
f(h)(m). The inverse isomorphism is given by 1(g)(h)(m) = g(h ® m).

Let us show that ¢ maps morphisms in HC to U,(g)-linear maps and 1 maps
U,(g)-linear maps to morphisms in HC. We do this by verifying that the unit
and counit of the above adjunction have these properties. For H € HC; the unit
u:H — FT(H) = FHom(M(l), H®py, ) M(l)) is given by u(h)(m) = h @ m.
We compute

WX = h)(m)=(X —>h)®@m
= (X = h) @ (X2)S(X(3)m
=Xa) - (h® S(X() -m)
= X() - u(h)(5(X(2)) - m) = (X — u(h))(m).
The counit e : 37 (M) = FHom(M(l), M) @y, gy M () — M is given by e(T ®
m) = T(m). For any v € P we have
e(K, - (T @m)) = q@"Ne(T @ m)
= ¢ VT (m)
= (K, =>T)(K, -m)
=K, - T(Ku_l (K -m))
=K, -T(m)
=K, e(T®m)
if T has weight p and m has weight A. In light of Lemma this suffices to

conclude that e is U,(g)-linear.
We conclude that the map ¢ constructed above restricts to an isomorphism

Hompc(H, FHom(M(l), N)) — Hoqu(g)(H ®FU,(a) M(l),N)
as desired. O



224 CHRISTIAN VOIGT AND ROBERT YUNCKEN

Proposition 5.33. Assume | € b is dominant. Then the canonical map H —
FiTi(H) induced from the adjunction of F; and T; is an isomorphism for H € HC;.

Proof. First, take H = FEnd(M(l)). By the Verma module annihilator theorem
4.51 we have F'End(M (1)) = FU,(g)/ annpy, g)(M(1)) and so the canonical mul-
tiplication map F' End(M (1)) ®py, gy M (1) — M(l) is an isomorphism. It follows
that

Ti(H) = FEnd(M(l)) ®Fu,(g) M(1) = M(1).
Hence we get F;T;(H) = Fi(M(l)) = FEnd(M (1)) = H in this case.
Next assume that H =V @ F End(M({)) for some finite dimensional integrable
U,(g)-module V. Then by our previous considerations

Ti(H) = (Ve FEnd(M(1))) @ru, g M) =V @ T,(FEnd(M(1))) =V ® M(l),
and hence

FiTi(H) = F(V © M(D)
= FHom(M(l),V ® M(l))
=~V ® FEnd(M(1)).

This means F;7;(H) = H in this case as well.

Finally, suppose that H € HC; is arbitrary. According to the discussion pre-
ceding Lemma there exists a finite dimensional integrable U,(g)-module V3
and a surjective homomorphism V3 ® F End(M (I)) — H. Moreover, as FU,(g) is
Noetherian by Theorem [2:137] the kernel of the projection map is again in HC;.
Hence we obtain a short exact sequence of the form

Va ® FEnd(M(l)) — Vi ® FEnd(M(l)) —— H —— 0

Since F; is exact by Lemma and 7; is right exact we obtain a commutative
diagram

Vo ® FEnd(M(l)) —— Vi @ FEnd(M(1)) H 0

; P

Vo ® FEnd(M(I)) —— Vi ® FEnd(M (1)) —— FTi(H) —— 0

with exact rows. The 5-lemma shows that the right hand vertical arrow is an
isomorphism. O

Lemma 5.34. Assume thatl € b is dominant. IfV € Oy is simple then Fi(V) = 0
or Fi(V) is simple. All simple objects in HC; are obtained in this way.

Proof. Assume F;(V) # 0 and let H C F;(V) be a nonzero submodule. If i : H —
F1(V) denotes the embedding map then the map j : T,(H) — V corresponding to
i is nonzero according to Proposition [5.32] Since V' is simple it follows that j is a
surjection. Since F; is exact by Lemma we conclude that F;(j) : i T(H) —
Fi(V) is a surjection. Composing the latter with the isomorphism H — F;7,(H)
we reobtain our original map i. Hence i is surjective, which means that H = F; (V).
Hence F;(V) is simple.

Now let H € HC; be an arbitrary simple object. Then we have H = F,T;(H) by
Proposition so that 7;(H) is nonzero. Since every object in O; has finite length
we find a simple quotient V' of T;(H). Then F;(V) is simple, and the quotient map
Ti(H) — V corresponds to a nonzero homomorphism H — F;(V'). Since both H
and F;(V) are simple this means H = F;(V). O
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In fact, in Proposition below we will see that with suitable hypotheses on [,
the bimodule F;(V') is never zero for V simple, so that F; maps simple objects to
simple objects.

As a final ingredient we shall discuss under what conditions we have F;(V') # 0
for all simple V. For this we need to introduce the concept of a regular weight and
discuss the translation principle.

Let A € h2. Recall from Section [t.1] that Wiy = {i € W | @A — A € Q C
b:/3ih~tQY}. We adopt the following definition from Section 8.4.9 in [41].

Definition 5.35. A weight A\ € b7 is called regular if the only element w € W[,\]
with wA=XAis w =e.

Observe that any element @ € W which satisfies ¥.A = \ is automatically in
Wiy; so the definition is equivalent to demanding that e is the only element of W

which fixes A. We conclude that the group W acts freely on the set of all regular
elements in bhy.

Lemma 5.36. Let u ¢ PT. Ifl ¢ by is dominant and regular then

W.(l+p) 0+ PV () = {1+ p},
where P(V (1)) C P denotes the set of all weights of V().

Proof. Tt is clear that [ + u is contained in W.(I 4 ) N (1 +P(V(w))).
Conversely, assume o € W satisfies w.(I + p) € (I+ P(V(1))). Then o € W[l]
since
wl4+p+p)el+u+p+Q
and W[l+u+p] = W[l]. Since [ is dominant it is maximal in its W[l]—orbit according
to Proposition which means that we have @w~!'.l = [ — v for some v € QT, or
equivalently w(l — v + p) =1 4 p. From the latter relation we conclude

W.(I+p) =w(l+p+p) —p=1l+d(p+7),

which implies in particular @w(u + ) € P(V(u)). Moreover, since v € Qt and
€ Pt we have (u,) > 0, and we get

(g + ), w(p+7) = (L4+v,m+7) = (1, 1) +2(p,7) + (7,7) > (1, 1)

with a strict inequality iff v # 0. However, for v € P(V(u)) we have (v,v) < (u, u),
see Lemma 1.7 in [26]. Hence v = 0 and we conclude @ 1.l = [. This implies @ = e
by regularity of [. O

Let M € O. For a central character x : ZU,(g) — C, let us define the x-primary
component of M by

MX={me M |for all Z € ZU,(g) we have (Z — x(Z))" -m = 0 for some n € N},

compare Section 1.12 in [37]. Then MX C M is a U,(g)-submodule, and as in the
classical case one checks that M decomposes into a finite direct sum of its primary
components.

Using this fact we obtain a direct sum decomposition of O into the full subcat-
egories OX of modules for which M = MX. We also refer to OX as the primary
component corresponding to x.

Note that according to Proposition [2.129] every central character is of the form
X = &y for some A € by in our setting.

Proposition 5.37. Let p € PT and let | € by be dominant and regular. Then for
all € W the Verma module M (w.(1+ 1)) is a direct summand of V(1) @ M (i.1).
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Proof. Consider the primary component of M = V(u) ® M(w.l) corresponding to
&4p 0 ZUy(g) — C. All Verma modules in the primary component O%+x have
central character & ,, and hence highest weights in W(l + u). By Lemma
M admits a Verma flag with highest weights of the form w.l 4+ 7 for n € P(V(p)).
Hence the Verma modules occurring as subquotients of M for this flag are of the

form M (v) for v € (W.(I + p)) N (w.0l +P(V(p))). Since P(V (1)) is stable under
the (unshifted) action of W we obtain

w.l+P(V(p) = w(l+p)—p+P(V(n) = 0+ PV (1)) +p)—p = 0.(1+P(V(1)))
Since clearly W.(1+ p) = @w.W.(I + p) we deduce

(W04 1)) 0 (a0 + PV (1)) = .00+ 1) 0 (1 + PV () = (0 + )
by Lemma@ Hence the only possibility is v = w.(I 4+ ). The result follows. O

We shall now show that /; maps simple objects to simple objects in the case
that [ is regular.

Proposition 5.38. Assume [ € b is dominant and regular. Then Fi(V') is simple
for each simple module V € O;.

Proof. We have to show that F Hom(M (1), V) is nonzero if V is a simple module.
For this we may assume V = V(I 4+ A) for some A € P. According to Proposition
we have that M (I + p) is a direct summand of V(u) ® M(1) for any p € P+.
Since F Hom(M(1),V) ® V(u)* = FHom(V () ® M(1),V) it therefore suffices to
show that F Hom(M (I + p), V(L + X)) is nonzero for some p.

Choose pu such that v =y — XA € PT, and let V(—v) denote the simple module
of lowest weight —v. Then Proposition [£.35] and Lemma [£.27] show that

[FHom(M(l + p), ML+ A)Y) : V(=v)] = dim(V(-v)_,) =1
and
[F Hom(M (I + 1), M(I+ X =7)") : V(=v)] = dim(V (1) —y—) =0

for all v € P*\ {0}. Since V(I + X) € M (Il + )V and the corresponding quotient
has a filtration with subquotients isomorphic to V(I + X —~) for v € PT \ {0} this
yields the claim. O

Let us now summarize the results obtained so far.

Theorem 5.39. Let | € by be dominant.

a) The functor T; : HC; — O; embeds HC; as a full subcategory into Oy.
b) Ifl € by is regular then F; : Oy — HC; is an equivalence of C-linear categories.

Proof. a) It follows from Propositions and that we have
Hompc(H, K) = Hompc (H, FiT(K)) = Hoqu(g)('ﬁ(H), Ti(K))

for all H, K € HC;, hence 7; is fully faithful. This means precisely that 7; embeds
HC,; as a full subcategory into O;.

b) Assume first that H € HC; is simple. If 7;(H) is non-simple there is a
composition series 0 C Vy C --- C V,, = Ti(H) in O, with simple subquotients for
some n > 0. Since F; is exact by Lemma and maps simple modules to simple
modules by Proposition this induces a composition series 0 C F;(Vp) C -+ C
Fi(Vn) = FT/(H) & H with simple subquotients. Now our assumption that H is
simple implies n = 0, which is a contradiction. Hence 7;(H) is simple.

We conclude that 7; maps simple objects in HC; to simple objects in ;. Taking
into account Proposition it follows that F; and 7; induce inverse equivalences
on simple objects.
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Let 0 > K -+ E — Q — 0 be an extension in O;, and assume that the counit
of the adjunction from Proposition induces isomorphisms 7;.F;(K) = K and
TiFi(Q) =2 Q. Consider the commutative diagram

0 —— TA(K) —— TiF(E) — TIFi(Q) —— 0

T )

0 K E Q 0

The bottom row is exact by assumption, so the map K = T, 7 (K) — T, (E) must
be injective. Since F; is exact and 7; is right exact, it follows that the upper row
of the diagram is exact as well. This implies 7;F;(E) & E as desired.

The full subcategory of O; on which the counit e : 7;F; — id of the adjunction is
an isomorphism contains all simple objects, and every object in O; has finite length.
We conclude 7, F; 22 id, and this finishes the proof. O

5.6. Irreducible Harish-Chandra modules. We shall now derive consequences
for the category of Harish-Chandra modules. Some of these results have been
sketched in [3].

Recall from the comments following Lemma [5.17] that the principal series repre-
sentation I'(€, ») has a minimal K -type which occurs with multiplicity one.

Definition 5.40. Let (u,\) € P x h;. We denote by V,, x the unique irreducible
subquotient of I'(£,, ») with the same minimal K -type.

To observe that V, 5 is indeed well-defined, consider the submodule of I'(£,, »)
generated by any nonzero vector in the minimal K -type. This module has a unique
maximal submodule, namely the sum of all submodules not containing the minimal
K ,-type, with corresponding quotient V), x.

Throughout this section, given (y,A) € P x b7, we shall use (/,7) to denote a
pair of weights in b7 x b7 such that

p=1Il-r A+2p=—-l—r,

compare Corollary We recall that the pair (I,r) is well-defined only up to
addition by an element of the form (3ih~'a", 2ih~1aV) for some oV € QY.

We record the following equivalent formulations of a common integrality condi-
tion on the parameters (i, A).

Lemma 5.41. Let (u,\) € P x by and let I,r € by be such that p =1 —1r and

A+ 2p = —1—r. For any positive Toot a € A™, the following are equivalent:
a) q((l)ua )eq;\(ﬂaa )|*2N.

b) Both q&Hp’av) € ¢ and q&rﬂwﬂ) € +q\.

Likewise, the following are equivalent:

¢) ¢ e q'of’:""v)'“N. )

d) Both q&Hp’a ) e +q¢;N and q&’"*”"’ ) e +q; M.

Proof. Let us put hi, = hid,. Then condition a) is equivalent to
A\, aY) € —|(, )| — 2N mod ik, ' Z.

If we define I’ =1+ p, ' = r + p, so that we have

/,L:l/_’r/, )\:_ZI_T/,
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then the above condition is equivalent to having both
—(I'"+7",a¥)e —(I' =v",a") — 2N mod ih, 'Z,
—('+7",a¥)e —(r' —1',a") — 2N mod ih, ' Z.
These conditions simplify to
(I';a") € Nmod Lih;'Z,
(r',a") € Nmod 3ih;'Z,

which is equivalent to b).
The equivalence of ¢) and d) follows by replacing (u, A) by (—pu, —A). O

We now begin the study of the simple modules V), .

Lemma 5.42. If there is no a € A" such that q&”p’av) € +q”% then T'(E,) is

(03
simple, and we have

Vir 2 F(V(r) = F(M(r)Y) = T(Eun).

Proof. Since r — [ is a weight, the hypothesis implies ¢&** o) ¢ +q~ for any
a € AT, In particular, 7 is antidominant, so M (r) is simple by Theorem We
get F(V(r)) = Fi(M(r)Y) 2 T'(€, ), which is nonzero, and hence irreducible by
Lemma By definition, we have V,, x =I'(€, ») in this situation. O

Our next result gives a sufficient condition for the simple modules V), y and Vs s
to be isomorphic. We will shortly show that this condition is also necessary, see
Theorem (.47

Theorem 5.43. Let (u,\) € P x b;. Then V, x = Vi wa for allw € W.

Proof. Fix w € W and let us write (¢, \') = (wp, w)). We begin by proving that
Vi . =2 Vi, in the case where p is fixed and A belongs to the dense subset

Z={xebi| ¢ ) ¢ ¢ for all a € AT} C b

Using the the relation 21 = y — A — 2p we get qu’av) ¢ +q¢~ for A € Z, and hence
Vix =I(Eu,n) by Lemma [5.42) The condition qal’av) ¢ 44~ implies that Ay =0,
in the notation of Subsection and thus also A = () since 7 and [ differ by
an integral weight. Note also that [ and r are both dominant and antidominant in
this case.

The parameters associated to (u’, \') can be chosen as I’ = w.l, v’ = w.r, which
are again both dominant and antidominant. By Theorem we have & = &,
and so HC; = HCy,. Therefore, Lemma implies that I'(€,/ »/) is isomorphic to
Fi (V) for some simple module V' € O;. Specifically, we have V' = V(s) for some
s € I + P. From the above condition on [ we see that s is again dominant and
antidominant. In particular, according to Theorem we have V 2= M(s)Y and
thus Fi (M (r")V) = F(M(s)V).

The minimal K,-type of Fy (M (r')Y) is conjugate to —u' = ' — I’ under the
Weyl group action and hence to —p = r — . Likewise, the minimal K -type of
Fi(M(s)Y) is conjugate to s — I. It follows that r — [ € P and s — [ € P are in the
same orbit of the Weyl group action, and hence s —r € Q. Moreover, since {5 = &,
we see that s and 7’ must be W—linked, and hence s and r are W-linked as well.
This implies that s = v.r for some © € W[r], in the notation of Subsection
But we observed above that A, = 0, so W[T] is trivial, according to Proposition
Therefore s = r, and we conclude that V,, x =T'(Eu0) = T (Ewpwr) = Vip,wa
for all A € Z.
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Now we extend this to all A € by as follows. Recall from Subsection
that the principal series modules I'(€,, ») for fixed p all have the same underlying
D(K4)-module I'(E,,). Let us write o for the minimal K-type in I'(£,,) and denote
the subspaces of Ky -type o by E C I'(£,) and E' C I'(Eyu), respectively. Since
the minimal K -type occurs with multiplicity one, there is a unique K -invariant
isomorphism ¢ : F — E’ up to scalar.

Recall from Sectionthat under any of the representations 7, x, the subalgebra
UqR(g)‘”’ C UqR(g) preserves F. By the above discussion, when A\ € Z, there is a
bijective intertwiner I'(€,, x) — I'(Ewp,wa), and after rescaling we may assume that
it agrees with ¢ on E. In particular, for any X € U; ()77 we have pom, \(X)|g =
Twu,wr(X)|Er 0 . From the definition of the principal series representations m, x
in Subsection [5.41] it is easy to check that the functions

[); — End(E); A m,a(X),
by — End(E"); A Tupwr(X)
are algebraic. Since Z is dense in b we deduce that o, \(X)|r = Twpu,wr(X)|E 0

¢ for all A € b;. Therefore, E and E’ are isomorphic as UqR(g)""’—modules for all
A € by, and so Proposition shows that V,, x = Viyp,wa as UqR(g)—moduleS. O

To obtain more precise information on the structure of I'(€,, 1), we will make use
of the following technical lemma. We use the notation ||u|* = (u, 1), when p € P.
Note that when u, ' € PT we have p <y implies ||u|| < ||g']]-

Lemma 5.44. Let o € AT and assume that l,r € b* are such thatl —r € P and
that (1 4+ p,a") € Ny and (r + p,a) € Ng. Then

[T =7l < [II = sa-r|.
Moreover equality holds iff the shifted action of s, stabilizes | or .

Proof. Note first that s,.7 = 7—(r+p, a¥)a and hence [ —s,.7 = -7+ (r+p, a¥)a.
We compute

Il = sa.r|? =l =7)> = (1 = sq.r, 1 —sq.7) — (1 —1,1—7)
L=r(r+p.a’)a)+ (r+pa’)(a,0)
L=r,(r+pa’)a)+2(r+p,a”)(r+p o)
r+p+l—r(r+pa’)a)

L+ p,0)(r +p, ).

This yields the claim. (]

—_—~ ==

2
2
=2
2

We now consider the modules V), y when the associated parameter [ is dominant.

Lemma 5.45. Let (u,\) € P x by such that the associated parameter | € b is
dominant.

a) If there is no o € A" such that both q&”p’av) =41 and ¢ ¢ +q\ then
Vi 2 F(V(r)) € Fi(M(r)Y) 2 T(Eun)-

Otherwise Fi(V(r)) = 0.

b) The simple module V),  is a submodule of I'(€,, ). Explicitly, there exists i € 1474
with 4.l = 1 such that the pair (I,4.r) verifies the conditions in a) above, and
we have

Vir = F(V(ar)) C F(M(ar)") = F(M(r)") = T(Eux).
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Proof. a) If 1 fulfils the hypothesis of Lemma we are done, so we assume
henceforth that this is not the case. Given that [ is assumed dominant, this means
that q((pr’av) € £q¢)° for some a € A*.

Let I(r) denote the kernel of the surjection M(r) — V(r). By Lemma we
have a filtration

O:M0CM1CM2C"'CMn:I(T),

where for each 1 < ¢ < n the quotient M;/M;_1 is a highest weight module.
By the BGG Theorem if ¢ € by is a highest weight for any M;/M; 1 with
1 <4 < n then t is strongly linked to r, meaning that t = s, a1 =" Sk, T
for some nonempty chain of affine reflections s, x; with a; € At and k; € Zs,
satisfying

r> Sk T > Sk 1 am 1 Skmycm T > 0 > Skiar " Skon,am T = L

mgam 7am

Note that this implies

(sa i1 Sam -7’+p,0¢;-/)

N

an € iqaj
for1 < j < m. Moreover, since r —sk, .o, 1 *** Sky,am -7 € Qand [—r € P we have
(+p,a) 7 . . (I4p,a) No
o € £qq, for each a; appearing in this chain, and hence g € £4,)

by dominance.
Therefore, for each 1 < i < n we have a surjective morphism M (t;) — M;/M;_,
for some t; strongly linked to r as above, and therefore an injective morphism

Fi((M;/Miy1)Y) = Fi(M(t:)").

If there is no @ € A™ such that q(l+p’°‘v) +1 and q(r+pa ) € +¢Y then an
inductive apphcatlon of Lemma, along the chain of reflections s,; shows that
[IRe(l) —Re(t;)|| > ||Re(l) —Re(r ) Where the real part of an element in b} refers to
its component in the R-span of A, see the remarks before Proposition [£.5] Note that
we have a strict inequality here becaube the strict inequalitieb in the strongly linking
chain imply that the reflection s,, does not fix sq,,, - 5a,,-Re(r). According to
Proposition a) and Pr0p051t10n u the minimal K type in F(M(t;)V) is
strictly larger than that of F;((M(r)Y), and therefore -Fl((M /M;_1)") does not
contain the minimal K ,-type of F;(M(r)Y). By induction, using the short exact
sequernces
0 F((Mi/Mi1)Y) > Fi(MY) = F(MY,) -0,
we deduce that F;(M,’) does not contain the minimal K, -type of F;(M(r)Y) for
any 1 <17 < n.
Therefore, in the exact sequence

0— F(V(r) = FMr)Y)— FUr)Y) =0,

the inclusion on the left is necessarily an isomorphism on the minimal K -type.
It follows that F;(V(r)) is nonzero, and hence it is an irreducible Harish-Chandra
module by Lemma Moreover, since F;(V (r)) contains the minimal K,-type
of Fi(M(r)Y) we have F;(V(r)) =V, » in this case.

Conversely, assume that there is an o € A™ satisfying both g¢
and qg“’a ) € +¢Y. Then M(sgq.7) is a submodule of M(r) for suitable k, by
Theorem [4.14] and hence V (r) is a quotient of M (r) /M (sg,q.7). Equivalently, V(r)
is contained in the kernel of the natural projection M (r)Y — M (sy q.7)". Applying
the exact functor F; shows that F;(V (r)) is contained in the kernel of the surjective
map F; (M (r)Y) = Fi(M(sg,q.7)¥). Note that sy fixes [ up to a translation by an
element of %ihile, and since sy .7 and r differ by an element of P the same must
be true of sy .l and [, whence sy o.0 = [. It follows that both F;(M(r)Y) = T'(Eyn)
and Fi(M (sp,a.7)Y) = T'(Es, u,s.2) have the same K -type multiplicities, so that

(I+p, ™) - 41
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the surjection F;(M(r)Y) — Fi(M(sk,q-r)Y) is in fact an isomorphism. It follows
that F;(V(r)) is zero.
b) Under the conditions stated in a) we obtain the assertion with 4 = 1, so it

remains to consider the case where both ¢&+”®") = 41 and ¢{ ™" ¢ +q! for

N
some o € AT. Let B1,...,3n € AT be the positive roots such that q(ﬁlfp’ﬁi ) — 41,

Consider the subgroup U of 144 generated by the affine reflections corresponding to
Bi,...,8m and pick 4 € U such that 7' = 4.r is minimal. We claim that then

é:’er’ﬁiV) ¢ :l:qgl_ for all 1 < i < m. Indeed, if qg:/+p’ﬂ”v) € :I:qgli we would get

sk.p;-r" < r' for suitable k, contradicting our choice of r'. Thus, by our definition
/ : + (+p0¥) _ (r'+p,0¥) N
of r’ there is no @ € A™ such that g = =+1 and gq € £q,.
We are thus back in a situation as in a). Using Theorem we obtain an
embedding
Vir 2 Vi = F(ar) C F(M(ar)Y),

where u denotes the image of @ under the canonical projection W — W. We may
assume that @ is of the form @ = sk, g, -+ sg,,6,, € U such that

Ski,Biy * 7 Skp,Biy T < Ska,Biy 7 Skp By, T < < Sky, B, T < T

and we have SkjBi, - Skp,ﬁip.l =l for all 1 < j <p. In this situation, as in a), we
see that the corresponding quotient maps

Fu(M(r)Y) = Fi(M(sk, 5, -1)") = -+ = Fi(M(it.r)")

are all isomorphisms. Hence we get an inclusion V), x C Fy(M(a.r)Y) = F(M(r)Y) =
['(€,,0) as claimed. O
0

Lemma 5.46. Assume l € b is dominant, and let r,r" € [+ P with F,(V (r)) # 0.
Then Fi(V(r)) =2 F(V () iff r =1".

Proof. Assume r # " and Fi(V(r)) =2 F(V(r")). Let us write H = F;(V(r)). Since
H # 0, it is simple by Lemma[5:34] The adjointness relation from Proposition [5.32]
implies that there are nonzero U,(g)-linear maps 7,(H) — V(r), T,(H) — V().
These are necessarily surjective by the simplicity of V (r), V(r’). Consider the direct
sum T;(H) — V(r)®V (r') of the maps thus obtained. This map is again surjective
because V (r) is not isomorphic to V(r'). By exactness of F; and Proposition [5.33]
we obtain a surjection H = F,T/(H) — F,(V(r)) ® F,(V(+')). This contradicts the
simplicity of H. Hence F;(V(r)) 22 F1(V(r')). O

Theorem 5.47. Two simple Harish-Chandra modules of the form V, x and Vs x
for (1, A), (/s N') € P xby are isomorphic iff there exists w € W such that (u', \') =
(wp, wA).

Proof. Sufficiency was proven in Theorem [5.43] so it remains to check that the
condition is necessary. Suppose then that V), x = Vs, and let (I,7) and (I',7")
be the associated parameters in by x 7. By Theorem , [ and I’ are W-linked.
Therefore, after applying the isomorphisms of Theorem [5.43] we may assume that
[ =1’ and moreover that [ is dominant.

By Theorem ), we have V,, x = F(V(a.r)) and Vv = F(V(0.r")) for
some 4,9 € W such that 4.l = 9.l = [. By Lemma this implies 4.r =

o.r'.  Therefore, (I',7") = (I,o"Ya.r) = (9~ ‘4., 9~ 'a.r) and hence (u',)\) =
(v™tup, v~ u), where u and v are the images in W of the canonical quotient
map W — W. This completes the proof. ]

Theorem 5.48. Every simple Harish-Chandra module is of the form V), x for some
(1, A) € P x by.
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Proof. Let V be a simple Harish-Chandra module. Then the elements of the algebra
10 ZU,4(g) C FU,(9)®FU,(g) commute with the action of U;(g), in particular with
the action of U}F(E). Hence they preserve the minimal K -type of V. According
to Theorem and Schur’s Lemma they act by scalars. Hence, the action of
1 ® ZU,(g) is determined by a central character & : ZU,(g) — C for some I € by,
see Proposition Since the central characters are invariant under the shifted
W-action by Theorem we may assume without loss of generality that [ is
dominant. It follows that V' is contained in HC;, and according to Lemma [5.34] V
is isomorphic to F;(V (7)) for some simple module V(r) € O;. Since V # 0, Lemma
a) shows that V = F(V(r)) 2V, » where p=l—rand A\=—-l—r—2p. O

Theorem[5.48|implies in particular that every irreducible Harish-Chandra module
has a unique minimal K -type, which occurs with multiplicity one.

Theorem 5.49. Let (1, \) € P x b;. Then the principal series module T'(E,, x) is

an irreducible Yetter-Drinfeld module iff q((;\’av) + qi(‘(“’av)|+2k) for allk € N and
alla € AT,

Proof. The assumption on (i, \) is equivalent to saying that for every o € AT we
Vv
do not have nonzero integers m,n € Z of the same sign such that q((]l toat) o +q
Vv
and ¢\ ) — +q7.

We begin with the case where [ is dominant. Under the above condition, this

4 \2
means that for each o € A+, either ¢{ 77" ¢ +q¢%, in which case girtee’) ¢ +qZ,
or q,&”p’a ) = +¢7 for some m € N, in which case qc(,furp’a ) ¢ +q\. In either

case, r is antidominant, so that M (r) is irreducible by Theorem and therefore
L(E.,x) = Fy(M(r)Y) is irreducible by Lemma [5.34}

Conversely, if the above condition on [ and r does not hold, with { dominant,
then there is some a@ € AT such that q((lerp’av) and q((ﬁp’av) both belong to +¢.
In this case, we have an embedding M (sy o.1) C M(r) for some k € Zs by Theorem

[414] and hence a surjective morphism
D(Eun) 2 F(M(r)Y) = F(M(sga1)") ZT(Ew ),

where ' =1 — sy o.r and A = — — sy .7 — 2p. Moreover, since (Re(l) + p,a") # 0,
Lemma shows that |Re(l) — Re(r)|| < ||Re(l) — sq.Re(r)]], so that the minimal
K -type of Fi(M(sg,q.r)") is strictly larger than that of F;(M(r)Y). It follows that
I'(€,,2) is not irreducible.

Consider now an arbitrary weight (u, A) and let w € W be such that .1 is dom-
inant. Due to Theorem we know that Vi, has the same Kg-type multiplic-
ities as V), », where w € W denotes the image of & under the canonical projection
of W onto W. By Lemma we also know that the principal series modules
I'(Eun) and T'(Eyp,wa) have the same Ky -type multiplicities. Since the condition

qﬁﬁ’“v) + qf(l(“’av)lwk) for all k € N and all o € A7 is stable under the action of
W, the result follows. O

5.7. The principal series for SL,(2,C). In this section we will determine the
structure of the principal series representations for SL,(2,C) as well as all inter-
twiners between them. As a result we obtain a complete classification of the irre-
ducible Harish-Chandra modules for SL,(2,C). These results were first proven by
Pusz-Woronowicz [65]. Here we obtain them as a consequence of the relationship
between the categories HC; and O; described in the previous sections.

Recall that when g = s[(2,C) we identify h* with C via the correspondence
which sends A € b* to £(X, ). With this convention, P = 1Z, Q¥ = Q = Z and
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by = C/ih~'Z. The unique simple root is @ = 1 and we have p = % It is important
to note that the invariant bilinear form on h* is given by (A1, A2) = 2A1 Aa.

As in the previous section, for parameters (u,A) € 37 x C/ih™Z, we let (I,r) €
C/ih~'Z x C/ih~'Z denote a pair such that

p=1l—-r A+l=—l—-r.

There are always two such choices for (I, 7) which differ by (3ih~!, Lin='). A weight
| € C/ih~'Z is dominant in the sense of Definition iff

I+ 1 ¢ —iNmod $ih'Z,
and antidominant iff

I+ 1¢ INmod Lin~'Z,
where as usual N = {1,2,3,...}.

Theorem 5.50. Let (u, \) € %Z x C/ih=Y7Z. The principal series representation
L(Eun) for SLy(2,C) is irreducible iff X ¢ +(|u| + N) mod $ih~'Z. Moreover,
when X € £(|u| + N) mod $ih~'Z the simple module V), x is finite dimensional and
I'(Eyu,n) is a non-split extension of simple modules as follows:

0= Vur—=T(Eun) =2 T(E\p) =0 if A e —|p| - N,

0= Vux = T(€un) = T(Ey2in—1 g 2an1) 20 if A e —|u/—N+ %ih—lz,
0—=T(E\u) = T(Eur) = Vur—0 if A€ |ul +N,

0= D(Exsaintpustin-t) > T(Eun) = Vur =0 if A€ [p[+N+ %ih_lz.

Proof. The statement about irreducibility follows directly from Theorem [5.49
If A € —|u| — N then [+ %,7 + % € N, so that [ is dominant and regular and r
is not antidominant. We have a short exact sequence in category O,

0—V(r)— M(r)Y — M(-r—1)" = 0.

Note that Fy(M(—r — 1)) = T'(é_x,—,) is irreducible, and so is isomorphic to
I'(Ex,) by Theorem m Therefore, applying the functor F; to the above short
exact sequence gives the first of the stated extensions. It is non-split by Theorem
(-39 To see that V), is finite dimensional, it suffices to compare the K,-type
multiplicities in the two principal series representations in the extension. Specifi-
cally, Lemma shows that I'(£, \) contains the K, -types with highest weights
v € |u| + N, each with multiplicity one.

The case A € —|u| — N + 3ih~! is obtained similarly, and the final two cases
follow by duality using Lemma [5.21 O

Theorem 5.51. The following is an erhaustive list of non-zero intertwining oper-
ators between principal series representations of SLq(2,C).

1. Trivial intertwiners: For every (u,\) € P x by, the only self-intertwiners
I'(Eun) = T(Eun) are the scalar multiples of the identity.
2. Standard intertwiners: For every (u,\) € P x by there is a unique
intertwiner, up to scalars, T'(E,x) = T'(E-,,—x) as follows:
a) If A € —|u|—Nmod }ih~'Z the intertwiner is Fredholm with kernel and
cokernel isomorphic to V), x.
b) If X € |u| + Nmod 3ih™'Z the intertwiner is finite-rank and factors
through V), x.
¢) Otherwise, the intertwiner is bijective.
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3. Zelobenko intertwiners: With \ —|p| = N, there are additional inter-
twiners as follows:

and

F(g,u,)\+%ih*1) F(gfu,f)\Jr%ih*l)

\/

F(g)\,p,+%ih_1 )

where the right- and left-pointing horizontal arrows are the standard inter-
twiners from 2a) and b) respectively, the vertical arrows are the standard
intertwiners from 2c), and the diagonal arrows are obtained using the ex-
tensions in Theorem[5.50 These diagrams commute, up to scalar multiple,
except for the finite rank intertwiners from right to left which have compo-
sition zero with any other.

Proof. By Theoremm I'(€,,2) is either simple or a non-split extension of two non-
isomorphic simple modules. In either case, I'(€, x) does not admit any nontrivial
self-intertwiners.

Inspecting the extensions in Theorem [5.50} we see that the non-simple principal
series representations are all mutually non-isomorphic. It follows that there exists
a unique intertwiner, up to scalars, between two principal series modules I'(£,,, )
and I'(E,, »,) if and only if T'(€,,, »,) admits a simple quotient which is isomorphic
to a simple submodule of I'(€,,,,»,). The simple Harish-Chandra modules are all
of the form V), x for some (u,A) € P x by, and we have V,, x = T'(£,x) if A ¢
+(|p| + N) mod 4ih~*Z. Also, by Theorem we have V, y =V, if and only
if (', ') = £(u, A). Therefore, to complete the proof, we can make a case-by-case
examination using the structure of the principal series modules given in Theorem
.00

Here are the details. First, consider the case where both A; ¢ £(|u1| + N) mod
$ih7'Z and Ay ¢ £(|p2| + N) mod 2ih~'Z. Then T'(E,, ;) and T'(E,, 5,) are
both simple, so the only nontrivial intertwiners in this situation are the bijective
intertwiners I'(£,,2) — I'(€—,,,—») from case 2c).

Next, we consider the cases where either A; € £(|u1|+N) or A2 € £(Juz|+N) on
the nose. We will obtain precisely the intertwiners in the first diagram from part 3.

e If A\; € —|p1| — N then the image of T' must be isomorphic to I'(Ex, ,,) =
Vii,ua- The only principal series modules which contain I'(€y, ) as a sub-
module are I'(Ey, ., ) itself, I'(E_x,,—,, ) which is simple and isomorphic to
I'(Exy ), and (-, —»,) which contains I'(€_x,,—,, ) as a proper submod-
ule according to Theorem These correspond to the three intertwiners
issuing from the left-hand module in the first diagram.
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o If Ay € |p1| + N then the image of 7" must be isomorphic to V,,, , and the
only principal series module containing this as a submodule is I'(E_,,, —x, ).
This corresponds to the horizontal arrow from right to left.

o If Ay € —|uo| — N then the image of T' must be isomorphic to V,,, », and the
only principal series admitting this as a quotient module is T'(€_,, —x,)-
This corresponds again to the horizontal arrow from right to left.

o If Ay € |p2| + N then the image of 7" must be isomorphic to I'(€y,,,,) and
the only principal series modules admitting this as a quotient module are
I'(Exp o) = T(E-x,,—p,) and the non-simple module I'(€_,, _»,). These
correspond to the three intertwiners mapping to the right-hand module.

Finally, the cases where Ay € +(|u| 4+ N) + 1ih~" or Ay € +(|ua| + N) + 2in™?
are treated similarly, and we obtain the intertwiners in the second diagram from
part 3. [l

We note that the two diagrams in part 3 of Theorem [5.51] are related by the
action of the group Z = PV /QV = Z5 which is described in Subsection More
precisely, the representations in the second diagram become isomorphic to the corre-
sponding representations in the first diagram upon tensoring by the one-dimensional
module C lin-1, See Lemma Therefore, the corresponding principal series rep-
resentations in these diagrams become identical upon restriction to the “connected
component” SL,(2,C)°. Moreover, under the canonical identification of the vector
spaces ['(€,,0) = T'(€, x4 1in—1) for each pair (1, A), the corresponding intertwiners
in the two diagrams are given by exactly the same linear operators.

Finally, let us remark that the Zelobenko intertwiners can be interpreted ge-
ometrically. For instance, from the case (u,A) = (0,1) we obtain a system of
D(Gy)-linear operators

/F(Sl,O) —
/
T I'(E-1,0)

C*}F(goﬁfl) ].—‘(5071) —C

where C carries the trivial representation. In Subsection [5.8.3] we will show that
the diagonal intertwiners in this diagram are given by the right regular action of
the elements E or F in UJ(£).

The principal series representation I'(£y _1) is the quantum analogue of the space
of polynomial functions on the flag variety G/B. In this vein, the above diagram
can be viewed as a quantum analogue of the (9, d)-complex:

5  Q"G/B) _,
C ——Q%(G/B) ®  TOL(G/B)——C.
P 10G/B) 0
Similarly, from the other values of (i, A) appearing in part 3 of Theorem we

obtain quantum analogues of the (9, d)-complex twisted by a G-equivariant vector
bundle.

5.8. Intertwining operators in higher rank.

5.8.1. Intertwiners in the compact picture. Fix (u, \) € P xb;. Let f = (v'| o|v) €
C*®(K,) and £ = (w'| o |w) € T'(§, ) be matrix coefficients of finite dimensional
D(Ky)-modules V' and W, respectively. That is, we have v € V,v' € V*, w €
W,w’ € W*, and moreover w has weight u. Let eq,...,e, be a weight basis for V,
with e; of weight ¢; for each 1 < j < n, and let el,...e" be the dual basis of V*.
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We shall write °V for the dual space V* equipped with the precontragredient
representation of Ug(€), namely

(X ') () =" (57H(X) - )

for X € UJ(¢),v" € °V and v € V. This is relevant for the antipode in € (K,),
since

S((v'| e fv)) = (v] & |v"),
where the latter is a matrix coefficient for the pre-contragredient representation V.

Lemma 5.52. With the above notation, the Yetter-Drinfeld action of f = (v'|e|v) €
CX(Ky) on & = (w'| o |w) € T'(E, 5) becomes

F6= (Kaper, (€] o) @w @v| o @wee;)
J
— Zq()\+2p7€j)</v ® w/ ® 1)/| ° ‘ej QW R €j>7
J

where the latter is viewed as a matriz coefficient for V@ W @ V.

Proof. This follows immediately from the definitions. Indeed, we compute

(z, f- &) = (z, [(1)ES(f(3))) (K2pa, f(2))
= (23), f1))(@(2), E)(x 1), S(f(3))) (EK2p4x, f(2))

= S apens (] o e ey, 0] o)) oy ('] o ), 0 o )
= 3 (Ko ] o e 2! £/ o |6 @ w @ )

for all z € ®(K,), as desired. O

Let T € M(®(K,)) be an element of weight 8 € P for the adjoint action,
meaning
K\TK_y = ¢™T
for all A € P. Then the right regular action of T' on € (K,),

T—&=(T,82)80),

restricts to a morphism of ®(K,)-modules I'(§,,) — I'(€,45) for any u € P. We
will denote this morphism simply by 7.

In general, any ©(K,)-linear map f : I'(£,) = I'(€,44) is of this form for some
(in fact, many) T' € M(D(K,)). To confirm this, use the Peter-Weyl decomposition
of €°(K,) to write f in the form

f=idel,: @ V) @V(ie),» P V(o) @V(e)us
cePt cePt oceP+

for some family of linear maps T, : V(0), — V(0).4+5. Extend these maps to
T, : V(o) — V(o), for instance by zero on all other weight spaces, to obtain
T=,T, € M(D(K,)) which acts as f.

Given this characterization of the ©(K)-linear maps between principal series
representations, Lemma [5.52] immediately yields the following characterization of
intertwiners of principal series representations.

Lemma 5.53. Fiz (j11,\1), (12, A2) € P x b} and let T € M(D(K,)) have weight
o — p1 for the adjoint action. Then the following conditions are equivalent.

a) T:T(Euny) = T(Eusne) is an intertwiner of D(G4)-modules.
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b) For any finite dimensional ®(Ky)-modules V and W, for any w € W, we have

Z qMFPE) T (e Qu @ ej) = Z P22 I QT w © e
J J
where e1,...,ey s a weight basis for V with weights €1, ..., €y, respectively,
and el,...,e™ is the dual basis of V.

5.8.2. Intertwiners associated to simple roots. Fix a simple root a. Consider the
Hopf *-algebra Uy (su(2)) generated by elements E, F and K = K as usual,
where @ is the fundamental weight of s[(2,C). We write U," (psu(2)) for the #-
Hopf subalgebra generated by E, F and K, = K?.

There is a unique Hopf *-algebra morphism

la U(]IR; (psu(2)) — Uq]R(E)

sending E, F,K? to E,, F,, K, respectively. In this way, every UqR(E)—module \%
restricts to a Uy (psu(2))-module. If V is integrable then the restriction extends
uniquely to an integrable module over Ufa (su(2)), where K acts by the positive
square root of K2. This gives a well-defined restriction functor from integrable
R 4o R . .
U, (£)-modules to integrable U, (su(2))-modules and thus a map
ta : D(SU,, (2)) = M(D(K,)).
We will write S, for the quantum subgroup of K, which is obtained in this way.
Let V be an integrable Uq]R(E)—module. If v € V is a weight vector of weight
u € P, then
1.,V
Lo(K) v = q%(o"”)v _ qé(a ’“)v.
In other words, upon restricting V to a ©(S,)-module, v has weight % (a¥, ) € 1Z.
Motivated by this, we define
fo = 5(a¥, ),
and call it the restriction of p with respect to . Note in particular that p, = %
More generally, we write A\, = %(A,av) € C for any A € h*. This yields the
orthogonal decomposition
A= )N+ A,
where X = X\ — A\ a € at.
We also wish to define A, when A € h; = h*/ih~1QV. We have
Lih1QY %) = Lik1d;1(QY, a) C Lih;'Z,
where we are using the notation A, = d,f. Therefore, we obtain a map
by — C/3ih, ' Z; A= g
We point out that that the factor of % in the above quotient means that the
restriction of parameters
P x b} — $Z x C/3ih'Z
(1 A) = (Has Aa)
sends principal series parameters for G, to principal series parameters for the com-
plex quantum group SL,, (2,C)° rather than SL,, (2,C), see the remarks at the
end of Subsection [5.1.1] This point will not play a significant role in what fol-
lows, thanks to the observation after Theorem that the intertwining operators
corresponding to different lifts of A\, to C/ih,'Z coincide.
Recall from Subsection that the intertwiners of SLg, (2, C)-principal series

representations are always given by the right regular action of some element T' €
M(D(SU,,(2))). Since « is a simple root, we can map T to an element T, =
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ta(T) € M(D(K,)) as described above. We will show that the right regular action
of T, is itself an intertwiner of appropriate G,-principal series representations.

Lemma 5.54. Let o be a simple root, and suppose the right reqular action of
T € M(D(SU,,(2))) defines an intertwiner of SLy, (2,C)-principal series repre-
sentations

T: F(gﬂh)\l) - F(gltz)q)
for some (u1,A\1), (p2,A2) € 3Z x C/ihg'Z. Then the right regular action of
the corresponding element T, € M(D(K,)) defines an intertwiner of Gy-principal
series representations

Ty : F(gu’+u1a,>\’+/\1a) — P(gu’+uzoc’/\’+>\za)7
for any so-fived points ' € b* and N € b such that p’ + pio € P for i = 1,2.
Moreover, the intertwiner T, is injective or surjective if and only if T : T'(E,, x,) —
T(Eu,0,) is injective or surjective, respectively. Likewise Ty, is injective on the
minimal K4-type if and only if T : T'(E,, 2, ) = T'(Eusn,) 18 injective on the minimal
SU,,, (2)-type.

Proof. We will appeal to Lemmal[5.53] Let V and W be finite dimensional essential
D(Ky)-modules and let w € Wy, . We need to fix a weight basis for V; let us
do so by first decomposing V' into D(S,)-submodules, V = @, V;, and then fixing
a weight basis (ei,j)év:il for each V;. Let ¢; ; denote the weight of e; ;. Note that
the weights in any fixed V; differ by multiples of «, so that we can write
€5 = 6; + k‘i,ja,
where k;; = 2(€;j,a") € 1Z is the weight of e; ; in V; as a D(S,)-module, and
the orthogonal component €, does not depend on j. The analogous orthogonal
decomposition of p is
p=p+pac=p +ia,
where p' = p — %a. Note that %a is itself the half-sum of positive roots associated
to the quantum subgroup S,.
Now we calculate, as in Lemma [5.53

ZQ(A/+A1Q+2p’Ei'j)Ta(ei’j QU ei,j)
]

= Z q(>‘/+2p/762) Z q(/\la"ra;ki,ja)Ta (eiJ ® w ® ei,j)
i J

_ Zq(,\urzp/,e’i) Zqi(AlJrl)ki,jTa(ei,j QW ez}j)
i J

Recall that for the Lie algebra s[(2,C) with the identification h* = C, the bilinear
form on h* is given by (v1,12) = 21115 and the half-sum of positive roots is %
Therefore, since T' defines an SLg, (2, C)-intertwiner from I'(E,, x,) to T'(Euy . ),

Lemma for the group SL,, (2,C) shows that the above sum equals

S [ s 0 1)
( J
i
Thus T, satisfies the condition of Lemma for Gg, and so Ty, : T'(Es, psun) —
I'(€,,2) is an intertwiner of G 4-representations.
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For the statement concerning injectivity, note that I'(€,/4 4, 0,3+, a) 1S spanned
by matrix coefficients of the form { = (v'| @ |v) with v € V(v)* and v € V() 41,0
where v € P*, and where we may moreover assume that v belongs to some simple
D(Sqy)-submodule of V(v). Note that v has weight py for the ®(S,)-action, and
so the highest weight of its ©(S,)-submodule is equal to |u1| + n for some n € Ny.
Moreover, every such highest weight in |u1]| 4+ Ng can occur for v sufficiently large.
Since T, ((v'] @ [v)) = (V| @ |to(T) - v), it follows that T, annihilates £ if and only
if the action of T annihilates the pj-weight space of V(Ju1| + n). Therefore Ty, is
injective if and only if T acts injectively on the u;-weight space of every simple
D(SU,,, (2))-module, and hence if and only if T : T'(€,,, x,) = T'(E,,,2,) 1s injective.

The statement about surjectivity is proven similarly.

Finally, suppose { = (v'| ®|v) belongs to the minimal Kg-type in I'(€,,, x,). Then
v is an extremal weight vector in V(u' + p1a), meaning that its weight lies in
the Weyl orbit of the highest weight u/ + pia. In particular, v is annihilated by
either E, or F,, so that it is an extremal weight vector in the D(S,)-submodule it
generates, which must therefore have highest weight |u1|. Since |u1| is the minimal
Sa-type of I'(E,, x,), it follows that Ti, annihilates ¢ if and only if 7" annihilates
the minimal S,-type of I'(E,, »,)- O

Theorem 5.55. Fix a simple root . For any (u, \) € P x b, there exists a nonzero
intertwiner

Ta : F(gﬂ’)\) — F(gsau’sa)\L
where T € D(SU,, (2)) implements the intertwiner T : T'(E,, 2.) = T(E—pun,—ra)
of SL,, (2,C)%-principal series. We can identify the following particular cases:

a) If \a € —|pal — Nmod 2ih 'Z, then the intertwiner is zero on the minimal
Kq-type of T(E ).

b) If Ao € |pa| + Nmod 3ih ' Z, then the intertwiner is nonzero on the minimal
K4-type, but is not bijective.

¢) If £Xo ¢ |pa| + Nmod 2ih'Z, the intertwiner is bijective.
Moreover, if Ao € —(|pta| + N) mod 3ih 'Z, then we have additional Zelobenko

intertwiners as follows:

/F(‘C/,\;’A+ma,/\+m)\

F(Eu,k) F(Esau,saA)

/

F(gu—na7/\+na)

/

where m = 2Re(ry) +1 = —pio — Re(Aa), n = 2Re(la) + 1 = pia — Re(Ay), and
where the horizontal and vertical arrows are those from a), b) and c) above.

Proof. Let (u,A) € P x b. As usual, we write 1 = p — pea for the component of
w1 orthogonal to «, so that

=+ pa,  Sap=p' — paon.

With A we must be a little careful since in general A, is only well-defined modulo
$ihg'Z rather than ihy'Z. Let A € b* be any lift of A € b} and put X' = A — Aqa.

If we write )’ for the projection of X in by, then

A= )N+ da, Sad = N — A0
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Hence applying Lemma to the standard SLq, (2, C)-intertwiner T : I'(€,,_ 5 ) —
., _s,) from Theorem (2) yields the intertwiner

Ta : F(E;L,)\) — F(gsa,u,sak)'

We remark that a different choice of lift A would only alter A, by an integer multiple
of %ih;l, and so would result in the same intertwiner T, : T'(E,0) = T'(Es,p500)
by the remark after Theorem [5.5

Using Lemma [5.54] the statements about bijectivity and action on minimal K-
types follow from the analogous statements in Theorem [5.51

The construction of the Zelobenko intertwiners runs similarly. Suppose that

Ao € —(|ita| + N) mod ih 'Z. As above, we lift A € b} to A € b* and write
A= X+ Ao,

where X is fixed by s, and Ay € —(|pa| + N) mod Lihg'Z. This means we can
apply Lemmam to one of the two diagrams of Zelobenko intertwiners in Theorem
However, it will simplify the exposition if we arrange to have A, € —(|ta]+N)
on the nose. To this end, suppose that the imaginary part of A, is equal to %h;l
for some k € Z. Note that 2ih~'a" is fixed by s, modulo ih~'QY, so that if we
decompose \ as

S 5k < k

A=\ + 5m—lav) + (Ao — §ih;1)a,
then the first term is still fixed by s, when understood as an element of h;. Thus,
without loss of generality, we may assume that Ao € —(|pal + N) on the nose.

In this situation, if we define m = —pu, — Ay and n = oy — Ay, then the various
principal series parameters in the diagram in the statement decompose as
M:M/+Maaa )\:5\/4-5\&04,
w4 ma = p — daa, A+ ma =N — paa,
p—na=pu + A, A+ na =N+ oo,
Sapt =t — ooy, Sad = N — A0
Applying Lemma to the intertwiners in part 3a) of Theorem we obtain
the diagram of Zelobenko intertwiners as claimed. O

5.8.3. Ezxplicit formulas for intertwiners. In this subsection, we will give explicit
formulas for some of the intertwining operators between principal series represen-
tations. As usual, if (u, ) € P x by are parameters for the principal series, we will
use (I,7) € by x by to denote a pair such that
p=Il—r, A+2p=-l-r

We begin with the Zelobenko intertwiners. Recall from Theorem that if
r’ € by is strongly linked to r, then we have an inclusion M(r’) C M(r). Recall
also the algebra involution 6 = 7.5 of Uy(g), which is given on generators by

0(E;) = —F;, 0(F)=-E;, 0K,)=K_,
see the remarks before Corollary

Theorem 5.56. Let (u, \) € P x by with associated parameters (I,r) € b x b.

a) Suppose that v’ € by is strongly linked to r and fix Y € Uy(n_) such that
Y - v, € M(r) is a primitive vector of weight r'. Then the right reqular action
of 0(Y) on T'(E,,) defines an intertwiner

O(Y)—e:T(E) = T(Ewn)
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where pf/ =1 —71', N +2p=—-1—1'.

b) Suppose that ' € by is strongly linked to | and fix Y € Uy(n_) such that Y -v; €
M(l) is a primitive vector of weight I'. Then the right reqular action of Y on
I'(€,) defines an intertwiner

Y —e: F(gm)\) — 1—‘(5#/,)\/)
where /' =1 —r, N +2p=—-U' —r.
Proof. a) It will be convenient to work with the involution 6’ = ST in place of

9 = 75 in the calculations to follow. Note that Y is of weight ' — r for the adjoint
action, and hence

0'(Y) = 52(0(Y)) = Kof(Y)K s, = ¢~ 0(Y),

so that 6'(Y") differs from 6(Y") only by a scalar multiple. Therefore, it is equivalent
to prove the claim with 8" in place of 6. Also, since p/ — p = r —r/, the right regular
action
0'(Y)—=&=(0'(Y),&2)¢m)

does indeed map I'(€,) to I'(E,).

From Corollary we have an isomorphism of U (g)-modules M (1, X + 2p) =
M (1) ® M (r) which sends the cyclic vector v, x to vy @v,. This requires a particular
choice of action of U (g) on M (I)® M(r), and in particular for X € U,(g), we have

(Xal)-(men)=Xq) -me 60 (Xeg) - n.

Note that 6'(Y) € U,(ny), and so A(@'(Y)) € U,(ny) @ Uy(b,). Since the action
of Uy(ny) on vy factors through €, we get
(0’(Y) > 1) . (’U[ ® Ur) = QI(Y)(l) U@ 9/(9/(}/)(2)) cUp

=y 00O(Y))- v,

=Y -v,.
Therefore the inclusion M (1) @ M(r') — M () ® M (r) gives rise to an inclusion of
U (g)-modules j : M(u', N +2p) — M(p, A+2p) such that j(v, xy2,) = (6'(Y) b
1) . 'UH7)\+2p.

Let ext : I'(Eu0) — indg" (Cp,n) denote the extension from the compact to the

induced picture, see Lemm; so that ext(§) = £ ® Kopqa, for all £ € T'(E,5).

For any X > f € U7 (g), the pairing M (p1, A+ 2p) x indgz (Cpn) — C from Lemma
(.22 satisfies
X < f) v agap) ext(€)) = (F Kxgap) (G(X 1) - v arg2p), € @ Kxgap)
= (f Kx2p) (XO/(Y) 29 1) - vpa129,§ @ Kxyap)
= (f, Kx420) (X, €)) (0'(Y), &2))
= (X > f) - v xi42p, ext(0'(Y) =),

for £ € T'(€,,2). Thus j is dual to the right regular action 6'(Y) —e : T'(£, ) —
I'(€,,a) under this pairing. By Lemma we conclude that the right regular
action of §'(Y') is U, (g)-linear.

b) The inclusion M (I') ® M(r) — M () ® M (r) corresponds to a map

g M, N +2p) — M(p, A+ 2p)

which sends v,/ x142, to (Y 1) - v, ay2p, and this map is dual to the right regular
action of Y from I'(€,, 5 ) to I'(€,/,»/) under the pairing from Lemma The rest
of the argument is analogous to part a). U
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In particular, let us consider the Zelobenko intertwiners corresponding to simple
roots, that is, the diagonal arrows in the diagram from Theorem part (3).
Suppose that (1, A) € P x b is such that \q € —[pta| — Nmod Lih 'Z. This is
equivalent to the condition that [, and r, belong to %NO mod iih;lZ. Therefore,
putting I’ = | — 2Re(lo) and " = r — 2Re(r, ) we have inclusions of Verma
modules

M("y c M(1), M(r")y c M(r).

Explicitly, -y is a primitive vector of weight I’ in M(l) and F2Re(ra) ) g

a primitive vector of weight ' in M (r). Therefore, an application of Theorem m
gives the diagram of intertwiners

r (€u+ma,>\+ oz)

F(gu,k) F(gsau,sa/\)

F(g;tfnoz,)drna)

Next, we give an explicit formula for the standard intertwiners Ty, : I'(E,0) —
I'(Esopu,s0,1) corresponding to a simple root, as in Theorem (2).

We begin with the case of G, = SLy(2,C). Let (u,A) € 5Z x C/ih~Z. Recall
that we have

F2Re(la)

(5.1)

L(Eun) = @ V(n)" ®@V(n).
n€|ul+No
and therefore any ® (K, )-linear map T : I'(€, x) — I'(6_,,—») is specified uniquely
by a sequence of linear maps

T,:V(n), = Vn)_,

for all n € |u| + Np. Since the weight spaces of simple ©(SU,(2))-modules are all
one dimensional, the map T;, is specified by a scalar once we have fixed a weight
basis of V(n).

For this, we will use the orthonormal weight basis with respect to the invariant
inner product on V(n). In comparison to the weight basis vy, vp_1,...,v_, from
Theorem [2.38] the orthonormal basis is given by

1
el — q%(nfm)(n%»mfl) [Tl "’m}q' : Vi
" [2n]q![n — m]g!
where m = —n,—n+1,...,n.
To see that it is indeed orthonormal for the invariant inner product, one can first
confirm that the action of U,(sl(2)) on this basis is given by
K-ey =q"e K, el = ¢*™el

1 1

E-ey =q"n—m]jin+m+1]ie; 1,
1 1

Feep,=q " Vn+mlen—m+1zepr

and then check these formulas are compatible with the involution on Uy (su(2))
when they are declared to be orthonormal, compare Section 3.2.1 in [48]. We point
out that one must be careful with statements about unitary modules in [4§], since
there are different versions of the enveloping algebra in play, and their preferred
real forms do not always agree under the Hopf algebra morphisms they use.
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We can then specify a D (K,)-linear operator T : I'(€,,x) — T'(€-,,—x) by the
scalars (15, )neu|+n, such that T'(ej;) = Tp,e” . Our reason for working in this basis
is that we will be using the Clebsch-Gordan formulas from [48]. Looking at Lemma
5.53] we will need to consider the action of T on tensor products of the form

1
®e,® ei%

1y
2

1
if

for n € |u| + Ng. There is a double multiplicity of the representation V' (n) in the
tensor product V(3) ® V(n) ® V(3), and to deal with this we will write

VeV evE)=zvn+)oVnhH) eV )eV(in-1),

where V' (n*) signifies the copy of V(n) contained in V(3) ® V(n = 3), respectively.
The Clebsch-Gordan coefficients for tensor products with the fundamental rep-
resentation are as follows:

3 L) [ntpt1]2 ntd _1 3 n—1
e, ®ei = gz u)i[[2 il]]% ewj —q z(n+u+1)7[[2” +“1]]l 6u+f,

2 n 2 n 2

1 1 3 1 _1

—1 +1]2 n+3 n

ety =g b RtiE iy gy [[2”1“1]]2 € 1
n 2 n p)

1 1 1 1

1 _ tutl)2 nbs (1) Inopl 2 w2 =3
e @t = g a(n—m [ntutll® s g (np e
1 ”w Jy 41

2 [2n+1] 2 [2n+1] 5 uts

1 1 1
el 1 2 n+s _ 2 n—s
eil® n_q2(n+u)[" IH‘]I i_q 3 (n—p+1) [n"'N]le _i'
2 [2n+1]2 /‘ 2 [2n+1]2 K73

For this, see e.g. Equations (3.68)—(3.69) in [48], but note the typographical error
in Equation (3.68), where the factor [l + j + %]% should be [l + j + 1]=.

For SU,(2), the precontragredient representation °V'(n) is isomorphic to V(n). In
particular, for the fundamental representation the following map is an isomorphism:

[NENIE

v gt
) e’ — —iq2e;y.
2

Combining this with the Clebsch-Gordan formulae above gives

Vi 1

1 1 1 1
e’ @(epoel) =it (2, @ (e ®ei))
2 2 2 2
:Zq%(n pn—1) [n+/‘l‘+1] <e§1 ®6n %)
[2n+1]2 2 Ht3
— g3 (ntnt2) [n-&-u-«-l}i% (e% ) ®e”*%)
[2n+1]2 —32 ht3
1 1
— g lntptl]2[nmptl]2 ny1 -1 [ntpt1] nt
q [2n+1)2 [2nt2)2 P 4 [2n+1]l[2n+2]%6“
. —1 [n #] n” —n— 1[n+/,1,]2[n H]z n—1
- ——— +1 T Flre
(2n)2 2n+1]2 H q 2n]2 [2n+1]2 *
W oo enged ) = —igh oA
e_l®(eu®e_l):—zq2 (e 21 )
2 2 2

= _igh(on—utn) oo 2 1t (é ®6"+§>
[2n+1] 2 H—3

_ q2(” p+2) Intu] 21 (ez ®ez:%)
2

[2n+1]2 2
1
ey T | A LR S R R [n—p+1] nt
= —ig™" entt —ig——=———-e¢
ST YT S CIPST S

; [n+u] n- n+1 [n-Ht] [n— u]2 n—1
— 11— T1€ —1 —F 1€

CIPT S T o igarys m
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This allows us to write the sums that appear in Lemma [5.53| as

1 1

(M 2p,¢5) 2V n 2

> €j ©e,Q¢;
=}

=

1 “A—1_3V
=g le? 2 ® € ®el—i—qA e?, ®epQe?,
2 2

n+A+1 _

=i(q

1
q—n—/\—l) [ntpt1]3 [n—p+1) 3 entl

[2n+1]2 2nt2]2  *
P ntpt1]+q A n—p+1] _nt
[2n+1]3 [2n+2]7 ®
_ iqk[n*H]Jrq_/\[”JFN} n-

T T €y
[2n]2 [2n+41]2

1 1
A on—X\[ntp]2[n—p]2 p
+ilg ") 2} 2ntys M

= Ae:f'1 + Belf + C’e:f + DeZ_l,

-1

with coefficients
[+ A+ 1n+p+1)3[n—p+1]3
[2n+1])2[2n + 2]2
At p+]+g - p+ ]
[2n +1)2[2n + 2]2
C=ﬂm%m=—ﬂw MHW”M+M
[Qn] [2n + 1}

A= A(ﬂ" /\77") = 7:(q - q_l)

)

B = B(u,A\,n) = —

i

)

1 1 1
D:D(p,)\,n):—i(q— 71)[71 ][n—i_/“dz[ /1‘]2.
2n]3[2n + 1]2
Therefore, the intertwiner condition in Lemma [5.53| reduces to the following four
conditions on the scalars T), for n € |u1| + NO:
Tn+lA(/J/17A17n) (/J/g,)\z, )
TnB(,Uly /\17 ) TnB(,UJ )\Za )
Tnc(,ufl,)‘lvn) (N27>\23 )
Tp-1D(p1, A1,m) = TnD(N27>\27n)'
Note that when n = |u1| we have D(u1, A1,n) = 0, so that the last equation should
be interpreted as saying T, D(us2, A2,n) = 0 in this case.

The following theorem gives explicit formulas for the standard intertwiners from
part 2 of Theorem [5.51

9
)

)

Theorem 5.57. Let (u,\) € %Z x C/ih~'Z. Up to scalar, the unique intertwiner
of SLy(2,C)-principal series T : T'(E,,x) — T'(E—,,—x) acts on matriz coefficients
as
T((v'| o lep)) = Tu(v'| @ le,)

where the coefficients (Ty,)ne|uj+n, are as follows:
a) If A € —|u| — N mod 3ih™'Z, we have

0, l¢] < n < —Re(N),

Th =9+ k=X, > _Re(\
szfRe()\)+1 T "E— e(A).

b) Otherwise, we have
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Proof. We know that such intertwiners exist from Theorem (2), so it only
remains to deduce the explicit formulas for the coefficients 7T;, from the recurrence
relations stated before the theorem. With (u1, A1) = (1, A) = (—p2, —A2), the last
equation before the theorem reduces to

Tn[n + )‘]q = nfl[n - )‘]q

for all n € |u| + N. Note that the g-numbers [n £ A, are all nonzero except for at
most one value as follows:

e if X\ € —|u| — Nmod ih~'Z, then [n+ A]; = 0 for n = —Re()\);

e if A € ||+ Nmod 1in~'Z, then [n — A}, = 0 for n = Re(\);

e otherwise, they are all nonzero.
In every case, we observe that the recurrence relation will have a unique solution up
to an overall scalar multiple, and a direct check shows that the values of T;, stated
in the Theorem are indeed solutions. This completes the proof. O

We note that the intertwiners T': I'(€, 1) — I['(€—-,,,—x) given in part b) of Theo-
rem form a meromorphic family of operators I'(£,,) — I'(€-,,) as a function of
A, with poles at the points where A € —|u| — N+ 1ih~1Z. We also point out, when
A € |ul + N+ 3ih™'7Z, the coefficients T,, in b) are zero for all n > Re()), so that
the intertwiner T is indeed finite rank in this case.

Using Theorem [5.55] the results of Theorem [5.57] immediately give an explicit
formula for the intertwiners in higher rank associated to a simple reflection. To
specify this formula, we will make use of elements Ph(E,) and Ph(F,) in M(D(K,))
which are defined as the operator phases in the polar decomposition of FE, and F,,
respectively. Explicitly, if V = V(n) is a ®(SU,, (2))-submodule of highest weight
n € 1Ny inside a D(K,)-module, Ph(E,) and Ph(F,) act as

Ph(Eq) - ey, = epp, Ph(Fa) - e = €n 1,

where €],,...,e", denotes an orthonormal weight basis of V' isomorphic to that
described above for V(n). In order to avoid having to deal with different cases, we
will abuse notation and write, for any k € Z
Ph(F,)* if k>0,
Ph(F,)" =<1 if k=0,
Ph(E,)~* ifk<0.

We can now give formulas for the standard intertwiners corresponding to simple
reflections from Theorem a), b) and c).

Corollary 5.58. Let (1,A) € P x b and fir a simple root a. The intertwiner
T:T(Eun) = T(Es p,sun) acts on matric coefficients by
T((v'] o [v)) = Ty, ('] @ | Ph(Fa)* = v)

whenever v belongs to a D(SU¢,(2))-submodule of highest weight n, and where the
coefficients T,, € C are as follows:

a) If Ao € —|pta| — Nmod 3in 'Z,

0, |tte| < n < —Re(Aa),
Tn = n [ki/\a]q& > R )\
[Tk Re(ra) 1 Fftralen® 27 e(Aa)-

b) Otherwise,
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5.9. Submodules and quotient modules of the principal series. In this sec-
tion we will elaborate on the structure of the principal series representation I'(E,, » ).
We closely follow the proofs of the corresponding classical results in [26].

For (u,\) € P x by and a € AT any positive root, we continue to use the

notation

fo = 3(a¥) € 3Z, Ao =1\ aY) e b Lin, 'z,

as in the previous section.
Recall that for any w € W we define

Sw)={a€e AT Jwace A"} =ATNnw AT,
and note that [(w) = |S(w)].

Proposition 5.59. Let (u,\) € P x b with associated parameters (I,r) € b3 x by
as usual. Let w € W and suppose that for all o € S(w) we have
+Aa € |pta| + Nmod Ling'Z.

Then F(SM,)\) = F(gwu)w)\)
Proof. We proceed by induction on the length of w. If w = 1, the result is obvious.
So suppose that I(w) > 1, and write w = s,v for some simple root « and some
v € W with I[(w) = I(v) + 1. In this case, we have S(w) = S(v) U {v"ta}. In
particular, by the inductive hypothesis we have I'(£, x) =2 T'(Eup,on)-

Further, since v~ 'a € S(w), the hypothesis gives that

+i(A v taY) ¢ |2 (u v taY)| + N mod ik 'Z,

and hence +(vA)q ¢ |(vi)|a + Nmod ik 'Z. Therefore, by Theorem we
have a bijective intertwiner from I'(Ey,,0x) t0 I'(Ewp wa). The result follows. O

The next two results are quantum analogues of Theorems 1.4.3 and 1.4.2 in [26].

Theorem 5.60. Let (u,\) € P xb;. Every nonzero submodule of T'(£,, \) contains

.o . . (NaY) [(p,)|+2N .
the minimal K, -type if and only if g ¢ qa for every positive root
a € AT, In this case, the submodule generated by the minimal K,-type is equal to
Viux, and this is the only simple submodule of T'(E,, 3).

Proof. We fix a pair (I,7) € by x by with g =1—r and A +2p = —[ —r as usual.
M\aY) ¢ q(|1(,u,ozv)|+2N

Suppose that g¢o for every positive root @ € AT. By Lemma
\2
5.41L this is equivalent to saying that for every a € AT, the quantities ¢
Vv
and q&”p’a ) do not both lie in +q; N

Recall that we write Re(l) for the component of | in the R-span of A, see the
remarks before Proposition To begin with, let us suppose that the real part of
I+ p lies in the closure of the dominant Weyl chamber, meaning that

(Re(l) + p,a¥) = 0

for all « € A*. This means in particular that [ is dominant. According to Lemma
b), there exists 4 € W such that, if we put # = @.r, we have [y =
Fi(M(r")Y) and there is no @ € A™ with both q&lﬂmv) = +1and qf{'*p*”‘v) € +q..

Let H be a submodule of F;(M(r’)V). By Proposition we have a nonzero
U,(g)-linear map ¢ : T(H) — M(r")". Every nontrivial quotient module of M (r')
projects to V(r’), and consequently every nontrivial submodule of M (r')" contains
V(r"). In particular, V(r') C im(¢p).

Using Lemma b) and applying the exact functor F;, we obtain an inclusion

Vir = Fi(V(r) € F(im(p)) = im(Fi())-
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By Proposition [5.33] the inclusion of H into F;(M (r’)¥) factorizes as

H = F(Ty(H)) % F(M(")"),
so that im(F;(¢)) = H and so the inclusion above shows that V,, 5 is isomorphic to
a submodule of H. By considering minimal K-types, it follows that V), 5 is indeed
a submodule of H as claimed.

Now consider the case of arbitrary I. We can find w € W such that the real part
of w(l+ p) belongs to the closure of the dominant Weyl chamber. For any a € S(w)
we have wa € A~ so that

(Re(l) + p,a’) = (w(Re(l) + p),wa") <O0.

Vv Vv
In particular, according to Lemma we do not have g{V® ) € gg /e 1=

, and
by hypothesis we do not have q(({\’a) € q‘a(“’av)IHN. Therefore, Proposition @
shows that I'(€, x) = I'(Ewp,wr). By the previous case, every nonzero submodule
of T'(Ewp,wa) contains Vi, wa, and the result follows.

In this situation, the intersection of all nonzero submodules of T'(€, \) contains
the minimal K, -type, and in particular is nonzero. It is necessarily simple, and so
must be equal to V,, . Moreover, there can be no other simple submodule, since
otherwise the above intersection would be zero. .

Conversely, suppose that there exists « € AT with 9’0‘ €q

(I+p,a¥) -N (r+p,a¥) —-N . .
qo € £q, " and ga € +q, ", by Lemma In this case, r is strongly
linked to ' = sj o.r for some k € Zy, see Definition and the remark which
follows it. By Theorcmwe have an nonzero intertwiner T : T'(€,s /) = T'(E,.0)
where p/ =1 —7r"and N +2p=—-1—1".

We have (Re(l)+p,a¥) € =N and (Re(r)+p,a") € =N, s0 (sq.Re(l)+p,a") € N
and (sq.Re(r) + p,a") € N. Thus, neither Re(l) nor Re(r) is fixed by the shifted
action of s,, and an application of Lemma [5.44] shows that ||| > ||u||. Therefore,
im(T), is a submodule of I'(§,,,») which does not contain the minimal K, -type.
This completes the proof. O

) \a(#»av)H?N

, and so

Corollary 5.61. Let (1, \) € P x b;. The principal series representation I'(E,, x)

Vv Vv
is generated by its subspace of minimal K -type if and only if q,(l)"a ) ¢ q;'(‘““ )I=2N

for every positive Toot o € AT,

\2 _ V|
Proof. First suppose that ¢4 ¢ ga I g0 every positive oot o € At

Let V' C T'(€,,2) be the submodule generated by the minimal K -type. Using the
invariant pairing from Lemma [5.21} we can define a submodule of I'(€_,, ) by

VE={neT(E )| ¢(&n) =0foral { eV}

The pairing decomposes as a sum of nondegenerate pairings between the subspaces
of each K -type. Since V contains the minimal K,-type, V+ does not contain the
minimal K, -type of I'(€-,, —). Note, however, that I"(£_,, ) fulfils the conditions
of Theorem so we must have V+ = {0}, and hence V =T(E, ).

Conversely, suppose that I'(£, ) is generated by its subspace of minimal K-
type. Let U C I'(é-,,—x) be a submodule which does not contain the minimal
K-type. Then the module

Ut ={¢eT(Eun) | 6(&n) =0 for all n € T(E_,, —2)} CT(Eun)
contains the minimal K,-type, and hence UL = T'(€,,) by hypothesis. Therefore
U = 0, and we deduce that every nonzero submodule of I'(€é_, _) contains the

minimal K ,-type. Theorem implies that qS)"O‘v) ¢ q'cv(f“’av)HQN for every
positive root & € AT, and the result follows. O
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5.10. Unitary representations. In this section we briefly comment on the ques-
tion of unitarizability of Harish-Chandra modules. For more information we refer
to the work of Arano [2], [3].

Let us write a* C h* for the R-span of the roots A, and t; = ia* /ih~tQY. Recall
that for A € b we have a decomposition A = Re(\) +ilm(A) where Re()) € a* and
ilm(X) € ;. Accordingly we write X = Re(\) — iIm(X). Note that the characters
Ky € M(D(K,)) with X € b7, as defined in Subsection satisfy K} = K.

Proposition 5.62. Let (u,\) € P x by. The standard inner product on €°(K,)
defined by (§,m) = &(&*n), where ¢ is the Haar functional, restricts to a mon-
degenerate sesquilinear pairing between I'(E, _5) and I'(E,,,5) which is Gq-invariant
in the sense that

(& mua(@pa fln) = (m, x((z >3 f)*)En)
forallzea f € D(G,),§ €T(E, 5),n €T (Eun)-

Proof. Consider the bijective conjugate-linear map * : F(Eu’fx) — I'(€-,,—x) which
sends £ to £*. We claim that for any z > f € D(Gy), we have

vom, (@54 f)") = 1 -a(S5 @ ba f)) o x

It suffices to prove this for elements of the form x 11 and 1 < f with z € D(K,)
and f € €°(K,). Let £ € T'(E_,, —x). Using the compatibility of the *-structures,
as recorded after Definition we calculate

T A (S5 (@ e 1)) (E7) = (,€01)) )
= (5(2%), &) &y
= (m, x(z" >1)§)",
and similarly,
A (SGr (1oa F))(E) = 57 (f5))6 fa) (K2p-2: 87 (f12)))
=S (f3)€ fy (S(K 2o f@)
= (fy&S (i) Ky, 50 fa)
= (m, (1> f9)E)",

which proves the claim.
Therefore, using the invariance property of the non-degenerate bilinear pairing
(,):T(€-p ) xT(Eun) = C from Lemma we have

<£17Tu,>\($l><]f) > 5*771— (LUD<lf) )
(S (@< ))(E7).m)
(7, x((z > f))E)",n)

7T A((xmf)*)€7n>a
for any £ € (€, _x) and n € ['(E,,,0) and X f € D(Gy), as claimed. O

(
=
(
(

A nondegenerate D (G, )-module V is unitarizable if it admits a positive definite
Hermitian form (, ) which is invariant in the sense that
(z-v,w) = (v,2" - w)

for all v,w € V and z € ©(G,). By Proposition the invariant sesquilin-
ear forms (, ) on I'(§, ) are in one-to-one correspondence with the intertwining
operators 1" : I'(€,,») = I'(€, _3) via the formula

(Uaf) = <T<n)7€>’ 5777 S F(gu,/\)-
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Moreover, if I'(€,,») admits a nonzero invariant sesquilinear form (, ) then we can
arrange it to be Hermitian. Indeed, by polarization, we must have (£,£) # 0 for
some &, and after multiplying the form by some scalar we can ensure this is strictly
positive. Then the Hermitian form defined by

0,6 = 5 (0.6 +Em)

is invariant and nonzero since (£,&) > 0.

On the other hand, there is no guarantee that this Hermitian form will be positive
definite. Two particular classes of unitarizable principal series are well-known. We
use the notation a* C h* for the R-span of the roots A and put

t; = ia*/in'QY C b},
Thus, t; is a compact torus of dimension N.

Theorem 5.63. Let G, be a complex semisimple quantum group.

a) (Unitary principal series) The principal series representation I'(E, x) equipped
with the standard inner product is unitary if and only if A € t.

b) (Complementary series) Let o be a simple root. There is an invariant inner
product on the principal series representations I'(E, xr+1a) where p € P, N € £
are both sq-fired and —1 <t < 1.

All of these representations are irreducible, and they are unitarily equivalent if and
only if their parameters lie in the same orbit of the Weyl group action on P x b.

Proof. We have the following facts.

a) The standard inner product is G4-invariant if and only if (x, A) = (u, —A), which
is equivalent to A € 7.
b) Let g, A = X + ta be as stated. Note that

A=) —ta=s,(N),

so the standard intertwiner I'(E, ) — T'(Es,ps.0) = T'(€, _5) from Theorem
(.55 combined with the sesquilinear pairing from Proposition [5.62 yields an
invariant Hermitian form on I'(€,.x). Moreover, since A\, =t and p, = 0, this
intertwiner is bijective for all —1 < ¢ < 1. At ¢ = 0, the Hermitian form is
positive definite by part a). Therefore, by a standard continuity argument, they
are positive definite for all —1 <t < 1.

The irreducibility of these representations follows from Theorem [5.49] The inter-

twiners associated to the simple reflections are therefore bijective and automatically

unitary. U

This is far from an exhaustive list of irreducible unitary representations of G,. In
particular, some subquotients of generalized principal series are unitarizable. Arano
[3] has used continuity arguments in ¢ to compare the unitary dual of G4 with the
classical unitary dual of G. This yields a complete classification for SL4(n,C), and
an almost complete classification for general Gj.

The case of SL,(2,C) was already completed by Pusz [66]; see also [65]. We
state their result without proof.

Theorem 5.64. Up to unitary equivalence, the irreducible unitary representations

of SLy(2,C) are the Hilbert space completions of the following Harish-Chandra mod-

ules.

a) The unitary principal series T'(E,\) with p € 1Z,X € iR/ih™*Z, modulo the
unitary equivalences T'(E, ) = T(E_,,-2),

b) The two complementary series I'(€o,t) and I'(Ex;p-1 ;) with =1 <t <1, modulo
the unitary equivalences I'(Eo,t) = I'(Eo,—1) and T'(Exip-1,) =T (Exin-1 _4),
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¢) The trivial representation and the unitary character x . where z is the nontrivial
element of the centre of SU(2).

As a final remark, we recall that Corollary [5.58] gives explicit formulas for the
intertwiners between unitary principal series representations. In particular, we
can obtain a particularly simple formula for the intertwiners between the base of
principal series representations. This fact was needed in [75].

Corollary 5.65. For any u € P and any simple root «, the operator
Ph(Fo)?* : T(E0) = T(Esapo)s
defined by the right regular action, is a unitary intertwiner.

We recall that before Corollary we introduced the notation Ph(F,)* €
M(D(K,)) for the operator phase of Fr if k > 0 or E;* if k < 0.

@
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