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Abstract: Matrix multiplication is a mathematical brick for solving many real life problems. We consider the Strassen-
Winograd algorithm (SW), one of the most efficient matrix multiplication algorithm. Our first contribution is
to redesign SW algorithm MapReduce programming model that allows to process big data sets in parallel on
a cluster. Moreover, our main contribution is to address the inherent security and privacy concerns that occur
when outsourcing data to a public cloud. We propose a secure approach of SW with MapReduce called S2M3,
for Secure Strassen-Winograd Matrix Multiplication with Mapreduce. We prove the security of our protocol
in a standard security model and provide a proof-of-concept empirical evaluation suggesting its efficiency.

1 Introduction

Matrix multiplication is a mathematical tool of
many problems spanning over a plethora of do-
mains e.g., statistics, medicine, or web ranking. In-
deed, Markov chains applications on genetics and
sociology (Chartrand, 1985), or applications such
that computation of shortest paths (Shoshan and
Zwick, 1999; Zwick, 1998), convolutional neural net-
work (Krizhevsky et al., 2012) deal with sensitive data
processed as matrix multiplication. In such applica-
tions, the size of the matrices to be multiplied is of-
ten very large. Whereas a naive matrix multiplica-
tion algorithm has cubic complexity, many research
efforts have been made to propose more efficient al-
gorithms. One of the most efficient algorithms is
Strassen-Winograd (Strassen, 1969) (denoted as SW
in the sequel), the first sub-cubic time algorithm, with
an exponent log2 7≈ 2.81. The best algorithm known
to date (Le Gall, 2014) has an exponent ≈ 2.38. Al-
though many of the sub-cubic algorithms are not nec-
essarily suited for practical use as their hidden con-
stant in the big-O notation is huge, the SW algorithm
and its variants emerged as a class of matrix multipli-
cation algorithms in widespread use.

In this paper, we propose a distributed ver-
sion of SW that relies on the popular MapReduce
paradigm (Dean and Ghemawat, 2004) for outsourc-
ing data and computations to the cloud. Indeed, with
the development of the cloud, outsourcing data and

computations is nowadays a common fact. A plethora
of cloud service providers (e.g., Google Cloud Plat-
form, Amazon Web Services, Microsoft Azure) are
available. They allow companies to use large data
storage and computation resources on demand for
a reasonable price. Despite these benefits, cloud
providers do not usually address the fundamental
problem of protecting the privacy of users’ data. In
our case, we consider the problem of matrix multi-
plication, hence we aim at preserving the privacy of
input and output matrices. With a nave algorithm, the
cloud would learn all matrices, which may contain
sensitive information that the owner of the matrices
does not want to disclose.

Problem statement. The data owner has two com-
patible matrices A and B. The final user is allowed
to query the product C = A×B, but is not allowed to
know the input matrices A and B.

First, the data owner is expected to encrypt the
input matrices A and B before outsourcing them to
the public cloud. The matrices are then spread over a
set of nodes of the public cloud to run the first phase
called the deconstruction phase. Then, these results
are used by the second phase called the combination
phase. Finally, the encryption of C = A×B is sent
to the user for decryption. We expect the following
properties:
1. the user cannot learn any information about input

matrices A and B,



2. the public cloud cannot learn any information
about matrices A, B, and C.

Contributions. We summarize our contributions as
follows:

• Our first contribution is a MapReduce version of
the SW matrix multiplication algorithm. We call
our algorithm SM3 for Strassen-Winograd Ma-
trix Multiplication with MapReduce. It improves
the efficiency of the computation compared to the
standard matrix multiplication with MapReduce,
as found in Chapter 2 of (Leskovec et al., 2014).

• Our second contribution is a privacy-preserving
version of the aforementioned algorithm. Our new
algorithm S2M3 (for Secure Strassen-Winograd
Matrix Multiplication with MapReduce) relies on
the MapReduce paradigm and on Paillier-like
public-key cryptosystem. The cloud performs the
multiplication on the encrypted data. At the end
of the computation, the public cloud sends the re-
sult to the user that queried the matrix multipli-
cation result. The user has just to decrypt the re-
sult to discover the matrix multiplication result.
The cloud cannot learn none of the input or out-
put matrices. We formally prove, using a standard
security model, that our S2M3 protocol satisfies
the aforementioned security property.

• To show the practical efficiency of SM3 and
S2M3 protocols, we present a proof-of-concept
experimental study using the Apache Hadoop1

open-source implementation of MapReduce.

Related work. Chapter 2 of (Leskovec et al., 2014)
presents an introduction to the MapReduce paradigm.
The security and privacy concerns of MapReduce
have been summarized in a survey by Derbeko et
al. (Derbeko et al., 2016). More precisely, the state-
of-the-art techniques for execution of MapReduce
computations while preserving privacy focus on prob-
lems such as word search (Blass et al., 2012), in-
formation retrieval (Mayberry et al., 2013), group-
ing and aggregation queries (Ciucanu et al., 2018),
equijoins (Dolev et al., 2016), and matrix multipli-
cation (Bultel et al., 2017). The general goal of these
works is to execute MapReduce computations such
that the public cloud cannot learn any information on
the input or output data.

In this paper, we focus on the matrix multipli-
cation computation. Recently, (Bultel et al., 2017)
secured the two standard MapReduce algorithms for
matrix multiplication using one and two MapReduce

1https://hadoop.apache.org

rounds as found in Chapter 2 of (Leskovec et al.,
2014). For each algorithm, they proposed two dif-
ferent approaches called SP for Secure-Private and
CRSP for Collision-Resistance Secure-Private. The
two approaches are based on the Paillier-like some-
what homomorphic cryptosystem. Contrary to the
CRSP approach, the SP approach assumes that dif-
ferent nodes of the cloud do not collude. In fact, in
the SP approach one node of the cloud knows plain
values of one of the matrix while in the CRSP ap-
proach both matrices are encrypted. In our paper,
we consider the public cloud as only one entity in
that we assume that all nodes of the cloud can col-
lude; hence our secure protocol S2M3 can be consid-
ered as a CRSP approach. We show that the matrix
multiplication is performed faster using the Strassen-
Winograd algorithm with MapReduce than with the
standard matrix multiplication with MapReduce for
the no-secure and the secure approaches.

Distributed matrix multiplication has been thor-
oughly investigated in the secure multi-party compu-
tation model (MPC) (Du and Atallah, 2001; Dumas
et al., 2017; Amirbekyan and Estivill-Castro, 2007;
Wang et al., 2009), whose goal is to allow different
nodes to jointly compute a function over their pri-
vate inputs without revealing them. The aforemen-
tioned works on secure distributed matrix multipli-
cation have different assumptions compared to our
MapReduce framework: (i) they assume that nodes
contain entire vectors, whereas the division of the ini-
tial matrices in chunks as done in MapReduce does
not have such assumptions, and (ii) in MapReduce,
the functions specified by the user (Dean and Ghe-
mawat, 2004) are limited to map (process a key/value
pair to generate a set of intermediate key/value pairs)
and reduce (merge all intermediate values associ-
ated with the same intermediate key) while the MPC
model relies on more complex functions than map
and reduce. Moreover, generic MPC protocols (Ma
and Deng, 2008; Cramer et al., 2001) allow several
nodes to securely evaluate any function such that ma-
trix multiplication computation. Such protocols could
be used to secure MapReduce. However, due to their
generic nature, they are inefficient and require a lot of
interactions between parties. Our goal is to design an
optimized protocol to secure Strassen-Winograd algo-
rithm with MapReduce.

To the best of our knowledge, we are the first
to secure the Strassen-Winograd algorithm with the
MapReduce paradigm.

Outline. In Section 2, we outline the SW algo-
rithm and the cryptographic tools on which we rely.
Then, we present the Strassen-Winograd algorithm



with MapReduce (SM3) in Section 3, the secure ap-
proach (S2M3) in Section 4, experimental results in
Section 5, and we prove in Section 6 that our S2M3
protocol satisfies the desired security properties.

2 Preliminaries

We start by recalling the Winograd’s variant of
Strassen algorithm (Gathen and Gerhard, 2013) called
Strassen-Winograd algorithm and denoted SW in the
rest of the paper. Then we give cryptographic tools
used in the rest of the paper.

2.1 Strassen-Winograd Algorithm

Let A and B be two square matrices of size d × d
where d = 2k with k ∈N?. The standard matrix multi-
plication algorithm computes the product C =A×B in
O(d3) while SW computes C in O(d2.807) (Strassen,
1969).

First, the SW algorithm splits matrices A and B
into four quadrants of equal dimensions such that A =[

A11 A12
A21 A22

]
and B =

[
B11 B12
B21 B22

]
.

Using these submatrices, SW computes 8 addi-
tions, 7 recursive multiplications, and 7 final additions
as follow:

S1 = A21 +A22,
S2 = S1−A11,
S3 = A11−A21,
S4 = A12−S2,

T1 = B12−B11,
T2 = B22−T1,
T3 = B22−B12,
T4 = T2−B21,

R1 = A11×B11,
R2 = A12×B21,
R3 = S4×B22,
R4 = A22×T4,
R5 = S1×T1,
R6 = S2×T2,
R7 = S3×T3,

C1 = R1 +R2,
C2 = R1 +R6,
C3 =C2 +R7,
C4 =C2 +R5,
C5 =C4 +R3,
C6 =C3−R4,
C7 =C3 +R5.

The final result: A×B =

[
C1 C5
C6 C7

]
.

Since, we assume that d = 2k with k ∈N?, we can
iterate this process k times (recursively) until the sub-
matrices have a size equal to 1×1. The SW algorithm
is generalizable to matrices for wich d is not a power
of 2, as we point out in Section 4.3.

2.2 Cryptographic tools

We recall the definition of negligible function, the
definition of a public-key encryption scheme and the
security requirements. We also recall the Paillier
cryptosystem used in our secure protocol.

Definition 1 (Negligible function). A function
ε : N→ N is negligible in η if for every positive poly-
nomial p(·) and sufficiently large η, ε(η)< 1/p(η).

Definition 2 (Public-Key Encryption). Let η be a
security parameter. A public-key encryption (PKE)
scheme is defined by three algorithms (G ,E ,D):

G(η): returns a public/private key pair (pk,sk).
Epk(m): returns the ciphertext c.
Dsk: returns the plaintext m.

Let Π= (G ,E ,D) be a PKE scheme, A be a prob-
abilistic polynomial-time adversary. For b ∈ {0,1},
we define the ind-cpa-b experiment where A has ac-
cess to the oracle Epk(LRb(·, ·)) taking (m0,m1) as in-
put and returns Epk(m0) if b = 0, Epk(m1) otherwise.
A tries to guess the bit b chosen in the experiment.
We define the advantage of A against the IND-CPA
experiment by:

Adv
ind-cpa
Π,A (η) =

∣∣Pr[1←Exp
ind-cpa-1
Π,A (η)]−

Pr[1← Exp
ind-cpa-0
Π,A (η)]

∣∣ .
We said that Π is IND-CPA if this advantage is

negligible for any probabilistic polynomial-time A .
In the following, we require an additive homo-

morphic encryption scheme to secure the computa-
tion of SW using MapReduce. There exists sev-
eral schemes that have this property (Okamoto and
Uchiyama, 1998; Paillier, 1999; Damgård and Ju-
rik, 2001; Naccache and Stern, 1998). We choose
Paillier cryptosystem (Paillier, 1999) to illustrate spe-
cific required homomorphic properties. Our proto-
cols and proofs are generic, since any other encryp-
tion schemes having such properties can be used.

2.3 Paillier Cryptosystem

Paillier cryptosystem is an IND-CPA scheme (Sako,
2011), we recall the key generation, the encryption
and decryption algorithms.

Key generation. We denote by Zn, the ring of in-
tegers modulo n and by Z×n the set of inversible ele-
ments of Zn. The public key pk of Paillier cryptosys-
tem is (n,g), where g∈Z×n2 and n= p ·q is the product
of two prime numbers such that gcd(p,q) = 1. The
corresponding private key sk is (λ,µ), where λ is the
least common multiple of p− 1 and q− 1 and µ =
(L(gλ mod n2))−1 mod n, where L(x) = (x−1)/n.

Encryption algorithm. Let m be a message such
that m ∈ Zn. Let g be an element of Z×n2 and r be a



random element of Z×n . We denote by Epk(·) the en-
cryption function that produces the ciphertext c from
a given plaintext m with the public key pk = (n,g) as
follows: c = gm · rn mod n2.

Decryption algorithm. Let c be a ciphertext such
that c ∈ Z×n2 . We denote by Dsk(·) the decryption
function of c with the secret key sk = (λ,µ) defined
as follows: m = L

(
cλ mod n2

)
·µ mod n.

2.4 Homomorphic properties

Paillier cryptosystem is a partial homomorphic en-
cryption scheme. We present its properties.

Homomorphic Addition of Plaintexts. Let m1
and m2 be two plaintexts in Zn. The product of
the two associated ciphertexts with the public key
pk = (n,g), denoted c1 = Epk(m1) = gm1 · rn

1 mod n2

and c2 = Epk(m2) = gm2 · rn
2 mod n2, is the en-

cryption of the sum of m1 and m2, i.e., Epk(m1) ·
Epk(m2) = Epk(m1 + m2 mod n). We also remark
that: Epk(m1)/Epk(m2) = Epk(m1−m2).

Specific Homomorphic Multiplication of Plain-
texts. Let m1 and m2 be two plaintexts in Zn and
c1 ∈ Z×n2 be the ciphertext of m1 with the public key
pk. With Paillier cryptosystem, c1 raised to the power
of m2 is the encryption of the product of the two
plaintexts m1 and m2, i.e., Epk(m1)

m2 = Epk(m1 ·m2
mod n).

Interactive homomorphic multiplication of cipher-
texts. Cramer et al. (Cramer et al., 2001) show that
an interactive protocol makes possible to perform
multiplication over ciphertexts using additive homo-
morphic encryption schemes. More precisely, Bob
knows two ciphertexts c1,c2 ∈ Z×n2 of the plaintexts
m1,m2 ∈ Zn with the public key of Alice, he wants to
obtain the cipher of the product of m1 and m2 without
revealing to Alice m1 and m2. In order to do this, Bob
has to interact with Alice. Bob first picks two ran-
doms δ1 and δ2 and sends to Alice α1 = c1 ·EpkA(δ1)
and α2 = c2 ·EpkA(δ2). By decrypting respectively
α1 and α2, Alice recovers respectively m1 + δ1 and
m2 + δ2. She sends to Bob β = EpkA((m1 + δ1) ·
(m2 + δ2)). Then, Bob can deduce the value of
E(m1 ·m2) by computing: β/EpkA(δ1 · δ2) · cδ1

1 · c
δ2
2 ,

since EpkA((m1 + δ1) · (m2 + δ2)) = EpkA(m1 ·m2) ·
EpkA(m1 ·δ2) ·EpkA(m2 ·δ1) ·EpkA(δ1 ·δ2).

3 Strassen-Winograd Matrix
Multiplication

We present our protocol SM3 for Strassen-
Winograd Matrix Multiplication with MapReduce.
The aim is to compute the multiplication of two
square matrices A and B of order d = 2k (where
k ∈ N?) using SW algorithm with MapReduce.

The cloud runs two different MapReduce phases:
the deconstruction phase and the combination phase,
each of them being repeated k = log2(d) times. At the
end of the combination phase, the matrix C = A×B
is sent to the user.

We can think of each element ai j ∈ A (resp. bi j ∈
B) as a tuple (A,d, i, j,ai j) (resp. (B,d, i, j,bi j)). Note
that A and B are not the matrices themselves but the
names of the matrices. In order to run the SW algo-
rithm with MapReduce, a tag initialized to 0 is added
to each tuple. Hence tuples are key-value pairs of
the form (0,(A,d, i, j,ai j)) and (0,(B,d, i, j,bi j)). All
these key-value pairs establish a relation that is out-
sourced to the cloud.

3.1 Deconstruction Phase

We present the deconstruction phase of SM3. This
phase computes recursively all the needed submatri-
ces of dimension 2× 2 to multiply in order to con-
struct the final matrix.

The Map Function. This function is the identity.
For every input element with key t and value v, it pro-
duces the key-value pair (t,v).

The Reduce Function. This function is presented
in Fig. 1. If δ > 2, i.e., the dimension of matri-
ces formed by elements ai j and bi j associated to the
key t, it produces 7 couples of submatrices of dimen-
sion δ/2. These couples of submatrices correspond
to the recursive multiplications in SW algorithm and
are keyed with a different tag in order to distribute
the compution using MapReduce. When δ = 2, the 7
multiplications are between integers (and not between
matrices), results are sent to the combination phase.

3.2 Combination Phase

We present the combination phase of SM3 which is
executed k times where k = log2(d). This phase con-
structs the matrix C = A×B using all results received
from the deconstruction phase.



Input: (key,values).
// key: a tag t.
// values: collection of (A,δ, i, j,ai j) or (B,δ, i, j,bi j).
A← (ai j)1≤i, j≤δ;
B← (bi j)1≤i, j≤δ;[

A11 A12
A21 A22

]
= A;[

B11 B12
B21 B22

]
= B;

S1← A21 +A22; S2← S1−A11; S3← A11−A21;
S4← A11−S2;
T1← B12−B11; T2← B22−T1; T3← B22−B12;
T4← T2−B21;
L←

[
[A11,B11], [A12,B21], [S4,B22], [A22,T4], [S1,T1],

[S2,T2], [S3,T3]
]
;

if δ 6= 2 then
for 1≤ u≤ 7 do

(a?i j)1≤i, j≤δ/2 = A?← L[u−1][0];
(b?i j)1≤i, j≤δ/2 = B?← L[u−1][1];
for 1≤ v≤ δ/2 do

for 1≤ w≤ δ/2 do
emit (t‖u,(A,δ/2,v,w,a?vw));
emit (t‖u,(B,δ/2,v,w,b?vw));

else
for 1≤ u≤ 7 do

r← L[u−1][0] ·L[u−1][1];
emit (t,(Ru,1,1,1,r)).

Figure 1: Reduce function of the deconstruction phase for
SM3.

The Map Function. This function is the identity.
For every input element with key t and value v, it pro-
duces the key-value pair (t,v).

The Reduce Function. This function is presented
in Fig. 2. At each round, each key is associated to
elements forming 7 submatrices of dimension δ. Fol-
lowing SW algorithm, these submatrices are used to
construct a matrix of dimension 2 · δ. At the end of
the combination phase (after k rounds), the reduce
function sends to the user key-value pairs of the form
(−,(C, i, j,ci j)) forming matrix C = A×B. We do not
specify key value since all these elements are part of
the final matrix.

4 Secure Strassen-Winograd Matrix
Multiplication

We now present our secure approach, called S2M3
(for Secure Strassen-Winograd Matrix Multiplication
with Mapreduce), in order to ensure privacy of ele-

Input: (key,values).
// key: a tag t.
// values: collection of (Ri,δ, j,k,r jk).
for 1≤ i≤ 7 do

Ri ← (r jk)1≤ j,k≤δ such that (Ri,δ, j,k,r jk) is in
values;

C1 ← R1 + R2; C2 ← R1 + R6; C3 ← C2 + R7;
C4←C2 +R5;
C5←C4 +R3; C6←C3−R4; C7←C3 +R5;

C =

[
C1 C5
C6 C7

]
;

if δ 6= d then
for 1≤ i≤ 2 ·δ do

for 1≤ j ≤ 2 ·δ do
emit (t[:−1],(Rt[−1],2 ·δ, i, j,ci j));

else
for 1≤ i≤ d do

for 1≤ j ≤ d do
emit (−,(C, i, j,ci j)).

Figure 2: Reduce function of the combination phase for
SM3.

ments of matrices. Similarly to SM3, the secured ver-
sion S2M3 considers matrices A and B as a relation.
However, instead of sending key-value pairs of the
form (0,(A,d, i, j,ai j)) and (0,(B,d, i, j,bi j)) to the
cloud, we encrypt each element of matrices and send
key-value pairs of the form (0,(A,d, i, j,Epk(ai j)))
and (0,(B,d, i, j,Epk(bi j))). Note that pk is the public
key of the user that queried the matrix multiplication
to the data owner.

4.1 Deconstruction Phase

We present the deconstruction phase of S2M3. This
phase computes recursively all the needed submatri-
ces of dimension 2× 2 to multiply in order to con-
struct the final matrix.

The Map Function. This function is the identity.
For every input element with key t and value v, it pro-
duces the key-value pair (t,v).

The Reduce Function. This function is pre-
sented in Fig. 3. It computes 8 submatrices
S1, . . . ,S4,T1, . . . ,T4 using functions Paillier.Add and
Paillier.Sub. Function Paillier.Add(A,B) (resp.
Paillier.Sub(A,B)) computes Epk(ai j) ·Epk(bi j) (resp.
Epk(ai j)/Epk(bi j)) for each pair (i, j); due to Paillier
homomorphic properties, these multiplications (resp.
divisions) of elements is equal to Epk(ai j +bi j) (resp.
Epk(ai j−bi j)).

If δ > 2, i.e., the dimension of matrices formed by
elements Epk(ai j) and Epk(bi j) associated to the key



t, it produces 7 couples of submatrices of dimension
δ/2. When δ = 2, we need to compute 7 multiplica-
tions between integers encrypted with Paillier cryp-
tosystem. Hence we use Paillier interactive multipli-
cation and denoted Paillier.Interactive. Then results
are sent to the combination phase.

Input: (key,values).
// key: a tag t.
// values: collection of (A,δ, i, j,Epk(ai j)) or
(B,δ, i, j,Epk(bi j)).
A← (Epk(ai j))1≤i, j≤δ;
B← (Epk(bi j))1≤i, j≤δ;[

A11 A12
A21 A22

]
= A;[

B11 B12
B21 B22

]
= B;

S1← Paillier.Add(A21,A22);
S2← Paillier.Sub(S1,A11);
S3← Paillier.Sub(A11,A21);
S4← Paillier.Sub(A11,S2);
T1← Paillier.Sub(B12,B11);
T2← Paillier.Sub(B22,T1);
T3← Paillier.Sub(B22,B12);
T4← Paillier.Sub(T2,B21);
L←

[
[A11,B11], [A12,B21], [S4,B22], [A22,T4], [S1,T1],

[S2,T2], [S3,T3]
]
;

if δ 6= 2 then
for 1≤ u≤ 7 do

(a?i j)1≤i, j≤δ/2 = A?← L[u−1][0];
(b?i j)1≤i, j≤δ/2 = B?← L[u−1][1];
for 1≤ v≤ δ/2 do

for 1≤ w≤ δ/2 do
emit (t‖u,(A,δ/2,v,w,a?vw));
emit (t‖u,(B,δ/2,v,w,b?vw));

else
for 1≤ u≤ 7 do

r ← Paillier.Interactive(L[u − 1][0],L[u −
1][1]);
emit (t,(Ru,1,1,1,r)).

Figure 3: Reduce function of the deconstruction phase for
S2M3.

4.2 Combination Phase

We present the combination phase of S2M3 run k
times where k = log2(d). This phase constructs the
matrix C′= (Epk(ci j))1≤i, j≤d with ci j ∈C =A×B us-
ing all results received from the deconstruction phase.

The Map Function. This function is the identity.
For every input element with key t and value v, it pro-
duces the key-value pair (t,v).

The Reduce Function. This function is presented
in Fig. 4. At each round, each key is associated to
elements forming 7 submatrices of dimension δ. As
for the deconstruction phase, we use Paillier homo-
morphic properties in order to construct a matrix of
dimension 2 · δ. At the end of the combination phase
(after k rounds), the reduce function sends to the user
key-value pairs of the form (−,(C′, i, j,ci j)) forming
the encryption of matrix C = A×B. We do not spec-
ify key value since all these elements are part of the
final matrix.

Input: (key,values).
// key: a tag t.
// values: collection of (Ri,δ, j,k,r jk).
for 1≤ i≤ 7 do

Ri ← (r jk)1≤ j,k≤δ such that (Ri,δ, j,k,r jk) is in
values;

C1← Paillier.Add(R1,R2);
C2← Paillier.Add(R1,R6);
C3← Paillier.Add(C2,R7);
C4← Paillier.Add(C2,R5);
C5← Paillier.Add(C4,R3);
C6← Paillier.Sub(C3,R4);
C7← Paillier.Add(C3,R5);

C′ =
[
C1 C5
C6 C7

]
;

if δ 6= d then
for 1≤ i≤ 2 ·δ do

for 1≤ j ≤ 2 ·δ do
emit (t[:−1],(Rt[−1],2 ·δ, i, j,c′i j));

else
for 1≤ i≤ d do

for 1≤ j ≤ d do
emit (−,(C′, i, j,ci j)).

Figure 4: Reduce function of the combination phase for
S2M3.

4.3 Padding and Peeling: On a Quest
for All Dimensions

Default SW algorithm works for square matrices of
dimension d = 2k with k ∈ N?. In this section, we
recall the dynamic padding and the dynamic peel-
ing (Huss-Lederman et al., 1996) methods allowing
to perform matrix multiplication with SW algorithm.
We also present how to use dynamic padding and dy-
namic peeling with our SM3 and S2M3 algorithms.

Dynamic Padding. For each round of the decon-
struction phase, we check the dimension of consid-
ered matrices. If matrices already have an even num-
ber of rows and columns, we do not need to do any-



thing, as we can simply split it into four blocks. How-
ever, if the number of rows or the number of columns
is odd, i.e., the dimension is odd, we add an extra
row or column (or both, if needed). We initialize this
row or column to zeros for SM3 protocol and Epk(1)
for S2M3 protocol. Then, we perform the protocol as
normal. Once we have multiplied these two matrices,
we remove the extra row or column, and return our
result.

Using dynamic padding avoids huge memory al-
locations. In fact, a static padding will pad matrices
to obtain a number of rows and columns equal to a
power of 2.

Dynamic Peeling. Contrary to the previous method,
the dynamic peeling method splits a square matrix A
(resp. B) having an odd dimension d into four blocks
A1, A2, A3, and A4 (resp. B1, B2, B3, and B4). Block
A1 (resp. B1) has dimension (d−1), matrix A2 (resp.
B2) has dimension (d− 1)× 1, matrix A3 (resp. B3)
has dimension 1× (d− 1), and matrix A4 (resp. B4)
has dimension 1. We illustrate this method in Fig. 5.

A =


a11 . . . a1,d−1 a1,d

...
. . .

...
...

ad−1,1 . . . ad−1,d−1 ad−1,d
ad,1 . . . ad,d−1 ad,d

 ,

B =


b11 . . . b1,d−1 b1,d

...
. . .

...
...

bd−1,1 . . . bd−1,d−1 bd−1,d
bd,1 . . . bd,d−1 bd,d

 .

Figure 5: Dynamic peeling for matrices A and B of dimen-
sion d with d an odd number.

Hence, for each round of the SM3 and S2M3 pro-
tocols deconstruction phase (where matrices A and B
have an odd order), the reduce function splits both
matrices according to the dynamic peeling method.
Obtained blocks A1 and B1 are then considered as new
matrices A and B, and the multiplication is performed
following the considered protocol. Other blocks mul-
tiplications are computed using the blocks multiplica-
tion algorithm and used in the combination phase. We
stress that blocks multiplications can be performed
using Paillier cryptosystem due to its additive homo-
morphic property and to the interactive multiplica-
tion.

5 Experimental Results

We present the experimental results for our SM3
and S2M3 protocols using the Hadoop 2 implementa-
tion of MapReduce. We have done all computations
on a cluster running on Ubuntu Server 14.04 with
Vanilla Hadoop 2.7.1 using Java 1.7.0. The cluster is
composed of one master node and of six data nodes.
The master node has six CPU cadenced to 2.4GHz,
160Gb of disk, and 32Gb of RAM. The six data nodes
have of two CPU cadenced to 2.4GHz, 40Gb of disk,
and 4Gb of RAM.
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Figure 6: Running-time on SM3, S2M3 protocols with
padding and peeling methods, and comparisons with pro-
tocols from Bultel et al. (Bultel et al., 2017).

For each 15 ≤ d ≤ 256, we generate two random
square matrices A and B of order d and composed of
integers in [0,100]. For each order d, we perform ma-
trix multiplication between A and B with SM3 and
S2M3 protocols using the dynamic padding and the
dynamic peeling methods. We also run the standard
matrix multiplication with 1 round of MapReduce
cf. Chapter 2 of (Leskovec et al., 2014) and the se-
cure CRSP approach approach presented by (Bultel
et al., 2017). We use Paillier cryptosystem with the
public key pk = (n,g) where n is 2048-bits long for
our S2M3 protocol and the CRSP approach.

Scalability. We present in Fig. 6 the running time
for our SM3 and S2M3 protocols using dynamic
padding and dynamic peeling methods. We report
average times over five runs. Without any security,
S2M3 with padding and peeling methods perform the

2https://hadoop.apache.org



matrix multiplication a bit faster than the standard ma-
trix multiplication for the largest dimensions. For se-
cure protocols, the curve of S2M3 with padding grows
step by step, the running-time is very similar at the
beginning and at the end of each step compared with
other protocols. When the dimension d is of the form
2k or 2k − 1 (with k ∈ N?), the S2M3 with padding
is better that other secure protocols. The curve of
S2M3 with peeling grows gradually with dimension
d. When 2k ≤ d < 2k− 1, S2M3 with peeling is the
faster algorithm. Moreover, S2M3 with peeling is al-
ways faster than the secure approach of the standard
matrix multiplication.

6 Security Proof

We provide a formal security proof of our protocol
S2M3 in the standard model considering semi-honest
adversaries.

6.1 Defining Security for Semi-Honest
Adversaries

Secure Computation. We use the standard multi-
party computations definition of security against
semi-honest adversaries (Ma and Deng, 2008) to
prove the security of our protocol S2M3. We con-
sider several entities that run a secure protocol in or-
der to evaluate a multivariate function g. For example,
consider two parties E1 and E2 using respectively in-
puts IE1 and IE2 that run a secure two-party protocol to
evaluate the multivariate function g = (gE1 ,gE2). At
the end of the protocol, E1 learns gE1(IE1 , IE2) and E2
learns gE2(IE1 , IE2). Such a protocol is secure when
E1 (resp. E2) learns nothing else than gE1(IE1 , IE2)
about IE2 (resp. gE2(IE1 , IE2) about IE1 ). We consider
semi-honest adversaries in the sense that E1 and E2
run honestly the protocols, but they try to exploit all
intermediate information that they have received dur-
ing the protocol.

We model S2M3 with three entities: O for the data
owner, C for the public cloud, and U for the user. We
assume that these three entities do not collude. They
use respective inputs I = (IO , IC , IU), and a function
g = (gO ,gC ,gU) such that:

• O has the input IO = (A,B, pk) where A and B
are matrices of dimension d = 2k (with k ∈N?) to
multiply and pk is a Paillier public key. It returns
gO(I) =⊥ because O does not learn anything.

• C has the input IC = pk where pk is a Paillier pub-
lic key, and returns gC (I) = d because C learns the
dimension d of matrices A and B.

• U has the input IU = (pk,sk) where (pk,sk) is
a Paillier key pair, and returns gU(I) = C, where
C = A×B.
We start by formally defining the computational

indistinguishability and the view of an entity before
formally presenting the security of our protocol.
Definition 3 (Computational indistinguishabil-
ity (Lindell, 2017)). Let η be a security parameter
and Xη and Yη two distributions. We say that Xη and
Yη are computationally indistinguishable, denoted by

Xη

c≡ Yη, if for every probabilistic polynomial-time
algorithm D there exists a negligible function ε(·)
such that:∣∣Pr[x←Xη : 1←D(x)]−Pr[y←Yη : 1←D(y)]

∣∣≤ ε(η) .

Definition 4 (The view). Let P be a ρ-parties pro-
tocol that computes the function g = (gi)1≤i≤ρ for the
entities (Ei)1≤i≤ρ using inputs I = (Ii)1≤i≤ρ. The view
of a party Ei (where 1≤ i≤ ρ) during an execution of
P, denoted viewP

Ei
(I), is the set of all values sent and

received by Ei during the execution of the protocol.
To prove that a party E learns nothing during the

execution of the protocol, we show that E can run
a polynomial simulator algorithm that simulates the
protocol, such that E is not able to differentiate an ex-
ecution of the simulator and an execution of the real
protocol. The idea is the following: since the entity E
is able to generate his view using the simulator with-
out the secret inputs of other entities, E cannot extract
any information from his view during the protocol.
This notion is formalized in Definition 5.
Definition 5 (Security with respect to semi-honest be-
havior). Let P be a ρ-parties protocol that computes
the function g = (gi)1≤i≤ρ for entities (Ei)1≤i≤ρ us-
ing inputs I = (Ii)1≤i≤ρ. We say that P securely com-
putes g in the presence of semi-honest adversaries if
for each Ei (where 1≤ i≤ ρ) there exists a probabilis-
tic polynomial-time simulator SEi such that:

SEi(Ii,gEi(I))
c≡ viewP

Ei
(I) .

6.2 Proof

We prove the following theorem:
Theorem 1. Assume Paillier cryptosystem is IND-
CPA. Then, our protocol S2M3 securely computes the
matrix multiplication in the presence of semi-honest
adversaries.

The security proof is decomposed in Lemma 1 for
O, Lemma 2 for C , and Lemma 3 for U.
Lemma 1. There exists a probabilistic polynomial-
time simulator SO such that for all I = (IO , IC , IU), we

have SO(IO ,gO(I))
c≡ viewS2M3

O (I).



Proof. Consider that the data owner O is corrupted.
Observe that O knows the two matrices A and B, and
the Paillier public key pk of the user. The view of O
only contains the encryption of matrices A and B that
are sent to C . We build the simulator SO as follows:

1. SO creates two matrices A′ and B′ such that
A′=(Epk(ai j))1≤i, j≤d and B′=(Epk(bi j))1≤i, j≤d ,
where ai j ∈ A and bi j ∈ B for 1≤ i, j ≤ d.

2. SO returns view = (A′,B′).

We remark that SO uses exactly the same algorithm
as the real protocol of S2M3, then it describes ex-
actly the same distribution as viewS2M3

O (I), which con-
cludes the proof.

Lemma 2. There exists a probabilistic polynomial-
time simulator SC such that for all I = (IO , IC , IU), we

have SC (IC ,gC (I))
c≡ viewS2M3

C (I).

Proof. Consider that the public cloud C is corrupted.
Observe that C knows the Paillier public key pk of
the user and the dimension d of the two matrices. The
view of C contains the two encrypted matrices sent
by O, the encryption of the matrix C = A×B sent to
U, and all couples of ciphertexts (x(`)i ,y(`)i ) sent to U
and all corresponding ciphertexts z(`)i returned by U
to compute multiplication on encrypted coefficients,
for 1≤ i≤ 7 and 1≤ `≤ 7k. Formally, SC is given pk
and n and works as follows:

1. SC creates two square matrices of dimension
d = 2k (with k ∈ N?) A = (ai j)1≤i, j≤d and B =
(bi j)1≤i, j≤d where ai j and bi j are randomly chosen
in Zn, the plaintext space of Paillier cryptosystem.

2. SC encrypts each element of A (resp. B) using the
Paillier cryptosystem and the public key pk, and
obtains encrypted matrix A′ (resp. B′). We denote
by a′i j (resp. b′i j) elements of A′ (resp. B′).

3. SC parses A′ and B′ such that:

A′ =
[

A′11 A′12
A′21 A′22

]
and B′ =

[
B′11 B′12
B′21 B′22

]
,

where A′i j and B′i j for 1 ≤ i, j ≤ 2 have the same
dimension, i.e., d/2× d/2. It also computes the
following submatrices as in S2M3:
• S1← (a′i j ·b′i j)1≤i, j≤d/2 s.t. a′i j ∈ A′21, b′i j ∈ A′22.
• S2← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ S1, b′i j ∈ A′11.
• S3← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ A′11, b′i j ∈ A′21.
• S4← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ A′11, b′i j ∈ S2.
• T1← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ B′12, b′i j ∈ B′11.
• T2← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ B′22, b′i j ∈ T1.
• T3← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ B′22, b′i j ∈ B′12.

• T4← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ T2, b′i j ∈ B′21.
4. • If dim(A′) 6= 2, then SC runs recursively

step 3. for each matrices pair (A′,B′) of
{(A′11,B

′
11),(A

′
12,B

′
21),(S4,B′2),(A

′
22,T4),(S1,T1),

(S2,T2),(S3,T3)}.
• Otherwise, i.e., if dim(A′) = 2, we denote by
(A′(`),B′(`)), for 1 ≤ ` ≤ 7k−1, all couples of
encrypted matrices of dimension 2 × 2 that
SC obtains. We denote by a′i j

(`) (resp. b′i j
(`))

elements of matrix A′(`) (resp. B′(`)) such that
1 ≤ i, j ≤ 2. As in S2M3, SC computes for
1≤ i≤ 7 and 1≤ `≤ 7k−1:

– S(`)1 = a′21
(`) ·a′22

(`),

– S(`)2 = S(`)1 ·a′11
(`),

– S(`)3 = a′11
(`) ·a′21

(`),

– S(`)4 = a′11
(`) ·S(`)2 ,

– T (`)
1 = b′12

(`) ·b′11
(`),

– T (`)
2 = b′22

(`) ·T (`)
1 ,

– T (`)
3 = b′22

(`) ·b′12
(`),

– T (`)
4 = T (`)

2 ·b′21
(`).

5. SC picks randomly (r(`)i ,s(`)i , t(`)i ) ∈ (Zn)
3 for 1≤

i≤ 7, 1≤ `≤ 7k−1 to simulate the interactive ho-
morphic encryption. It computes for 1 ≤ i ≤ 7,
and 1≤ `≤ 7k−1:
• (x(`)1 ,y(`)1 ) = (a′11

(`) ·Epk(r
(`)
1 ),b′11

(`) ·Epk(s
(`)
1 )),

• (x(`)2 ,y(`)2 ) = (a′12
(`) ·Epk(r

(`)
2 ),b′21

(`) ·Epk(s
(`)
2 )),

• (x(`)3 ,y(`)3 ) = (S(`)4 ·Epk(r
(`)
3 ),b′22

(`) ·Epk(s
(`)
3 )),

• (x(`)4 ,y(`)4 ) = (a′22
(`) ·Epk(r

(`)
4 ),T (`)

4 ·Epk(s
(`)
4 )),

• (x(`)5 ,y(`)5 ) = (S(`)1 ·Epk(r
(`)
5 ),T (`)

1 ·Epk(s
(`)
5 )),

• (x(`)6 ,y(`)6 ) = (S(`)2 ·Epk(r
(`)
6 ),T (`)

2 ·Epk(s
(`)
6 )),

• (x(`)7 ,y(`)7 ) = (S(`)3 ·Epk(r
(`)
7 ),T (`)

3 ·Epk(s
(`)
7 )),

• z(`)i = Epk(t
(`)
i ).

Couples of ciphertexts (x(`)i ,y(`)i ) correspond to
ciphertexts sent by C to U, and ciphertexts z(`)i
are the corresponding answers sent by U to C .
Using all z(`)i , SC computes for 1 ≤ i ≤ 7 and
1≤ `≤ 7k−1:

w(`)
i = z(`)i

/((
x(`)1

r(`)1 ) ·(y(`)1
s(`)1
)
·Epk

(
r(`)1 · s

(`)
1

))
simulating the encryption of the plaintext product
associated to x(`)i and y(`)i . Then, it computes:

• C′1
(`) = w(`)

1 ·w
(`)
2 ,



• C′2
(`) = w(`)

1 ·w
(`)
6 ,

• C′3
(`) =C′2

(`) ·w(`)
7 ,

• C′4
(`) =C′2

(`) ·w(`)
5 ,

• C′5
(`) =C′4

(`) ·w(`)
3 ,

• C′6
(`) =C′3

(`)/w(`)
4 ,

• C′7
(`) =C′3

(`) ·w(`)
5 ,

and constructs the submatrix C′(`) =[
C′1

(`) C′5
(`)

C′6
(`) C′7

(`)

]
.

6. SC uses as S2M3 matrices C′(`) to construct recur-
sively the matrix C′, the encryption of C = A×B.

7. Finally, SC returns:
view=(A′,B′,{(x(`)i ,y(`)i ),z(`)i }1≤i≤7,1≤`≤7k−1 ,C′).

Assume by contradiction there exists a
polynomial-time distinguisher D such that for
all I ∈ I : ∣∣Pr[s← viewS2M3

C (I) : 1← D(s)]−
Pr[s← SC (IC ,gC (I)) : 1← D(s)]

∣∣= λ(η) ,

where λ is a non-negligible function in η. We con-
struct a probabilistic polynomial-time algorithm A
that uses D to win with a non-negligible advantage
the IND-CPA experiment. Algorithm A is given pk
and works as follows:

1. A creates two square matrices of dimension
d = 2k (with k ∈ N?) A = (ai j)1≤i, j≤d and B =
(bi j)1≤i, j≤d where ai j and bi j are randomly chosen
in Zn, the plaintext space of Paillier cryptosystem.

2. A picks (αi j,βi j)
$← (Zn)

2, and con-
structs A′ = (Epk(LRb(ai j,αi j)))1≤i, j≤d and
B′ = (Epk(LRb(bi j,βi j)))1≤i, j≤d . We denote by
a′i j (resp. b′i j) elements of A′ (resp. B′).

3. A parses A′ and B′ such that:

A′ =
[

A′11 A′12
A′21 A′22

]
and B′ =

[
B′11 B′12
B′21 B′22

]
,

where A′i j and B′i j for 1 ≤ i, j ≤ 2 have the same
dimension, i.e., d/2× d/2. It also computes the
following submatrices as in S2M3:
• S1← (a′i j ·b′i j)1≤i, j≤d/2 s.t. a′i j ∈ A′21, b′i j ∈ A′22.
• S2← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ S1, b′i j ∈ A′11.
• S3← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ A′11, b′i j ∈ A′21.
• S4← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ A′11, b′i j ∈ S2.
• T1← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ B′12, b′i j ∈ B′11.
• T2← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ B′22, b′i j ∈ T1.
• T3← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ B′22, b′i j ∈ B′12.

• T4← (a′i j/b′i j)1≤i, j≤d/2 s.t. a′i j ∈ T2, b′i j ∈ B′21.

4. • If dim(A′) 6= 2, then A runs recur-
sively step 3. for each (A′,B′) ∈
{(A′11,B

′
11),(A

′
12,B

′
21),(S4,B′2),(A

′
22,T4),(S1,T1),

(S2,T2),(S3,T3)}.
• Otherwise, i.e., if dim(A′) = 2, we denote by
(A′(`),B′(`)), for 1 ≤ ` ≤ 7k−1, all couples of
encrypted matrices of dimension 2 × 2 that
A obtains. We denote by a′i j

(`) (resp. b′i j
(`))

elements of matrix A′(`) (resp. B′(`)) such that
1 ≤ i, j ≤ 2. As in S2M3, A computes for
1≤ i≤ 7 and 1≤ `≤ 7k−1:

– S(`)1 = a′21
(`) ·a′22

(`),

– S(`)2 = S(`)1 ·a′11
(`),

– S(`)3 = a′11
(`) ·a′21

(`),

– S(`)4 = a′11
(`) ·S(`)2 ,

– T (`)
1 = b′12

(`) ·b′11
(`),

– T (`)
2 = b′22

(`) ·T (`)
1 ,

– T (`)
3 = b′22

(`) ·b′12
(`),

– T (`)
4 = T (`)

2 ·b′21
(`).

5. A picks randomly (r(`)i ,s(`)i , t(`)i ) ∈ (Zn)
3 for 1 ≤

i≤ 7, 1≤ `≤ 7k−1 to compute the interactive ho-
morphic encryption. It also computes for 1 ≤ i ≤
7, and 1≤ `≤ 7k−1:
• (x(`)1 ,y(`)1 ) = (a′11

(`) ·Epk(r
(`)
1 ),b′11

(`) ·Epk(s
(`)
1 )),

• (x(`)2 ,y(`)2 ) = (a′12
(`) ·Epk(r

(`)
2 ),b′21

(`) ·Epk(s
(`)
2 )),

• (x(`)3 ,y(`)3 ) = (S(`)4 ·Epk(r
(`)
3 ),b′22

(`) ·Epk(s
(`)
3 )),

• (x(`)4 ,y(`)4 ) = (a′22
(`) ·Epk(r

(`)
4 ),T (`)

4 ·Epk(s
(`)
4 )),

• (x(`)5 ,y(`)5 ) = (S(`)1 ·Epk(r
(`)
5 ),T (`)

1 ·Epk(s
(`)
5 )),

• (x(`)6 ,y(`)6 ) = (S(`)2 ·Epk(r
(`)
6 ),T (`)

2 ·Epk(s
(`)
6 )),

• (x(`)7 ,y(`)7 ) = (S(`)3 ·Epk(r
(`)
7 ),T (`)

3 ·Epk(s
(`)
7 )),

• z(`)1 = Epk(LRb((a
(`)
11 + r(`)1 ) · (b(`)11 + s(`)1 ), t(`)1 )),

• z(`)2 = Epk(LRb((a
(`)
12 + r(`)2 ) · (b(`)21 + s(`)2 ), t(`)2 )),

• z(`)3 = Epk(LRb((S
(`)
4 + r(`)3 ) · (b(`)22 + s(`)3 ), t(`)3 )),

• z(`)4 = Epk(LRb((a
(`)
22 + r(`)4 ) · (T (`)

4 + s(`)4 ), t(`)4 )),

• z(`)5 = Epk(LRb((S
(`)
1 + r(`)5 ) · (T (`)

1 + s(`)5 ), t(`)5 )),

• z(`)6 = Epk(LRb((S
(`)
2 + r(`)6 ) · (T (`)

2 + s(`)6 ), t(`)6 )),

• z(`)7 = Epk(LRb((S
(`)
3 + r(`)7 ) · (T (`)

3 + s(`)7 ), t(`)7 )).

Using all z(`)i , A computes for 1 ≤ i ≤ 7 and 1 ≤
`≤ 7k−1:

w(`)
i = z(`)i

/((
x(`)1

r(`)1 ) ·(y(`)1
s(`)1
)
·Epk

(
r(`)1 · s

(`)
1
))

.



Then, it computes:

• C′1
(`) = w(`)

1 ·w
(`)
2 ,

• C′2
(`) = w(`)

1 ·w
(`)
6 ,

• C′3
(`) =C′2

(`) ·w(`)
7 ,

• C′4
(`) =C′2

(`) ·w(`)
5 ,

• C′5
(`) =C′4

(`) ·w(`)
3 ,

• C′6
(`) =C′3

(`)/w(`)
4 ,

• C′7
(`) =C′3

(`) ·w(`)
5 ,

and constructs the submatrix C′(`) =[
C′1

(`) C′5
(`)

C′6
(`) C′7

(`)

]
.

6. A uses as S2M3 matrices C′(`) to construct recur-
sively the matrix C′, the encryption of C = A×B.

7. Finally, A sets:
view=(A′,B′,{(x(`)i ,y(`)i ),z(`)i }1≤i≤7,1≤`≤7k−1 ,C′),
runs b∗← D(view) and returns b∗.

We remark that:

Pr[1← Exp
ind-cpa-0
Paillier,A(η)] = Pr[D(viewS2M3

C (I)) = 1] .

Indeed, when b = 0 the view that A uses as input for
D is computed as in the real protocol S2M3. Then
the probability that the experiment returns 1 is equal
to the probability that the distinguisher returns 1 on
inputs computed as in the real protocol. On the other
hand, we have:

Pr[1← Exp
ind-cpa-1
Paillier,A(η)] = Pr[D(SC (IC ,gIC (I))) = 1] .

When b = 1, the view that A uses as input for D is
computed as in the simulator SC . Then the probability
that the experiment returns 1 is equal to the probabil-
ity that the distinguisher returns 1 on inputs computed
as in the simulator.

Finally, we evaluate the probability that A wins
the experiment:

Adv
ind-cpa
Paillier,A(η) =

∣∣Pr[1← Exp
ind-cpa-1
Paillier,A(η)]

−Pr[1← Exp
ind-cpa-0
Paillier,A(η)]

∣∣
=
∣∣Pr[D(viewS2M3

C (I)) = 1]

−Pr[D(SC (IC ,gIC (I))) = 1]
∣∣

= λ(η) ,

which is non-negligible in η, and concludes the proof.

Lemma 3. There exists a probabilistic polynomial-
time simulator SU such that for all I = (IO , IC , IU),

we have SU(IU ,gU(I))
c≡ viewS2M3

U (I).

Proof. Consider that the user U is corrupted. Ob-
serve that U knows the Paillier key pair (pk,sk) and
the result of matrix multiplication C = A× B. The
view of U contains the couple of ciphertexts (xi,yi)
sent by C and the corresponding answer zi for 1≤ i≤
7k. The view of U also contains C′ = Epk(C) sent by
C . We build the simulator SU as follows:

1. SU picks randomly (ri,si) ∈ (Zn)
2 and computes

xi = Epk(ri), yi = Epk(si), and zi = Epk(ri · si) for
1≤ i≤ 7k.

2. SU computes C′= (Epk(ci j))1≤i, j≤d where ci j ∈C
for 1≤ i, j ≤ d.

3. SU returns view = ({(xi,yi),zi}1≤i≤7k ,C′).

We remark that SU describes exactly the same
distribution as viewS2M3

U (I), which concludes the
proof.

7 Conclusion

We have presented SM3, an efficient algorithm
to compute the Strassen-Winograd matrix multiplica-
tion using the MapReduce paradigm. We have also
presented S2M3, a secure approach of SM3 that sat-
isfies privacy guarantees such that the public cloud
does not learn any information on input matrices and
on the output matrix. To achieve our goal, we have
relied on the well-known Paillier cryptosystem. We
have compared our protocol S2M3 to the CRSP ma-
trix multiplication with MapReduce proposed by Bul-
tel et al. (Bultel et al., 2017) and shown that S2M3 is
more efficient.

Looking forward to future work, we aim to inves-
tigate the matrix multiplication with privacy guaran-
tees in different big data systems (e.g. Spark, Flink)
whose users also tend to outsource data and computa-
tions as MapReduce.
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