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Asymptotic analysis of an advection-diffusion equation involving

interacting boundary and internal layers

Youcef Amirat∗ Arnaud Münch†

October 23, 2020

Abstract

As ε goes to zero, the unique solution of the scalar advection-diffusion equation yεt −εyεxx+Myεx =

0, (x, t) ∈ (0, 1) × (0, T ) with Dirichlet boundary conditions exhibits a boundary layer of size O(ε)

and an internal layer of size O(
√
ε). If the time T is large enough, these thin layers where the solution

yε displays rapid variations intersect and interact with each other. Using the method of matched

asymptotic expansions, we show how we can construct an explicit approximation P̃ ε of the solution

yε satisfying ‖yε − P̃ ε‖L∞(0,T ;L2(0,1)) = O(ε3/2) and ‖yε − P̃ ε‖L2(0,T ;H1(0,1)) = O(ε), for all ε small

enough.

Key words: Asymptotic analysis, Singular perturbation, Internal and boundary layers, Sobolev esti-

mates.

1 Introduction. Problem statement

Let T > 0 and QT := (0, 1)× (0, T ). This work is concerned with the scalar advection-diffusion equation
yεt − εyεxx +Myεx = 0, (x, t) ∈ QT ,
yε(0, t) = vε(t), yε(1, t) = 0, t ∈ (0, T ),

yε(x, 0) = yε0(x), x ∈ (0, 1),

(1)

where ε ∈ (0, 1) is the diffusion coefficient and M ∈ R? is the transport coefficient. The function

yε0 ∈ H−1(0, 1) is the initial data, vε ∈ L2(0, T ) is the boundary data, and yε = yε(x, t) is the associated

state.

For any yε0 in H−1(0, 1) and vε in L2(0, T ), there exists a unique solution yε to (1), with the regularity

yε ∈ L2(QT ) ∩ C([0, T ];H−1(0, 1)).

We are interested in this work with a precise asymptotic description of the solution yε when ε is small.

As a first motivation, we mention that system (1) can be seen as a simple example of complex models where

the diffusion coefficient is small compared to the others. Actually, as discussed in [5], the model problem

(1) is an embedded system of the Navier-Stokes system with non-characteristic boundary condition and

viscosity coefficient equals to ε. A second motivation comes from the numerical approximation of (1)

that may be not straightforward for small values of ε (we refer to [8], [23]). A third motivation comes

from the asymptotic controllability property of (1) studied in [7] and which exhibits surprising behaviors,

leaving many open questions.
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1 INTRODUCTION. PROBLEM STATEMENT 2

The limit of the solution yε has been studied in [7], assuming that the initial condition does not

depend on ε, that is yε0 = y0. Precisely, it is shown that, if (vε)(ε>0) is a sequence of functions in L2(0, T )

such that, for some v ∈ L2(0, T ), vε ⇀ v in L2(0, T ) weak, as ε → 0+, then yε ⇀ y in L2(QT ) weak, as

ε→ 0+, where y ∈ C([0, T ];L2(0, 1)) is the weak solution of the following transport equation
yt +Myx = 0, (x, t) ∈ QT ,
y(0, t) = v(t), if M > 0 t ∈ (0, T ),

y(1, t) = 0, if M < 0 t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1).

Despite its apparent simplicity, the asymptotic analysis of system (1) with respect to ε is not straight-

forward. Take for instance M > 0. The reason is that, as ε goes to zero, the solution yε exhibits a

boundary layer of size O(ε) at x = 1 (blue part on Figure 1) but also an internal layer (also called shock

layer in some cases) of size O(
√
ε) along the characteristic {(x, t) ∈ QT , x−Mt = 0} (red part on Figure

1). Thus, two distinct layers, with different sizes, appear and interact in the neighborhood of the point

(x, t) = (1, 1/M), assuming T ≥ 1/M .

The boundary layer along x = 1 occurs as soon as the initial condition yε0 is different from zero. On the

other hand, whatever be the regularity of the initial condition yε0 and Dirichlet condition vε, the internal

layer along the characteristic occurs if yε0 and vε do not satisfy appropriate compatibility conditions at

the point (0, 0). For instance, if both vε = v and yε0 = y0 are independent of ε, these compatibility

conditions read as follows:

Mpy
(p)
0 (0) + (−1)p+1v(p)(0) = 0, ∀p ∈ N. (2)

We refer to [2]. Assuming such conditions, the asymptotic analysis of (1) has been done in [2]. More

precisely, assuming that the initial condition is independent of ε and that the function vε is given in the

form vε =
∑m
k=0 ε

kvk, an asymptotic approximation wεm of the solution yε is constructed in [2]. The

method of matched asymptotic expansions is used to define an outer solution (out of the boundary layer)

and an inner solution. Upon regularity assumptions on the functions vk, k = 0, . . . ,m and yε0 = y0, wεm
is shown to be a regular and strong convergent approximation of yε, as ε → 0+. For any m ∈ N, the

error estimate is as follows

‖yε(·, t)− wεm(·, t)‖L2(0,1) ≤ cmε
2m+1

2 γ + cm

(
ε

1
2 + ε

(2m+3)γ
2

)
e−

M2

2εγ t, ∀t ∈ [0, T ],

for some constant cm independent of ε and γ ∈ (0, 1/2]. The function wεm, sum of solutions of transport

equations, explicit, can therefore be used for numerical purposes. The estimate involves the initial layer

corrector, exponentially small with respect to ε for t > 0. Moreover, assuming that yε0 is a Gevrey

function of order 1/2 in [0, 1], and that the vk functions are polynomials, the constant cm is uniformly

bounded with respect to m allowing to pass to the limit, as m→∞, with ε small enough but fixed. This

leads to the following decomposition

yε(x, t) = wε(x, t) + θε(x, t), (x, t) ∈ QT ,

where wε is an infinite sum of explicit solutions of transport equations, and θε is the initial layer corrector,

defined as the solution of a non-homogeneous advection-diffusion equation of the form (1) satisfying

‖θε(·, t)‖L2(0,1) ≤ cε
1
2 e−

M2

2εγ t, for all t ∈ [0, T ], for some constant c independent of ε.

The main purpose of this work is to reproduce (partially) the analysis done in [2], relaxing the compat-

ibility conditions (2). These conditions are notably very restrictive for the underlying null controllability

problem where v is sought such that yε = yε(y0, v) vanishes at any controllability time T (see [7], [3]).

The violation of the compatibility conditions create a thin inner region (called internal layer) in the

vicinity of the characteristic {(x, t) ∈ QT , x −Mt = 0} where the solution yε exhibits rapid variations.
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Figure 1: Internal (red) and boundary (blue) layer zones for yε in the case M > 0.

The internal layer will intersect the boundary layer living along x = 1, when T ≥ 1/M . This requires to

incorporate to our analysis the internal layer appearing along the characteristic and notably, to discuss

how this internal layer interacts with the boundary layer at x = 1.

Interaction of shock layers and boundary layers is a well-know phenomenon, for instance in fluid

mechanics. We refer to [1] and the references therein. Asymptotic analysis with respect to a small

parameter of a boundary-value problem involving such interaction is however quite challenging. To our

knowledge, few analysis have been performed, mainly on simple cases. Influence of mutual interaction of

layers is notably discussed, based on heuristic scaling arguments, in [12] (see also [18]). The first example

considered in [12] is{
uεx(x, y)− ε∆uε(x, y) = 0, (x, y) ∈ (0, 1)× (−1, 1),

uε(0, y) = f(y), uε(x,−1) = uε(x, 1) = uε(1, y) = 0, x ∈ [0, 1], y ∈ [−1, 1],
(3)

where f : [−1, 1] → R is a piecewise constant, discontinuous at y = 0. This develops a shock layer

around the line {y = 0}, intersecting at the point (1, 0), the boundary layer living along the orthogonal

line {x = 1}. This example is inspired from [11] where a rigorous constructive asymptotic analysis is

given and leads to an approximation wε satisfying the uniform property |uε(x, y) − wε(x, y)| = O(
√
ε)

for all (x, y) ∈ [0, 1] × [−1, 1]. This estimate is obtained using a maximum principle. Later on, using

similar technics, the asymptotic analysis of system (1) has been discussed in [4]; precisely, assuming

v ∈ C3([0, T ]) and y0 ∈ C4([0, 1]), a continuous explicit function converging to yε for the uniform norm

with a rate
√
ε is determined.

It is also worth mentioning the works [20, 21] where the asymptotic analysis of the system (1) defined

over R+ × (0, T ) is performed, for M > 0. In that case, there is not more boundary layer. Using the

matching asymptotic method, it is shown that the solution in the internal layer can be represented by

iterated integral of the complementary error function erfc. In particular, the analysis provides the exact

solution for the integral representation of the solution yε when the initial condition y0 and boundary data

v are polynomials. In the general case, estimates for the uniform norm are obtained using a maximum
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principle. For instance, the shock layer (appearing when v(0) 6= y0(0)) is analyzed in [19] and leads

to an error for the uniform norm of order ε1/2; the angular layer (appearing when v(0) = y0(0) but

v(1)(0) 6= −My
(1)
0 (0)) leads to an error of order ε3/2.

Assuming the data v and y0 in C4(0, T ) and C4(0, 1), respectively, we construct in this work an

explicit C1-approximation of yε, leading to error estimates in L∞(0, T ;L2(0, 1)) and L2(0, T ;H1(0, 1)).

We use the method of matched asymptotic expansions together with energy estimates. The analysis

combines in an appropriate way the description of the internal layer given in [19, 20] and the description

of the boundary layer given in [2]. The paper is organized as follows. In Section 2, we employ the

method of matched asymptotic expansions to construct a linear combination of three distinct expansions:

a first outer expansion, defined as the sum of the functions yk, k = 0, . . . , 3, solutions of pure advection

equations, aims to approximate the solution yε, far away from the boundary and internal layers. A

second inner expansion, defined as the sum of the functions W k, k = 0, . . . , 3, solutions of pure diffusion

equations, aims to approximate the solution yε in a neighborhood of size O(
√
ε) of the first characteristic.

Eventually, a third inner expansion, defined as the sum of the functions Y k, k = 0, . . . , 3, solutions of

ordinary differential equations, aims to approximate the solution yε in a neighborhood of size O(ε) of

the boundary x = 1. A composite technique which consists in adding these three expansions and then

subtracting their common parts leads to a first sequence (P ε)(ε>0). As ε goes to zero, it turns out that

this sequence exhibits an artificial corner layer in the neighborhood of the point (x, t) = (0, 0) leading

to an unsatisfactory approximation result, namely ‖P ε − yε‖L∞(0,T ;L2(0,1)) = O(
√
ε). For this reason,

in Section 3, using precise descriptions of the internal layer given in [19, 20], we slightly modify the

sequence (P ε)(ε>0) and obtain a second sequence (P̃ ε)(ε>0). Then, in Section 4, using energy estimates

for the advection-diffusion equation (1) together with precise L1(L2)-estimates of some remainder terms,

we prove the convergence of (P̃ ε−yε)(ε>0) to zero for the L∞(L2)-norm with a rate ε3/2, see Theorem 4.1.

Assuming moreover that y0(1) = y
(1)
0 (1) = 0, we also show the convergence of the sequence (P̃x

ε
−yεx)(ε>0)

to zero for the L2(QT )-norm with a rate ε, see Theorem 4.2. In Section 5, as an application of the L∞(L2)-

estimate, we show that the L2(0, 1)-norm of the solution yε(·, 1/M) at time 1/M associated to v = 0

decays polynomially with respect to ε1/4 and depends only of the value of the initial condition at x = 0,

see Proposition 5.1. Section 6 concludes with some perspectives.

As far as we know, this study is the first detailed asymptotic analysis of a boundary-value problem

involving two interacting singular layers.

2 Matched asymptotic expansions and approximate solutions

Let us consider the problem 
yεt − εyεxx +Myεx = 0, (x, t) ∈ QT ,
yε(0, t) = v(t), yε(1, t) = 0, t ∈ (0, T ),

yε(x, 0) = y0(x), x ∈ (0, 1),

(4)

where y0 and v are given functions, M > 0, and T ≥ 1/M . We construct an asymptotic approximation of

the solution yε of (4) by using the method of matched asymptotic expansions. We refer to [13, 17, 24, 10]

for a general presentation of the method. We assume that the initial condition yε(x, 0) and the boundary

condition yε(0, t) are independent of ε. In view of the linearity of (4), the procedure is very similar for

yε(·, 0) and yε(0, ·) of the form, respectively, yε(·, 0) =
∑m
k=0 ε

kyk0 and yε(0, ·) =
∑m
k=0 ε

kvk. Note that

the case M < 0 can be treated similarly.

As mentioned in the introduction, the solution yε exhibits two inner regions: an internal layer located

along the characteristic {(x, t) ∈ QT , x−Mt = 0} and a boundary layer living along x = 1. The internal

layer is of size O(ε1/2) while the boundary layer is of size O(ε). The outer region is the subset of (0, 1)

consisting of the points far from the internal and boundary layers, it is of O(1) size. The occurrence of
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these three distinct regions require to introduce three distinct asymptotic expansions. The first one, the

so-called outer expansion, lives far away from the inner regions and is given by

m∑
k=0

εkyk(x, t), (x, t) ∈ QT , x−Mt 6= 0, x < 1,

for some m ∈ N?. A second one, the so-called first inner expansion, living in the neighborhood of

{(x, t) ∈ QT , x−Mt = 0} is given by

m∑
k=0

ε
k
2W k/2(w, t), w =

x−Mt

ε1/2
∈
(
−Mt

ε1/2
,

1−Mt

ε1/2

)
, t ∈ (0, T ).

Last, a third one, the so-called second inner expansion, living along x = 1, is given by

m∑
k=0

εk/2Y k/2(z, τ, t), z =
1− x
ε
∈ (0, ε−1), τ =

1
M − t√

ε
.

In particular, these expansions make appear several variables, at different scales, namely,

x, t, z =
1− x
ε

, w =
x−Mt√

ε
, τ =

1
M − t√

ε
.

We will construct outer and inner expansions which will be valid in the so-called outer and inner regions,

respectively. There are intermediate regions between the outer region and the inner regions, with size

O(εγ), γ ∈ (0, 1). To construct an approximate solution we require that inner and outer expansions

coincide in each intermediate region, then some conditions must be satisfied in that region by the corre-

sponding inner and outer expansions. These conditions are the so-called matching asymptotic conditions.

The strategy is as follows. We first identify the functions yk, k = 0, . . . ,m, in the outer region.

Then, we identify the functions W k/2, k = 0, . . . ,m, of the first inner expansion satisfying the matching

conditions (with the yk). This allows to define an expansion in the form pε =
∑m
k=0 ε

k/2pk/2, valid

far away from x = 1, as a linear combination of the functions yk and W k/2. Then, we identify the

functions Y k, k = 0, . . . ,m, of the second inner expansion satisfying the matching conditions (with the

pk/2). Eventually, we define an expansion, denoted by P ε, valid in the whole domain QT , as a linear

combination of the functions pk/2 and Y k/2, and supposed to be an approximation of yε. In this work,

we shall take m = 3.

2.1 Outer expansion

Putting

m∑
k=0

εkyk(x, t) into equation (4)1, the identification of the powers of ε yields

ε0 : y0t +My0x = 0,

εk : ykt +Mykx = yk−1xx , for any 1 ≤ k ≤ m.

Taking the initial and boundary conditions into account we define y0 and yk (1 ≤ k ≤ m) as functions

satisfying the transport equations, respectively,
y0t +My0x = 0, (x, t) ∈ QT ,
y0(0, t) = v(t), t ∈ (0, T ),

y0(x, 0) = y0(x), x ∈ (0, 1),


ykt +Mykx = yk−1xx , (x, t) ∈ QT ,
yk(0, t) = 0, t ∈ (0, T ),

yk(x, 0) = 0, x ∈ (0, 1).

The solution y0 is given by

y0(x, t) =

y0(x−Mt), x > Mt,

v
(
t− x

M

)
, x < Mt.

(5)
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Using the method of characteristics we find that, for any 1 ≤ k ≤ m, the solution yk is given by

yk(x, t) =


∫ t

0

yk−1xx (x+ (s− t)M, s)ds, x > Mt,∫ x/M

0

yk−1xx (sM, t− x

M
+ s)ds, x < Mt.

Remark 1 We may determine explicitly the function yk. For instance, we verify that we have

y1(x, t) =

t y
(2)
0 (x−Mt), x > Mt,

x

M3
v(2)

(
t− x

M

)
, x < Mt,

and

y2(x, t) =


t2

2
y
(4)
0 (x−Mt), x > Mt,

− 2x

M5
v(3)

(
t− x

M

)
+

x2

2M6
v(4)

(
t− x

M

)
, x < Mt.

Here and in the sequel, f (i) denotes the derivative of order i ∈ N of the real function f . 2

2.2 Inner expansion along the characteristic

Now we turn back to the construction of the first inner expansion. In the sequel, we shall use the error

function erf : R→ [−1, 1] defined as erf(y) = 2
π

∫ y
0
e−s

2

ds. It satisfies notably the estimates

√
1− e−y2 ≤ erf(y) ≤

√
1− e− 4y2

π , ∀y ≥ 0,

proved in [6], so that erf(y)→ 1 as y →∞. In particular, these estimates imply

1

2
e−

4y2

π ≤ 1− erf(y) ≤ e−y
2

, ∀y ≥ 0. (6)

We will also use in the sequel the asymptotic behavior of the erf function for large y > 0:

erf(y) = 1− e−y
2

(
1√
πy

+O
(

1

y3

))
. (7)

Since erf(−y) = −erf(y) for all y ∈ R, similar relations holds for y < 0, in particular erf(y) → −1 as

y → −∞. Eventually, we also introduce the complementary error function erfc : R → [0, 2] defined as

erfc(y) = 1− erf(y).

Putting

m∑
k=0

ε
k
2W k/2(w, t) into equation (4)1, the identification of the powers of ε yields

W
k/2
t (w, t)−W k/2

ww (w, t) = 0, for any 0 ≤ k ≤ m.

so that W k solves, for all 0 ≤ k ≤ m, the heat equation. To get the asymptotic matching conditions we

write that, for any fixed t and large w,

W 0(w, t) + ε1/2W 1/2(w, t) + εW 1(w, t) + · · ·+ εm/2Wm/2(w, t)

= y0(x, t) + εy1(x, t) + · · ·+ εmym(x, t) +O(ε(m+1)).
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Rewriting the right-hand side of the above equality in terms of w, t and using Taylor expansions we have

W 0(w, t) +
√
εW 1/2(w, t) + εW 1(w, t) + · · ·+ εm/2Wm/2(w, t)

= y0(
√
εw +Mt, t) + εy1(

√
εw +Mt, t) + · · ·+ εmym(

√
εw +Mt, t) +O(ε(m+1))

= y0(Mt, t) +
√
εwy0x(Mt, t) +

εw2

2
y0xx(1, t) + · · ·

Therefore, at the first orders, the matching conditions read

W 0(w, t) ∼ y0((Mt)±, t), as w → ±∞,

W 1/2(w, t) ∼ wy0x((Mt)±, t), as w → ±∞,

W 1(w, t) ∼ w2

2
y0xx((Mt)±, t) + y1((Mt)±, t), as w → ±∞,

W 3/2(w, t) ∼ w3

3!
y0xxx((Mt)±, t) + wy1x((Mt)±, t), as w → ±∞.

(8)

• We define W 0 as a solution ofW
0
t (w, t)−W 0

ww(w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→±∞

W 0(w, t) = lim
x→(Mt)±

y0(x, t), t ∈ (0, T ).
(9)

In view of (5), we have limx→(Mt)+ y
0(x, t) = y0(0) and limx→(Mt)− y

0(x, t) = v(0) so that (9) rewrites{
W 0
t (w, t)−W 0

ww(w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→+∞

W 0(w, t) = y0(0), lim
w→−∞

W 0(w, t) = v(0), t ∈ (0, T ).

The solution of (9) is not unique. Actually, using the fundamental solution of the heat equation, the

general form of W 0 is as follows:

W 0(w, t) = (H(·, t) ? g0)(w) =
1√
4πt

∫
R
e−

(w−s)2
4t g0(s)ds, g0(w) := lim

t→0+
W 0(w, t)

with H : R×R+ → R+ defined by H(w, t) = (4πt)−1/2e−w
2/4t. From this expression, we check that any

function g0 satisfying limw→−∞g0(w) = v(0) and limw→∞g0(w) = y0(0) leads to a function W 0 fulfilling

the prescribed asymptotic behavior in (9). The simplest choice for the initial condition g0 is given by

g0(w) =

{
y0(0), w ≥ 0,

v(0), w < 0,
(10)

leading to the following explicit expression:W
0(w, t) =

c+ − c−

2
erf

(
w

2
√
t

)
+
c+ + c−

2
= c+ +

c− − c+

2
erfc

(
w

2
√
t

)
,

c+ = y0(0), c− = v(0).

(11)

Using the asymptotic behavior of the error function, we easily verify that W 0 satisfies the prescribed

asymptotic behavior. Remark also that limt→0+W
0(w, t) equals y0(0) if w ≥ 0 and v0(0) if w < 0.

• We define W 1/2 as a solution of
W

1/2
t (w, t)−W 1/2

ww (w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→±∞

(
W 1/2(w, t)− y0x((Mt)±, t)w

)
= 0, t ∈ (0, T ).

(12)
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In view of (5), y0x((Mt)+, t) = (y0)(1)(0) and y0x((Mt)−, t) = − 1
M v(1)(0). Then (12) rewrites

W
1/2
t (w, t)−W 1/2

ww (w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→+∞

(
W 1/2(w, t)− (y0)(1)(0)w

)
= 0, t ∈ (0, T ),

lim
w→−∞

(
W 1/2(w, t) +

1

M
v(1)(0)w

)
= 0, t ∈ (0, T ).

Proceeding as before, a solution is given by W 1/2(w, t) = (H(·, t) ? g1/2)(w) with g1/2(s) = y
(1)
0 (0)s if

s ≥ 0 and g1/2(s) = − 1
M v(1)(0) s if s < 0. Explicitly, we obtain

W 1/2(w, t) = w

(
d+ − d−

2
erf

(
w

2
√
t

)
+
d+ + d−

2

)
+(d+ − d−)

√
t√
π
e−

w2

4t ,

d+ = y
(1)
0 (0), d− = − 1

M
v(1)(0),

(13)

and check that W 1/2 satisfies the prescribed asymptotic property. Remark that limt→0+W
1/2(w, t) equals

y
(1)
0 (0)w if w > 0 and −v

(1)(0)
M w if w < 0. Moreover,

lim
x→0+

W 1/2

(
x√
ε
, 0

)
− d+ x√

ε
= 0,

and

lim
t→0+

[
W 1/2

(
−Mt√
ε
, t

)
− d+ + d−

2

(
−Mt√

ε

)]
= 0. (14)

• We define W 1 as a solution of
W 1
t (w, t)−W 1

ww(w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→±∞

(
W 1(w, t)−

[
w2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

])
= 0, t ∈ (0, T ).

(15)

We have y1((Mt)+, t) = t(y0)(2)(0) and y1((Mt)−, t) = t
M2 v

(2)(0) for all t. Similarly, y0xx((Mt)+, t) =

(y0)(2)(0) and y0xx((Mt)−, t) = 1
M2 v

(2)(0). Then (15) rewrites

W 1
t (w, t)−W 1

ww(w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→+∞

(
W 1(w, t)− w2

2
y
(2)
0 (0)

)
= ty

(2)
0 (0), t ∈ (0, T ),

lim
w→−∞

(
W 1(w, t)− w2

2

1

M2
v(2)(0)

)
=

t

M2
v(2)(0), t ∈ (0, T ).

A solution is given by W 1(w, t) = (H(·, t)?g1)(w) with g1(s) = s2

2 y
(2)
0 (0) if s ≥ 0 and g1(s) = s2

2
1
M2 v

(2)(0)

if s < 0. Explicitly, we obtain
W 1(w, t) =

(
w2

2
+ t

)(
e+ − e−

2
erf

(
w

2
√
t

)
+
e+ + e−

2

)
+
e+ − e−

2
w

√
t

π
e−

w2

4t ,

e+ = y
(2)
0 (0), e− =

v(2)(0)

M2
.

(16)

• We define W 3/2 as a solution of
W

3/2
t (w, t)−W 3/2

ww (w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→±∞

(
W 3/2(w, t)−

[
w3

3!
y0xxx((Mt)±, t) + wy1x((Mt)±, t)

])
= 0, t ∈ (0, T ).

(17)
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We have y0xxx((Mt)+, t) = y
(3)
0 (0), y1x((Mt)+, t) = ty

(3)
0 (0), y0xxx((Mt)−, t) = − 1

M3 v
(3)(0) and y1x((Mt)−, t) =

− t
M3 v

(3)(0) + 1
M3 v

(2)(0) then (17) rewrites

W
3/2
t (w, t)−W 3/2

ww (w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→+∞

(
W 3/2(w, t)− y

(3)
0 (0)

6
(w3 + 6wt)

)
= 0, t ∈ (0, T ),

lim
w→−∞

(
W 3/2(w, t) +

v(3)(0)

6M3
(w3 + 6wt)− v(2)(0)

M3
w

)
= 0, t ∈ (0, T ).

A solution is given by W 3/2(w, t) = (H(·, t) ? g3/2)(w) with g3/2(s) = s3

6 y
(3)
0 (0) if s ≥ 0 and g3/2(s) =

− s
3

6
1
M3 v

(3)(0) + s 1
M3 v

(2)(0) if s < 0. Explicitly,

W 3/2(w, t) =

(
w3

2
+ 3tw

)(
erf

(
w

2
√
t

)
(h+ − h−) + (h+ + h−)

)
+ (h+ − h−)(4t+ w2)

√
t

π
e−

w2
4t − f−

√
t√
π
e−

w2

4t +
f−

2
w erfc

(
w

2
√
t

)
,

f− =
v(2)(0)

M3
, h+ =

y
(3)
0 (0)

6
, h− = −v

(3)(0)

6M3
.

(18)

2.3 Composite asymptotic approximation outside the boundary layer

One usual way to define a composite asymptotic approximation is to introduce a cutt-off function

Xε in order to make the link between two expansions. This leads to an approximation of the form

Xε(x, t)
∑
k≥0 ε

kyk + (1−Xε(x, t))
∑
k≥0 ε

k/2W k/2. We refer to [2] where this strategy is employed. This

technique leads however to tedious computations when performing the error analysis. Instead, we de-

fine here a so-called composite approximation obtained by adding, at each order, the inner and outer

expansions and then by subtracting their common part.

At the first order, the common part of y0(x, t) and W 0(w, t) (defined by (5) and (11) respectively), is

equal to y0(0) for x > Mt and to v(0) for x < Mt. Thus, the first term of the composite approximation

outside the boundary layer along x = 1 is given by

p0(x, t) =


y0(x−Mt) +W 0(w, t)− y0(0), x > Mt,

v

(
t− x

M

)
+W 0(w, t)− v(0), x ≤Mt.

(19)

Clearly, the function p0 is continuous along the characteristic:

limx−Mt→0±p
0(x, t) =

y0(0) + v(0)

2
.

The second term of the composite approximation is given by

p1/2(x, t) =

W
1/2(w, t)− y(1)0 (0)w, x > Mt,

W 1/2(w, t) +
1

M
v(1)(0)w, x ≤Mt,

(20)

where W 1/2 is defined by (13). Clearly, p1/2 is also continuous along the characteristic.

At the next order, we define the function

p1(x, t) = y1(x, t) +W 1(w, t)−
(
w2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

)
,
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that is

p1(x, t) =


ty

(2)
0 (x−Mt) +W 1(w, t)−

(
w2 + 2t

2

)
y
(2)
0 (0), x ≥Mt,

x

M3
v(2)(t− x

M
) +W 1(w, t)−

(
w2 + 2t

2M2

)
v(2)(0), x ≤Mt,

(21)

with W 1 given by (16). Eventually, we define p3/2 as follows:

p3/2(x, t) = W 3/2(w, t)−
(
w3

3!
y0xxx((Mt)±, t) + wy1x((Mt)±, t)

)
,

that is

p3/2(x, t) =


W 3/2(w, t)−

(
w3

3!
+ tw

)
y
(3)
0 (0), x ≥Mt,

W 3/2(w, t)−
(
− w3

3!M3
v(3)(0) +

w

M3
v(2)(0)− tw

M3
v(3)(0)

)
, x ≤Mt,

(22)

where W 3/2 is given by (18).

Then the following quantity is defined to be an asymptotic approximation of yε, outside the boundary

layer along x = 1,

pε(x, t) =

3∑
k=0

εk/2pk/2(x, t), (x, t) ∈ QT .

We easily verify the following property.

Proposition 2.1 Assume that v ∈ C3([0, T ]) and y0 ∈ C3([0, 1]). Then the functions (p0 +
√
εp1/2),

(p1 +
√
εp3/2) and pε belong to C1([0, 1]× (0, T ]).

2.4 Inner expansion along x = 1

We now turn back to the construction of the inner expansion along x = 1. Putting

m∑
k=0

εk/2Y k/2(z, τ, t)

into equation (4)1, the identification of the powers of ε yields

ε0 : Y 0
zz(z, τ, t) +MY 0

z (z, τ, t) = 0,

ε1/2 : Y 1/2
zz (z, τ, t) +MY 1/2

z (z, τ, t) = −Y 0
τ (z, τ, t)

εk/2 : Y k/2zz (z, τ, t) +MY k/2z (z, τ, t) = Y
(k−2)/2
t (z, τ, t)− Y (k−1)/2

τ (z, τ, t), for any 2 ≤ k ≤ m.

It is important to note that the functions Y k depend on three variables, namely z, t but also τ . As

it is standart, the variable z = (1 − x)/ε is introduced to describe the boundary layer at x = 1−. Here,

the variable τ = (1/M − t)/
√
ε allows to take into account the interaction of the internal and boundary

layers. If we do not introduce this variable τ , we see notably that Y 1/2 solves the same ordinary differential

equation than Y 0, and the analysis (detailed in Section 4) leads to an error estimate (for the L∞(L2)

norm) of order
√
ε only, independently of the number of terms in the various expansions. This point, also

described in [12] to discuss problem (3), is therefore crucial.

We impose Y k/2(0, τ) = 0 for any 0 ≤ k ≤ m. To get the asymptotic matching conditions we write

that, for any fixed τ and large z,

Y 0(z, τ, t) + ε1/2Y 1/2(z, τ, t) + εY 1(z, τ, t) + · · ·+ εm/2Y m/2(z, τ, t)

= p0(x, t) + ε1/2p1/2(x, t) + ε1p1(x, t) + · · ·+ εm/2pm/2(x, t) +O(εm+1).
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In order to identify at each order the appropriate matching conditions, we need to rewrite the right-

hand side of the above equality in terms of z and τ , t being fixed. Writing that x = 1−εz, w = Mτ−
√
εz,

and using Taylor expansions, we have successively

p0(x, t) = y0(x, t) +W 0(w, t)− y0((Mt)±, t) = y0(1− εz, t) +W 0(Mτ −
√
εz, t)− y0((Mt)±, t)

= y0(1, t) +W 0(Mτ, t)− y0((Mt)±, t)−
√
εzW 0

w(Mτ, t) + ε

(
−z(y0)x(1, t) +

z2

2
W 0
ww(Mτ, t)

)
− ε3/2 z

3

6
W 0
www(Mτ, t) +O(ε2),

√
εp1/2(x, t) =ε1/2

(
W 1/2(w, t)− w(y0)x((Mt)±, t)

)
=ε1/2

(
W 1/2(Mτ −

√
εz, t)− (Mτ −

√
εz)(y0)x((Mt)±, t)

)
=ε1/2

(
W 1/2(Mτ, t)−Mτ(y0)x((Mt)±, t)

)
− εz

(
W 1/2
w (Mτ, t)− (y0)x((Mt)±, t)

)
+ ε3/2

z2

2
W 1/2
ww (Mτ, t) +O(ε2),

εp1(x, t) =ε

(
y1(x, t) +W 1(w, t)−

(
w2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

))
=ε

(
y1(1− εz, t) +W 1(Mτ −

√
εz, t)−

(
(Mτ −

√
εz)2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

))
=ε

(
y1(1, t) +W 1(Mτ, t)−

(
M2τ2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

))
+ ε3/2z

(
−W 1

w(Mτ, t) +Mτy0xx((Mt)±, t)

)
+O(ε2),

and

ε3/2p3/2(x, t) = ε3/2
(
W 3/2(w, t)−

(
w3

3!
y0xxx((Mt)±, t) + wy1x((Mt)±, t)

))
= ε3/2

(
W 3/2(Mτ −

√
εz, t)−

(
(Mτ −

√
εz)3

3!
y0xxx((Mt)±, t) + (Mτ −

√
εz)y1x((Mt)±, t)

))
= ε3/2

(
W 3/2(Mτ, t)−

(
M3τ3

3!
y0xxx((Mt)±, t) +Mτy1x((Mt)±, t)

))
+O(ε2).

We deduce that

3∑
k=0

εk/2pk/2(x, t) = C0(z, τ, t) + ε1/2C1/2(z, τ, t) + εC1(z, τ, t) + ε3/2C3/2(z, τ, t) +O(ε2),

with

C0(z, τ, t) =y0(1, t) +W 0(Mτ, t)− y0((Mt)±, t),

C1/2(z, τ, t) =W 1/2(Mτ, t)−Mτ(y0)x((Mt)±, t)− zW 0
w(Mτ, t),

C1(z, τ, t) =y1(1, t) +W 1(Mτ, t)−
(
M2τ2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

)
+ z

(
−W 1/2

w (Mτ, t) + (y0)x((Mt)±, t)− (y0)x(1, t)

)
+
z2

2
W 0
ww(Mτ, t),

C3/2(z, τ, t) =p3/2(1, t) + z

(
−W 1

w(Mτ, t) +Mτy0xx((Mt)±, t)

)
+
z2

2
W 1/2
ww (Mτ, t)− z3

6
W 0
www(Mτ, t).

(23)
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Therefore, the matching conditions read

Y k/2(z, τ, t) ∼ Ck/2(z, τ, t), as z →∞, for k = 0, . . . , 3. (24)

In the sequel, we use the notations

Ck/2(z, τ, t) =

k∑
p=0

Ck/2,p(τ, t)z
p.

• We define Y 0 as a solution of{
Y 0
zz(z, τ, t) +MY 0

z (z, τ, t) = 0, (z, τ, t) ∈ R?+ × R× (0, T ),

Y 0(0, τ, t) = 0, lim
z→+∞

Y 0(z, τ, t) = C0,0(τ, t), t ∈ (0, T ).

The solution is

Y 0(z, τ, t) = C0,0(τ, t)
(
1− e−Mz

)
, (z, τ, t) ∈ R+ × R× [0, T ],

with

C0,0(τ, t) =


y0(1−Mt) +W 0(Mτ, t)− y0(0), 1 ≥Mt,

v

(
t− 1

M

)
+W 0(Mτ, t)− v(0), 1 ≤Mt.

• We define Y 1/2 as a solution ofY
1/2
zz (z, τ, t) +MY 1/2

z (z, τ, t) = −Y 0
τ (z, τ, t), (z, τ, t) ∈ R?+ × R× (0, T ),

Y 1/2(0, τ, t) = 0, lim
z→+∞

(Y 1/2(z, τ, t)− C1/2(z, τ, t)) = 0, t ∈ (0, T ).

Writing that Y 0
τ (z, τ, t) = C0,0,τ (1− e−Mz), we obtain, for (z, τ, t) ∈ R? × R× (0, T ), 1

Y 1/2(z, τ, t) =

(
C1/2,0(τ, t)− C0,0,τ (τ, t)

M
z

)
+ e−Mz

(
−C1/2,0(τ, t)− C0,0,τ (τ, t)

M
z

)
,

=

(
C1/2,0(τ, t)−W 0

w(Mτ, t)z

)
+ e−Mz

(
−C1/2,0(τ, t)−W 0

w(Mτ, t)z

)
.

• We define Y 1 as a solution ofY
1
zz(z, τ, t) +MY 1

z (z, τ, t) = Y 0
t (z, τ, t)− Y 1/2

τ (z, τ, t), (z, τ, t) ∈ R? × R× (0, T ),

Y 1(0, τ, t) = 0, lim
z→+∞

(Y 1(z, τ, t)− C1(z, τ, t)) = 0, t ∈ (0, T ).

We have

Y 1/2
τ (z, τ, t) =

(
C1/2,0,τ (τ, t)−MW 0

ww(Mτ, t)z

)
+ e−Mz

(
−C1/2,0,τ (τ, t)−MW 0

ww(Mτ, t)z

)
,

and

Y 0
t (z, τ, t) = C0,0,t(τ, t)(1− e−Mz) =

(
y0t (1, t) +W 0

t (Mτ, t)

)
(1− e−Mz),

1The general solution of the ordinary differential equation Yzz+MYz = (α+βz+ γ
2
z2)+e−Mz(−α+βz− γ

2
z2), Y (0) = 0

is in the form

Y (z) =

(
A+Bz + C

z2

2
+D

z3

6

)
+ e−Mz

(
−A+Bz − C

z2

2
+D

z3

6

)
,

with

A =
1

M
(K −B), B =

1

M
(α− C), C =

1

M
(β −D), D =

γ

M
, K arbitrary constant.
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then

Y 0
t (z, τ, t)− Y 1/2

τ (z, τ, t) =

(
C0,0,t(τ, t)− C1/2,τ (0, τ, t) +MW 0

ww(Mτ, t)z

)
+ e−Mz

(
−C0,0,t(τ, t) + C1/2,τ (0, τ, t) +MW 0

ww(Mτ, t)z

)
.

We have

C0,0,t(τ, t)− C1/2,τ (0, τ, t) =

−My
(1)
0 (1−Mt) +W 0

t (Mτ, t)−MW 1/2
w (Mτ, t) +My

(1)
0 (0), 1 > Mt,

v(1)(t− 1

M
) +W 0

t (Mτ, t)−MW 1/2
w (Mτ, t)− v(1)(0), 1 < Mt,

and note that C0,0,t(τ, t)− C1/2,τ (0, τ, t) has no jump. Explicitly, we obtain

Y 1(z, τ, t) =

(
A+Bz + C

z2

2

)
+ e−Mz

(
−A+Bz − C z

2

2

)
,

with
A =C1(0, τ, t) = y1(1, t) +W 1(Mτ, t)−

(
M2τ2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

)
,

B =
1

M

(
C0,0,t(τ, t)− C1/2,0,τ (τ, t)−W 0

ww(Mτ, t)

)
= −y0x(1, t)−W 1/2

w (Mτ, t) + y0x((Mt)±, t),

C =W 0
ww(Mτ, t).

(25)

• We define Y 3/2 as a solution ofY
3/2
zz (z, τ, t) +MY 3/2

z (z, τ, t) = Y
1/2
t (z, τ, t)− Y 1

τ (z, τ, t), (z, τ, t) ∈ R?+ × R× (0, T ),

Y 3/2(0, τ, t) = 0, lim
z→+∞

(Y 3/2(z, τ, t)− C3/2(z, τ, t)) = 0, t ∈ (0, T ).

We have

Y
1/2
t (z, τ, t) =

(
C1/2,t(0, τ, t)−W 0

wt(Mτ, t)z

)
+ e−Mz

(
−C1/2,t(0, τ, t)−W 0

wt(Mτ, t)z

)
,

and

Y 1
τ (z, τ, t) =M

(
W 1
w(Mτ, t)−Mτy0xx((Mt)±, t)−W 1/2

ww (Mτ, t)z +W 0
www(Mτ, t)

z2

2

)
+Me−Mz

(
−W 1

w(M, τ, t) +Mτy0xx((Mt)±, t)−W 1/2
ww (Mτ, t)z −W 0

www(Mτ, t)
z2

2

)
.

Explicitly,

Y 3/2(z, τ, t) =

(
Ã+ B̃z + C̃

z2

2
+ D̃

z3

6

)
+ e−Mz

(
−Ã+ B̃z − C̃ z

2

2
+ D̃

z3

6

)
,

with 

Ã =C3/2(0, τ, t) = W 3/2(Mτ, t)−
(

(Mτ)3

3!
y0xxx((Mt)±, t) + (Mτ)y1x((Mt)±, t)

)
,

B̃ =
1

M

(
C1/2,t(0, τ, t)−M

(
W 1
w(Mτ, t)−Mτy0xx((Mt)±, t)

)
− C̃

)
=−

(
W 1
w(Mτ, t)−Mτy0xx((Mt)±, t)

)
,

C̃ =W 1/2
ww (Mτ, t), D̃ = −W 0

www(Mτ, t).

(26)
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2.5 Asymptotic composite approximation in QT

We are now in position to define what is supposed to be an asymptotic approximation of the solution yε.

We proceed as before by adding at each order the function pk/2, approximation outside the boundary layer

along x = 1, and the function Y k/2, approximation in the boundary layer along x = 1, then subtracting

their common part. A the first order, the composite approximation is given by

P 0(x, t) = p0(x, t) + Y 0(z, τ, t)− C0(τ, t) = p0(x, t)− C0(τ, t)e−Mz

= y0(x, t) +W 0(w, t)− y0((Mt)±, t)−
(
y0(1, t) +W 0(Mτ, t)− y0((Mt)±, t)

)
e−Mz,

(27)

so that P 0(1, t) = 0 for all t ≥ 0. Repeating the process, we define

P k/2(x, t) = pk/2(x, t) + Y k/2(z, τ, t)− Ck/2(z, τ, t), 1 ≤ k ≤ 3,

then we define an asymptotic composite approximation of yε in QT by

P ε(x, t) =

3∑
k=0

εk/2P k/2(x, t), (x, t) ∈ QT . (28)

3 The sequence (P̃ ε): another sequence of approximate solutions

As we will see in the next section, the approximation P ε leads to an error estimate of order
√
ε for the

L∞(L2)-norm, which is not satisfactory. In this section, we construct another sequence of approximate

solutions. The construction is made by modifying the previous sequence (P ε) defined by (28). Precisely,

we modify the function W 0, see (11), introduced in Section 2.2, to describe the inner layer along the

characteristic {(x, t) ∈ QT , x−Mt = 0}. The reason of this modification is the following one. Recalling

that w = (x −Mt)/
√
ε, for all ε > 0 and x > 0, we check that W 0

(
x√
ε
, 0
)

= y0(0). On the other hand,

limt→0+ W
0
(−Mt√

ε
, t
)

= y0(0)+v(0)
2 , different from v(0) when v(0) 6= y0(0). For this reason, the use of this

W 0 function generates an artificial boundary layer in the approximate solution along the line x = 0,

above the characteristic in the neighborhood of t = 0. This boundary layer propagates inside the domain,

in the neighborhood of the characteristic and affects the quality of the approximation. To avoid this fact,

we consider, instead of the function g0 defined in (10), the following second choice:

gε0(w) =

{
y0(0), w ≥ 0,

v(0) + (v(0)− y0(0))e
Mw√
ε , w < 0,

leading to (recalling that H(w, t) = (4πt)−1/2e−w
2/4t)

W 0
ε (w, t) = (H(·, t) ? gε0)(w) = W 0(w, t) + U0

ε (w, t), (29)

where

U0
ε (w, t) =

v(0)− y0(0)

2
e
Mw√
ε
+M2t

ε erfc

(
w

2
√
t

+
M
√
t√
ε

)
. (30)

In particular, we have remarkably

W 0
ε

(
−Mt√

ε
, t

)
− v(0) = 0, ∀t ∈ (0, T ], (31)

and still the property W 0
ε ( x√

ε
, 0) = y0(0) for all x > 0. Actually, the function W̃ 0

ε (x, t) = W 0
ε (x−Mt√

ε
, t)

solves the equation (we refer notably to [22])
W̃ 0
ε,t +MW̃ 0

ε,x − εW̃ 0
ε,xx = 0, (x, t) ∈ R+ × R+,

W̃ 0
ε (0, t) = v(0), t ∈ R+,

W̃ 0
ε (x, 0) = y0(0), x ∈ R+.
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The function W̃ 0
ε is the explicit solution of the advection-diffusion equation defined over (x, t) ∈ R+×R+,

associated to constant initial and boundary data. Remark that on the line x = 0, the function U0
ε satisfies∣∣∣∣U0

ε

(
−Mt√

ε
, t

)∣∣∣∣ =
|v(0)− y0(0)|

2
erfc

(
M
√
t

2
√
ε

)
≤ |v(0)− y0(0)|

2
e−

M2t
4ε , ∀t ≥ 0,

and gets concentrated as ε goes to zero in the neighborhood of t = 0 and allows to eliminate the artificial

boundary layer mentioned above.

We now choose W 0
ε (w, t) (defined by (29), (30)), instead of W 0(w, t), as a solution of equation (9).

By analogy with (19) we define the function

p0ε(x, t) =


y0(x−Mt) +W 0

ε (w, t)− y0(0), x > Mt,

v

(
t− x

M

)
+W 0

ε (w, t)− v(0), x ≤Mt.
(32)

We note that p0ε is continuous along the characteristic:

limx−Mt→0±p
0
ε(x, t) =

y0(0) + v(0)

2
+
v(0)− y0(0)

2
e
M2t
ε erfc

(
M
√
t√
ε

)
.

The following quantity is defined to be an asymptotic approximation of yε, outside the boundary layer

along x = 1,

p̃ε(x, t) = p0ε(x, t) +

3∑
k=1

εk/2pk/2(x, t), (x, t) ∈ QT ,

where the functions pk/2, k = 1, 2, 3, are defined by (20), (21), (22), respectively. We have the analog of

Proposition 2.1.

Proposition 3.1 Assume that v ∈ C3([0, T ]) and y0 ∈ C3([0, 1]). Then the functions (p0ε +
√
εp1/2),

and p̃ε belong to C1([0, 1]× (0, T ]).

Let us now introduce the notations:

Cε0(z, τ, t) =y0(1, t) +W 0
ε (Mτ, t)− y0((Mt)±, t),

Cε1/2(z, τ, t) =W 1/2(Mτ, t)−Mτ(y0)x((Mt)±, t)− zW 0
ε,w(Mτ, t),

Cε1(z, τ, t) =y1(1, t) +W 1(Mτ, t)−
(
M2τ2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

)
+ z

(
−W 1/2

w (Mτ, t) + (y0)x((Mt)±, t)− (y0)x(1, t)

)
+
z2

2
W 0
ε,ww(Mτ, t),

Cε3/2(z, τ, t) =p3/2(1, t) + z

(
−W 1

w(Mτ, t) +Mτy0xx((Mt)±, t)

)
+
z2

2
W 1/2
ww (Mτ, t)− z3

6
W 0
ε,www(Mτ, t).

(33)

Continuing the construction, we define the analog of the function Y 0 by

Y 0
ε (z, τ, t) = Cε0(z, τ, t)

(
1− e−Mz

)
, (z, τ, t) ∈ R+ × R× [0, T ],

The analog of Y 1/2 is the function

Y 1/2
ε (z, τ, t) =

(
C1/2,0(τ, t)−W 0

ε,w(Mτ, t)z

)
+ e−Mz

(
−C1/2,0(τ, t)−W 0

ε,w(Mτ, t)z

)
, (34)

where C1/2,0(τ, t) is defined by (23). The analog of Y 1 is given by

Y 1
ε (z, τ, t) =

(
A+Bz + Cε

z2

2

)
+ e−Mz

(
−A+Bz − Cε z

2

2

)
, (35)
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with A, B defined by (25)1 and (25)2, respectively, and Cε = W 0
ε,ww(Mτ, t). Eventually, the analog of

Y 3/2 is given by

Y 3/2
ε (z, τ, t) =

(
Ã+ B̃z + C̃

z2

2
+ D̃ε z

3

6

)
+ e−Mz

(
−Ã+ B̃z − C̃ z

2

2
+ D̃ε z

3

6

)
, (36)

with Ã, B̃, C̃, defined by (26)1, (26)2, (26)3, and D̃ε = −W 0
ε,www(Mτ, t).

Remark 2 We check that the functions Y
k/2
ε , k = 0, 1, 2, 3, solve, respectively, the following equations:{

Y 0
ε,zz(z, τ, t) +MY 0

ε,z(z, τ, t) = 0, (z, τ, t) ∈ R?+ × R× (0, T ),

Y 0
ε (0, τ, t) = 0, lim

z→+∞
Y 0
ε (z, τ, t) = Cε0(0, τ, t), t ∈ (0, T );

Y
1/2
ε,zz(z, τ, t) +MY 1/2

ε,z (z, τ, t) = −Y 0
ε,τ (z, τ, t), (z, τ, t) ∈ R?+ × R× (0, T ),

Y 1/2
ε (0, τ, t) = 0, lim

z→+∞
(Y 1/2
ε (z, τ, t)− Cε1/2(z, τ, t)) = 0, t ∈ (0, T );

Y
1
ε,zz(z, τ, t) +MY 1

ε,z(z, τ, t) = Y 0
ε,t(z, τ, t)− Y 1/2

ε,τ (z, τ, t), (z, τ, t) ∈ R?+ × R× (0, T ),

Y 1
ε (0, τ, t) = 0, lim

z→+∞
(Y 1
ε (z, τ, t)− Cε1(z, τ, t)) = 0, t ∈ (0, T );

Y
3/2
ε,zz(z, τ, t) +MY 3/2

ε,z (z, τ, t) = Y
1/2
ε,t (z, τ, t)− Y 1

ε,τ (z, τ, t), (z, τ, t) ∈ R?+ × R× (0, T ),

Y 3/2
ε (0, τ, t) = 0, lim

z→+∞
(Y 3/2
ε (z, τ, t)− Cε3/2(z, τ, t)) = 0, t ∈ (0, T ).

We now define the first term of the asymptotic approximation in QT by

P 0
ε (x, t) = p0ε(x, t) + Y 0

ε (z, τ, t)− Cε0(z, τ, t)e−Mz

= y0(x, t) +W 0
ε (w, t)− y0((Mt)±, t)−

(
y0(1, t) +W 0

ε (Mτ, t)− y0((Mt)±, t)
)
e−Mz.

(37)

Then, setting

P k/2ε (x, t) = pk/2(x, t) + Y k/2ε (z, τ, t)− Cεk/2(z, τ, t), 1 ≤ k ≤ 3, (38)

the function P̃ ε defined to be an asymptotic approximation of yε in QT is given by

P̃ ε(x, t) =

3∑
k=0

εk/2P k/2ε (x, t), (x, t) ∈ QT . (39)

Remark 3 It should be noted that, as for the sequence (P ε) constructed in Section 2, the sequence (P̃ ε)

is constructed by using explicit formulae. These asymptotic approximations are very useful, for instance,

from a numerical viewpoint (easily computable because using explicit formulae). Comparing with the

sequence (P ε) we will see that (P̃ ε) is a more accurate approximation of the solution yε of (4).

In the next section we investigate the convergence of the sequence (P̃ ε).

4 Convergence of the sequence (P̃ ε)(ε>0). Rate of convergence

This section is devoted to a study on the convergence of the sequence (P̃ ε). We make the following

assumptions:

y0 ∈ C4([0, 1]), v ∈ C4([0, T ]). (40)

Our main goal is to establish the following result.
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Theorem 4.1 Let yε be the solution of (4) and P̃ ε the function defined by (39). Assume (40). Then

there exists a constant c, independent of ε, such that, for any γ ∈ (0, 1/2],

‖P̃ ε(·, t)− yε(·, t)‖L2(0,1) ≤ c ε3/2 + c ε1/2e−
M2

2εγ t ∀t ∈ [0, T ].

In order to prove this theorem we need to establish a number of preliminary results. We define the

error as follows:

zε(x, t) = P̃ ε(x, t)− yε(x, t)− θε(x, t), (x, t) ∈ QT , (41)

where θε is the initial layer corrector defined as a solution of the equation
θεt +Mθεx − εθεxx = 0, (x, t) ∈ QT ,
θε(0, t) = θε(1, t) = 0, t ∈ (0, T ),

θε(x, 0) = P̃ ε(x, 0)− yε(x, 0), x ∈ (0, 1).

(42)

The occurence of the initial layer is due to the fact that, by construction, the approximation P̃ ε(1, t)

vanishes for all t, including t = 0, while the value of y0 at x = 1 may be different from zero. This

introduces an error of order one but which gets concentrated as ε decreases in the neighborhood of the

point (1, 0). Thanks to the transport term, which pushes the solution to the right, it turns out that

this error is damped out exponentially fast at t increases. Introducing the auxiliary variable τ1 = t/
√
ε

coupled with the variable z = (1 − x)/ε, we may approximate precisely this so-called corner layer. The

computations are very similar to the one performed to treat the interaction of the internal and boundary

layers, in the neighborhood of (1, 1/M), by introducing the zoom variables z and τ (see Section 2.4). We

refer to [13, Section 4.1] where this is discussed. We emphasize however, that in view of the distribution

of θε(·, 0) along (0, 1), this is not necessary for our objective to get an L∞(L2)-estimate.

4.1 Preliminary results

4.1.1 Estimate of the initial layer corrector θε

The following lemma gives an exponential decay property of the initial layer corrector.

Lemma 4.1 Let θε be the solution of problem (42) and γ ∈ (0, 1/2]. There exists a constant c independent

of ε such that

‖θε(·, t)‖L2(0,1) ≤ ce−
εγ

ε + cε
1
2 e−

M2

2εγ t, ∀t ∈ [0, T ]. (43)

Proof. i) We first check that the initial data θε(·, 0) is given by

θε(x, 0) = −
(
y0(1) + y

(1)
0 (1)z

)
e−Mz, ∀x ∈ (0, 1]. (44)

Indeed, from (37)–(39), we write

θε(x, 0) =

3∑
k=0

εk/2 lim
t→0

P k/2ε (x, t)− y0(x)

= lim
t→0

(
p0ε(x, t)− Cε0(z, τ, t)e−Mz

)
− y0(x)

+ lim
t→0

3∑
k=0

εk/2
(
pk/2(x, t) + Y k/2ε (z, τ, t)− Cεk/2 (z, τ, t)

)
, x ∈ (0, 1).

We deduce from (29), (30), (32) and (33), that

lim
t→0

(
p0ε(x, t)− Cε0(z, τ, t)e−Mz

)
− y0(x)

= lim
t→0

(
W 0
ε (w, t)− y0(0)− Cε0(z, τ, t)e−Mz

)
= − lim

t→0
Cε0(z, τ, t)e−Mz

= − lim
t→0

(
y0(1, t) +W 0(Mτ, t)− y0((Mt)±, t)

)
e−Mz = −y0(1)e−Mz.
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Using the matching conditions of W k/2 with yk, 1 ≤ k ≤ 3, we easily verify that limt→0 p
k/2(x, t) = 0,

for x > 0. Moreover, (33) and (34) lead to

lim
t→0

(
Y 1/2
ε (z, τ, t)− Cε1/2 (z, τ, t)

)
= lim
t→0

(
−W 1/2 (Mτ, t) +Mτ(y0)x((Mt)±, t)− zW 0

ε,w(Mτ, t)
)
e−Mz = 0, for x > 0,

then to P
1/2
ε (x, 0) = 0 for all x ∈ (0, 1]. Similarly, according to (33) and (35) we have

lim
t→0

(
Y 1
ε (z, τ, t)− Cε1 (z, τ, t)

)
= lim
t→0

(
−A+Bz − Cε z

2

2

)
e−Mz,

with A, B defined by (25)1 and (25)2, respectively, and Cε = W 0
ε,ww(Mτ, t). It is easily seen that

lim
t→0

A = 0, lim
t→0

Cε = lim
t→0

W 0
ε,ww (Mτ, t) = 0,

lim
t→0

B = lim
t→0

(
−y0x(1, t)−W 1/2

w (Mτ, t) + y0x((Mt)±, t)
)

= −y′0(1),

then limt→0

(
Y 1 (z, τ, t)− Cε1 (z, τ, t)

)
= −y(1)0 (1)ze−Mz and

P 1
ε (x, 0) = −y(1)0 (1)ze−Mz, for x ∈ (0, 1].

Eventually, according to (33) and (36) we have

lim
t→0

(
Y 3/2
ε (z, τ, t)− Cε3/2 (z, τ, t)

)
= lim
t→0

(
−Ã+ B̃z − C̃ z

2

2
+ D̃ε z

3

6

)
e−Mz,

with Ã, B̃, C̃, defined by (26)1, (26)2, (26)3, and D̃ε = −W 0
ε,www(Mτ, t). It is easily seen that

lim
t→0

Ã = lim
t→0

B̃ = lim
t→0

C̃ = lim
t→0

D̃ε = 0,

then P
3/2
ε (x, 0) = 0, for all x ∈ (0, 1].

These computations lead to (44), showing that the initial condition of θε gets concentrated in the

neighborhood of x = 1.

ii) We now introduce a C∞ cut-off function X : R→ [0, 1] such that X (s) = 0 if s ≤ 1 and X (s) = 1

if s ≥ 2 and define, for γ ∈ (0, 1/2], the function Xε : [0, 1]→ [0, 1] by Xε(x) = X
(
1−x
εγ

)
.

We then decompose the solution θε of the linear system (42) as folllows: θε = θε,1 + θε,2 with
θε,1t +Mθε,1x − εθε,1xx = 0, (x, t) ∈ QT ,
θε,1(0, t) = θε,1(1, t) = 0, t ∈ (0, T ),

θε,1(x, 0) = Xε(x)θε(x, 0), x ∈ (0, 1),


θε,2t +Mθε,2x − εθε,2xx = 0, (x, t) ∈ QT ,
θε,2(0, t) = θε,2(1, t) = 0, t ∈ (0, T ),

θε,2(x, 0) = (1−Xε(x))θε(x, 0), x ∈ (0, 1).

(45)

In view of the definition of Xε, we see that θε,1(x, 0) = 0 for all x ≥ 1 − εγ . Then, in view of (44), we

check that there exists a constant c1 > 0 independent of ε such that |θε,1(x, 0)| ≤ c1e−
εγ

ε for all x ∈ (0, 1).

By a maximum principle, it follows that

|θε,1(x, t)| ≤ c1e−
εγ

ε , ∀(x, t) ∈ QT .

Concerning θε,2(·, 0), we check that θε,2(x, 0) = 0 for all x ≤ 1 − 2εγ and that ‖θε,2(·, 0)‖L2(0,1) ≤ c2ε
1
2

for some constant c2 > 0 independent of ε. Arguing as in the proof of [2, Lemma 2.3], we obtain that

there is a constant c3, independent of ε, such that

‖θε,2(t, ·)‖L2(0,1) ≤ c3ε
1
2 e−

M2

2εγ t ∀t ∈ [0, T ].

From the two previous inequalities, we deduce (43). Lemma 4.1 is proved. 2



4 CONVERGENCE OF THE SEQUENCE (P̃ ε)(ε>0). RATE OF CONVERGENCE 19

4.1.2 Gronwall estimate

From now on, in order to shorten some equations, we shall use the following notation:

Lεy := yt − εyxx +Myx.

We are now going to derive a priori estimates for the function zε. Preliminary, since zε is not vanishing

at x = 0, we define

Zε(x, t) = zε(x, t)− fε(x)zε(0, t), (x, t) ∈ QT , (46)

where fε is an appropriate function, that will be specified later, which belongs to C2([0, 1],R+) and

satisfies fε(0) = 1 and fε(1) = 0. The function Zε solves the following equation
LεZ

ε = LεP̃
ε − Lε(fε(x)zε(0, t)), (x, t) ∈ QT ,

Zε(0, t) = Zε(1, t) = 0, t ∈ (0, T ),

Zε(x, 0) = −zε(0, 0)fε(x), x ∈ (0, 1),

(47)

where zε(0, 0) := limt→0+ z
ε(0, t). We have the following result based on L1-estimates with respect to

the time variable.

Lemma 4.2 Let Zε be the function defined by (46) and P̃ ε the function defined by (39). There is a

constant c independent of ε such that, for each t in [0, T ],

‖Zε(·, t)‖L2(0,1) +
√
ε‖Zεx‖L2((0,1)×(0,t))

≤ c
(
‖LεP̃ ε‖L1(0,t,L2(0,1)) + ‖fε‖L2(0,1)

(
‖zεt (0, ·)‖L1(0,t) + |zε(0, 0)|

)
+ ‖ − εf ′′ε +Mf ′ε‖L2(0,1)‖zε(0, ·)‖L1(0,t)

)
.

(48)

This lemma is a consequence of the following version of the Gronwall lemma (see for instance [9,

Theorem 4, Chapter 1]).

Lemma 4.3 Let a ∈ R+, and h ∈ L2(0, T ), h ≥ 0. If ζ : [0, T ]→ R+ is a continuous function satisfying

the inequality

ζ(t) ≤ a+ 2

∫ t

0

h(s)
√
ζ(s) ds, ∀t ∈ [0, T ],

then we have

ζ(t) ≤
(√

a+

∫ t

0

h(s) ds

)2

, ∀t ∈ [0, T ].

Proof of Lemma 4.2. Multiplying equation (47) by Zε and integrating over (0, 1)× (0, t) gives

1

2
‖Zε(·, t)‖2L2(0,1) + ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds

=
1

2
|zε(0, 0)|2‖fε‖2L2(0,1) +

∫ t

0

∫ 1

0

(
LεP̃

ε(x, s)− Lε(fε(x)zε(0, s))
)
Zε(x, s) dxds.

Applying the Cauchy-Schwarz inequality we obtain

‖Zε(·, t)‖2L2(0,1) + 2ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds ≤ |z
ε(0, 0)|2‖fε‖2L2(0,1)

+ 2

∫ t

0

(∫ 1

0

(
LεP̃

ε(x, s)− Lε(fε(x)zε(0, s))
)2

dx

)1/2(∫ 1

0

Zε(x, s)2 dx

)1/2

ds.
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Applying Lemma 4.3 with

ζ(t) = ‖Zε(·, t)‖2L2(0,1) + 2ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds,

a = |zε(0, 0)|2‖fε‖2L2(0,1),

h(s) =

(∫ 1

0

(
LεP̃

ε(x, s)− Lε(fε(x)zε(0, s))
)2

dx

)1/2

,

yields

‖Zε(·, t)‖2L2(0,1) + 2ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds

≤

(
|zε(0, 0)|‖fε‖L2(0,1) +

∫ t

0

(∫ 1

0

(
LεP̃

ε(x, s)− Lε(fε(x)zε(0, s))
)2

dx

)1/2

ds

)2

.

The previous inequality together with the equality

Lε(fε(x)zε(0, t)) = fε(x)zεt (0, t) + (Mf ′ε(x)− εf ′′ε (x)) zε(0, t),

allow to deduce readily (48). 2

4.1.3 Estimate of ‖zε(0, ·)‖L1(0,t), ‖zεt (0, ·)‖L1(0,t) and |zε(0, 0)|

We will now estimate each term of the right-hand side of (48). In the sequel, c, c1, c2, · · · , will stand for

generic constants that do not depend on ε. For convenience, we recall here some notations that will be

used in the sequel:

c+ = y0(0), c− = v(0),

d+ = y
(1)
0 (0), d− = − 1

M
v(1)(0),

e+ = y
(2)
0 (0), e− =

v(2)(0)

M2
,

f− =
v(2)(0)

M3
, h+ =

y
(3)
0 (0)

6
, h− = −v

(3)(0)

6M3
.

Lemma 4.4 There is a constant c independent of ε such that

‖zε(0, ·)‖L1(0,t) ≤ cε2, ∀t > 0. (49)

Proof. We estimate the L1-norm of each term in the expansion of the function zε(0, ·). We use several

times the fact that

‖tn/2e−M
2t

4ε ‖L1(0,s) = O(ε1+n/2), ∀n ∈ Z, ∀s > 0. (50)

Let w0(t) = −Mt√
ε
. In view of (39) and (41), zε(0, t) may be written in the form:

zε(0, t) =

(
W 0
ε (w0(t), t)− y0((Mt)−, t)

)
+
√
ε

(
W 1/2(w0(t), t)− y0x((Mt)−, t)w0(t)

)
+ ε

(
W 1(w0(t), t)−

(
w2

0

2
y0xx((Mt)−, t) + y1((Mt)−, t)

))
+ ε3/2

(
W 3/2(w0(t), t)−

(
w3

3!
y0xxx((Mt)−, t) + w0(t)y1x((Mt)−, t)

))
+O(e−

M
ε )

=
(
p0ε(0, t)− v(t)

)
+

3∑
k=1

εk/2pk/2(0, t) +O(e−
M
ε ),

(51)
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where p0ε is defined by (32), and pk/2, k = 1, 2, 3, are defined by (20), (21), (22), respectively. The term

O(e−
M
ε ) gathers the contributions at x = 0 of the functions Y k, introduced to describe the boundary

layer at x = 1. Far from x = 1, these contributions are negligible.

Observe first that from (31), the first term in the right-hand side of (51) vanishes, that is

p0ε(0, t)− v(t) = 0, ∀t ≥ 0. (52)

As regards the second term we have

√
εp1/2(0, t) =

d+ − d−

2
(−Mt) erfc

(
M
√
t

2
√
ε

)
+ (d+ − d−)

√
ε
√
t√

π
e−

M2t
4ε .

Writing that erfc(M
√
t

2
√
ε

) = 1 + erf(−M
√
t

2
√
ε

) ≤ e−M
2t

4ε , ∀t ≥ 0 using (6), we arrive at

√
ε|p1/2(0, t)| ≤ c|d+ − d−|

(
t+
√
t
√
ε
)
e−

M2t
4ε .

leading, in view of (50) with n = 1 and n = 2, to

√
ε‖p1/2(0, ·)‖L1(0,t) ≤ c|d+ − d−|ε2, ∀t > 0. (53)

For the third term, we have

p1(0, t) =

(
w0(t)2

2
+ t

)
erfc

(
M
√
t

2
√
ε

)
e+ − e−

2
+
e+ − e−

2
w0(t)

√
t

π
e−

M2t
4ε ,

leading to the estimate

ε|p1(0, t)| ≤ c|e+ − e−|
(
M2t2 + εt+M

√
εt3/2

)
e−

M2t
4ε ,

then to the estimate

ε‖p1(0, ·)‖L1(0,t) ≤ c|e+ − e−|ε3, ∀t > 0. (54)

Eventually, for the fourth term, the equality

p3/2(0, t) =

(
w0(t)3

2
+ 3tw0(t)

)
erfc

(
M
√
t

2
√
ε

)
(h+ − h−)

+ (h+ − h−)(4t+ w0(t)2)

√
t

π
e−

w0(t)2

4t − f−
√
t

π
e−

w0(t)2

4t − f−

2
w0(t) erfc

(
M
√
t

2
√
ε

)
,

leads to

ε3/2|p3/2(0, t)|

≤ c
[(

(4tε3/2 + ε1/2M2t2)
√
t+

(
M3t3 + 3εMt2

))
|h+ − h−|+ |f−|

(
εMt+ ε3/2

√
t

)]
e−

M2t
4ε ,

then to the estimate

ε3/2‖p3/2(0, ·)‖L1(0,t) ≤ c
(
|h+ − h−|ε4 + |f−|ε3

)
, ∀t > 0. (55)

Collecting estimates (52)–(55) we deduce from (51), the estimate (49). 2

Lemma 4.5 For each ε > 0,

zε(0, 0) := lim
t→0+

zε(0, t) = −
(
y0(1) +

y
(1)
0 (1)

ε

)
e−

M
ε .
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Proof. We deduce from (38), (39) and (41) that

zε(0, t) = P̃ ε(0, t)− v(t) =

3∑
k=0

εk/2P k/2ε (0, t)− v(t), t ∈ (0, T ).

Due to (31) we have

P 0
ε (0, t)− v(t) = −Cε0

(
1

ε
, τ, t

)
e−

M
ε

= −
(
y0(1−Mt) +W 0

ε (Mτ, t)− y0(0)
)
e−

M
ε .

Since limt→0W
0
ε (Mτ, t) = limt→0W

0(Mτ, t) = y0(0), we conclude that

lim
t→0

P 0
ε (0, t)− v(t) = −y0(1)e−

M
ε .

We easily verify that limt→0 p
k/2(0, t) = 0. Morever, from (33) and (34),

lim
t→0

(
Y 1/2
ε

(
1

ε
, τ, t

)
− Cε1/2

(
1

ε
, τ, t

))
= lim
t→0

(
−W 1/2 (Mτ, t) +Mτ(y0)x((Mt)±, t)− 1

ε
W 0
ε,w(Mτ, t)

)
e−

M
ε = 0,

then limt→0 P
1/2
ε (0, t) = 0. Similarly, according to (33) and (35) we have

lim
t→0

(
Y 1
ε (z, τ, t)− Cε1 (z, τ, t)

)
= lim
t→0

(
−A+Bz − C z

2

2

)
e−Mz,

with A, B defined by (25)1 and (25)2, respectively, and Cε = W 0
ε,ww(Mτ, t). It is easily seen that

lim
t→0

A = 0, lim
t→0

Cε = lim
t→0

W 0
ε,ww (Mτ, t) = 0,

lim
t→0

B = lim
t→0

(
−y0x(1, t)−W 1/2

w (Mτ, t) + y0x((Mt)±, t)
)

= −y(1)0 (1),

then limt→0

(
Y 1 (z, τ, t)− C1 (z, τ, t)

)
= −y(1)0 (1)ze−Mz and

lim
t→0

P 1
ε (0, t) = 0 = −y

(1)
0 (1)

ε
e−

M
ε .

Eventually, according to (33) and (36) we have

lim
t→0

(
Y 3/2
ε (z, τ, t)− Cε3/2 (z, τ, t)

)
= lim
t→0

(
−Ã+ B̃z − C̃ z

2

2
+ D̃ε z

3

6

)
e−Mz,

with Ã, B̃, C̃, defined by (26)1, (26)2, (26)3, and D̃ε = −W 0
ε,www(Mτ, t). It is easily seen that

lim
t→0

Ã = lim
t→0

B̃ = lim
t→0

C̃ = lim
t→0

D̃ε = 0,

then limt→0 P
3/2
ε (0, t) = 0. We conclude that limt→0+ z

ε(0, t) = −y0(1)e−
M
ε − y

(1)
0 (1)
ε e−

M
ε . 2

Lemma 4.6 There is a constant c independent of ε such that

‖zεt (0, ·)‖L1(0,t) ≤ c ε, ∀t > 0. (56)
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Proof. We have seen that the function zε(0, t) may be written in the form (51). Differentiating zε(0, t)

with respect to t and using the explicit form of the functions W k, one can see that zεt (0, t) may be written

in the form

zεt (0, t) = ∂t
(
p0ε(0, t)− v(t)

)
+

3∑
k=1

εk/2p
k/2
t (0, t) +O(e−

M
ε ). (57)

Still in view of (31),

∂t
(
p0ε(0, t)− v(t)

)
= 0, ∀t > 0, (58)

so that the first term in the right-hand side of (57) vanishes. Explicitly, for all t > 0,

√
εp

1/2
t (0, t) =

d− − d+

2

(
M erfc

(
M
√
t

2
√
ε

)
−
√
ε

√
π
√
t
e−

M2t
4ε

)
.

Therefore, for all t > 0,

√
ε
∣∣∣p1/2t (0, t)

∣∣∣ ≤ c|d− − d+|(1 +

√
ε

√
π
√
t

)
e−

M2t
4ε ,

leading to the estimate √
ε
∥∥∥p1/2t (0, ·)

∥∥∥
L1(0,t)

≤ c|d− − d+|ε, (59)

using (50) with n = −1. As regard the third term, using the equality

εp1t (0, t) =
e− − e+

2

(
(M2t+ ε) erfc

(
M
√
t

2
√
ε

)
− 2M

√
ε
√
t√

π
e−

M2t
4ε

)
,

yields

ε

∣∣∣∣p1t (0, t)∣∣∣∣ ≤ c|e− − e+|((M2t+ ε) +
2M
√
ε
√
t√

π

)
e−

M2t
4ε ,

then

ε
∥∥p1t (0, ·)∥∥L1(0,t)

≤ c|e− − e+|ε2. (60)

The fourth and last term is given by

ε3/2p
3/2
t (0, t)

= −3(h+ − h−)

ε4
√
πt

[√
π(M3t5/2ε5/2 + 4Mt3/2ε7/2) erfc

(
M
√
t

2
√
ε

)
−e−M

2t
4ε (4ε4t+ 2t2M2ε3)

]
+

f−

2ε4
√
πt

[
Mε7/2

√
πt erfc

(
M
√
t

2
√
ε

)
−ε4e−M

2t
4ε

]
,

leading to the estimate

ε3/2
∥∥∥p3/2t (0, ·)

∥∥∥
L1(0,t)

≤ c(|h+ − h−|ε3 + |f−|ε2). (61)

Collecting estimates (58)–(61), we deduce from (57) the estimate (56). 2

4.1.4 Estimate of ‖LεP̃ ε‖L1(0,t;L2(0,1))

In order to estimate ‖LεP̃ ε‖L1(0,t;L2(0,1)), we will use the following lemma.
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Lemma 4.7 The following identities hold:

Lε(W
k/2) = 0, 0 ≤ k ≤ 3,

Lε(e
−Mz) = 0, Lε(ze

−Mz) =
M

ε
e−Mz, Lε(z

2e−Mz) = −2

ε
(1−Mz)e−Mz,

Lε(z
3e−Mz) = −3

ε
(2−Mz)ze−Mz,

Lε(w) = 0, Lε(w
2) = −2, Lε(w

3) = −6w, Lε(w
4) = −12w2,

Lε(τ) = − 1√
ε
, Lε(τ

2) = − 2τ√
ε
, Lε(τ

3) = −3τ2√
ε
.

This lemma is used to obtain the following intermediate result.

Lemma 4.8 Let P̃ ε be the function defined by (39). Assume (40). Then,

Lε(P̃
ε) =− ε2y1xx(x, t)− ε

(
y1t (1, t) +W 1

t (Mτ, t)− ∂t(y1((Mt)±, t))

)
e−Mz

− ε
(
y0xt(1, t) +W

1/2
wt (Mτ, t)

)
ze−Mz − εW 0

ε,wwt(Mτ, t)
z2

2
e−Mz

+ ε3/2
(
−Ãt + B̃tz − C̃t

z2

2
+ D̃ε

t

z3

6

)
e−Mz,

(62)

with 

Ãt = −M√
ε
W 3/2
w (Mτ, t) +W

3/2
t (Mτ, t) +

M(Mτ)2

2
√
ε

y0xxx((Mt)±, t)

+
M√
ε
y1x((Mt)±, t)−Mτy0xxx((Mt)±, t),

B̃t =
M√
ε
W 1
ww(Mτ, t)−W 1

wt(Mτ, t)− M√
ε
y0xx((Mt)±, t),

C̃t = −M√
ε
W 1/2
www(Mτ, t) +W

1/2
wwt(Mτ, t),

D̃ε
t =

M√
ε
W 0
ε,wwww(Mτ, t)−W 0

ε,wwwt(Mτ, t).

Proof. We have from (37)

P 0
ε (x, t) = p0ε(x, t) + Y 0

ε (z, τ, t)− Cε0(z, τ, t) = p0ε(x, t)− Cε0(z, τ, t)e−Mz

= p0ε(x, t)−
(
y0(1, t) +W 0

ε (Mτ, t)− y0((Mt)±, t)
)
e−Mz,

where p0ε(x, t) is defined by (32). We have from (38)

P 1/2
ε (x, t) = p1/2(x, t) + Y 1/2

ε (z, τ, t)− Cε1/2(z, τ, t)

= p1/2(x, t)−
(
Cε1/2(0, τ, t) +W 0

ε,w(Mτ, t)z
)
e−Mz,

where p1/2 is defined by (20), Cε1/2(z, τ, t) by (33), and Y
1/2
ε by (34). Then

P 0
ε (x, t) +

√
εP 1/2

ε (x, t) =p0ε(x, t)−
(
y0(1, t) +W 0

ε (Mτ, t)− y0((Mt)±, t)
)
e−Mz

+
√
ε
(
p1/2(x, t)−

(
Cε1/2(0, τ, t) +W 0

ε,w(Mτ, t)z
)
e−Mz

)
.

Let us note here that the function P 0
ε +
√
εP

1/2
ε belongs to C1([0, 1] × (0, T ]), and that (P 0

ε −W 0
ε ) +√

ε(P
1/2
ε −W 1/2) belongs to C1(QT ). Then, thanks to assumption (40), (P 0

ε −W 0
ε ) +

√
ε(P

1/2
ε −W 1/2)

belongs toH2(QT ). Moreover, Lε(W
0
ε ) = Lε(W 1) = 0. It results that, when calculating Lε(P

0
ε +
√
εP

1/2
ε ),
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it suffices to perform the calculation in Ω+ ∪Ω−, where Ω+ = {(x, t) ∈ QT : x > Mt} and Ω− = {(x, t) ∈
QT : x < Mt}. A staightforward calculation then gives

Lε

(
P 0
ε +
√
εP 1/2

ε

)
=− εy0xx(x, t)−

(
y0t (1, t)− M√

ε
W 0
ε,w(Mτ, t) +W 0

ε,t(Mτ, t)

)
e−Mz

−
(
−MW 1/2

w (Mτ, t) +
√
εW

1/2
t (Mτ, t) +My0x((Mt)±, t)

)
e−Mz

− M√
ε
W 0
ε,w(Mτ, t)e−Mz +

(
MW 0

ε,ww(Mτ, t)−
√
εW 0

ε,wt(Mτ, t)

)
ze−Mz

=− εy0xx(x, t)−
(
y0t (1, t) +W 0

ε,t(Mτ, t)

)
e−Mz

−
(
−MW 1/2

w (Mτ, t) +
√
εW

1/2
t (Mτ, t) +My0x((Mt)±, t)

)
e−Mz

+

(
MW 0

ε,ww(Mτ, t)−
√
εW 0

ε,wt(Mτ, t)

)
ze−Mz.

(63)

In view of (21), (33) and (35),

P 1
ε (x, t) = p1(x, t) + Y 1

ε (z, τ, t)− Cε1(z, τ, t) = p1(x, t) + e−Mz

(
−A+Bz − Cε z

2

2

)
,

with

p1(x, t) = y1(x, t) +W 1(w, t)−
(
w2

2
y0xx((Mt)±, t) + y1((Mt)±, t)

)
,

and A, B defined by (25)1 and (25)2, respectively, and Cε = W 0
ε,ww(Mτ, t).

The function P
3/2
ε is given by

P 3/2
ε (x, t) = p3/2(x, t) + Y 3/2

ε (z, τ, t)− Cε3/2(z, τ, t) = p3/2(x, t) +

(
−Ã+ B̃z − C̃ z

2

2
+ D̃ε z

3

6

)
e−Mz,

with

p3/2(x, t) = W 3/2(w, t)−
(
w3

3!
y0xxx((Mt)±, t) + wy1x((Mt)±, t)

)
,

and Ã, B̃, C̃, defined by (26)1, (26)2, (26)3, and D̃ε = −W 0
ε,www(Mτ, t).

We have the identities, valid in Ω+ ∪ Ω−,

∂t
(
y1x((Mt)±, t))

)
= y0xxx((Mt)±, t),

Lε

(
w3

3!
y0xxx((Mt)±, t)

)
= −wy0xxx((Mt)±, t),

Lε
(
wy1x((Mt)±, t)

)
= wy0xxx((Mt)±, t),

where we used Lemma 4.7 for the last two. Arguing as for P 0
ε +
√
εP

1/2
ε , we have by a direct calculation

Lε

(
εP 1

ε + ε3/2P 3/2
ε

)
=εy0xx(x, t)− ε2y1xx(x, t)

+ (BM + Cε(1−Mz)) e−Mz + ε

(
−At +Btz − Cεt

z2

2

)
e−Mz

+ ε1/2
(
B̃M + C̃(1−Mz)− D̃ε(1− Mz

2
)z

)
e−Mz

+ ε3/2
(
−Ãt + B̃tz − C̃t

z2

2
+ D̃ε

t

z3

6

)
e−Mz.

(64)

Adding (63) and (64) we obtain
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Lε(P̃
ε) =− ε2y1xx(x, t)− ε1/2e−MzW

1/2
t (Mτ, t)−

√
εW 0

ε,wt(Mτ, t)ze−Mz

+ ε

(
−At +Btz − Cεt

z2

2

)
e−Mz

+ ε1/2
(
B̃M + C̃(1−Mz)− D̃ε(1− Mz

2
)z

)
e−Mz

+ ε3/2
(
−Ãt + B̃tz − C̃t

z2

2
+ D̃ε

t

z3

6

)
e−Mz.

Rearranging the terms we arrive at (62). 2

Lemma 4.9 Let P̃ ε be the function defined by (39). Assume (40). Then there is a constant c independent

of ε such that

‖LεP̃ ε‖L1(0,s;L2(0,1)) ≤ c ε3/2, ∀s ∈ (0, T ]. (65)

Proof. Let s ∈ (0, T ] be arbitrary. We estimate the L1(0, s;L2(0, 1))-norm of each term of the right-hand

side of (62). We use notably several times that

• ‖z(x)ne−Mz(x)‖L2(0,1) = O(
√
ε) for all n ∈ N, with z(x) = (1− x)/ε.

•
∥∥∥∥(1−Mt)ne−

(1−Mt)2
4εt

∥∥∥∥
L1(0,s)

= O(ε(n+1)/2) for all n ∈ N.

a) We have ‖ − ε2y1xx‖L2(0,s;L2(0,1)) ≤ cε2, then the Cauchy-Schwarz inequality gives

‖ − ε2y1xx‖L1(0,s;L2(0,1)) ≤ cε2. (66)

b) We have by a direct calculation

‖ − εy1(1, t)e−Mz‖L1(0,s;L2(0,1)) = ε‖y1(1, t)‖L1(0,s)‖e−Mz‖L2(0,1) ≤ cε3/2. (67)

c) The estimation of ‖W 1
t (Mτ, t)− ∂t(y1((Mt)±, t)‖L1(0,s) can be achieved as follows. Explicitly

W 1
t (w, t) =

e+ − e−

2
erf

(
w

2
√
t

)
+
e+ + e−

2
, ∂t(y

1((Mt)±, t) = e±,

then

W 1
t (Mτ, t)− ∂t(y1((Mt)±, t) =


1

2
(e− − e+) erfc

(
1−Mt

2
√
t
√
ε

)
, Mt < 1,

1

2
(e+ − e−) erfc

(
Mt− 1

2
√
t
√
ε

)
, Mt > 1,

then

‖W 1
t (Mτ, t)− ∂t(y1((Mt)±, t)‖L1(0,s) ≤ |e+ − e−|‖e−

(1−Mt)2
4εt ‖L1(0,s) ≤ c|e+ − e−|ε1/2. (68)

We conclude that,∥∥∥∥ε(W 1
t (Mτ, t)− ∂t(y1((Mt)±, t))

)
e−Mz

∥∥∥∥
L1(0,s;L2(0,1))

≤ c|e+ − e−|ε2. (69)

d) A direct calculation gives

‖ − εy0xt(1, t)ze−Mz‖L1(0,s;L2(0,1)) ≤ cε3/2. (70)

Let us then estimate ‖W 1/2
wt (Mτ, t)‖L1(0,s). Explicitly, W

1/2
wt (w, t) = 1

4
√
πt3/2

(d− − d+)we−
w2

t , then

W
1/2
wt (Mτ, t) =

d− − d+

4
√
ε
√
πt3/2

(1−Mt)e−
(1−Mt)2

4εt ,
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hence ‖W 1/2
wt (Mτ, t)‖L1(0,s) ≤ c|d+ − d−|

√
ε. It then follows

ε‖W 1/2
wt (Mτ, t)ze−Mz‖L1(0,s;L2(0,1)) ≤ c|d+ − d−|ε2. (71)

e) For the estimation of ‖W 0
ε,wwt(Mτ, t)‖L1(0,s) we write W 0

ε,wwt(Mτ, t) = W 0
wwt(Mτ, t) +U0

ε,wwt(Mτ, t).

The estimation of the first term is direct. We have

W 0
wwt(w, t) =

c+ − c−

16t7/2
√
π
w(6t− w2)e−

w2

4t ,

then

W 0
wwt(Mτ, t) =

c+ − c−

16t7/2
√
πε3/2

(1−Mt)(−6εt− (1−Mt)2)e−
(1−Mt)2

4εt ,

from which we deduce that ‖W 0
wwt(Mτ, t)‖L1(0,s) ≤ c|c+ − c−|, hence∥∥∥∥εW 0

wwt(Mτ, t)
z2

2
e−Mz

∥∥∥∥
L1(0,s;L2(0,1))

≤ c|c+ − c−|ε3/2. (72)

The estimation of the second requires more care. A straightforward calculation gives

U0
ε,wwt(Mτ, t) = −c

+ − c−

8
e
M
ε

1

ε2
√
πt7/2

×

×
(
−8M4

√
πt7/2 erfc

(
1 +Mt

2
√
t
√
ε

)
+ ε1/2e−

(1+Mt)2

4tε (−11t2M2 + 15t3M3 + 5tM − 10εMt2 + 6εt− 1)

)
.

We now use the asymptotic behavior (7) of the erf function to write that

−
√
π erfc

(
1 +Mt

2
√
t
√
ε

)
= e−

(1+Mt)2

4tε

(
− 2
√
ε
√
t

1 +Mt
+O(ε3/2)

)
,

then(
−8M4

√
πt7/2 erfc

(
1 +Mt

2
√
t
√
ε

)
+
√
εe−

(1+Mt)2

4tε (−11t2M2 + 15t3M3 + 5tM − 10εMt2 + 6εt− 1)

)
= e−

(1+Mt)2

4tε

(√
ε

(
−16M4t4

1 +Mt
− 11t2M2 + 15t3M3 + 5tM − 1

)
+O(ε3/2)

)
= e−

(1+Mt)2

4tε

(
−
√
ε

(1−Mt)4

(1 +Mt)
+O(ε3/2)

)
.

Since e
M
ε e−

(1+Mt)2

4tε = e−
(1−Mt)2

4tε , we may write

U0
ε,wwt(Mτ, t) =

c+ − c−

8

1

ε2
√
πt7/2

e−
(1−Mt)2

4tε

(√
ε

(1−Mt)4

(1 +Mt)
+O(ε3/2)

)
,

leading to ‖U0
ε,wwt(Mτ, t)‖L1(0,s) ≤ c|c+ − c−|, then to∥∥∥∥εU0

ε,wwt(Mτ, t)
z2

2
e−Mz

∥∥∥∥
L1(0,s;L2(0,1))

≤ c|c+ − c−|ε3/2. (73)

Adding (72) and (73) we obtain∥∥∥∥εW 0
ε,wwt(Mτ, t)

z2

2
e−Mz

∥∥∥∥
L1(0,s;L2(0,1))

≤ c|c+ − c−|ε3/2. (74)
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f) Let us now estimate ‖Ãt‖L1(0,s). Straightforward calculations give

Ãt(Mτ, t) =



(h+ − h−)

(
3
√
t

ε
√
π
e−

(1−Mt)2
4tε (2ε−M(1−Mt))

)
+

3

2ε3/2
(h+ − h−)

(
2ε(2Mt− 1) +M(1−Mt)2

)
erfc

(
1−Mt

2
√
ε
√
t

)
− f−

2

(
1√
t
√
π
e−

(1−Mt)2
4tε +

M√
ε
erfc

(
1−Mt

2
√
ε
√
t

))
, 1−Mt > 0,

(h+ − h−)

(
3
√
t

ε
√
π
e−

(1−Mt)2
4tε (2ε−M(1−Mt))

)
+

3

2ε3/2
(h+ − h−)

(
2ε(1− 2Mt) +M(1−Mt)2

)
erfc

(
Mt− 1

2
√
ε
√
t

)
− f−

2

(
1√
t
√
π
e−

(1−Mt)2
4tε − M√

ε
erfc

(
Mt− 1

2
√
ε
√
t

))
, 1−Mt < 0,

leading to ‖Ãt(Mτ, t)‖L1(0,s) ≤ c(|h+ − h−|+ |f−|), then to

‖ε3/2Ãt(Mτ, t)e−Mz‖L1(0,s;L2(0,1)) ≤ c(|h+ − h−|+ |f−|)ε2. (75)

g) To estimate ‖B̃t‖L1(0,s) we use the equality

B̃t(w, t) =


M

2
√
ε

(
erf

(
w

2
√
t

)
− 1

)
(e+ − e−)− 1

2

e−
w2

4t

√
π
√
t
(e+ − e−), w > 0,

M

2
√
ε

(
erf

(
w

2
√
t

)
+ 1

)
(e+ − e−)− 1

2

e−
w2

4t

√
π
√
t
(e+ − e−), w < 0,

leading to

|B̃t(Mτ, t)| ≤
(
M

2
√
ε

+
1

2
√
π
√
t

)
e−

(1−Mt)2
4εt |e+ − e−|,

then to ‖B̃t(Mτ, t)‖L1(0,s) ≤ c, and then to

‖ε3/2B̃t(Mτ, t)ze−Mz‖L1(0,s;L2(0,1)) ≤ c|e+ − e−|ε2. (76)

h) To estimate ‖C̃t‖L1(0,s) we write

C̃t(Mτ, t) = −M√
ε
W 1/2
www(Mτ, t) +W

1/2
wwt(Mτ, t)

= −d
+ − d−√
πt5/2ε

(
(1−Mt)(1 +Mt) + 2εt

)
e−

(1−Mt)2
4tε ,

then ‖C̃t(Mτ, t)‖L1(0,s) ≤ c|d+ − d−|, hence

‖ε3/2C̃t(Mτ, t)z2e−Mz‖L1(0,s;L2(0,1)) ≤ c|d+ − d−|ε2. (77)

i) It remains to estimate ‖D̃t‖L1(0,s). We have

D̃t(Mτ, t) =
M√
ε
W 0
ε,wwww(Mτ, t)−W 0

ε,wwwt(Mτ, t)

=
c+ − c−

16
√
πt9/2ε2

(
6εt

[
(1−Mt)2 + (1−Mt)− 2tε

]
− (1−Mt)3

)
e−

(1−Mt)2
4tε ,
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then ‖D̃t(Mτ, t)‖L1(0,s) ≤ c|c+ − c−|, hence

‖ε3/2D̃t(Mτ, t)z3e−Mz‖L1(0,s;L2(0,1)) ≤ c|c+ − c−|ε2. (78)

Collecting estimates (66)–(78) we deduce from (62) the estimate (65). The proof of Lemma 4.9 is complete.

2

4.2 End of the proof of Theorem 4.1

We are now in position to finish the proof of Theorem 4.1. It remains to choose the function fε ∈ C2([0, 1]),

satisfying fε(0) = 1 and fε(1) = 0 so as to minimize the terms in the right side of (48), asymptotically

with respect to ε. Since the terms ‖zεt (0, ·)‖L1(0,t) + |zε(0, 0)| and ‖zε(0, ·)‖L1(0,t) are respectively of order

ε and ε2, according to Lemmas 4.4, 4.5, and 4.6, we consider the function

fε(x) = (1− x)e−
Mx
ε , x ∈ [0, 1],

so that ‖fε‖L2(0,1) ≤ c ε1/2 and ‖ − εf ′′ε +Mf ′ε‖L2(0,1) ≤ c ε−1/2. It follows that

‖fε‖L2(0,1)

(
‖zεt (0, ·)‖L1(0,t) + |zε(0, 0)|

)
≤ cε3/2,

‖ − εf ′′ε +Mf ′ε‖L2(0,1)‖zε(0, ·)‖L1(0,t) ≤ cε3/2.

Coming back to Lemma 4.2, using the two previous estimates and Lemma 4.9, it follows that

‖Zε(·, t)‖L2(0,1) +
√
ε‖Zεx‖L2((0,1)×(0,t)) ≤ cε3/2, ∀t ∈ [0, T ].

Now, since

zε(x, t) = Zε(x, t) + fε(x)zε(0, t),

we deduce that

‖zε(·, t)‖L2(0,1) ≤ ‖Zε(·, t)‖L2(0,1) + |zε(0, t)|‖fε‖L2(0,1) ≤ cε
3
2 + c|zε(0, t)|ε 1

2 , ∀t ∈ [0, T ]. (79)

Then, writing

zε(0, t) = zε(0, 0) +

∫ t

0

zεt (0, s) ds,

and using Lemmas 4.5 and 4.6, it holds that

|zε(0, t)| ≤ |zε(0, 0)|+ ‖zεt (0, ·)‖L1(0,t) ≤ c
(

1 +
1

ε

)
e−

M
ε + cε, ∀t > 0.

This estimate allows to deduce from (79) that

‖zε(·, t)‖L2(0,1) ≤ cε
3
2 + cε

1
2

((
1 +

1

ε

)
e−

M
ε + ε

)
≤ cε 3

2 , ∀t ∈ [0, T ].

Then, since P̃ ε(x, t)− yε(x, t) = zε(x, t)− θε(x, t), using Lemma 4.1, we derive the estimate

‖P̃ ε(·, t)− yε(·, t)‖L2(0,1) ≤ c ε3/2 + ce−
εγ

ε + c ε1/2e−
M2

2εγ t

≤ c ε3/2 + c ε1/2e−
M2

2εγ t ∀t ∈ [0, T ].

This ends the proof of Theorem 4.1. 2



4 CONVERGENCE OF THE SEQUENCE (P̃ ε)(ε>0). RATE OF CONVERGENCE 30

4.3 Remarks

The following remarks are in order.

Remark 4 We have constructed the approximation P̃ ε in two steps: first, we have used the matching

asymptotic method to derive a composite approximation P ε, as a non trivial linear combination of the

functions yk, W k, and Y k, k = 0, · · · , 3. Then, in order to get a better estimate and eliminate an

artificial boundary layer propagating along the characteristic, we have defined P̃ ε by replacing the function

W 0 by the function W 0
ε = W 0 + U0

ε . This latter depends explicitly on ε and is associated to the integral

representation of the exact solution of the advection-diffusion equation defined over R+ × R+. We may

also proceed directly with the function W ε
0 through the method of matched asymptotic expansions. The

methodology is the same but since W 0
ε depends explicitly on ε, we need to expand W 0

ε when we determine

the matching conditions for the inner layer (see section 2.2) and the boundary one (see section 2.4). The

introduction of W 0
ε does not modify the matching conditions (8) for the inner layer since W 0 and W 0

ε

and their derivatives share the same asymptotic behavior as w → ±∞; we check that

U0
ε (w, t) =

ε1/2

M
√
tπ

(
1− ε1/2 w

2tM
+ ε

(w2 − 2t)

4t2M2
+ · · ·

)
e−

w2

4t , (80)

so that U0
ε (w, t)→ 0 as w → ±∞, for all t > 0. On the other hand, this modifies the matching conditions

(24) since W 0 and W 0
ε does not share necessarily the same limit as z →∞:

U0
ε (w, t) = U0

ε (Mτ − εz, t) =U0
ε (Mτ, t)− εzU0

ε,z(Mτ, t) + · · ·

=ε1/2
1

M
√
tπ
e−

(Mτ)2

4t +O(ε),

where we have used (80) with w = Mτ . This implies additional terms in the definition of the functions

Ck(z, τ, t), defined in (23) (used to construct P ε) and therefore some changes in the definition of the

function Cεk(z, τ, t) defined in (33) (used to construct P̃ ε). For instance, since U0
ε has no contribution

to the power ε0, Cε0(z, τ, t) = y0(1, t) +W 0
ε (Mτ, t)− y0((Mt)±, t) becomes simply Cε0(z, τ, t) = y0(1, t) +

W 0(Mτ, t)− y0((Mt)±, t), that is C0(z, τ, t). On the other hand, Cε1/2 defined in (33) as follows

Cε1/2(z, τ, t) = W 1/2(Mτ, t)−Mτ(y0)x((Mt)±, t)− zW 0
ε,w(Mτ, t),

has to be replaced by

Cε1/2(z, τ, t) = W 1/2(Mτ, t)−Mτ(y0)x((Mt)±, t) +
1

M
√
tπ
e−

(Mτ)2

4t − zW 0
w(Mτ, t).

Both approaches lead to the same estimate and require a similar quantity of calculus.

Remark 5 Concerning the error estimate obtained when we use W 0 leading to the approximation P ε

defined in (28), we compute that∣∣∣∣W 0

(
−Mt√

ε
, t

)
− y0((Mt)−, t)

∣∣∣∣ =
|y0(0)− v(0)|

2
erfc

(
M
√
t

2
√
ε

)
≤ |y0(0)− v(0)|

2
e−

M2t
4ε , ∀t ≥ 0,

leading to the estimate ‖W 0(−Mt√
ε
, t) − y0((Mt)−, t)‖L1(0,T ) = O(ε), while W 0

ε (−Mt√
ε
, t) − y0((Mt)−, t)

vanishes for all t ≥ 0. Similarly, we explicitly compute that∥∥∥∥∂t(W 0

(
−Mt√

ε
, t

)
− y0((Mt)−, t)

)∥∥∥∥
L1(0,s)

=
|y0(0)− v(0)|

2
erf

(
M
√
s

2
√
ε

)
→ |y0(0)− v(0)|

2
,

as ε→ 0, ∀s > 0. It results that the analogous of zε (defined in (41) with W 0
ε ) associated to W 0 satisfies

‖zε(0, ·)‖L1(0,t) = O(ε1/2) and ‖zεt (0, ·)‖L1(0,t) = O(1). Gronwall estimate of Lemma 4.2 then leads to

‖P ε − yε‖L∞(0,T ;L2(0,1)) = O(ε1/2),
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to be compared to the rate O(ε3/2) obtained when W 0
ε is used. Remark however that if y0(0) = v(0)

(absence of shock layer), then W 0 = W 0
ε = 0 and the estimate is of order O(ε3/2).

Coming back to the error estimate on P̃ ε based on W 0
ε , we see that the rate is driven by the L1-norm

of the time derivative at x = 0, i.e. ‖zεt (0, ·)‖L1(0,t) of order ε, see Lemma 4.6. Precisely, in the expansion

of zεt (0, ·), the main term comes from the function

p1/2(0, t) = W 1/2

(
−Mt√

ε
, t

)
− d−

(
−Mt√

ε

)
,

see (59). In order to improve the estimate, we may modify the function W 1/2 and replace it by the

function W
1/2
ε = W 1/2 + U

1/2
ε with

U1/2
ε (w, t) = (d+ − d−)

√
te

Mw√
ε
+M2t

ε ierfc

(
w

2
√
t

+
M
√
t√
ε

)
,

and ierfc(w) :=
∫∞
w
erfc(s)ds = 1√

π
e−w

2 −w erfc(w), for all w ∈ R. In particular, we check that W
1/2
ε

satisfies

W 1/2
ε

(
−Mt√

ε
, t

)
− d−

(
−Mt√

ε

)
= 0, ∀t ∈ (0, T ],

to be compared with (14). Actually, the function W̃
1/2
ε (x, t) = W

1/2
ε (x−Mt√

ε
, t) solves the equation (we

refer notably to [22]) 

W̃
1/2
ε,t +MW̃ 1/2

ε,x − εW̃ 1/2
ε,xx = 0, (x, t) ∈ R+ × R+,

W̃ 1/2
ε (0, t) = d−

(
−Mt√

ε

)
, t ∈ R+,

W̃ 1/2
ε (x, 0) = d+

(
x√
ε

)
, x ∈ R+.

As a consequence, the use of the function p
1/2
ε (x, t) := W

1/2
ε (w, t) − y0((Mt)±, t)w (w = (x −Mt)/

√
ε)

instead of p1/2 defined in (20) allows to improve the approximation P̃ ε.

Remark 6 Gronwall estimate (48) implies that
√
ε‖Zεx‖L2(Qt) = O(ε3/2). Writing that

√
ε‖(P̃ ε − yε)x‖L2(Qt) ≤

√
ε‖Zεx‖L2(Qt) +

√
ε‖θεx‖L2(Qt) +

√
ε‖fεxzε(0, ·)‖L2(Qt),

that ‖fεx‖L2(0,1) = O(ε−1/2) and ‖zε(0, ·)‖L2(0,t) = O(ε3/2) leading to ‖fεxzε(0, ·)‖L2(Qt) = O(ε), we

deduce that there exists a constant c > 0 such that

‖(P̃ ε − yε)x‖L2(QT ) ≤ c ε+ ‖θεx‖L2(QT ),

where θ is the initial layer corrector defined in (42), decomposed as θε = θε,1 + θε,2, see (45). In view of

the structure of θε,1(·, 0), we easily show that ‖θε,1x ‖L2(QT ) ≤ cε−1/2e−ε
γ−1

, for all γ ∈ (0, 1/2]. On the

other hand, an energy estimate for θε,2, leads, in view of (44), to

‖θε,2x ‖L2(QT ) ≤ ε
−1/2‖θε,2(·, 0)‖L2(1−2εγ ,1)

≤ ε−1/2
(
|y0(1)|‖e−Mz‖L2(1−2εγ ,1) + |y(1)0 (1)|‖ze−Mz‖L2(1−2εγ ,1)

)
≤ c(|y0(1)|+ |y(1)0 (1)|).

In particular, if the initial condition and its first derivative vanish at x = 1, then we have the following

L2(H1)-estimate:

Theorem 4.2 Let yε be the solution of (4) and P̃ ε the function defined by (39). Assume (40) and that

y0(1) = y
(1)
0 (1) = 0. Then there exists a constant c > 0 independent of ε, such that,

‖(P̃ ε − yε)x‖L2(QT ) ≤ c ε.
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In the general case for which y0(1) 6= 0 and y
(1)
0 (1) 6= 0, we may achieve the same rate by making an

asymptotic analysis of the corner layer of the solution yε at the point (x, t) = (1, 0): as mentioned earlier,

this requires to introduce the auxiliary scale variable τ1 = t/
√
ε.

Remark 7 The case M < 0 (leading to surprising results for the corresponding null controllability prob-

lem, see [7, 15]) exhibits a boundary layer at x = 0 and an internal layer along the second characteristic

{(x, t) ∈ QT , x+Mt− 1 = 0}. This case can be treated in a similar way. Actually, using the change of

variable x = 1− x, we see that yε(x, t) = yε(x, t) solves the advection-diffusion equation
yεt − εyεxx + (−M)yεx = 0, (x, t) ∈ QT ,
yε(0, t) = 0, yε(1, t) = v(t), t ∈ (0, T ),

yε(x, 0) = y0(1− x), x ∈ (0, 1).

Since now −M > 0, it suffices to adapt the analysis of the previous sections by interchanging the Dirichlet

conditions. Expressions of the functions yk(x, t) are simpler since they vanishes above the first charac-

teristic. On the other hand, the functions Y k(z, τ, t) do not vanish anymore at z = 0.

5 Application: Estimate of ‖yε(·, 1/M)‖L2(0,1) for v ≡ 0

The asymptotic analysis developed in the previous sections provides some information of the solution yε

of (1) associated to v ≡ 0, at t = 1/M . For t > 1/M , we recall the following decay property (see [2])

obtained using energy estimates.

Lemma 5.1 Let α ∈ [0, 1). The solution yε associated to v ≡ 0 satisfies

‖yε(·, t)‖L2(0,1) ≤ ‖yε(·, 0)‖L2(0,1)e
− Mα2

4ε(1−α) , ∀t ≥ 1

M(1− α)
.

The L2(0, 1)-norm of the solution at any time strictly greater than 1/M is therefore exponentially small

with respect to ε. This is the effect of the transport term. At t = 1/M , the behavior of the L2(0, 1)-norm

is polynomial with respect to ε1/4, with a rate which depends on the derivatives of the initial condition

y0 at x = 0. We have the following estimate.

Proposition 5.1 Assume v ≡ 0. For ε > 0 small enough, the solution yε of (1) satisfies∥∥∥∥yε(·, 1

M

)∥∥∥∥
L2(0,1)

≤ c
(
|y0(0)|ε1/4 + |y(1)0 (0)|ε3/4 + |y(2)0 (0)|ε5/4

)
+O(ε3/2) (81)

for some constant c > 0, independent of ε.

Proof. Using Theorem 4.1, we write that

‖yε(·, 1/M)‖L2(0,1) ≤ ‖P̃ ε(·, 1/M)‖L2(0,1) + ‖(yε − P̃ ε)(·, 1/M)‖L2(0,1)

≤ ‖P̃ ε(·, 1/M)‖L2(0,1) +O(ε3/2).

We then estimate the norm of P̃ ε at t = 1/M . Remark that the variable τ = 1/M−t√
ε

vanishes for t = 1/M .

From (39), we compute that

P̃ ε
(
x,

1

M

)
=

3∑
k=0

ε
k
2 P k/2ε

(
x,

1

M

)
= m0(x) + ε1/2m1(x) + εm2(x) + ε3/2m3(x),
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where for k = 0, · · · , 3, the function mk is factor of y
(k)
0 (0) and is defined as follows (recall that z =

(1− x)/ε):

m0(x) = W 0
ε

(
x− 1√

ε
,

1

M

)
−
[
W 0
ε

(
0,

1

M

)
+ ε1/2zW 0

ε,w

(
0,

1

M

)
+ ε

z2

2
W 0
ε,ww

(
0,

1

M

)
+ ε3/2

z3

6
W 0
ε,www

(
0,

1

M

)]
e−Mz,

m1(x) = W 1/2

(
x− 1√

ε
,

1

M

)
−
[
W 1/2

(
0,

1

M

)
+ ε1/2zW 1/2

w

(
0,

1

M

)
+ ε

z2

2
W 1/2
ww

(
0,

1

M

)]
e−Mz,

m2(x) = W 1

(
x− 1√

ε
,

1

M

)
−
[
W 1

(
0,

1

M

)
+ ε1/2zW 1

w

(
0,

1

M

)]
e−Mz,

m3(x) = W 3/2

(
x− 1√

ε
,

1

M

)
−W 3/2

(
0,

1

M

)
e−Mz.

• We first estimate ‖m0‖L2(0,1). We have

W 0
ε

(
x− 1√

ε
,

1

M

)
=
y0(0)

2

(
1 + erf

(√
M(x− 1)

2
√
ε

)
− eMxε erfc

(√
M√
ε

x+ 1

2

))
,

then, using the asymptotic behavior (7) of the error function, we find that

W 0
ε

(
x− 1√

ε
,

1

M

)
=
y0(0)

2

(
1 + erf

(√
M(x− 1)

2
√
ε

)
− eMxε erfc

(√
M√
ε

x+ 1

2

))
,

W 0
ε

(
0,

1

M

)
=
y0(0)

2

(
1− eMε erfc

(√
M√
ε

))
=
y0(0)

2
+O(

√
ε),

W 0
ε,w

(
0,

1

M

)
= y0(0)

[√
M√
π
− M

2
√
ε
e
M
ε erfc

(√
M√
ε

)]
= y0(0)

√
M

2
√
π

+O(ε),

W 0
ε,ww

(
0,

1

M

)
=
y0(0)

2

(
M3/2

√
επ
− M2

ε
e
M
ε erfc

(√
M√
ε

))
= y0(0)

√
M

4
√
π
ε1/2 +O(ε3/2),

W 0
ε,www

(
0,

1

M

)
=
y0(0)

2

(
−M

3/2

√
π

+
M5/2

ε
√
π
− M3

ε3/2
e
M
ε erfc

(√
M√
ε

))
= −y0(0)

M3/2

4
√
π

+O(ε).

Recalling that z(x) = (1 − x)/ε and that ‖z(x)ne−Mz(x)‖L2(0,1) = O(
√
ε) for all n ∈ N, we deduce that

the L2(0, 1)-norm of

w3(x) := −
[
W 0
ε

(
0,

1

M

)
+ ε1/2zW 0

ε,w

(
0,

1

M

)
+ ε

z2

2
W 0
ε,ww

(
0,

1

M

)
+ ε3/2

z3

6
W 0
ε,www

(
0,

1

M

)]
e−Mz,

is ‖w3‖L2(0,1) = |y0(0)|O(ε1/2). We then write that

m0(x) =
y0(0)

2

[
1 + erf

(√
M(x− 1)

2
√
ε

)
︸ ︷︷ ︸

:=w1(x)

−eMxε erfc
(√

M√
ε

x+ 1

2

)
︸ ︷︷ ︸

:=w2(x)

]
+ w3(x).

Using (6) with y =
√
M(1− x)/(2

√
ε) ≥ 0, we obtain

1

2
e−

M(1−x)2
πε ≤ w1(x) ≤ e−

M(1−x)2
4ε , ∀x ∈ [0, 1],

leading to ‖w1‖L2(0,1) = O(ε1/4). Moreover, using the asymptotic behavior of the error function erf , we

have

w2(x) = −e−Mε
(1−x)2

4

( √
ε√
Mπ

2

x+ 1
+O(ε3/2)

)
, ∀x ∈ [0, 1].
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We then deduce that ‖w2‖L2(0,1) = O(ε3/4). We also check that
∫ 1

0
w1(x)w2(x)dx = O(ε),

∫ 1

0
w2(x)w3(x)dx =

O(ε3/2) and
∫ 1

0
w1(x)w3(x)dx = O(ε). This allows to conclude that

‖m0‖L2(0,1) = |y0(0)|O(ε1/4).

• We now estimate ε1/2‖m1‖L2(0,1). We have

W 1/2

(
x− 1√

ε
,

1

M

)
=
y
(1)
0 (0)

2

[
w1(x)

(x− 1)√
ε

+
2√
Mπ

e−
M(1−x)2

4ε

]
,

W 1/2

(
0,

1

M

)
=
y
(1)
0 (0)√
Mπ

, W 1/2
w

(
0,

1

M

)
=
y
(1)
0 (0)

2
, W 1/2

ww

(
0,

1

M

)
=

√
M√
π

y
(1)
0 (0)

2
.

Using the estimate above for w1, we check that ‖W 1/2

(
x−1√
ε
, 1
M

)
‖L2(0,1) = O(ε1/4). Its follows that

‖m1‖L2(0,1) = |y(1)0 (0)|O(ε1/4) and

ε1/2‖m1‖L2(0,1) = |y(1)0 (0)|O(ε3/4).

• We now estimate ε‖m2‖L2(0,1). We have
W 1

(
x− 1√

ε
,

1

M

)
=
y
(2)
0 (0)

2

[(
(1− x)2

2ε
+

1

M

)
w1(x) +

x− 1√
Mπ
√
ε
e−

M(1−x)2
4ε

]
,

W 1

(
0,

1

M

)
=
y
(2)
0 (0)

2M
, W 1

w

(
0,

1

M

)
=
y
(2)
0 (0)√
Mπ

.

Using the estimate above for w1, we check that ‖W 1
(
x−1√
ε
, 1
M

)
‖L2(0,1) = O(ε1/4). Its follows that

‖m2‖L2(0,1) = |y(1)0 (0)|O(ε1/4) and

ε‖m2‖L2(0,1) = |y(2)0 (0)|O(ε5/4).

Similarly, we compute ε3/2‖m3‖L2(0,1) = |y(3)0 (0)|O(ε7/4). For ε > 0 small enough, this term is ab-

sorbed by ‖(yε − P̃ ε)(·, 1/M)‖L2(0,1). Then, writing that ‖P̃ ε(·, 1/M)‖L2(0,1) = ‖
∑3
k=0 ε

k/2mk‖L2(0,1) ≤∑3
k=0 ‖εk/2mk‖L2(0,1), we obtain the result. 2

Under additional regularity assumptions, estimate (81) suggests that the norm ‖yε(·, 1/M)‖L2(0,1)

decays exponentially with respect to ε if the derivative y
(j)
0 (0) vanishes for all j ∈ N.

As an illustration, we consider the simple case v ≡ 0 and y0 ≡ 1 for which

P̃ ε(x, t) = W 0
ε (w, t)−

(
W 0
ε (Mτ, t) + ε1/2zW 0

ε,w(Mτ, t)+

ε
z2

2
W 0
ε,ww(Mτ, t) + ε3/2

z3

6
W 0
ε,www(Mτ, t)

)
e−Mz,

w =
x−Mt√

ε
, Mτ =

1−Mt√
ε

, z =
1− x
ε

.

Figure 2 depicts the function P̃ ε(x, t) over x ∈ (0, 1) for t = 1/(2M) and t = 1/M . We take M = 1

and ε ∈ {10−2, 10−3}. As ε goes to zero, the function P̃ ε(x, 1/(2M)) displays a transition from 0 to 1

at the point x = 1/2 and a faster transition from 1 to 0 at the point x = 1−. For t = 1/M , these two

transitions, from 0 to 1 and from 1 to 0, occur simultaneously in the neighborhood of x = 1. Figure 3

depicts the approximation P̃ ε, for ε = 10−2, M = 1, in the domain (0, 1)× (0, 1.2/M), and clearly shows

the simultaneous occurence of both an internal and boundary layers.
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Figure 2: P̃ ε(x, t) w.r.t. x ∈ (0, 1) for t = 1/2/M (left) and t = 1/M (right); M = 1, ε ∈ {10−2, 10−3}.

Figure 3: P̃ ε(x, t) in (0, 1)× (0, 1.2/M); M = 1, ε = 10−2; v ≡ 0, y0 ≡ 1.
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6 Concluding remarks and perspectives

We have shown that the method of matched asymptotic expansions with appropriate scaling allows to

approximate solutions of a singular boundary-value problem involving interacting internal and boundary

layers of distinct sizes. The approximation is a linear combination of three expansions, describing the

three behaviors of the solution yε, as ε goes to zero. These expansions are locally matched and lead

to a C1(QT )-approximation. Using standard energy estimates, and assuming regularity on the data,

precisely, v ∈ C4([0, T ]) and y0 ∈ C4([0, 1]), this approximation, denoted by P̃ ε, notably fulfills the

property ‖yε − P̃ ε‖L∞(0,T ;L2(0,1)) ≤ cε3/2. With more regularity, we can actually achieve an arbitrarily

large rate. This requires however a large amount of calculus.

Similarly, the method can be extended to the case Ω ⊂ R2 and the case of non constant coefficient

(we refer to [16, 21] where the equation yεt − εyεxx +M(t)yεx = 0, for x ∈ R+ is analyzed). It would also

be interesting to consider the case of nonlinear equations like Burger’s equation yεt − εyεxx + yεyεx = 0

introduced to model turbulence. The asymptotic analysis of this equation posed for x ∈ R is mentioned

in [13, Section 4.3.1] (we also refer to [14]).

Eventually, we mention that our analysis assumes that the initial condition is independent of the

parameter ε. In particular, our analysis does not apply for the initial condition yε0(x) = Kεe
−Mx2ε sin(πx),

with Kε = O(ε−3/2) so that ‖yε0‖L2(0,1) = 1 exhibited in [15]. As ε goes to 0, this initial condition

gets concentrated at x = 0 and is suspected to maximize the corresponding cost of null control for (1),

discussed in [7]. However, by introducing the new function zε(x, t) := K−1ε e
Mx
2ε yε(x, t), we check that zε

solves (taking v ≡ 0) the boundary-value problem
zεt − εzεxx + 2Mzεx −

M2

4ε
zε = 0, (x, t) ∈ QT ,

zε(0, t) = 0, zε(1, t) = 0, t ∈ (0, T ),

zε(x, 0) = sin(πx), x ∈ (0, 1),

on which we may apply our asymptotic analysis to get an approximation of zε and then obtain notably

the order of magnitude of the norm ‖yε(·, 1/M)‖L2(0,1).
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