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Abstract— Wireless Sensor Networks (WSN) have been stud-
ied in several contexts. There are many challenges involving
WSN design such as the energy resources optimization,
the robustness and the network coverage. We address here
the problem of energy-efficient topology design. A well-
designed dynamic topology and efficient routing algorithms
may allow a large reduction on the energy consumption,
which is one of the main concerns of WSN nodes. In this
work, we propose to model the problem of clustering a WSN
topology as a variation of the independent dominating set
optimization problem. Then, we describe two heuristics to
generate a WSN topology and two ways to evaluate the
energy consumption. Computational results are presented
for instances with up to 500 nodes.

Index Terms— Wireless sensor networks, clustering, opti-
mization, independent dominating set, heuristics.

I. I NTRODUCTION

A wireless Sensor Network (WSN) consists of a set of
wireless sensor nodes distributed in an area. A wireless
sensor node (sensor) is usually composed of limited
resources such as battery, CPU and memory. For example,
the LiveNode has an ARM7TDMI core running at 48
MHz and 64 Kb of on-chip SRAM [1]. The sensors
calledsink nodesare more powerful: they have a stronger
battery, a larger memory and more computational power.
They are typically used to coordinate the sensor network
and to collect all the data.

WSN have a large number of practical applications
such as environmental monitoring [2], biological detec-
tion, automatic manufacturing, smart care, smart home
(security) [3], etc. However, in order to provide a good
service, it is needed to deal with difficult technical prob-
lems such as maximizing the network lifetime. Some
works in the literature consider this problem as an op-
timization problem. For instance, the coverage problem
with minimal energy consumption is modeled as an inte-
ger linear program in [4] and it is solved by a distributed
algorithm in [5]. Minimizing the energy consumption for
unclustered WSN over the time is also modeled as an
integer linear program in [6].

The topology of a sensor network changes along its
lifetime since nodes may fail due to battery shortage. This
evolution characterizes ad-hoc networks. A WSN differs
from mobile ad-hoc network in several points such as:
hardware has a lower performance, mobility is reduced,
and sensors are more densely distributed. In terms of
WSN communication routing protocol, it usually does not

change along the network lifetime. Communications can
be done, for example, by sending messages periodically
or by continuously sending them from all sensors, or
by sending messages only when an event occurs. In
fact, the network topology and the routing protocol are
not independent from each other and their interaction
has a strong impact on the performance and on the
lifetime for such networks. If the network topology is
poorly designed, communication can fail. Moreover, if the
routing protocols are not well defined, they may waste
energy: for example, by sending more messages than
necessary due to packet loss or due to loops in the routing
topology. Usually, a wireless sensor node consumes about
75% of its energy in using wireless access medium.

Let a cluster be a subset of sensors nodes which are
usually organized in a hierarchical way: masters nodes
collect data, slaves nodes perform sensing activities, and
bridge nodes perform inter-cluster communication. Many
works use clusters as a base structure for the network
topology [7]–[12], while others do not adopt clusters
[13]–[15]. A comparison between these two approaches
is done in [16]. Results show that cluster-based topology
is more efficient when the sensors within each cluster
usually measure highly-correlated data. In such situations,
the cluster head can aggregate the sample data from all the
sensors into a single message, thus reducing the amount of
sending messages. In this work, we consider the problem
of designing a WSN cluster-based topology to maximize
the network lifetime.

A cluster-based architecture contains some structural
properties on its communication graph which are used to
design the WSN topology. We model the topology design
problem as a variation of the independent dominating set
problem. Heuristics are proposed to compute the topology
having those special properties. Moreover, two different
ways of evaluating the topology in terms of energy con-
sumption are suggested. In the first evaluation, the energy
consumption is measured by computing a maximum flow.
In the second one, the topology is evaluated by using
two criteria: the number of clusters and the hop average.
The communication rules are not explicitly defined. Yet,
the evaluation result provides valuable informations about
paths that can be used by each sensors to send messages.
Computational results are presented for instances with up
to 500 nodes.

This work is organized as follows: the problem is
defined in Section II. It is then modelled using graph
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theoretical elements in Section III. Algorithms are de-
tailed in Section IV. Computational results are presented
in Section V. Some concluding remarks and perspectives
are given in Section VI.

II. PROBLEM DEFINITION

We consider a set of identical sensors which differ
only by their identification name and a unique sink
node. We assume that each sensor is able to know its
location and that the sink node does not act as a sensor
itself. Moreover, sensors are organized in clusters as in
[16]: in a cluster, sensors have a logical classification in
masters, slaves and bridges. Slaves and bridges can be
used to sensing activities, and masters only collect the
data from the slaves and monitor the cluster. The slaves
only transmit data to their master and the bridges also
allow inter-cluster communication as they have to belong
to at least two clusters. Figure 1-(a) represents a set of
sensors along with the sink node (black square). Figure 1-
(b) illustrates a cluster-based network topology with the
sink node (black square), the master nodes (black circles),
the bridge nodes (circles with a cross) and the slave
nodes (white circles). The dotted circles define the cluster
associated to each master node. As can be seen, several
bridges may belong to the intersection of two clusters and
a bridge can also belong to more than two clusters.

(a) (b)

Figure 1. a set of sensors and an associated network topology.

The topology design problem consists in defining a
communication network over the sensors and in defining
routes to send the data from each sensor to the sink. The
sink is known in advance, thus the core of the problem is
to partition the remaining nodes into masters, bridges and
slaves. The objective is to maximize the network lifetime
induced by the resulting topology. The network topology
will change the first time a cluster is unable to send its
data to the sink. Three situations are responsible for such
a cluster failure: the master runs out of battery, a set of
bridges in the way to the sink runs out of battery or
all slaves in the cluster run out of battery. Under this
definition, maximizing the network lifetime is equivalent
to the maximal numberk of messages all the sensors can
send to the sink before the occurrence of the first failure:
sendingk messages from each sensor is possible while
sendingk+1 is not possible without altering the topology.

Thus, the optimization problem is to define the topol-
ogy of the WSN in order to maximize the network

lifetime. When a cluster fails, the topology can be re-
evaluated in order to re-establish connection with the
sensors still active in the cluster. This can have a local
impact on the topology.

III. M ODELLING THE WSN TOPOLOGY AS A GRAPH

The WSN topology problem is modelled as a finite,
loopless, connected and undirected graphG(V,E), where
V is the set of nodes which corresponds to the sensor
nodes andE is the set of edges. Let[u, v] ∈ E be an edge
with endnodesu, v ∈ V , it means that sensorsu andv can
communicate. The sink nodes ∈ V plays an important
role in the network since any data which circulates in the
communication network must reach it.

During the initialization step of the WSN, each sensor
sends its identification in such a way the neighbourhood
structure is progressively built, as in [8]. Thus, we as-
sume the sink node has the full information about the
neighbourhood structure after running the initialization
algorithm. This structure corresponds to the communi-
cation graphG mentioned above. Figure 2 illustrates
the communication graph obtained from Figure 1-(a),
assuming a small radius of wireless communication.

Figure 2. A communication graphG.

Let M ⊂ V and S ⊂ V be the set of sensor nodes
that will respectively act as masters and slaves. Bridge
nodes are slaves which also ensure connections between
pairs of master nodes. In terms of graph, anindependent
set T ⊆ V is a set of nodes such that no edge ofE
have both endnodes inT . Moreover, a subset of nodes
D ⊆ V is a dominatingset ofG if every node ofV \D
is adjacent to at least one node ofD. Thus, the problem
of clustering consists in defining a partitionΠ of V into
two subsetsM and S such that the setM satisfies the
following properties:

(P1) s ∈M ,
(P2) ∀v ∈ S, ∃m ∈M | [v,m] ∈ E,
(P3) ∄(m,m′) ∈M ×M | [m,m′] ∈ E.

Property (P1) states that the sink nodes acts as a master
node. Property (P2) determines that any slave node is
connected to at least a master node. In fact, this property
means thatM is a dominatingset ofG. Finally, property
(P3) specifies that there is no direct connection between
two master nodes. It means thatM is also anindependent
set of G. Thus, M is an independent dominating set
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of G. In other words,M is a maximal inclusionwise
independent set ofG.

Properties (P1) to (P3) do not guaranty the final graph
representing the WSN topology solution is connected. In
fact, the WSN topology problem requires that there is
a path connecting any master node to the sink nodes.
Thus, another property must be defined inG. Let d(u, v)
be the minimum number of hops (amount of edges in a
path) betweenu, v ∈ V . A node v ∈ V is said to be a
neighbour ofu ∈ V wheneverd(u, v) = 1. WheneverM
is an independent set ofG, let H = (M,E(M)) be an
induced graph ofM such that the following conditions
are satisfied:

(a) [u, v] ∈ E(M) if u, v ∈M , and
(b) d(u, v) = 2.

N(u) represents the set of all neighbours of nodeu,
where [u, v] ∈ E(M) if and only if N(u) ∩ N(v) 6= ∅.
It means that there are nodes which are neighbours of
both nodesu and v (bridges nodes). Thus, the partition
Π = (M,S) must also satisfy property (P4).

(P4) H is connected.

To conclude, a cluster-based WSN topology solution
consists in defining a partitionΠ = (M,S) which satisfies
Properties (P1) to (P4), referred here as the Independent
Dominating Set Problem with connecting requirements
(IDSC problem). From now on, a feasible solution for
the IDSC problem is represented by a graphG′(V ′, E′),
with V ′ = M ∪ S andE′ is the set of edges connecting
the independent dominating nodes to the slaves nodes.
Moreover, in G′, a slave node connecting two master
nodes is called bridge. Figure 3-(a) illustrates a feasible
graphG′ for a WSN topology. The black nodes, the white
circles, and circles with a cross represent respectively the
masters, the slaves, and the bridge nodes. Moreover, the
graphH is represented in Figure 3-(b). Observe that black
nodes are separated by two edges (two hops).

(a) (b)

Figure 3. Example of a feasible solutionG′ and of a graphH.

A natural theoretical question is to know whether from
a graphG as defined above, we can always produce
a graph G′ solution to the IDSC problem or not. In
section IV, the Theorem 1 answers this question.

We give below three examples of graphG for which
a solution to the IDSC problem is known. The sink node
and the master nodes are respectively represented by the
black square and the black circles.

• WheneverG = (A ∪ B,E) is a connected bipartite
graph, thenM = A or B, that is M = {u ∈ A ∪
B | d(s, u) is even}, see Figure 4-(a).

• WhenG = Cp is a cycle withp vertices, and without
loss of generality, one sink nodes = 1. In this case, a
solution is the set{1, 3, . . . , 2⌊p

2⌋−1}, see Figure 4-
(b).

• Finally, when G is a graph with V =
{s, u0, ..., un, v0, ..., vn} and E=

⋃n

i=1 {[u0, vi],
[v0, ui],[ui, vi]} ∪ {[s, u0],[s, v0],[u0, v0]}, that
is, G is not a bipartite graph, butG\{s}
is, as shown in Figure 4-(c). In this case,
the set of mastersM is given as follows:
M = {s} ∪ {ui |i ∈ I} ∪ {vj |j ∈ {1, ..., n}\I}
∀I ⊆ {1, ..., n} and M and G′ satisfy properties
(P1) to (P4). For this case, there is an exponential
number of subsets that could be masters.

(a) (b) (c)

Figure 4. Graphs where the solution for the IDSC problem is known.

IV. A LGORITHMS FOR DESIGNING SOLUTIONS FOR

THE IDSC PROBLEM

We propose a three-steps algorithm for designing a
WSN topology and to maximize its network lifetime.
The first step computes a feasible solution for the IDSC
problem. Two ways for generating feasible solutions for
the IDSC problem are suggested: a greedy procedure
and a random one. The feasible solutions are evaluated
through the second step. Two evaluations are proposed:
the first uses the maximum flow and the second uses the
number of clusters and the hop average. Weights are used
to specify the priority each node has to become a master
node. They are updated in the last step of our algorithm.

Figure 5 represents an overview of the algorithm. The
communication graphG(V,E) and the sink nodes are
given as input. The three steps, which are detailed below,
are carried out until a stopping criterion is met. Then, the
output data is the resulting topology graphG′(V ′, E′).

A. A greedy and a random procedures for the IDSC
problem

The general idea of the greedy algorithm is to select
a node as master at each iteration. The first node to
be included toM is the sink node. The graphG′ is
also expanded at each iteration. A pseudo-code for this
procedure is given in Algorithm 1. Moreover, the structure
candidatescorresponds to a list of nodes candidates to
become a master node. A pseudo-code for updating the
candidate list is presented in Algorithm 2.
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Generate a
feasible solution

Evaluate
the solution

Update
weights

Input: G(V, E), s,

Output: G'(V',E')

Figure 5. Algorithm overview.

Algorithm 1 : Greedy procedure.

Input : G(V,E), s
Output : G′(V ′, E′), M

M ← {s};1

S ← N(s);2

V ′ ←M ∪ S;3

E′ ← {(s, u) | u ∈ N(s)};4

candidates← Update candidate list;5

while (|V ′| 6= |V |) do6

selectm ∈ candidates;7

M ←M ∪ {m};8

S ← N(m);9

V ′ ←M ∪ S;10

for (v ∈ N(m)) do11

E′ ← E′ ∪ [m, v];12

candidates← Update candidate list;13

return G′(V ′, E′), M ;14

Algorithm 2 : Update candidate list.

Output : candidates

candidates← {};1

for ([u, v] ∈ E) and (u /∈ V ′) and (v ∈ V ′) do2

candidates← candidates∪ {u};3

return candidates;4

The procedure in Algorithm 1 receives as input: a con-
nected graphG and the sink nodes. The data structures
are initialized in lines 1 to 5. The set of master nodes
receives the sink node in line 1 and the slave nodes are
updated in line 2.V ′ andE′ are respectively initialized in
lines 3 and 4. The candidate list are updated in line 5 (see
Algorithm 2). The loop in lines 6 to 13 is repeated until
all vertices inV are included inV ′. A master node is
chosen in line 7. The candidates selection depends on the
evaluation procedures used (see Section IV-B). In fact,
a weight is associated to each candidate. Weights are

computed using a maximum flow algorithm or simply
considering the oldest nodes taken as a master node
along the algorithm iterations. The node with the highest
weight and with the smallest index is selected. In the first
iteration, all nodes have the same weight which is equal to
zero. The set of master nodesM , the set of slave nodes
S, the set of verticesV ′, and the set of edgesE′ are
respectively updated in lines 8 to 12. Finally, the list of
candidates are set in lines 13. The algorithm returnsG′

andM in line 14.
Let us assume that graphsG′ andG are accessibly by

Algorithm 2. This procedure returns thecandidate list.
The structurecandidatesare initialized in line 1. Then,
the list of candidates are updated in the loop in line 2
and 3. For all edge[u, v] belonging toE, nodeu is a
candidate to be a master node (line 2), ifu is not in V ′

and if nodev is in V ′.
The algorithm worst case complexity isO(|V | · |E|).

Initializing date structures in lines 1 to 5 consumes in
the worst caseO(|E|) steps. The loop in lines 6 to 13
performs in the worst caseO(|V | · |E|) steps.

The random procedure slightly differs from the greedy
one. Basically, instead of choosing the best candidate as
a master node in line 7, a candidate is randomly chosen
from the list of candidates. In this case, weights are not
computed. The algorithm complexity still remainsO(|V |·
|E|).

1) The algorithm correctness:An important question
is to know if the proposed procedure provides a solution
which satisfies properties(P1)-(P4). This is ensured by
the proof of Theorem 1.

Theorem 1:The setM and graphG′ found at the end
of Algorithm 1 satisfy properties(P1)-(P4).

Proof. We show thatM satisfies properties(P1)-(P3),
and H is connected. As graphG′ is deduced from the
partition Π(M,S) and from graphH, it also satisfies
properties(P1)-(P4) for the setV ′ at each step of the
procedure. Observe that in Algorithm 1, at least one node
entersV ′ at each iteration.

In the initialization step (lines 1 to 4),M contains the
sink node,V ′ is initialized with the sink node and all
of its neighbours. Moreover, every edge incident tos is
included inE′. Thus, the initial setM satisfies properties
(P1) to (P3), and the initial subgraphG′ satisfies property
(P4).

Considering thatV ′ 6= V . In this case, asG is
connected, the set of edges with one extremity inV ′ is
not empty. Thus, there exists an edge (s)[u, v] ∈ E such
that u /∈ V ′ andv ∈ V ′. Therefore, if conditionV ′ 6= V
is true, there is always at least one candidate to become
master node in line 7.

The candidate to master nodem, selected in line 7,
is not adjacent to any other node inM , otherwise,m
would be neighbour to a node inM . Consequently, it
has already been included inV ′ in line 3 or in line 10.
Thus,M ∪ {m} is an independent set. Letm′ ∈ M be
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a node adjacent to a nodev ∈ V ′. Since [m′,m] /∈ E
and [m′,m] ∈ H, H is a connected graph. Thus, the
new setM in line 8 satisfies properties(P1) and (P3)
and graphH satisfies property(P4). Furthermore, given
a nodeu ∈ V ′\M and the setV ′ obtained in line 10,
either [u,m] ∈ E′ if u is a neighbour ofm, or u was
already adjacent to a node belonging toM\{m}. Hence,
M satisfies the property(P2). �

B. Evaluation procedures

Once a solution for the IDSC problem has been com-
puted, its effectiveness in terms of network lifetime has
to be evaluated. As mentioned in section II, the network
lifetime is interpreted here as the amount of time the WSN
can work before having to perform an alteration on its
topology.

As a first approach, we propose to model this evaluation
as a maximum flow problem. By analyzing the amount of
energy needed to a sensing activity, to receive a message
and to forward a message, the energy level of each
sensor node can be transformed into a maximal amount of
messages that the node can handle. This holds for slave,
bridge and master nodes.

In the second approach, the number of master nodes
and the hop average is used to measure the quality of the
solution. The primary criterion is the number of master
nodes. The smaller the number of master nodes the better
the solution. Between two solutions with the same number
of master nodes, the best one has the smallest hop average.

1) Evaluation using a maximum flow algorithm:The
algorithm of Ford and Fulkerson [17] is used to compute
the maximum flow. Applying this algorithm requires some
characteristics on the graph such as an unique origin
(flow departure), and capacities associated to the arcs. The
capacity in a WSN is associated to each sensor node.

The graphG = (V,E) is then converted in a directed
graph D = (N,A) to perform the maximum flow al-
gorithm. First, each vertexi ∈ V is transformed into
two nodesi1 and i2 in N connected by an arc(i1, i2).
The nodei1 corresponds to the entering version of the
vertex i, while the nodei2 corresponds to its outgoing
version. A capacity representing the maximum number
of messages vertexi can afford is associated to each
arc (i1, i2) ∈ A. We set a theoretical and approximated
capacity equal to a thousand messages for slaves, and
infinite capacity for master and bridge nodes. It means
that each slave can process at most a thousand messages.
Moreover, each edgee = [i, j] ∈ E is transformed into
two symmetric arcs(i2, j1) and (j2, i1) in A. This way,
entering nodes receive messages from outgoing nodes.
Finally, an artificial source node is added to send flow,
and it is connected to each entering nodei1 ∈ V with
infinity capacity.

Using the maximum flow strategy, the paths from
masters to the sink nodes can be studied to give more in-
formations about the network data traffic. Arcs(i1, i2) ∈

A whose capacity is saturated correspond to the sensor
nodesi ∈ V that will first fail. Furthermore, the values
of the flow on the slave nodes give the number of data
they are globally able to send before a failing occurs in
the network.

The maximum flow problem in a graph is strongly
polynomial using the push-relabel algorithm. Thus, this
evaluation is performed in polynomial time.

2) Evaluation using the number of master nodes and
the hop average:Given a feasible solution using the
greedy algorithm suggested in Section IV-A, the number
of master nodes is used as a primary evaluation criterion.
The second criterion is the arithmetical hop average. It is
computed as follows: the minimum number of edges in a
path from each masterm to the sinks is added and this
sum is divided by the total amount of masters. When two
solutions have the same number of master nodes, the one
with the smallest hop average is considered as the best.

Computing the hop average can be efficiently done
by using a breadth-first search on the graphG′. The
algorithm starts from the sink node and it stops after
having visited all the master nodes. This evaluation takes
in the worst caseO(|V |+ |E|) steps.

C. Update weights

After evaluating a solution, weights associated to each
node are updated. Using the first evaluation, see Sec-
tion IV-B.1, each nodei ∈ V is represented by an arc
(i1, i2) with an associated capacity. Ifi is a slave node in
G′, its capacity is set to a thousand messages. In this case,
the weight associated toi is equal to its capacity minus
the number of messages routed by(i1, i2). However, ifi is
a bridge or a master node (whose capacity is infinite), its
weight is simply set to the amount of messages routed by
(i1, i2). This way to update weights is biased toward slave
nodes which have not routed messages, and toward master
and bridge nodes which have routed several messages.

Using the second evaluation, see Section IV-B.2,
weights are set to zero for the nodes chosen as a master.
For the other nodes, weights are simply incremented
in one unit. Using this strategy, nodes with the highest
weights have the highest priority to become masters. A
lexicographical order is used to select among nodes with
the same weight.

The convergence of weights to optimal solutions is
not guarantied, since they are a part of the heuristic.
However, as shown in the computational results, the
proposed heuristics produce good results. In fact, applying
heuristic strategies for designing the WSN topology has
some advantages. For instance: the algorithms are poly-
nomial. This means that scalability is ensured, as well as
the topology can be efficiently repaired when a cluster
fails. Furthermore, the graph communication structure is
flexible, then it can be easily modified to use, for example,
multiple sinks.
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V. COMPUTATIONAL RESULTS

The computational experiments were carried out on
an Intel Core Duo with 1.73 GHz clock and 1Gb of
RAM memory. The algorithms were developed in C. Four
approaches for generating WSN topologies are evaluated.
The first and the second approaches use the maximum
flow evaluation. The difference relies on the choice of
master nodes at each iteration. In the first one, the best
candidates are selected as master nodes. In the second
one, master nodes are randomly chosen from the candi-
date list. The evaluation procedure for the third and the
fourth strategies is based on the number of clusters and
the hop average. They also differ on the choice of master
nodes at each iteration. In the third approach, the best
candidates are chosen as masters, and in the fourth one,
masters are randomly selected from the candidate list.

The instances were generated as follows:|V | nodes are
randomly located on an area of100× 100 m2. |V | varies
from 100 to 500 nodes and the radio range varies from
20 to 60 m.

Several simulations were carried out. For all of them,
the algorithms stopping criterion is the number of iter-
ations which is set to 100. In the first simulation, we
analyze the evolution of the number of clusters when the
amount of nodes varies. The results correspond to the
instances with a radio range of 20 m. Figures 6 and 7
illustrate the results using the four approaches. The best
number of clusters are reported for each one. Using the
maximum flow evaluation (Figure 6), choosing the best
candidates as masters leads to four better solutions, while
two better solutions are found when masters are randomly
selected. For the evaluation using the number of cluster
and the hop average (Figure 7), results indicate that the
choice of best and of random candidates are quite similar.
Applying the best and the random choices for candidates
leads respectively to two better solutions and one better
solution.
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Figure 6. Comparison between the approaches using the maximum flow.

The main difference between the evaluation using max-
imum flow and the number of clusters and the hop average
is the running time. Table I shows the running time for
generating a hundred solutions. Each line corresponds
to an instance. Columns(|V |) and (range) represent
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Figure 7. Comparison between the approaches using the number of
cluster and the hop average.

respectively the number of sensors and the radio range.
For each approach, the running time is given in seconds
for the two candidate selections criteria: the best (best)
and the random one (random). The evaluation using
maximum flow is quadratic, while the other one is linear.
Since the time to compute a topology is an important
point for a WSN, at a first time, the evaluation using
the number of master nodes and the hop average is
more suitable. Even though, the maximum flow evaluation
remains an interesting strategy that can be useful for some
applications and that can be used for giving information
about the routing traffic.

TABLE I.
RUNNING TIME FOR THE FIRST EXPERIMENT.

Instances Maximum flow Cluster and hop
|V | range (best) (random) (best) (random)
100

20

4.91 4.94 0.02 0.02
150 17.33 17.33 0.03 0.03
200 43.48 43.53 0.03 0.03
250 87.31 87.47 0.05 0.05
300 150.84 151.33 0.06 0.06
350 262.66 264.58 0.08 0.06
400 412.86 419.36 0.09 0.09
450 690.14 688.11 0.11 0.09
500 977.67 980.81 0.13 0.13

Let us consider the variability of an algorithm as the
difference in terms of objective function value between
the best and the worst solutions. A robust heuristic pro-
duces solutions with a small variability. Table II illustrates
the difference in terms of number of clusters, for the best
and for the worst solution found using each approach.
The variability is quite similar for both strategies. The
approach using the number of clusters and the hop average
with a random choice of candidates has the highest vari-
ability for 5 out of 9 instances. For the other approaches,
4 out of 9 instances have the highest variability.

In the second experiment, only the third and the fourth
strategies are used since they are more efficient in terms
of CPU time. The goal is to observe the evolution of the
number of clusters for the best solution found when the
radio range varies. This experiment has been performed
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TABLE II.
VARIABILITY BETWEEN THE WORST AND THE BEST SOLUTIONS.

Instances Maximum flow Cluster and hop
|V | range (best) (random) (best) (random)
100

20

5 5 4 5
150 6 5 6 5
200 4 6 5 6
250 5 5 6 5
300 5 6 6 6
350 5 5 6 6
400 7 5 5 6
450 6 7 6 7
500 7 5 5 6

over all the instances.
Results for the instances with 400 and 500 nodes

are displayed in Figures 8 and 9. Results for the other
instances are similar. We observe that the solutions have
more clusters when the radio range is smaller. This is
an expected result. Furthermore, for the set of instances
tested, none of the two strategies dominates the other
one. They both produce good solutions. It means that,
for a practical application, a deeper study is needed using
specific instances in order to define which strategy could
be integrated into the protocol.
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Figure 8. Evolution of the number of clusters varying the radio range
for the instance with 400 nodes.
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Figure 9. Evolution of the number of clusters varying the radio range
for the instance with 500 nodes.

Finally, in the last experiment, a special graph structure
is considered. It consists of a regular grid which finds
applications, for instance, in agriculture monitoring. In
fact, for a regular grid as shown in Figure 10-(a), the
greedy heuristic we proposed always finds the optimal
solution (see Theorem 1). Figure 10-(a) shows the grid,
and the solution computed by the greedy heuristic is given
in Figure 10-(b). The sink node, the master nodes and the
bridge nodes are respectively represented by the black
square, black circles and circles with a cross.

(a) (b)

Figure 10. Special regular graph.

VI. CONCLUSIONS

In this work, WSN are formally designed as a graph
optimization problem. The problem is associated to a
variation of the independent dominating problem with
connecting requirements, where some given properties
must hold. This is a new optimization approach for clus-
tering a wireless sensor network based on graph theory.

Moreover, four heuristic strategies are proposed in this
work for designing WSN topologies. They are compared
in terms of quality and efficiency. Those heuristics are
promising for several reasons among others: (a) they
rely on basic algorithms whose complexity is polynomial.
Thus, scalability is ensured for networks having a large
number of sensors; (b) the graph communication structure
is flexible: for example, the problem is modeled using one
sink node, but with a few modifications several sink nodes
may be introduced as well; (c) The proposed algorithm
contains three independent steps. Thus, new strategies for
each step can be easily developed and integrated.

The procedures to measure the topology performance
are as follows. The first and the second procedures use
a maximum flow algorithm. They differ on the choice of
candidates to become master nodes. In the first one, the
best candidates are selected. In the second one, candidates
are randomly chosen. The third and the fourth strategies
use the number of clusters and the hop average as evalua-
tion procedure. The difference also happens on the choice
of sensors to become masters: the best candidates (the
third strategy) or a random selection (the fourth strategy).
Results show that the maximum flow strategies consumes
more CPU power than the others. Moreover, between the
third and the fourth strategies, results are quite similar.
As a consequence, for future work, would be helpful
to observe the way those algorithms would perform in
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practice. As well as to apply the maximum flow strategy
to obtain clues about the routing traffic.

Since heuristics are used, good solutions are generated
even if it does not guaranty optimality. In fact, computing
optimal solutions may require a lot of computation time.
This would be unsuitable for real-life applications for
wireless sensor networks with thousands of sensors.

For future work, we intend to test and to simulate
realistic scenarios in order to integrate the proposed
algorithms into the LiveNode protocol.
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