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Convex Aggregation Problems in Z2

Yan Gérard1

Université Clermont Auvergne - LIMOS, Clermont-Ferrand, France

Abstract. We introduce a family of combinatorial problems of digital
geometry that we call convex aggregation problems. Two variants are
considered. In Unary convex aggregation problems, a first lattice set
A ⊆ Zd called support and a family of lattice sets Bi ⊆ Zd called pads
are given. The question to determine whether there exists a non-empty
subset of pads (the set of their indices is denoted I) whose union A∪i∈IB

i

with the support is convex. In the binary convex aggregation problem,
the input contains the support set A ⊆ Z2 and pairs of pads Bi and

B
i
. The question is to aggregate to the support either a pad Bi or its

correspondent B
i

so that the union A ∪i∈I B
i ∪i 6∈I B

i
is convex.

We provide a first classification of the classes of complexities of these two
problems in dimension 2 under different assumptions: if the support is
8-connected and the pads included in its enclosing rectangle, if the pads
are all disjoint, if they intersect and at least according to the chosen
kind of convexity. In the polynomial cases, the algorithms are based on a
reduction to Horn-SAT while in the NP-complete cases, we reduce 3-SAT
to an instance of convex aggregation.

Keywords: Digital Geometry, Discrete Tomography, Convexity, Com-
plexity, Horn-SAT

1 Introduction

The first convex aggregation problem has been considered in 1996 in Discrete
Tomography where it has been used for the reconstruction of HV-convex poly-
ominoes i.e HV-convex 4-connected lattice sets [1]. More generally, convex ag-
gregation problems are the bottleneck of the reconstruction of convex lattice
sets in different problems of Discrete Tomography [2–4]. Although they might
be of major interest for the field, this class of combinatorial problems have never
been neither formulated independently nor investigated in a rather exhaustive
manner. The first parameter of this family of problems is the chosen kind of con-
vexity. In the lattice Z2, the two main ones are denoted hereHV and C-convexity.
A lattice set S ⊆ Z2 is HV-convex if its intersection with any horizontal or ver-
tical line is a set of consecutive points and S ⊂ Zd is C-convex if it is equal
to its intersection with its real convex hull S = convRd(S) ∩ Zd (Fig. 1). The
HV-convexity is a directional convexity reduced to the horizontal and vertical
directions. The C-convexity is the classical convexity of geometry of numbers.
The C-convex lattice sets are the lattice polytopes.
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Fig. 1. HV and C-convexities. Top left, the set is not HV-convex while the top-
right, the lattice set is HV-convex. Below, the left lattice set is not C-convex while the
right set is C-convex. Notice that neither HV-convexity, nor C-convexity imply digital
connectivity.

In Discrete Tomography, the problem of convex aggregation appears as fol-

lows: a partial convex solution A ⊆ Z2 and a list of conjugate subsets Bi, B
i

of
Z2 with an index i from 1 to n have been computed. In the sequel, the subset

A is called the support while the subsets Bi ⊆ Z2 and B
i ⊆ Z2 are called pads.

The problem is to aggregate either the pad Bi or its conjugate B
i

to the support
so that the union of the support with all chosen pad is convex. In other words,

the problem is to find a list of indices I so that the union A ∪i∈I Bi ∪i 6∈I B
i

is convex. These problems of convex aggregation are called binary. We choose
this term to highlight the difference with another class of problems that we call
unary. In unary convex aggregation problems, the input is a support set A ⊆ Z2

and a family of pads Bi ⊆ Z2. The problem is to find a non-empty set of pads
whose union A ∪i∈I Bi with the support is convex.

The purpose of the paper is to determine the classes of complexities of these
two problems by considering either the HV or the C-convexity in the general
case and under several assumptions on the pads and the support.

In the next section (Sect. 2), we start by stating formally the problems. Sect. 3
provides a very brief state of the art and the results. Some complexities are shown
to be polynomial and others NP-complete. The polynomial-time algorithms are
given in Sect. 4 while Sect. 5 provides sketches of proofs of NP-completeness.

2 Problem statement

For reducing the number of notations, we consider the chosen convexity as a pa-
rameter denoted convexity. We introduce first the problem of unary convex ag-
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gregation 1CAconvexity(A, (Bi)1≤i≤n) and secondly its binary variant 2CAconvexity

(A, (Bi)1≤i≤n, (B
i
)1≤i≤n).

Problem 1. 1CAconvexity(A, (Bi)1≤i≤n)
Input: - a finite lattice set A ⊆ Zd that we call support,
- a family of finite lattice sets Bi ⊆ Zd that we call pads, with an index i going
from 1 to n.
Output: Does there exist a non-empty set of indices I ⊆ [1 . . n] such that the
union A ∪i∈I Bi of the pads Bi with i ∈ I and A is convex (Fig. 2)?

Fig. 2. Two instances of 1CAconvexity(A, (Bi)1≤i≤n) and their solutions. The input
is a set A (black points) with pads Bi (each pad is a set of colored points) while a
solution is a non-empty set of indices I such that the union A ∪i∈I Bi is convex. On
the left, we consider the HV-convexity and the C-convexity on the right.

Notice that the support A from an instance can be removed by adding it
to all the pads: the instance 1CAconvexity(∅, (A ∪ Bi)1≤i≤n) is equivalent with
1CAconvexity(A, (Bi)1≤i≤n).

We introduce now the second class of problems of convex aggregation occur-
ing in Discrete Tomography and we call them binary.

Problem 2. 2CAconvexity(A, (Bi)1≤i≤n, (B
i
)1≤i≤n)

Input: - a finite lattice set A ⊆ Zd that we call support,

- a family of pairs of finite lattice sets Bi ⊆ Z2 and B
i ⊆ Z2 that we call pads,

with an index i going from 1 to n.
Output: Does there exist a set of indices I ⊆ [1 . . n] such that the union

A ∪i∈I Bi ∪i 6∈I B
i

is convex (Fig. 3)?

Note that with a non-convex support A, the unary problem 1CAconvexity(A,

(Bi)1≤i≤n) is a particular case of 2CAconvexity(A, (Bi)1≤i≤n), (B
i
)1≤i≤n) with

empty conjugate pads B
i
. It follows that the complexity of the binary problems

is necessarily at least the complexity of the unary cases.
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Fig. 3. Two instances of 2CAconvexity(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) and their solutions.

The input is a set A (black points) and for each index i, a pair of conjugate pads Bi

and B
i
. The points of the pads Bi are represented by squares while the points of

their conjugate B
i

are represented by diamonds, with a different color for each index.
The problem of binary convex aggregation is to aggregate to the support A either the

squares or the diamonds of each color, so that the union A ∪i∈I Bi ∪i 6∈I B
i

becomes
convex. The instances are drawn on the left (above with HV-convexity, below with
C-convexity) and a solution is given on the right.

3 State of the Art and Results

The state of the art is mainly reduced to the following result known in Discrete
Tomography. It requires to define the HV-grid of a finite lattice set A ⊆ Z2

as the finite grid [min(x(A)) . . max(x(A))] × [min(y(A)) . . max(y(A))] ⊆ Z2

where x and y are the two coordinates of Z2. We recall also that a lattice set
A of Z2 is 8-connected if any pair of points (a, a′) ∈ A2 is connected by a
discrete path (ai)1≤i≤n of points of A verifying a1 = a, an = a′ and ∀i ∈
[1 . . n− 1], d2(ai, ai+1) ≤ 1 where d2 denotes the Euclidean distance.

Theorem 1. If A is 8-connected, and all the pads are disjoint and included in

the HV-grid of A, 2CAHV(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) can be solved in polynomial

time [1].
If A is 8-connected, and all the pads are included in the HV-grid of A, 1CAHV(A,
(Bi)1≤i≤n) can be solved in polynomial time.
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The original proof is stated in the binary case with disjoint pads [1]. It is

based on a simple idea: encode the choice to add either the pad Bi or B
i

by
a Boolean variable that we denote bi (with the convention that bi = 1 if Bi is
added to A and then i ∈ I while bi = 0 if i 6∈ I). Then, with disjoint pads, the
HV-convexity of the union of the pads is encoded by a conjunction of 2-clauses.
It reduces the problem of convex aggregation to an instance of 2-SAT and allows
us to solve it in polynomial time [5].

The result does not hold without the assumption of disjoint pads. The ap-
proach of [1] remains valid for unary HV-convex aggregation with disjoint and
non-disjoint pads under the assumption that the support A is 8-connected and
the pads included in theHV-grid of A. TheHV-convexity of a solution is encoded
by a Horn-SAT instance and can be solved in polynomial time [6].

On the other hand, different authors have noticed that the same problem
obtained by replacing the HV-convexity by the C-convexity is more difficult [3,
7]. The constraint of C-convexity can be formulated with 3-clauses. 3-SAT being
NP-complete, this approach does not provide a solution in polynomial time. Does
it mean that the problem of convex aggregation is itself NP-complete? It is one
of the questions that we investigate in what follows.

We determine in the paper a first classification of the complexities of the
problems of convex aggregation.

Theorem 2. The classes of complexities of the problems of convex aggregation
under several assumptions are given in Tab. 1.

Problem Unary Binary

8-connected
support with
pads in the
HV-grid of A

8-connected
support with
pads in the
HV-grid of A

disjoint
pads

disjoint
pads

disjoint
pads

disjoint
pads

HV-convexity
P

(Th. 1)
P

(Th. 1)
P NP

P
(Th. 1)

NP NP NP

C-convexity P NP P NP NP NP NP NP

Table 1. Complexities of unary and binary convex aggregation problems with
either HV or C-convexity, with or without two different assumptions. We can assume
that the support is 8-connected and the pads included in theHV-grid of A and secondly,
we can assume that the pads are disjoint. In each cell, P means polynomial-time and
NP is written for NP-complete.
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In the case of binary convex aggregation, the only polynomial case among
the configurations that we investigate is the one of Theorem 1. All the oth-
ers are NP-complete. In particular, the condition that the pads are disjoint or
the 8-connectivity of the support is not sufficient to provide a polynomial time
algorithm.

We do not provide here polynomial time algorithms for binary C-convex ag-
gregation but only results of NP-completeness. With specific properties of the
pads, such polynomial-time algorithms might be obtained [7] but these assump-
tions used in Discrete Tomography are too specific to fit into the scope of this
general classification. The reader should just keep in mind that some assump-
tions on the pads might lead to polynomial time algorithms. We conjecture in

particular that the problem 2CAconvexity(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) is polynomial

with convex disjoint pads.

4 Polynomial time algorithms

Theorem 2 states that with disjoint pads, 1CAconvexity (A, (Bi)1≤i≤n) can be
solved in polynomial in the two cases of convexity (convexity = HV is the case
1 and convexity = C in the case 2). The purpose of this section is to describe
the two algorithms.

According to the same strategy as the proof of Theorem 1, we encode the
choice to add or not the pad Bi to A by a Boolean variable. By convention, bi
is equal to 1 if i is in the set I (in other words, if the pad Bi is added to the
union) and bi = 0 if it is excluded. The main idea of the two algorithms is to
express the convexity of the union A ∪I∈I Bi by a conjunction of clauses.

In the following, a point of the lattice Z2 is said covered if it is in the union
A ∪1≤i≤n Bi of the pads and the support and uncovered otherwise. In terms
of data structure, it is practical to build two tables. The first one contains the
abscissas of the covered points and for each abscissa, the ordered list of their
ordinates with the index of the pad containing the point. The second table uses
first the ordinates and secondly, the abscissas. Denoting the number of pads n
and the total number of points N = |A| +

∑n
i=1 |Bi|, the two tables can be

computed in O(N log(N)) time, with a storage in O(N).

4.1 Case 1 - with HV-convexity and disjoint pads

We consider the problem 1CAHV(A, (Bi)1≤i≤n) with disjoint pads. We provide
an algorithm in O(N3 + n4). Its strategy is to build a conjunction of clauses
characterizing the HV-convexity of the union A ∪I∈I Bi:

1. For all pairs of points (a, b) ∈ ∪1≤i≤nA× Bi with a and b on the same row
or on the same column, we consider the integer points in the segment of end
points a and b. If there is an uncovered point, the pad Bi can be directly
excluded since its union with the support A cannot be convex (there is a
hole in between). Otherwise, we build a clause bi =⇒ bj for all the pads
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bj of the points on the segment. It expresses the constraint that the points
in-between have to be included in the union.

2. For all pairs of points (b, b′) ∈ ∪1≤i≤j≤nBi × Bj with b and b′ on the same
row or on the same column, we consider the integer points in-between. If
there is an uncovered point, we build the clause bi =⇒ bj . It expresses that
the two pads cannot be chosen simultaneously. Otherwise, for all the pads
Bk having points between b and b′, we add the clause bi∧bj =⇒ bk (notice
that we use here the assumption of disjoint pads. Otherwise the clause could
be bi ∧ bj =⇒ bk ∨ bk′ if the pads Bk and Bk′

have for instance a common
point between b and b′).

3. We remove the redundant clauses. The number of clauses becomes O(n3).

The clauses built with this algorithm guarantee the HV-convexity of the cor-
responding union A∪1≤i≤n Bi. Conversely, an HV-convex union A∪i∈I Bi pro-
vides a solution of the instance of satisfiability. In the case where the support A
is HV-convex, a null solution can satisfy the clauses but the empty set of indices
I = ∅ is not a valid solution of 1CAconvexity(A, (Bi)1≤i≤n). This case apart (we
consider it afterwards), finding a non-null solution of the conjunction of clauses
is equivalent to the problem of convex aggregation 1CAconvexity(A, (Bi)1≤i≤n).
The clauses are either of the form bi =⇒ bj , bi =⇒ bj or bi ∧ bj =⇒ bk.
They can respectively be rewritten as bi ∨ bj , bi ∨ bi and bi ∨ bj ∨ bk. They have
at most one positive literal. It makes them Horn clauses and Horn-SAT can be
solved in linear time [6]. The condition of non-nullity can be written as ∨1≤i≤nbi
and it is not a Horn clause. A naive way to search for a non-null solution of the
Horn-SAT instance is to fix successively bi = 1 and to solve the new SAT in-
stance, now in linear time. If b1 = 1 does not provide a solution, try b2 = 1 and
so on until bn = 1 if no solution has been found previously.

Complexity
The number of pairs of points considered in the algorithm is bounded by N2.
Then it generates at most a cubic number of clauses O(N3) in a cubic time
O(N3). Their number is reduced to O(n3) by removing the redundant clauses in
O(N3) time. The resolution of the n instances of the main Horn-SAT instance
obtained by fixing bi = 1 requires at most n times O(n3), namely O(n4). It
provides an algorithm with an overall complexity in O(N3 + n4).

4.2 Case 2 - C-convexity with disjoint pads

We consider now the problem 1CAC(A, (Bi)1≤i≤n) with disjoint pads and provide
an algorithm in time O(N4 + n5). Its strategy is similar to the algorithm given
in the previous subsection. In order to reduce the number of cases, we introduce
a supplementary Boolean variable b0 associated with the support A (its value
will be fixed to 1 after the generation of all clauses). We build an instance of
satisfiability expressing the C-convexity of A∪i∈I Bi with the following process:

For all triplets of points (a, b, c) ∈ (A ∪1≤i≤n Bi)3, we consider the triangle
Ta,b,c with vertices a, b and c. The indices of the pads of the points a, b and c
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are denoted i, j and k. If one of the points of Ta,b,c is uncovered, then the three
variables cannot be true in the same time. It is expressed by the conjunction
bi ∨ bj ∨ bk. If all the points of the triangle are covered, we add the clause
bi ∧ bj ∧ bk =⇒ bq for all the indices q of the pads of the points in the triangle
Ta,b,c. This clause can be rewritten as bi ∨ bj ∨ bk ∨ bq. They are both Horn
clauses. Once all triangles have been considered, we fix b0 = 1 and remove the
redundant clauses. Their final number becomes bounded by O(n4).

According to Carathéodory’s theorem in dimension 2, the convex hull of a
finite set S is the union of the triangles with vertices in S [8]. It follows that
S is convex iff no triangle with vertices in S has a point outside S. It explains
that the 3-clauses and 4-clauses obtained from all the triangles with vertices in
A ∪1≤i≤n Bi guarantee the C-convexity of the union A ∪∈I Bi. The C-convexity
is expressed by the clauses. As in the previous case, the constraint to find a
non-empty union of pads ∪i∈IBi has to taken into account. If the support A is
convex, we consider n sub-instances of the Horn-SAT instance with bi = 1 for
all indices from 1 to n. By construction, this sequence of problems is equivalent
with 1CAC(A, (Bi)1≤i≤n) and it can be solved in polynomial time.

Complexity
The number of triplets of points considered by the algorithm is bounded by N3.
We have at most a quartic number of clauses O(N4) generated in a quartic time
O(N4). Their number is reduced to O(n4) by removing the redundant clauses in
O(N4) time. The resolution of the n instances of the main Horn-SAT instance
with bi = 1 requires at most n times O(n4), namely O(n5). It provides an
algorithm with an overall complexity in O(N4 + n5).

5 Proofs of NP-completeness

We prove here that the convex aggregation problems are NP-complete in the five
following cases:

1. 1CAHV(A, (Bi)1≤i≤n) where convexity = HV.
2. 1CAC(A, (Bi)1≤i≤n) where convexity = C.
3. 2CAHV(A, (Bi)1≤i≤n, (B

i
)1≤i≤n) with a 8-connected support and pads in-

cluded in the HV-grid of A.

4. 2CAHV(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) with disjoint pads.

5. 2CAC(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) with disjoint pads.

For any of these five problems, given a set of indices I, we can test in poly-
nomial time whether I is a solution of the instance. It follows that all these
problems are in NP . Secondly, we have to provide a polynomial time reduction
of an instance of a known NP-complete problem to each one of these problems.
The five proofs follow the same strategy: reduce an instance of 3-SAT.

We assume that we have an instance of 3-SAT with n Boolean variables
(bi)1≤i≤n ∈ {0, 1}n and N 3-clauses. The goal is to build an instance of convex
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aggregation which admits a solution if and only if the 3-SAT instance is feasible.
The strategy is to use pads Bi to represent literals. In the case of unary convex
aggregation, we use the pad Bi of index i to represent the literal bi and the pad
Bi+n of index i + n to represent the literal bi. Therefore, we use 2n pads for
representing n variables. In the case of binary convex aggregation, the pad Bi

represents the literal bi while the conjugate pad B
i

represents its negation bi.
According to this strategy, the purpose of each proof is to provide a geometrical
structure where the constraint of convex aggregation encodes, first, the relations
of negation between two literals and secondly, the relations given by the 3-clauses.

5.1 Case 3 - HV-convex binary aggregation with non-disjoint pads

We show how to reduce a 3-SAT instance with n Boolean variables and c clauses
to an equivalent instance 2CAHV(A, (Bi)1≤i≤n, (B

i
)1≤i≤n) of polynomial size.

The structure is made by a support of size (2c + 1) × (c + 1). Its upper points
can be used to encode the clauses with Horizontal convexity (Fig. 4). The
equivalence between the instance of 3-SAT and the corresponding instance of

2CAHV(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) is a consequence of the rewriting of the clauses

as implications before their encoding with pads. Then, the NP-completeness of
the problem is obvious.

Fig. 4. Reduction of 3-SAT instance to 2CAHV(A, (Bi)1≤i≤n). We encode the 3-
SAT instance (b1∨b2)∧(b3∨b1∨b4)∧(eb2∨b3∨b4)∧(b4∨b1∨b2)∧(b2∨b1∨b3). The
clauses can be rewritten as b1 =⇒ b2, b3 =⇒ b1∨b4, b2 =⇒ b3∨b4, b4 =⇒ b1∨b2,
b2 =⇒ b1 ∨ b3 before being encoded on each row.

5.2 Cases 1 and 4 - HV-convex aggregation

We provide now a sketch of reduction of any 3-SAT instance with n Boolean vari-
ables and c clauses to an equivalent instance 1CAHV(A, (Bi)1≤i≤n) of polynomial
size. The strategy is illustrated in Fig. 5. Two rectangular regions are used to
encode a relation of negation between Bi and Bn+i: the pad Bi is joined with
A (i ∈ I) if and only if the pad Bi+n is not joined with A (i+n 6∈ I). Therefore
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the pad Bi represents the literal bi while Bn+i represents its negation bi. Then
each clause is encoded on an upper row. The size of the geometrical structure is
(3 + 3n + c)× (2n + c). The equivalence between the instance of 3-SAT and the
corresponding instance of 1CAHV(A, (Bi)1≤i≤n) provides the wanted result.

Fig. 5. Reduction of 3-SAT instance to 1CAHV(A, (Bi)1≤i≤n). We encode the 3-
SAT instance (b1 ∨ b2) ∧ (b1 ∨ b2 ∨ b3) ∧ (b1 ∨ b2 ∨ b4) ∧ (b3 ∨ b4). The clauses can
be rewritten as b1 =⇒ b2, b1 ∧ b2 =⇒ b3, b1 ∧ b2 =⇒ b4 and b3 =⇒ b4. The
HV-convexity in the grey and yellow zones guarantee that we have to aggregate either
Bi or Bi+n but not both. Then, as the pad Bi encodes the literal bi, the pad Bi+n

encodes its negation bi. In the upper part, each clause is easily encoded by a row.

The NP-completeness of the case 4 is obtained with the same strategy and
a more simple structure. The pad Bi represents the literal bi while its conju-

gate B
i

represents directly its negation bi. It allows us to encode any 3-SAT
instance with a row for each clause (as in the upper part of Fig. 5). It makes the

NP-completeness of 2CAHV(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) with disjoint pads straight-

forward.

5.3 Cases 2 and 5 - C-convex aggregation.

We build a new geometrical structure with two goals: encode a negation relation
between the pads Bi and Bi+n, and encode the c clauses of the 3-SAT instance.
The structure has a support made by a polygon of consecutive edges of coordi-
nates (4k, 4) with k going from 0 to 2n + c as drawn in Fig. 6. On each border,
the polygon has 3 integer points which can be added or removed without any in-
terference with the other points of the same kind. Each triplet of points is called
a nest. The strategy of the algorithm is to use each nest to encode either the
negation between the literals, or the clauses. We need 2 nests for each Boolean
variable to encode the negation relation between the pads Bi and Bi+n and 1
nest per 3-clause.
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Fig. 6. Reduction of 3-SAT instance to 2CAC(A, (Bi)1≤i≤n). On the left, we provide
the construction of the nests i.e the colored triplets of points on the left of the polygon
of edges of coordinates (4k, 4). On the right, the two lower nests are used to encode the
negation relation between the pads Bi and Bi+n so that Bk+n represents the literal
bi. The third nest is used to encode bi ∧ bk =⇒ bj , namely bi ∨ bk ∨ bj .

This construction allows to prove that 1CAC(A, (Bi)1≤i≤n) is NP-complete.

It proves of course that 2CAC(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) is NP-complete since it

is true with empty pads B
i
. For proving the case 5, the NP-completeness of

2CAC(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) with disjoint pads, we have to notice that the

intersections between the pads Bi and Bi+n used for encoding the negation of

bi are now useless. The pads B
i

encode directly the negative literals bi. Then,
only one nest per clause is sufficient to encode geometrically the 3-SAT instance
(Fig. 7). As the construction has a polynomial size and can be done in polyno-

mial time, it proves the NP-completeness of 2CAC(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) with

disjoint pads. We can at last notice that the support A is 8-connected and that
there is no difficulty to have pads included in the HV-grid of A. It follows that

2CAC(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) remains NP-complete in this subcase.

6 Perspectives

Binary convex aggregation is the bottleneck of several problems of Discrete
Tomography. The problem of binary convex aggregation 2CAHV(A, (Bi)1≤i≤n,

(B
i
)1≤i≤n) with an 8-connected support and disjoint pads is the last step of a

possible strategy for reconstructing C-convex lattice sets from their horizontal
and vertical X-rays [7, 3]. Unless P = NP , its NP-completeness shown in previ-
ous section lets no hope to tackle this last step with a general polynomial time
algorithm. It shows that structural properties of the pads are necessary in this
framework to achieve this strategy.
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Fig. 7. Reduction of 3-SAT instance to 2CAC(A, (Bi)1≤i≤n, (B
i
)1≤i≤n) with dis-

joint pads. We encode the 3-SAT instance (b1 ∨ b2)∧ (b1 ∨ b2 ∨ b3)∧ (b1 ∨ b2 ∨ b4)∧
(b3∨b1∨b4). By rewriting the clauses b1 =⇒ b2, b1∧b2 =⇒ b3, b1∧b2 =⇒ b4 and
b3 ∧ b1 =⇒ b4, each one is encoded in a nest. A solution of the convex aggregation

problem (A ∪ B1 ∪ B2 ∪ B
3 ∪ B

4
) provides a solution of the 3-SAT instance (b1 = 1,

b2 = 1, b3 = 0 and b4 = 0).
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