
HAL Id: hal-02134046
https://uca.hal.science/hal-02134046v1

Submitted on 20 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reverse Engineering Behavioural Models of IoT Devices
Sébastien Salva, Elliott Blot

To cite this version:
Sébastien Salva, Elliott Blot. Reverse Engineering Behavioural Models of IoT Devices. 31st Inter-
national Conference on Software Engineering & Knowledge Engineering (SEKE), Jul 2019, Lisbon,
Portugal. �hal-02134046�

https://uca.hal.science/hal-02134046v1
https://hal.archives-ouvertes.fr


Reverse Engineering Behavioural Models of IoT Devices

Sébastien Salva
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@uca.fr

Elliott Blot
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: elliott.blot@uca.fr

Abstract—This paper addresses the problem of recovering
behavioural models from IoT devices in order to help engineers
understand how they are functioning and audit them. We
present a model learning approach called ASSESS, which
takes as inputs execution traces collected from IoT devices and
generates models called systems of Labelled Transition Systems
(LTSs). ASSESS generates as many LTSs as components inte-
grated and identified into a device. The approach is specialised
to IoT devices as it takes into account two architectures often
used to integrate components with this kind of system (cyclic
functioning, loosely-coupled or decoupled architectures). We
experimented the approach on two IoT devices and an IoT
gateway to evaluate the model conciseness and the approach
efficiency.

Keywords-Reverse engineering; IoT; Model learning; Passive
learning.

I. INTRODUCTION

Internet connected devices, and especially Internet of
Things (IoT), belong to the digital transformation trends
proposed by industrial experts or advisory firms for sev-
eral years. The IoT, which can be defined as a network
of smart embedded devices connected to the Internet, is
indeed a broad-based concept, transforming several uses
from consumer devices to large-scale manufacturing. But,
many customers and companies prefer staying away from
the IoT hype because of the issues related to privacy and
more generally to security. It is indeed manifest that IoT
devices have to be audited before using them, in particular
in the industry or in healthcare. Many companies chose to
outsource the IoT development for saving costs, hence the
IoT audit is rather done after the development. It is often
carried out from the source code or from devices seen as
black boxes. A common solution to audit such devices is
to apply a reverse engineering process, which is usually
done by hands. From a black-box, this process is required
to understand how devices are functioning. Besides, it helps
document the behaviours of IoT devices or IoT networks,
and may serve to detect bugs or security issues.

In the literature, some papers dealing with the reverse
engineering of IoT devices have been published recently
[1], [2]. These approaches recover critical information or
detect privacy issues from source codes, firmwares or chips.
This paper proposes another approach called ASSESS (Anal-
ySiS, Extraction, Separation, Synchronisation) to recover

behavioural models from IoT devices. Our approach, which
is based on the model learning concept, takes execution
traces collected from IoT devices and generates models
called systems of LTSs (Labelled Transition System). Model
learning approaches [3], [4], [5], [6], [7], [8], [9] have
proven to be valuable for retro-engineering models that
can be exploited in several software engineering steps. Our
approach advances the state of the art in these two points.

• It is specialised to IoT devices in the sense that their
general functioning is taken into consideration while
the model generation. We define an IoT device as an
embedded device integrating several components and
running in a cyclic way [10]. Several works focused
on the component architectures of embedded devices,
i.e. on how to compose them efficiently. It is often ad-
vised to use a loosely-coupled architecture [11], where
components remain autonomous and allow middle-ware
software to manage internal communication between
them. With this kind of architecture, components are
synchronised together. But, we also observed that IoT
devices may also have a decoupled architecture, where
the components operate independently. We consider
both architectures for the model generation.

• Most of the model learning algorithms build one big
model for a given system. Such models may quickly
become uninterpretable. Instead, our approach builds as
many LTSs as components detected in messages or logs
collected from an IoT device. From these messages, our
approach is able to build traces and infer systems of
LTSs. Two strategies, which refer to the previous IoT
device architectures, are proposed to synchronise LTSs
together to form a complete model.

We have implemented a prototype tool to experiment
our algorithms and appraise their benefits. We provide a
preliminary evaluation in the paper made on two IoT de-
vices. Besides, this experimentation also shows that ASSESS
may be applied on an IoT gateway to recover a model
expressing the behaviours of an IoT network, i.e. of the
devices communicating with this gateway.

The paper is organized as follows: we recall some def-
initions about the LTS model in Section II. Our approach
is presented in Section III. The next section shows some



results of our experimentation. Section V summarises our
contributions and draws some perspectives for future work.

II. THE LTS MODEL

We express the behaviours of components with Labelled
Transition Systems (LTS). This model is defined in terms
of states and transitions labelled by actions, taken from a
general action set L, which expresses what happens. τ is
a special symbol encoding an internal (silent) action; it is
common to denote the set L ∪ τ by Lτ .

Definition 1 (LTS) A Labelled Transition System (LTS) is
a 4-tuple 〈Q, q0,Σ,→〉 where:
• Q is a finite set of states; q0 is the initial state;
• Σ ∪ {τ} ⊆ Lτ is the finite set of actions, with τ the

internal (unobservable) action;
• →⊆ Q × Σ ∪ {τ} × Q is a finite set of transitions. A

transition (q, a, q′) is also denoted q a−→ q′.

We use the generalised transition relation → to represent
LTS paths: q a1...an−−−−→ q′ =def ∃q0 . . . qn, q = q0

a1−→
q1 . . . qn−1

an−−→ qn = q′. We also use the following
notations on action sequences. The concatenation of two
action sequences seq1, seq2 ∈ L∗τ is denoted seq1.seq2. ε
denotes the empty sequence. A trace is a finite sequence of
observable actions in L∗.

To better match the functioning of IoT devices, we assume
that an action has the form a(α) with a a label and α an
assignment of parameters in P , with P the set of parameter
assignments. For example, switch(id := 115, cmd := on)
is made up of the label ”switch” followed by the assignment
(id := 115, cmd := on) of two parameters.

The use of LTSs allows to exploit the definitions related
to the LTS composition. The integration of two components
C1 and C2, modelled with LTSs, is often defined by two
operations in the literature. The first one is the parallel com-
position of C1 and C2 denoted C1 ‖ C2, which synchronises
their shared actions, also called synchronisation actions (the
rest must happen independently). This composition is often
followed by the hiding of the communications between C1

and C2 to express that only the communications with the
environment are observable. This operation is defined by
the relation hide S in C1 ‖ C2 with S a set of actions. We
refer to [12] for the definitions of theses two LTS operators.

This principle of LTS composition leads to a model called
system of LTSs, which describes a component-based system:

Definition 2 (System of LTSs) A system of LTSs SC is the
couple 〈S,C〉 with C = {C1, . . . , Cn} a non empty set of
LTSs, and S a set of synchronisation actions.

III. THE ASSESS APPROACH

This section presents our model learning approach, which
aims at inferring system of LTSs from messages given by an

IoT device. The later is seen as a black box and integrates
components by means of a loosely coupled or a decou-
pled architecture. We assume that the components produce
messages or logs which include component identifiers, i.e.
parameter assignments allowing to identify components. But
we consider that the component calls are hidden. This is
usually the case with IoT devices integrating several sensors.
Furthermore, the messages have to include timestamps for
ordering them.

The list of messages is initially translated into a set of
execution traces with our tool TFormat1. This one starts
by filtering and formatting raw messages into actions by
means of regular expressions. Then, the tool analyses the
timestamps of every pair of successive actions and computes
means of time intervals. It searches for gaps between actions
(distinctive longer durations), which are usually observed
when an execution trace ends and another one begins. The
time gap detection is used for the trace extraction. We denote
the trace set Traces(SUL) and assume that a trace has the
form a1(α1)...ak(αk).

The model generation is performed by three steps called
“Trace Extraction”, “LTS Generation”, and “LTS Synchroni-
sation”. The last step proposes two LTS generation strategies
called “LTS Loose-coupling” and “LTS Decoupling”. These
steps are illustrated with the example of Figure 1. In the
first step, the traces of Traces(SUL) are analysed to detect
component calls by covering the component identifiers found
in actions. The example of Figure 1 lists 3 traces that capture
the behaviours of two components (id:=1, id:=3), which call
other components. The component calls are here detected
whenever a new identifier is found (id:=2, id:=3). In a trace,
the action sequences having different identifiers are extracted
and replaced by synchronisation actions of the form call(id)
and return(id) to express component calls, with id an
identifier referring to a component. Next, the resulting traces
are partitioned to gather the traces having the same identifier.
We obtain 3 trace sets in our example of Figure 1.

The step “LTS Generation” transforms each previous trace
set into a LTS. In this step, we take into account the general
functioning of the IoT devices, which are usually designed
to perform actions in a cyclic way. The traces are hence
transformed into cyclic LTS paths, the later being joined on
an initial state. Once every trace set is transformed into a
LTS, we obtain a first system of LTSs SC = 〈S,C〉 with C
the set of LTSs and S the set of synchronisation actions.

The last step transforms this system of LTSs to produce
more general models with respect to the nature of the IoT
devices. As stated earlier, we consider that these devices
may integrate loosely-coupled or decoupled components.
The strategy “LTS Loose-coupling” builds a system of LTSs
SC1 such that SC1 allows repetitive calls of components,
which are synchronised together. This is materialised by

1https://github.com/sasa27/TFormat



Figure 1: The ASSESS approach overview

replacing the sequences q1
call(id) return(id)−−−−−−−−−−−−→ q2 with loops.

Then, we apply the kTail algorithm [4]. kTail is a well-
known approach that merges the (equivalent) states having
the same k-future, i.e. the same event sequences having the
maximum length k.

We obtain three LTSs in Figure 1(right-top side) express-
ing components that call each other. The strategy “LTS
Decoupling” produces another system of LTSs SC2 from
SC to express the behaviours of independent components.
The synchronised actions are removed from the LTSs of SC.
Then, the kTail algorithm is applied. We obtain three LTSs
expressing autonomous components. Now, we detail these
steps below.

A. Step 1: Trace Extraction

This step covers the traces of Traces(SUL) and the
identifiers included in actions to detect implicit component
calls and to gather the traces related to each component in
separate trace sets. The following definition formalises the
notion of component identification:

Definition 3 (Component identification) Let a1(α1) be
an action of L. The component identifier of a1(α1) is given
by the mapping ID : L → P , which gives the parameter
assignment α′ found in α1 that identifies the component
producing the action a1(α1).
The component identifier of a sequence a1(α1)a2(α2)
. . . ak(αk) is given by the mapping IDs : L∗ → P .
IDs(a1(α1)a2(α2) . . . ak(αk)) =def{
α′ iff ∀ai /∈ {call, return} : ID(ai(αi)) = α′(1 ≤ i < k)
{} otherwise.

For simplicity, we denote the mapping IDs by ID in the
remainder of the paper.

Algorithm 1: Component Trace Detection
input : Traces(SUL)
output: STraces

1 Traces := {};
2 foreach t = a1(α1)a2(α2) . . . ak(αk) ∈ Traces(SUL) do
3 id := ID(a1(α1)); T := {};
4 T :=Extract(t, T, id);
5 Traces := Traces ∪ T ;

6 STraces:=GroupById(Traces);
7 return STraces;

The Trace Extraction step is implemented with Algorithm
1, and its two procedures Extract and GroupById. The
algorithm covers every trace t of Traces(SUL), extracts
the identifier id of the first running component found in
the first action of t and calls the procedure Extract. The
latter takes t, id and a set T used to store new traces.
Extract potentially splits t into several traces, each having
one non empty component identifier. Then, the procedure
GroupById partitions all the traces given by Extract and
returns the set STraces = {C1, C2, . . . , Cn} such that the
traces of a set Ci exhibit the behaviour of one component
only.The procedure Extract(t = a1(α1)a2(α2) . . . ak(αk),
T, id) is given in Algorithm 2. It covers the component
identifiers in the actions of t to detect component calls.While
covering the actions of t, if an identifier n different from
newid (first identifier of the current trace) is found (line
6), we assume that a new component has been called by
the current one. In this case, the procedure searches for
the sequence ai+1(αi+1)...aj−1(αj−1) composed of actions
having identifiers different from newid. This sequence
is extracted and replaced by the synchronisation actions
call(n).return(n), which model the call of a component
Cn. If the extracted sequence has more than one action, the



Algorithm 2: Procedure Extract
1 Procedure Extract(t = a1(α1)a2(α2) . . . ak(αk), T, id): T is
2 newid := Identifier(a1(α1));
3 t′ := a1(α1); ak+1(αk+1) = ε; i := 1;
4 while i < k do
5 n := ID(ai+1(αi+1));
6 if n == newid then
7 t′ := t′.ai+1(αi+1);
8 j := i+ 1;

9 else
10 find smallest j > i such that ID(aj(αj)) == newid

or j := k + 1;
11 t′ := t′.call(n)return(n).aj(αj);
12 if (j − i) > 2 then
13 Extract(ai+1(αi+1) . . . aj−1(αj−1), T, id);

14 else
15 tn := call(n).ai+1(αi+1).return(n);
16 if ∃t2 ∈ T : ID(t2) == n then
17 tn := t2.tn; T := T \ {t2};

18 T := T ∪ {tn};

19 i := j;

20 if newid 6= id then
21 t′ := call(newid).t′.return(newid);

22 if ∃t2 ∈ T : ID(t2) == newid then
23 t′ := t2.t

′; T := T \ {t2};

24 T := T ∪ {t′};
25 return T ;

procedure Extract is recursively called (line 13). Otherwise,
it builds a trace tn composed of the action ai+1(αi+1)
surrounded by synchronisation actions. If there exists a trace
t2 in T having the identifier n, tn is concatenated to t2. tn
is added to the trace set T . Once the trace t is covered,
we obtain a new trace t′ including synchronisation actions.
The procedure Extract eventually checks whether t′ has
to be completed to express that this trace was produced
by a component called by another one: if the identifier of
t′ is different from the identifier id given as input (line
20) then the trace t′ is surrounded with call(idnew) and
return(idnew). Finally, if there exists a trace t2 in T having
the component identifier idnew, then t′ is concatenated to
t2. The final trace t′ is added to T .

The procedure GroupById(Traces) : STraces, parti-
tions the trace set Traces in such a way that every subset
holds traces sharing the same non empty component iden-
tifier. We partition Trace by defining the trace equivalence
relation ∼id and by extracting the equivalences classes of
Trace for ∼id. Let ∼id on L∗ be given by ∀seq1, seq2 ∈ L∗,
seq1 ∼id seq2 iff ID(seq1) = ID(seq2). The procedure
GroupById returns the partition STraces = Trace/ ∼id.

B. Step 2: LTS Generation

At this stage, STraces gathers n subsets with n the
number of component identifiers found in the traces of
Traces(SUL). These subsets of traces are now transformed
into LTSs. Intuitively, given T1 in STraces, a trace of T1 is
lifted to the level of a LTS cyclic path. The LTS is obtained

after joining the paths by means of a disjoint union on the
state q0:

Definition 4 (LTS inference) Let T1 ∈ STraces be a
trace set. The LTS C1 expressing the behaviours found in
T1 is the tuple 〈Q, q0,Σ,→〉 where q0 is the initial state,
and Q,Σ,→ are defined by the following rule:

t=a1(α1)...ak(αk),id=ID(t)

q0
a1(α1)−−−−→qid1...qidk−1

ak(αk)−−−−→q0

Once the LTS generation is completed, we obtain a first
system of LTSs SC = 〈S,C〉 with C the set of LTSs derived
from STraces and S the set of synchronized actions.

C. Step 3: LTS Synchronization

Algorithm 3: LTS Synchronisation Strategies
1 Procedure Loose-coupling(SC = 〈S, {C1, C2, . . . , Cn}〉) : SC1 is
2 foreach Ci = 〈Q, q0,Σ,→〉 ∈ C do

3 foreach q1
call(σ)return(σ)−−−−−−−−−−−−→ q2 do

4 merge q1 and q2;

5 C′i := kTail(k = 2, Ci);

6 return 〈S, {C′1, C
′
2, . . . , C

′
n}〉

7 Procedure Decoupling(SC = 〈S, {C1, C2, . . . , Cn}〉) : SC2 is
8 foreach Ci = 〈Q, q0,Σ,→〉 ∈ C do
9 Ci := hide S in Ci;

10 Ci := τ -reduce Ci;
11 C′i := kTail(k = 2, Ci);

12 return 〈S, {C′1, C
′
2, . . . , C

′
n}〉

This last step proposes two strategies to synchronise the
LTSs of SC with regard to the architecture considered to
integrate components together. Both strategies are imple-
mented in Algorithm 3 with two procedures.

The strategy “LTS Loose-coupling” builds a new system
of LTSs SC1 from SC and keeps the transitions carrying
synchronised actions. This strategy allows repetitive calls of
components but also makes these calls optional by replacing
the transition sequences of the form q

call(σ)return(σ)−−−−−−−−−−−→ q′ by
loops (lines 3,4).

The strategy “LTS Decoupling” gives another system of
LTSs SC2 from SC by firstly hiding the synchronisation
actions. The operator hide S in Ci transforms the transitions
of Ci by replacing the actions of S with the non observable
action τ . We then reduce Ci by removing the transition la-
belled by τ . Several algorithms are proposed in the literature
to perform this LTS reduction with respect to a given LTS
equivalence relation. But, as the LTSs generated by Step 2
have a simple structure (only one outgoing transition per
state), we propose a lightweight LTS reduction operation
denoted τ -reduction:

Definition 5 (τ -reduction) Let C1 = 〈Q1, q01,Σ,→1 be
a LTS. τ -reduction C1 =def 〈Q2, q02,Σ,→2) where
Q2, q02,→2 are the minimal sets satisfying the following
inference rules:



q1
a(α)−−−→q2

q1
a(α)−−−→2q2

q1
a(α)−−−→q2

τ...τ−−−→q3

q1
a(α)−−−→2(q2q3)

q1
τ...τ−−−→q2

a(α)−−−→q3

(q1q2)
a(α)

−−−→2q2

kTail is finally applied on the LTSs achieved by both
strategies. We use k = 2 as recommended in [7].

Both systems of LTSs SC1 and SC2 offer different points
of view. With SC1, the component calls are explicitly given,
which offers the possibility of extracting a dependency graph
of components showing how the components are hierar-
chically organised. With the system of LTSs SC2, as the
transitions carrying synchronised actions are removed, the
parallel composition of the LTSs expresses the behaviours
of asynchronous and autonomous components, which hence
produce actions independently of the others. As it is illus-
trated in Figure 1, the second strategy returns more compact
and general models.

IV. PRELIMINARY EVALUATION

We have implemented our approach in a tool, with which
we began a first evaluation to answer to these two questions:
• RQ1: can ASSESS extract more concise and readable

models than the ones generated by kTail?
• RQ2: how long does ASSESS take to generate models?

Setup: we applied ASSESS on two IoT devices and one
IoT gateway. The first device (exp.1) is a smart thermostat
controlling heat-pumps via infra-red, composed of 4 compo-
nents (a Web server, two sensors, and a component that man-
ages the heating mode). The second device (exp.2) is a Wifi
IP camera that integrates 5 components. The IoT gateway
(exp.3) was interconnected to 8 autonomous devices, which
we consider as components for the experimentation. We
collected HTTP messages from these systems and formatted
them with our tool TFormat. The results and the tool are
available here2.

A. Question RQ1

Procedure: we collected traces for every setup and ran
ASSESS with its two strategies. We also ran kTail on the
same trace sets for comparison purposes. Then, we measured
the sizes of the generated models. These are given in Table I.
Furthermore, with large trace sets, model learning might
return ”spaghetti”-like models, containing an uninterpretable
mess of transitions. We compared the generated models
to deduce whether ASSESS can significantly help reduce
this spaghetti model problem by inferring one model per
component.

Exp. kTail Loosely-coupled Loosely-coupled Decoupledwithout call and return
#states #trans #states #trans #states #trans #states #trans

exp.1 52 90 116 208 61 118 31 54
exp.2 92 186 172 346 80 193 36 76
exp.3 349 419 426 552 362 439 310 339

Table I: Size of the LTSs obtained with kTail and ASSESS.

2https://github.com/Elblot/ASSESS

devices

command cameras

cameras

devices devices

command

devicesdevices

cameras

command

commanddevices

command

command

devices

devices

command

command

command

command

command

command

command

devices

devices devicesdevicesdevices devicesdevicesdevices devices devicesdevices

devices

command

command

cameras

cameras

cameras

camerascameras

cameras

cameras cameras

cameras

cameras

cameras command

command

command

devices

commandcommand

commandcommand

commandcommand

command

command commandcommandcommand

command

command

command

devicesdevices devices devices devices

devices

devices

devices

command

command

command

commandcommand

command

devices

devices

command

command

devicesdevices

command

command

devices

devices

devices

command

command

command

command

command

devicesdevices

devices

cameras

command

devices

devicesdevices

devices

devices

command

command

command

cameras

cameras

command

camerascameras

command

command command

command

command

command

cameras camerascameras

commandcommand

camerascameras cameras cameras

camerascameras

command

command

command

command

command

command

camerascameras cameras

command

command

command

command

cameras

commandcommandcommand commandcommand

command

commandcommand commandcommand

command

command

command

command

camerascameras

command

cameras

command

camerascameras

command

command

camerascameras

command

command

command

command

devices

devicesdevices devices

devices

devices

devicesdevices devicesdevices

devices

Figure 2: Overview of the models generated with kTail
(exp.3)

Figure 3: Overview of the models generated with ASSESS
(exp.3)

Results: Table I shows that we obtain larger transition
sets with the ”LTS Loose-coupling” strategy. In average, the
state number is increased by 77,33% in comparison to the
results of kTail. This is due to the addition of transitions
labelled by synchronisation actions, which show how com-
ponents interact with one another. If we do not take into
account these transitions, we obtain models whose sizes are
close to the sizes of the models generated by kTail. With the
”LTS Decoupling” strategy, we always obtain more concise
models. The state number is reduced on average by 37,33%
with this strategy. The state reduction is a consequence of the
segmentation of the traces by our algorithm. We infer one
LTS for each component, which is easier to reduce with kTail
than one big model. Afterwards, we compared the models
generated by kTail and ASSESS and manifestly concluded
on these experimentations that the systems of LTSs are
significantly more interpretable. Figure 2 shows an overview
of the “spaghetti”-like model generated by kTail for exp.3.
This model (even zoomed) is difficult to understand. Figure 3
illustrates the system of LTSs generated by ASSESS (second
strategy). We believe that the later is more readable since
every component is represented by its own model whose
transition set is smaller. Besides, a system of LTSs sounds
more adaptable to the user needs. For instance, an undesired
component may be concealed to help focus on the others.



B. Question RQ2

Procedure: to investigate RQ2, we measured the execu-
tion times of ASSESS with several trace sets containing 10
to 35000 traces of around 150 events collected from exp.3.
Experimentations were done on a computer with 1 Intel(R)
CPU i5-6500 @ 3.2GHz and 16GB RAM. Figure 4 draws
two curves showing the execution times measured with both
strategies.

Figure 4: Executions times of ASSESS

Results: Figure 4 shows that ASSESS requires less
than 60 seconds to builds models with the largest trace set.
The tendency curves also confirm that the time complexity
of both strategies is linear. Regarding the memory space
complexity, we also observed a linear curve; we reached a
memory limit between 25000 and 30000 traces (more than
3,5 millions of events) with the Loose-coupling strategy, and
between 35000 and 40000 traces (more than 5 millions of
events) with the Decoupled strategy. We hence believe that
our tool can be used with real systems, even with a huge
amount of messages.

V. CONCLUSION

The increase in IoT technology’s popularity holds many
benefits, but it is also accompanied by many concerns related
to the IoT device reliability and security. Learning models
from these devices may serve to audit them. But recovering
models usable for inspection is still challenging. So far,
most of the learning algorithms build big models and do not
take into consideration the IoT device architectures. In this
paper, we have presented ASSESS, a model learning method
dedicated to IoT devices that recovers systems of LTSs. The
method constructs execution traces from messages or logs,
and generates LTSs that capture the behaviours of all the
components of an IoT device and their synchronisations.
Two strategies are proposed to adapt the model generation
with regard to the loosely-coupled or decoupled architecture
usually used to design embedded devices.

Our future work includes further evaluating ASSESS on
other kinds of IoT devices, improving its effectiveness by
devising parallel algorithms, and proposing other strategies
to better match the available IoT architectures and frame-
works.

REFERENCES

[1] M. Tellez, S. El-Tawab, and M. H. Heydari, “Iot security
attacks using reverse engineering methods on wsn applica-
tions,” in 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), Dec 2016, pp. 182–187.

[2] O. Shwartz, Y. Mathov, M. Bohadana, Y. Elovici, and Y. Oren,
“Opening pandora’s box: Effective techniques for reverse en-
gineering iot devices,” in Smart Card Research and Advanced
Applications, T. Eisenbarth and Y. Teglia, Eds. Cham:
Springer International Publishing, 2018, pp. 1–21.

[3] D. Angluin, “Learning regular sets from queries and coun-
terexamples,” Information and Computation, vol. 75, no. 2,
pp. 87 – 106, 1987.

[4] A. Biermann and J. Feldman, “On the synthesis of finite-state
machines from samples of their behavior,” Computers, IEEE
Transactions on, vol. C-21, no. 6, pp. 592–597, June 1972.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” in Proceedings of the 21st International
Conference on Software Engineering, ser. ICSE ’99. New
York, NY, USA: ACM, 1999, pp. 213–224.

[6] K. Meinke and M. Sindhu, “Incremental learning-based test-
ing for reactive systems,” in Tests and Proofs, ser. Lecture
Notes in Computer Science, M. Gogolla and B. Wolff, Eds.
Springer Berlin Heidelberg, 2011, vol. 6706, pp. 134–151.

[7] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic gener-
ation of software behavioral models,” in Proceedings of the
30th International Conference on Software Engineering, ser.
ICSE’08. New York, NY, USA: ACM, 2008, pp. 501–510.

[8] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart,
I. Beschastnikh, and Y. Brun, “Behavioral resource-aware
model inference,” in Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering,
ser. ASE ’14. New York, NY, USA: ACM, 2014, pp. 19–30.

[9] F. Pastore, D. Micucci, and L. Mariani, “Timed k-tail: Au-
tomatic inference of timed automata,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and
Validation (ICST), March 2017, pp. 401–411.

[10] L. Gomes and J. M. Fernandes, Behavioral Modeling
for Embedded Systems and Technologies: Applications
for Design and Implementation, 1st ed., ser. Premier
Reference Source. Information Science Reference, 2009.
[Online]. Available: http://gen.lib.rus.ec/book/index.php?
md5=CB7F775D3CF4C7A6E82A5331D620931E

[11] D. S. Stewart, “Designing software components for real-time
applications,” in Proceedings of Embedded System Confer-
ence, september 2000.

[12] M. van der Bijl, A. Rensink, and J. Tretmans, “Compositional
testing with ioco,” in Formal Approaches to Software Testing,
A. Petrenko and A. Ulrich, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 86–100.


