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Abstract—We consider a problem of geometric tomography
whith a strip-based model of projections: the projections are the
areas of the intersection between the shape and some strips. We
investigate some elementary algorithms that allow to construct
a shape with prescribed projections. We start with an exact
algorithm based on Linear Programming which leads to practical
difficulties. Then we investigate three practical heuristics based
on a cell decomposition of the domain of interest: GA is a greedy
algorithm, GAME its multiresolution derivative and MPH a
multiresolution heuristic close to a parallel Simulated Annealing.

According to Richard Gardner, Geometric tomography
deals with the retrieval of information about a geometric object
from data concerning its projections (shadows) on planes or
cross-sections by planes. [1]. The main class of problems
of this field is to provide some algorithms of reconstruction
of an unknown compact shape S from projections in some
directions. Several kind of projections can be considered but
the most classical way is to consider X-rays that cross S and
provide an information about its length or cardinality along
each beam. We will focus our attention on the reconstruction
of sets from projections with a finite set of directions and a
finite number of sensors.

I. PROBLEM STATEMENT

A. Back to Radon Transform

We place us in a 2D framework and denote Dθ,r the line
of equation xcosθ + ysinθ = r. We consider a compact
shape S and its characteristic function fS : R2 → {0, 1}.
With this basic formalism, the X-ray of S in the direction
θ ∈ [0, π[ is the function XS

θ : R → R defined by
XS
θ (r) =

∫
Dθ,r

fS(x(s), y(s))ds where s denotes the abscissa
along the curve. Generally speaking, the function XS

θ (r) of
the two variables θ and r is known as the Radon transform of
f and its 2D image is called the sinogram of f .

The inverse problem of computation of f from its sinogram
has been introduced in 1917 [2]. It can be solved with Fourier
analysis by using the Fourier Slice theorem [3]: This solution
works also with binary functions as the characteristic function
fS and thus allows to reconstruct an unknown shape from its
Radon transform.

B. Why is the problem still interesting?

Hundred years after, there exists more than 20 types
of tomography, from microtomography to Positron Emission

Tomography, but whatever the goal and the physical process
involved in these systems, there is a major difference with
previous Radon model: the measurements are always discrete.
The number of directions of the X-rays can go from 2 to
several hundreds -it is finite- while the number of sensors is
also bounded. These numbers will increase with the technology
improvement but there will still remain some cases where
the number of directions will remain very small because the
measurements can degrade the object while in the framework
of medical imaging, it is always better to reduce the radiation
doses. It is a reason to investigate deeply the reconstruction
techniques which can deal with only a few projections.

It is well known since several years that in this framework
-let’s say with 2, 3 until 15 directions- classical techniques
of computerized tomography becomes inefficient. They fail
especially in geometric tomography since they don’t take into
account the a-priori that the image to reconstruct is binary.

C. Length ray and strip-based Models

There are at least two different models for the X-rays of a
shape S in a given direction. The classical one is the length ray
model. For each beam, the X-ray measured ”behind” the shape
provides the length of the intersection between the shape and
the beam namely XS

θi
(rij) for the finite sequences of directions

θi and offsets rij (usually these sequences have a regular steps
∆θ and ∆r). This model is the one considered usually in
geometric tomography with a variant in the case of a cone
beam.

The second model comes from the idea that a sensor can
not capture the energy coming from a single beam but the one
of all the beams reaching its surface (Fig. 1). With a given
direction θ, this set of beams makes a strip. This idea has
been introduced in 1956 by R.N. Bracewell in his old paper
”Strip integration in radio astronomy” [3] and investigated
more recently in the framework of discrete tomography [4],
[5]. Let us denote Dθ,[rj ,sj ] the strip rj ≤ xcosθ+ysinθ ≤ sj
where rj and sj are the extremal offsets of the sensor of
index j. It follows that in this model, with X-rays in direction
θi, the value captured by this sensor is not XS

θi
(rj) but

its sum XSθi [j] =
∫ sj
r=rj

XS
θi

(r)dr namely the area of the
intersection between the strip Dθi,[rj ,sj ] and the unknown
shape S. To avoid confusion, these theoretical measurements
XSθ [i] are called X-areas instead of X-rays in this paper. These
two models are different but they ”converge” to the same



Fig. 1. Length Ray and Area models. On the left, in the length ray model,
the projection is given by the length of the intersections between lines and
S while in the area model, on the right, the projection is the area of the
intersection of a strip and S.

continuous model where the function XS
θi

is perfectly known
if the resolution of the ”camera” leads to infinite.

D. What’s the original problem?

We are interested in the reconstruction of an unknown
shape S from its X-areas. The input of the problem is a two-
dimensional finite sequence ai,j and a set of strips Dθi,[rij ,s

i
j ]

with directions θi and offsets in the interval [rij , s
i
j ]. The output

is a set S verifying ∀i, j, XSθi [j] = ai,j if there exists one.

Notice that we don’t make any assumption on S while it is
usual in the framework of geometric tomography to consider
almost convex shapes since otherwise, with the length ray
model, the problem becomes trivial (any union of segments
with prescribed lengths is a solution). With X-areas, no such
trivial solutions exists. The aim of the paper is to investigate
the most elementary ideas that could allow to solve it. We
start in next section with an exact solution by using Linear
Programming. We didn’t test this approach since as we will
see, it remains some difficulties to overcome. Then we will
investigate and make experiments with greedy algorithms and
a probabilistic heuristic in a multiresolution framework.

II. LINEAR PROGRAMMING

A. Linear Program Statement

We assume now that the shape to reconstruct belongs to
a known compact domain as for instance [0, 1]2. We do not
assume that it is an union of pixels, it can be any subset of
[0, 1]2 since we remain here in a continuous framework. Let
us now take a strip Dθi,[rij ,s

i
j ]

for each direction θi. Their
intersection is either empty, or a polytope P . The set of all
these polytopes defines a ”partition” of [0, 1]2 (the polytopes
just overlap on their faces namely on sets of null area) (see
Fig. 2).

If there exists a solution S to a given instance of our
reconstruction problem, then the intersection of S with the
polytope P has an area x which is at least 0 and at most equal
to the area of P : 0 ≤ x ≤ area(P ). If this area is strictly
in this interval, then many other solutions S′ can be derived

from S just by moving the points of S in P . It means that the
distribution of the points of a solution in each polytope P is
not constrained. The only constraint is on x.

Fig. 2. Partition of the domain of interest [0, 1]2 in polytopes. The 8
strips of width 1

8
in four directions 0, π

3
, π

2
, 2π

3
define a partition of the

domain in 220 polytopes.

It leads to introduce a variable of area xk for each polytope
Pk of the partition associated with the geometry of the strips
(let us denote K the set of indices of all the polytopes of
the partition of [0, 1]2)). Each variable xk is constrained by
the double inequality 0 ≤ xk ≤ area(Pk). The prescribed
value of the area of the intersection of S with the strip
Dθi,[rij ,s

i
j ]

of index j in direction θi provides the linear equality∑
k∈Ki,j xk = ai,j where Ki,j is the list of indices of the

polytopes included in Dθi,[rij ,s
i
j ]

(they provide a partition of the
strip in the considered domain [0, 1]2). It leads to a problem
of feasibility of linear equalities and inequalities

∀i ∈ I, j ∈ J,
∑

k∈Ki,j

xk = ai,j

∀k ∈ K, 0 ≤ xk ≤ area(Pk).

where I and J are the set of indices for the directions and
sensors. It’s a problem of Linear Programming that can be
solved by many kind of algorithms of this field (Simplex,
Interior points,...).

In practice, due to noise and imprecision of float arithmetic,
the equalities

∑
k∈Ki,j xk = ai,j should be relaxed in linear

double-inequalities ai,j − δi,j ≤
∑
k∈Ki,j xk ≤ ai,j + δi,j

where the new variable δi,j denotes the error on the X-area
in the strip Dθi,[rij ,s

i
j ]

. Then a good objective function is the
sum of the errors

∑
i∈I,j∈J δi,j . Its minimization guarantees to

find a solution with a minimal error sum and an exact solution
exists if and only if this minimum is null.

B. How Many Variables Has the Linear Program?

We have one constraint by strip and two constraints by
variable and we have one variable by polytope in the partition
of the domain of interest [0, 1]2. But how many polytopes are
there in the partition of the unit square? If we have only one
direction, it is the number of strips, denoted by n. If we have
two directions, it is n2. If we have three directions (0, π3 , 2π

3 )



and an even number of strips, it is 3n2

2 while if the number
of strips is odd, it becomes 3n2−1

2 . If we increase now the
number of directions further than 4, the computation of the
number of polygons becomes tedious (Fig. 3).

Fig. 3. Patterns of the partition of the domain of interest [0, 1]2 in
polytopes. We cut again it with respectively 8 (left), 16 (right) directions with
8 strips of width 0.125 which turn around the center of the square and count
the number of polytopes inside. It appears symmetries. With 2 strips, we have
64 polytopes. With 4 directions with an angular step π

4
(0, π

4
, π

2
, 3π

4
) , we

count 29× 8 = 232 polytopes. With 8 directions with an angular step π
8

, we
count 50× 16 = 800 polytopes. With 16 directions with an angular step π

16
,

it starts to be hard to count the number of polytopes without computing.

Then, an interesting question is to provide a general for-
mula for the number N(n, d) of polygons for n strips turning
in d direction with an angular steps π

d . Even the asymptotic
behavior of this function would be interesting because it
determines if Linear Programming is suitable in practice in
our framework.

C. From areas to shapes?

Let us assume now that the values of the areas xk of S in
each polytope Pk have been obtained by any method of Linear
Programming. It remains to choose the position of the points
of S in each polytope. There could be some strategies but it is
not straightforward. A second difficulty is to find an efficient
way to compute the geometry of all polytopes Pk when their
number becomes very large. These open questions lead us to
investigate other approaches coming from image processing,
discrete tomography and operational research.

III. MULTIRESOLUTION FRAMEWORK

A. The cell partition of the domain

From a practical point of view, the goal is not necessarily
to compute an exact solution but a binary image which is as
close as possible to be or represent a solution. For this purpose,
we are going to investigate a multiresolution approach. A
multiresolution process starting from a low resolution solution
to go to a high resolution final result has been introduced in
several papers of Computerized Tomography [6], [7], [8]. We
will also adopt the principle to refine a current solution during
the computation but the main idea of this work is to keep at
any time a multiresolution decomposition of the domain [0, 1]2

with very small cells on the boundaries of S and large cells
where it is possible. It leads to use in practice the classical
multiresolution decomposition of an image in quad-trees [9].
Nevertheless, instead of describing the present work only on

quad-trees, we prefer to stay as general as possible and just
keep the properties that we will use in the following. Then we
choose to present the results with an elementary data structure
which is just a partition of the unit square in cells Ck with an
index k ∈ K (the cells can just overlap on regions of null area).
These cells can be the pixels of an image of the unit square
with [0, 1]2 or the leaves of a quad-tree. In this framework, a
shape S is a subset of cells of indices in KS . We can also
consider its characteristic function fS : K −→ {0, 1} telling
if the cell is in S (its value is 1 or its color is black) or outside
(0 for white).

B. Error minimization

We consider now our problem of reconstruction of a
unknown shape with a prescribed X-area ai,j in each strip
Dθi,[rij ,s

i
j ]

. It can be formulated as a problem of minimization,
minimization of the error sum of the projections of a current
shape S towards the prescribed values ai,j :

Errora(S) =
∑
i,j

|ai,j − XSθi [j]|.

An exact solution S has a null error sum. There exists of course
a lot of possible approaches to tackle this kind of problem and
we choose to restrict ourselves to the algorithms that take a
current shape S and just change the colors of a small number
of cells at each step. These approaches are local or continuous
in the sense that, at each step, the new shape S is close to
the previous one according to the Hausdorff distance. Then
the question is to determine the cells Ck whose colors should
be modified. We introduce in this goal two values of energies
that control our elementary heuristics.

C. Mean and Absolute Energy Fields

The question is to determine which cells of the image
should change their color in order to decrease the error sum.
Of course, the cell Ck is only involved in the errors on the
X-areas in the strips which cross it. We can also notice that
given a strip Dθi,[rij ,s

i
j ]

, a cell Ck has in all likelihood a larger
contribution to the error ai,j−XSθi [j] if its intersection with the
strip is large. This idea leads to weight the contribution of a cell
Ck to the error term ai,j−XSθi [j] by the area of the intersection
between the cell and the strip namely area(Ck ∩Dθi,[rij ,s

i
j ]

).
Then we introduce two values that we call mean and absolute
energy fields:

MEa(Ck) =
∑
i,j

area(Ck ∩Dθi,[rij ,s
i
j ]

)(ai,j − XSθi [j])

AEa(Ck) =
∑
i,j

area(Ck ∩Dθi,[rij ,s
i
j ]

)|ai,j − XSθi [j]|.

Since the unit square has an area equal to 1, the sum of the
absolute energy fields for all cells is the error sum:∑

k∈K

AEa(Ck) = Errora(S).

The absolute energy provides a way to evaluate a contribution
of each cell to the error sum that we would like to minimize.
The mean energy obtained by keeping the signs of each error
allows to determine if there is a deficit or an excess of color



in a cell. It there is a lack of black in the strips around the
cell Ck, it appears with a positive mean energy while a lack
of white appears with a negative value.

At last, we precise that our heuristics use energy densities
instead of the intrinsic values: the mean and absolute energy
densities of the cell Ck are respectively AED(Ck) = AE(Ck)

Area(Ck)

and MED(Ck) = ME(Ck)
Area(Ck)

. This ratio by the area puts on the
same level the large and the small cells because otherwise in
many cases, the large cells will have larger energies than the
small ones while it could be more interesting to change the
color of a small cell.

IV. ALGORITHMS

The initial idea was to investigate a Simulated Annealing
algorithm in order to perform the reconstruction with the area
model. After some tests, the question of the initialization of
the algorithm arose and we chose a greedy algorithm that can
be used as routine.

A. Greedy Algorithm

Given a partition of the unit square [0, 1]2 in cells Ck,
the principle of the greedy algorithm is usual in Discrete
Tomography:

• Initialization: Take an empty current shape S.

• Loop: Compute the X-areas of S, compute the mean
energy density of all (white) cells outside S and find
the cell Ckmax for which it is maximal. Then, add
Ckmax to S.

• End: Stop if the total area of S reaches the area given
by the sum of the projections.

The time of computation of this algorithm is O(|K||KS |)
where |K| is the number of cells of the partition and |KS |
the number of cells of the result. In this expression, the time
of computation of the mean error of each cell is hidden in
the constant (it requires to update at each step the X-areas of
S by adding the X-areas of the cell). We have also to take
care of the end criterion: if there are some gaps between the
strips, then the total area of a shape solution is not given by the
sum of the X-areas in one direction but it can be estimated by
considering the ratio of the area of S captured by the X-areas.

B. Greedy Algorithm with Multiresolution Enhancement

In previous algorithm, the partition of unit square [0, 1]2

is given a-priori but after the computation, the final shape S
can provide an idea about where it could be useful to refine
the partition by splitting some cells in smaller ones. It leads
to following algorithm where the previous greedy algorithm is
used as routine and where the partition of cells is updated at
each step (Fig. 4):

• Initialization: choose an initial cell decomposition of
[0, 1]2 as for instance in 64 squares of size 0.125 ×
0.125.

• Repeat: Perform Greedy Algorithm and provide a
shape S. Split all cells of the inside and outside
boundary of S.

• End: Stop when the number of cells becomes too
large or if the variation of the error sum becomes
insignificant.

Fig. 4. The principle of the algorithm is to update the partition of cells
by decomposing at each step the cells of the boundary of the shape. Then we
restart the greedy algorithm as a routine to compute a new shape, and so one
until the time of computation is expired or until stability.

In order to avoid an exponential growing of the number
of cells, we choose in practice to bound the minimal size of
the cells: we fix a-priori a minimal area under which cells
are no more divided because they would be too small. The
consequence is also to make the partition of cells convergent
-the algorithm ends when there are no more changes between
two steps- but it is not necessary to wait stability (2 hours on
phantom 1) to provide a convenient result. In the experimental
section, this algorithm has been tested with quad-trees.

C. Multiresolution Probabilistic Algorithm

The algorithm that we present here is close to Simulated
Annealing (SA) [10]. In SA, a current state S is modified
randomly with a probability of change which is related to the
input by an energy term E(S) and which decreases with the
time. More precisely, at each step, the algorithm generates
randomly a new state S′ by some small modifications of
S. The state S′ is accepted as new current state with a
probability e

E(S′)−E(S)
T (1 if E(S′) ≥ E(S)) where T is a

global parameter called temperature that decreases during the
time. The repetition of this process several times is inspired
by the method of annealing in metallurgy where a material is
heated and cooled several times in order to improve its quality.

In our framework, the energy term is Errora(S) since it is
the value that we want to minimize. The fact that we suggest
a variant of Simulated Annealing rather than the classical
algorithm itself comes from the decomposition of this energy
in

∑
k∈K AEa(Ck). It allows to work locally: instead of trying

a small change on S and computing the global energy variation
to determine the probability to accept it, we perform a lot of
small changes in parallel and accept each one of them with a
probability that depends on local criterion and of temperature.
It is a win of time, but there is of course a small drawback:
several local changes can be accepted in parallel at different
places although they have together a negative effect on the
total energy. Nevertheless, we can hope that it does not occur
too often, and there is also a most important reason to replace



the classical criterion of acceptance in e
E(S′)−E(S)

T : our goal is
not only to find the best allocation of colors to each cell but
also to improve the cell partition in order to provide a high
resolution on the boundary of the result. It means that our
current state is not only S, but S and the partition. It follows
that among the possibilities to find a new current state, there
is the possibility to change the color of a cell but also to split
it or to merge neighbors with the same color. This change of
the structure does not modify the energy, but it should also be
guided by some probabilistic criterion.

After these general considerations, let us give briefly the
details of the algorithm:

• Initialization: choose an initial cell decomposition of
[0, 1]2 as for instance in 64 squares of size 0.125 ×
0.125. Compute a current state S with the greedy
algorithm.

• Repeat 1: Take a (high) temperature T = T0.
◦ Repeat 2: For all cells of [0, 1]2, consider

three possibilities of change: split, merge with
its neighbors, change its color and accept it
randomly with a given probability threshold.
Decrease temperature.

◦ End of Repeat 2: Temperature is 0.

• End: Maximal time of computation has been reached.

For a cell Ck, the probability to merge with its neighbors
(in the multiresolution data structure) is 0 if their colors are
different. Otherwise, it depends only on the temperature with

p(mergeCk) = p0
|ME(Ck)|
AE(Ck)

eαT

with a negative α and a parameter p0 (in next experiments
p0 = 0.05). The probability to split Ck in smaller cells is

p(splitCk) = p1(1− |ME(Ck)|
AE(Ck)

)eαT

with a parameter p1 (in next experiments p1 = 1). An area
factor can be added in order to favor the split of the large
cells. If the absolute energy is null, X-areas are correct, then
we don’t split the cell. We can also notice that with the factor
1 − ME(Ck)

AE(Ck)
, we tend to split the cells where the mean error

is close to 0, namely where in some strips there is a lack of
black while others it is an excess. For the change of color, the
probability to become black is a growing function of the ratio
MeanEnergy(Ck)
AbsoluteEnergy(Ck)

, for instance

p(Ck → black) = p2
ME(Ck)

AE(Ck)
eαT

if the mean energy is positive (it expresses a lack of black).
The probability for a cell to become white is symmetric. Of
course, we describe here a heuristic in which parameters can
be hard to find. There is a balance to find between merging
and splitting, with of course a minimal size for splitting. The
evolution of the solution is guided by basic principles which
was the main point of this work. More sophisticated criterion
can be introduced. If all the neighbors of a cell are black while
the cell is white, we have for instance increased the coefficient
p2 in order to try to regularize the colors of the solution, but
such an a-priori has also the drawback to reduce the research
of a solutions in some directions.

V. EXPERIMENTS

A. Experimental Protocol

We have tested the Greedy Algorithm (we notice it GA), the
Greedy Algorithm with Multiresolution Enhancement (GAME)
and the Multiresolution Probabilistic Heuristic (MPH) (with
several minimal areas for the cells) on the same phantom
images with the same protocol on a laptop with a dual
core at 2.80 Ghz with 4 Gb of RAM: The exact X-areas
of the phantom are computed and then introduced as input
of each algorithm. The criterion which allows to evaluate
the quality of the result S is the error sum Errora(S). We
choose to report for each algorithm the graphics of the error
index (104 ErrorSum(S)

number of directions ) in function of the time of
computation (Fig. 6) for some chosen phantoms. Notice that
if you take the X-areas of an image of resolution 100 × 100
and just change the color of one pixel, the error index of the
new image according to the X-areas of the initial image is 1.

• This presentation of the results is consistent for the
multiresolution algorithms GAME and MPH: we run
the algorithm only one time and register the evolution
of the error during the computation. A curve comes
from only one iteration of the algorithm.

• The results are more artificial in the case of the greedy
algorithm without multiresolution GA since its main
parameter is the resolution of the resulting image: then
we try several resolutions and report for each its time
of computation and the error sum of the result. In this
case, each point corresponds to one iteration of GA
and the whole curve corresponds to many.

We illustrate the results with two phantoms - a basic one (Fig.
5) and a more complex one (Fig. 7). First phantom has been
reconstructed from 3 directions and 128 sensors (Fig. 5 and
6). With several minimal areas for the nodes (10−5, 10−6 and
5.10−7), we can notice that decreasing this value allows to
provide better results with multiresolution. There is however a
limit of 200000 cells due to the memory size which does not
allow to go further. Second phantom has been reconstructed
with 12 directions and 128 sensors since its shape is more
complex (Fig. 7 and 8). Results are drawn with a logarithmic
scale for the time.

B. Interpretation of the results

For phantom 1, the multiresolution algorithms MPH out-
performs the greedy algorithms GA and GAME. It requires
less time for a better result. Notice that with phantom 1 and 12
directions instead of 3, GA provides lower error indices than
GAME and becomes close to MPH . The greedy algorithm
GA is very sensitive to the number of directions. Then, it is
not really surprising that on the second phantom -the flowers-
the simple greedy algorithm provides a better final result since
MPH is stopped due to the limited size of memory, which is
a bit frustrating.

VI. CONCLUSION

The experimental results show that elementary algorithms
provide results of good quality with only few directions if the
shape in not too much complicated. The second point is that



Fig. 5. Phantom 1 - A: the first phantom. B: the result of greedy algorithm
GA with resolution 400× 400, which makes 160000 cells or pixels with an
error index around 18. C: the result with multiresolution of GAME with an
error index of 14.3 and 25854 cells at the end. D: the result of the probabilistic
algorithm MPH with minimal area 10−5 (better results are obtained with
10−6 and 5.10−7). Error index is 5.8 with 25517 cells.

Fig. 6. Results on phantom 1 - In abscissas, the time of computation is
given on a logarithmic scale. The ordinate is the error index (a value of 1
corresponds to one pixel with a resolution 100 × 100). The error index of
GA reaches 18 while GAME, with a minimal area of 10−5 reaches 14.3
with 25854 cells. Algorithm MPH with three different minimal areas (10−5,
10−6 and 5.10−7) outperforms the other algorithms with, respectively, error
indices 5.8, 2.9, 1.9 for 25517, 60919, 181969 cells.

multiresolution heuristics turn out to be a promising approach
with fast results for the class of problems that we consider.

REFERENCES

[1] R. J. Gardner, Geometric Tomography, ser. Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, 1995.

[2] J. Radon, “Uber die bestimmung von funktionen durch ihre integralw-
erte langs gewisser mannigfaltigkeiten,” Berichte über die Verhandlun-
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