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GRASP HEURISTIC FOR TIME SERIES COMPRESSION WITH PIECEWISE
AGGREGATE APPROXIMATION

Vanel Steve Siyou Fotso∗, Engelbert Mephu Nguifo and Philippe Vaslin

Abstract. The Piecewise Aggregate Approximation (PAA) is widely used in time series data mining
because it allows to discretize, to reduce the length of time series and it is used as a subroutine by
algorithms for patterns discovery, indexing, and classification of time series. However, it requires setting
one parameter: the number of segments to consider during the discretization. The optimal parameter
value is highly data dependent in particular on large time series. This paper presents a heuristic for
time series compression with PAA which minimizes the loss of information. The heuristic is built upon
the well known metaheuristic GRASP and strengthened with an inclusion of specific global search
component. An extensive experimental evaluation on several time series datasets demonstrated its
efficiency and effectiveness in terms of compression ratio, compression interpretability and classification.
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1. Introduction

Time series databases are often large and several transformations have been introduced in order to represent
them in a more compact way. One of these transformations is Piecewise Aggregate Approximation (PAA) [13],
which consists in dividing a time series into several segments of fixed length and replacing the data points of
each segment with their averages. Due to its simplicity and low computational time, PAA has been widely used
as a basic primitive by other temporal data mining algorithms such as [16,17,25], in order

• to construct symbolic representations of time series [3, 26];
• to construct an index for time series [12, 14, 30]. Indeed, PAA allows queries which are shorter than length

for which the index was built. This very desirable feature is impossible with Discrete Fourier Transform,
Singular Value Decomposition and Discrete Wavelet Transform;

• to classify time series.

1.1. Why the use of PAA can improve alignment with Dynamic Time Warping

Time series comparison is an important task that can be done in two main ways. Either the comparison
method considers that there is no time distortion as in Euclidian distance (ED), or it considers that some
small time distortions exist between time axis of time series as in Dynamic Time Warping (DTW) alignment
algorithm [29]. Since time distortion often exists between time series, DTW has often better results than the ED
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[5]. An exhaustive comparison of time series algorithms [1] shows that DTW is among the efficient techniques
to be used. However, DTW has two major drawbacks: the comparison of two time series under DTW is time-
consuming [20] and DTW sometimes produces pathological alignments [15]. A pathological alignment occurs
when, during the comparison of two time series X and Y , one datapoint of the time series X is compared to a
large subsequence of datapoints of Y . A pathological alignment causes a wrong comparison.

Three categories of methods are used to avoid pathological alignments with DTW:
• The first one adds constraints to DTW [4, 11, 21–23, 28]. The main idea here is to limit the length of the

subsequence of a time series that can be compared to a single datapoint of another time series.
• The second one suggests skipping datapoints that produce pathological alignment during the comparison of

two time series [10,18,19].
• The third one proposes to replace the datapoints of time series with a high-level abstraction that captures

the local behavior of those time series. A high-level abstraction can be a histogram of values that captures
the distribution of time series datapoints in space [29] or a feature that captures the local properties of time
series, such as the trend with Derivative DTW (DDTW) [15].

Another simple but yet interesting way to capture local properties of time series is to consider mean of segments
of the time series as PAA does. Indeed, the use of the mean reduces the harmful effects of singularities contained
in the data and thus allows to avoid pathological alignments. However, one major challenge with PAA is the
choice of the number of segments to consider especially with long time series.

Figure 1. Relation between Accuracy and the number of segment on FISH dataset. The
accuracy is computed from the algorithm one nearest neighbor (1NN) associated with PDTW.
When the number of segments considered is very small, there is a loss of information and the
accuracy is reduced. However, considering all the points in the time series, we also do not obtain
maximum accuracy due to the presence of noise or singularities [15] in the data.



GRASP HEURISTIC FOR TIME SERIES COMPRESSION WITH PIECEWISE AGGREGATE APPROXIMATION 245

1.2. The problem of choosing a suitable segment number for PAA

If the number of segments considered with PAA is too small, the resulting representation is compact, but it
contains less information. On the other hand, if the number of segments is too large, the obtained representation
is less compact and more prone to the noise contained in the original time series (Fig. 1). Our idea is that a
number of segments for PAA will be considered as good if it allows obtaining a compact representation of the
time series, and also if it preserves the quality of the alignment of time series. So when considering classification
task, one of the best classification algorithm to use for evaluating the quality of time series alignment is one
nearest neighbor (1NN). Indeed, its classification error directly depends on time series alignment, since 1NN
has no other parameters [27].

1.3. Summary of contributions

In this paper,

• We define the problem of preprocessing time series with PAA for a better classification with DTW.
• We propose a parameter free heuristic for aligning piecewise aggregate time series with DTW, which approx-

imates the optimal value of the number of segments to be considered with PAA.
• We make our source code and all our results available to allow the reproducibility of our experiments.

The rest of the paper is organized as follows: in Section 2 we recall the definitions and background; Section
3 explains our approach; Section 4 presents experimental results and comparisons to others methods; Section 5
offers conclusions and venues for future work.

2. Background and related works

Let’s recall some definitions.

Definition 2.1. A time series X = x1, · · · , xn is a sequence of numerical values representing the evolution of
a specific quantity over time. xn is the most recent value.

Definition 2.2. A segment Xi of length l of the time series X of length n (l < n) is a sequence constituted by
l variables of X starting at the position i and ending at the position i+ l−1. We have: Xi = xi, xi+1, ..., xi+l−1.

Definition 2.3. The arithmetic average of the data points of a segment Xi of length l is noted X̄i and is
defined by:

X̄i =
1
l

l−1∑
j=0

xi+j . (2.1)

Definition 2.4. Let T be the set of time series. The Piecewise Aggregate Approximation (PAA) is defined as
follows:

PAA:T × N∗ → T

(X,N) 7→ PAA(X,N) =

{
X̄k, k ∈ {i× n

N + 1, i = 0, · · · , N − 1} if N < |X|,
X otherwise.

(2.2)

Definition 2.5. Let d ⊆ T be a subset of time series, N ∈ N∗, PAAset(d,N) = {PAA(X,N), ∀X ∈ d}



246 V.S. SIYOU FOTSO ET AL.

2.1. Dynamic Time Warping algorithm.

DTW [22] is an algorithm of time series alignment algorithm that performs a non-linear alignment while min-
imizing the distance between two time series. To align two time series : X = x1, x2, · · · , xn; Y = y1, y2, · · · , ym,
the algorithm constructs an n×m matrix where the cell (i, j) of the matrix corresponds to the squared distance
(xi − yj)2 between xi and yj . Then to find the best alignment between X and Y , DTW constructs the path
that minimizes the sum of squared distances. This path, noted W = w1, w2, . . . , wk, . . . , wK , must respect the
following constraints:

• Boundary constraint: w1 = (1, 1) and wK = (n,m)
• Monotonicity constraint: given wk = (i, j) and : wk+1 = (i′, j′) then : i ≤ i′ and j ≤ j′
• Continuity constraint: given wk = (i, j) and : wk+1 = (i′, j′) then : i′ ≤ i+ 1 and : j′ ≤ j + 1

The warping path is computed by an algorithm based on the dynamic programming paradigm that solves the
following recurrence:

γ(i, j) = d(xi, yj) + min{γ(i− 1, j − 1),
γ(i− 1, j), γ(i, j − 1)}, (2.3)

where d(xi, yj) is the squared distance contained in the cell (i, j) and γ(i, j) is the cumulative distance at
the position (i, j) that is computed by the sum of the squared distance at the position (i, j) and the minimal
cumulative distance of its three adjacent cells.

Piecewise Dynamic Time Warping Algorithm (PDTW) [14] is the DTW algorithm applied on Piecewise
Aggregate time series [13]. Let N ∈ N∗, X and Y be two time series:

PDTW(X,Y,N) = DTW(PAA(X,N),PAA(Y,N)). (2.4)

The number of segments N that one considers greatly influences the quality of the alignment of the time series.
However, PDTW does not give any information on the way to choose it. For making this choice, Chu et al. [6]
proposes the Iterative Deepening Dynamic Time Warping Algorithm (IDDTW).

2.2. Iterative deepening dynamic time warping

For determining the number of segments, IDDTW only considers values that are power of 2 and for each value,
computes an error distribution by comparing PDTW with the standard DTW at each level of compression. It
takes as inputs: the query Q, the dataset D, the user’s confidence (or tolerance for false dismissals) user conf ,
and the set of standard deviations StdDev obtained from the error distribution. Example: Let C and Q be
two time series of the dataset D, let best so far be the DTW distance between two time series of the dataset.
Suppose the distance Dpdtw(Q,D) is 40 and the best so far is 30. The difference between the estimated distance
and the best so far is 10. Using the error distribution centred around the approximation (40), we can determine
the probability that the candidate could be better by examining the area beyond the location of the best so far
(shown in solid black in Fig. 2): We disqualify a candidate if this probability is less than the user’s specified
error acceptance, the candidate is disqualified; otherwise, a finer approximation is used and the test is re-applied
to the next depth. This process continues until the full DTW is performed.

More precisely, IDDTW proceeds as follows:

• the algorithm starts by applying the classic DTW to the first K candidates from the dataset. The results
of the best matches to the query are contained in R, with |R| = K. The best so far is determined from
argmaxR;

• both the query Q and each subsequent candidate C are approximated using PAA representations with N
segments to determine the corresponding PDTW;
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Figure 2. IDDTW operating principle. Depth represents approximation levels, A represents
approximate distance and B is best so far [6].

• a test is performed to determine whether the candidate C can be pruned off or not. If the result of the test is
found to have a probability that it could be a better match than the current best so far, a higher resolution
of the approximation is required. Then each segment of the candidate is split into two segments to obtain a
new candidate;

• the process of approximating Q and C to determine the PDTW should be reapplied and the test is repeated
for all approximations levels until they fail the test or their true distance DTW is determined.

In this way, IDDTW finds the number of segments that best approximates DTW and speeds up its computation.
However, IDDTW has three main limitations:

• it only considers the numbers of segments for PDTW that are power of 2;
• it requires a user-specified tolerance for false dismissals that influences the quality of the approximation, but

the algorithm does not give any indication on how to choose the tolerance;
• it considers DTW as a reference while looking for the number of segments that best aligns the time series.

However, because of pathological alignments, DTW sometimes fails to align time series properly [15].

Our goal is to find the number of segments that best aligns the time series and also speeds up the computation
of DTW. We propose a heuristic named parameter Free piecewise DTW (FDTW) based on Greedy Randomized
Adapted Search Procedure that deals with all the limitations of IDDTW: it considers all the possible values for
the number of segments, it is parameter-free and it finds a number of segments for PDTW based on the quality
of the time series alignment, namely the error rate for classification task. The next section introduces FDTW.

3. GRASP based heuristic

3.1. Evaluation procedures for the compression quality

Before explaining how to evaluate the quality of time series compression, we first describe the time series
datasets that we considered. They are made up of time series associated with labels that identify the shape of
the latter. For instance, in the ECG dataset, each time series traces the electrical activity recorded during one
heartbeat. The two classes are a normal heartbeat and a Myocardial Infarction.

Time series classification is a classic problem with time series which consists in guessing the label of an
unlabeled time series based on its shape. The quality of a time series classification model is evaluated from
its classification error (ε), or its accuracy (a = 1 − ε). When considering classification task, one of the best
classification algorithm to use for evaluating the quality of time series alignment is one nearest neighbor (1NN).
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Indeed, its classification error directly depends on time series alignment, since 1NN has no other parameters
[27].

During this work, a compact representation of time series is considered to be good if it reduces the length
of the original time series, but also if the classification error obtained by classifying the compact time series is
small. The classification error is small when the time series keep their characteristic shape despite compression.

3.2. Problem definition

Let D = {di} be a set of datasets composed of time series. We note |di| the number of time series of the
dataset di.

Let X ∈ di be a time series of the dataset di; we note |X| = n the length of the time series X. For simplicity
of notation we suppose that all the time series of di have the same length.

Definition 3.1.

1NNDTW :D → [0, 1] (3.1)
di 7→ 1NNDTW (di) (3.2)

1NNDTW (di) is the classification error of one nearest neighbour with Dynamic Time Warping on the
dataset di.

Definition 3.2.

1NNPDTW :D × {1 . . . n} → [0, 1]

(di, N) 7→ 1NNPDTW (di, N)
= 1NNDTW ◦ PAAset(di, N)

(3.3)

1NNPDTW (di, N) is the classification error of 1-NN with PDTW using N segments on di.

Our goal is to find the number of segments that allows PDTW to best align time series. PDTW gives a good
alignment when its classification error with 1NN is low [20]. Our problem is then to find the number of segments
N that minimizes 1NNPDTW (di, N).

Formally, given a dataset di, whose time series have a length n, we look for the number of segments N ∈
{1 . . . n} such that

min
1≤N≤n

{1NNPDTW (di, N)}. (3.4)

3.3. Brute-force search

The simplest way to find the value for the number of segments that minimized the classification error is to
test all the possible values. Obviously, this method is time consuming as it requires to test n values to find the
best one. The time complexity is :

O(|d|2 × n3). (3.5)

To reduce the time of the search, the FDTW proposes to look for the number of segments with the minimal
classification error without testing all the possible values.

3.4. Greedy randomized adaptive search procedures

The Greedy Randomized Adaptive Search Procedures (GRASP) is a multi-start, or iterative metaheuristic
proposed by Feo and Resende [8], in which each iteration consists of two phases: firstly a new solution is
constructed by a greedy randomized procedure and then is improved using a local search procedure.
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The greediness criterion establishes that elements with the best quality are added to a restricted candidate
list and chosen at random when building up the solution. The candidates obtained by greedy algorithms are not
necessarily optimal. So, those candidates are used as initial solutions to be explored by local search. The heuristic
we proposed is build upon GRASP and strengthened with an inclusion of specific global search component.

3.5. Parameter free heuristic

The idea of our heuristic is the following:

1. We choose M candidates distributed in the space of possible values to ensure that we are going to have small,
medium and large values as candidates. The candidates values are: n, n−

⌊
n
M

⌋
, n−2×

⌊
n
M

⌋
, ..., n−M×

⌊
n
M

⌋
.

For instance, if the length of time series is n = 12 and the number of candidates is M = 4, we are going to
select the candidates 12, 9, 6, 3.

1 2 3 4 5 6 7 8 9 10 11 12

2. We evaluate the classification error with 1NNPDTW for each chosen candidate, and we select the candidate
that has the minimal classification error: it is the best candidate. In our example, we may suppose that we
get the minimal value with the candidate 6 : it is thus the best candidate at this step.

1 2 3 4 5 6 7 8 9 10 11 12

3. We respectively look between the predecessor (i.e., 3 here) and successor (i.e., 9 here) of the best candidate
for a number of segments with a lower classification error: this number of segments corresponds to a local
minimum. In our example, we are going to test values 4, 5, 7 and 8 to see if there is a local minimum.

1 2 3 4 5 6 7 8 9 10 11 12

4. We restart at step one while choosing different candidates during each iteration to ensure that we return a
good local minimum. We fix the number of iterations to k ≤ blog(n)c. At each iteration, the first candidate
is n− (number of iteration − 1).

In short, in the worst case, we test the first M candidates to find the best one. Then, we test 2n
M other

candidates to find the local minimum. We finally perform nb(M) = M + 2n
M tests. The number of tests to be

performed is a function of the number of candidates. Hence, how many candidates should we consider to reduce
the number of tests? The first derivative of nb function vanishes when M =

√
2n and its second derivative is

positive; so the minimal number of tests is obtained when the number of candidates is: M =
√

2n. At each
iteration, the heuristic tests nb(

√
2n) =

√
8n number of segments. As we have k iterations the number of

candidates tested is: |C| = k
√

8n. The details of the heuristic are presented in Algorithm 1.
Time complexity: We use the training set to find the number of segments that should be considered with

PDTW. For that purpose, we applied 1NN on the training set that costs

O(|d|2 × n2
√
n), (3.6)

where |d|2 comes from 1NN algorithm and n2
√
n comes from PDTW .

Lemma 3.3. For a given dataset di,the quality of the alignment of our heuristic is better than that of DTW:
FDTW(di) ≤ 1NNDTW (di).

Proof. 1NNDTW(di) = 1NNPDTW(di, n). Then, 1NNDTW(di) is one of the candidates considered by the
heuristic FDTW. Since FDTW returns the minimal classification error from all candidates, the classification
error of 1NNDTW is always greater than or equal to FDTW.
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Algorithm 1: Parameter Free Dynamic Time Warping
Input: training set, length of a time serie : n,
number of iterations : nb rep
Output: The number of segments to be used N
The accuracy associated to N

1 function FDTW(training set, n, nb rep)
2 l← floor(n/sqrt(2 ∗ n))
3 tab N ← ones(n)
4 forall the i ∈ {0, 1, . . . , (nb rep− 1)} do
5 tab N possible candidates← seq(from = (n− i), to = 1, by = −l)
6 nb candidats← |tab N possible candidates|
7 for i in {1, 2, . . . , nb candidates} do
8 if tab N [tab N possible candidates[i]] 6= 0 then
9 tab N candidates[j]← tab N possible candidates[i]

10 tab N [tab N candidates[j]]← 0
11 j ← j + 1

12 mat r ← 1NNPDTW (training set, tab N candidats)
/* 1NNPDTW return a matrix of couple (N, error) */

13 min← minimun(mat r)
/* minimum return the couple (N, error) with the minimum error */

14 result[(i + 1)]← localMinimun(min.N, min.error, training set, tab N)

15 m← minimun(result)
16 return m

Nevertheless, a heuristic does not always give the optimal value. To ensure that it gives a result not far from
the optimal value, one approach is to guarantee that the result of the heuristic always lies in an interval with
respect to the optimal value [9].

In our case, we are looking for the number of segments that allows a good alignment of time series. The
alignment is good when the classification error with 1NN is minimal or when the accuracy is maximal.

Let di be a dataset:
accmax(di) = 1− min

1≤N≤n
{1NNPDTW (di,N)} is the maximal accuracy for the dataset di,

accDTW = 1− 1NNDTW (di) is the accuracy obtained with di and 1NNDTW, and
accFDTW = 1− FDTW (di) is the accuracy of our heuristic.
To ensure the quality of our heuristic FDTW, we hypothesized that 1NNDTW is better than Zero Rule

classifier. Zero Rule classifier is a simple classifier that predicts the majority class of test data (if nominal) or
average value (if numeric). Zero Rule is often used as baseline classifier [7]. The minimal value of the accuracy
of Zero Rule is 1

c where c is the number of classes of the dataset.

Proposition 3.4. For a given dataset di that has ci classes, ci ∈ N∗,

if accDTW ≥
1
ci
then

1
ci
× accmax ≤ accFDTW ≤ accmax

Proposition 1 shows that when 1NN associated with DTW has a better accuracy than the baseline classifier Zero
Rule, the FDTW heuristic is a parametric approximation.

Proof. By definition, accFDTW ≤ accmax We look for β ∈ N such that

1
β
× accmax ≤ accFDTW ⇔

accmax

accFDTW
≤ β (3.7)
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However,
accmax

accFDTW
≤ 1
accFDTW

because accmax ≤ 1 (3.8)

And,
1

accFDTW
≤ 1
accDTW

because accDTW ≤ accFDTW (3.9)

So,
1

accDTW
≤ ci because

1
ci
≤ accDTW by hypothesis (3.10)

4. Experiment and results

Throughout the experiments described in this paper, FDTW performs three iterations (k = 3) when searching
for the appropriate number of segments for a dataset. To evaluate the ability of FDTW heuristic to propose a
good number of segments for PAA. It has been compared to the IDDTW algorithm in terms of:

• heuristic execution speed;
• time series compression ratio;
• classification error associated with the number of segments found by the heuristic.

4.1. Case studies

PAA is widely used in temporal data mining and often as a primitive by other algorithms such as those
allowing to construct a symbolic representation of time series, those allowing to index a time series or even
those allowing to classify time series. In this section, we present some algorithms for which the pre-processing
performed by FDTW allows to improve the final results.

4.1.1. Datasets

The experiments have been performed first on 45 datasets and then on 84 datasets of UCR time series
datamining archive [5], which provided a large collection of datasets that covers various categories of domains.
Each data set is divided into a training set and a testing set. The 84 datasets possess between 2 and 60 classes,
the length of time series varies from 24 to 2709, the training sets contain between 16 and 8926 time series and
the testing sets contain between 20 and 8236 time series. All datasets are publicly available on the UCR time
series classification page.

4.1.2. Compression

Compression ratio: An immediate way to evaluate the quality of the segmentation is to compare the compression
ratios. A segment number N1 will be better than a segment number N2 if it makes it possible to obtain a more
compact representation with PAA. The compression ratio is given by:

r =
n−N
n

where n is the length of the time series and N is the number of segments considered with PAA. The closer r is
to 1 the better is the compression.

The numbers of segments used here are shown in Table 1. For the considered datasets, the mean compression
ratio of IDDTW (r = 0.654) is slightly higher than that of FDTW (r = 0.605). However, this difference is not
significant. Indeed, the wilcoxon test gives us a p-value greater than 0.1 (p > 0.1). Therefore, we cannot reject
the hypothesis that the compression ratios of IDDTW and FDTW are equal.

Applicaion: PAA used with a suitable segment number allows compression of the time series of the Coffee
dataset without loss of information. Although they are more compact, the obtained time series capture the
main variations of the original time series (Fig. 3).
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Figure 3. Visual comparison of two time series from the two classes of the coffee dataset. Left:
the original time series, right: representation using PAA with 88 segments.

4.1.3. Classification

Piecewise Aggregate Approximation is used by ShapeDTW [30] and DTW F [12] to classify time series.
However, to evaluate the actual impact of the segment number considered on the classification, we tested
FDTW to choose the number of segments to use with 1NN and PDTW.

PDTW was designed to speed up the calculation of DTW without degrading the accuracy. Here, we observe
that when the number of segments is chosen, this may even lead to an improvement of the results of the
classification.

Quality of the number of segments found:
A segment number N1 is better than a segment number N2 if the classification error associated with N1 is
smaller than that associated with N2. So, to evaluate the quality of our heuristic FDTW, we compared its
classification errors with that of IDDTW. The classification error was calculated based on the threefold cross
validation applied on the training set. IDDTW tested all the values of N that were equal to a power of two and
kept the one that had a minimum classification error (Tab. 1).

Application:
According to the announcement in Lemma 3.3, the classification error of FDTW during the learning phase
(training error) is less than or equal to that of DTW for all the considered datasets. We used Wilcoxon signed
rank test with continuity correction to test the significance of FDTW against IDDTW. The Wilcoxon signed
rank test gives a p-values, p < 0.01, which demonstrates that FDTW achieves a significant reduction of the
classification error of IDDTW. This also demonstrates that FDTW allows to find segment numbers for PAA
that are of better quality than those found by IDDTW during the learning phase.
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Table 1. Classification errors associated with the number of segments N chosen by the heuris-
tics IDDTW and FDTW. When two numbers of segments N1 and N2 are associated with the
same classification error, the smallest is considered. The classification error is calculated based
on the threefold cross validation applied on the training set.

No. Datasets (training set) DTW IDDTW N FDTW N
(training set)

1 50Words 0.349 0.340 256 0.318 80
2 Adiac 0.462 0.426 128 0.426 140
3 ArrowHead 0.250 0.167 16 0.111 14
4 Beef 0.567 0.900 8 0.567 169
5 Car 0.400 0.233 8 0.217 385
6 CBF 0.000 0.000 128 0.000 22
7 Coffee 0.033 0.133 64 0.000 88
8 Cricket X 0.210 0.244 256 0.190 84
9 Cricket Y 0.279 0.285 256 0.272 214
10 Cricket Z 0.267 0.272 256 0.249 250
11 DistalPhalanxOutlineAgeGroup 0.570 0.541 16 0.534 14
12 DistalPhalanxTW 0.375 0.339 16 0.317 40
13 Earthquakes 0.266 0.266 512 0.223 101
14 ECG 0.240 0.170 8 0.170 11
15 ECG Five Days 0.387 0.220 32 0.220 7
16 Face (all) 0.875 0.873 128 0.870 50
17 Face (four) 0.208 0.125 32 0.083 140
18 Fish 0.343 0.314 16 0.303 27
19 Gun-point 0.201 0.039 32 0.020 38
20 Ham 0.650 0.512 32 0.512 32
21 Haptics 0.587 0.536 64 0.516 239
22 InlineSkate 0.519 0.519 64 0.499 48
23 ItalyPower Demand 0.045 0.060 8 0.045 20
24 Lightning-2 0.183 0.150 16 0.100 179
25 Lightning-7 0.315 0.344 64 0.200 155
26 Medical Images 0.286 0.307 64 0.278 94
27 MiddlePhalanxTW 0.429 0.442 32 0.429 80
28 MoteStrain 0.246 0.246 16 0.190 46
29 OliveOil 0.367 0.367 32 0.333 423
30 OSU leaf 0.310 0.335 32 0.270 33
31 Plane 0.000 0.000 32 0.000 32
32 ProximalPhalanxTW 0.317 0.283 4 0.283 4
33 ShapeletSim 0.786 0.246 8 0.143 45
34 SonyAIBORobot Surface 0.198 0.095 16 0.048 22
35 SonyAIBORobot Surface II 0.148 0.111 64 0.037 42
36 Swedish 0.250 0.238 64 0.218 59
37 Symbols 0.037 0.037 32 0.000 34
38 Synthetic Control 0.350 0.410 32 0.350 60
39 Trace 0.000 0.000 64 0.000 108
40 Two patterns 0.000 0.000 32 0.000 32
41 Two Lead ECG 0.125 0.083 64 0.083 52
42 Wafer 0.014 0.012 8 0.008 111
43 Wine 0.684 0.632 128 0.632 20
44 Words Synonyms 0.419 0.423 64 0.382 57
45 Yoga 0.233 0.187 128 0.187 356
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Comparison with IDDTW :
To evaluate the quality of FDTW, we compared its classification errors with that of IDDTW and the minimal
one. The minimal classification error was find by applying Brute-force search (BF) on both training set and
testing set. FDTW and IDDTW used the training set to find the segment number N with minimal training
error using threefold cross validation, and then used this number of segments on the testing set to compute the
classification error. The value of the segment number N found on the training set may in some cases not be
appropriate for the testing set. We speak of a generalization error which is due to the representativeness of the
training set (Tab. 2).

If two numbers of segments N1 and N2 are associated with the same training error, we retain the largest.
IDDTW tested all the values of N that were equal to a power of two during the learning phase and kept the
one that had a minimum classification error.

The experiments showed that FDTW is more performant than IDDTW. Actually, FDTW resulted in a lower
generalization error than IDDTW on 22 datasets and the same generalization error than IDDTW on eight
datasets. The Wilcoxon signed rank test gives a p-values, 0.01 < p ≤ 0.05, which demonstrates that FDTW
achieved a significant reduction of the generalization error of IDDTW. Results also show that FDTW managed
to find the minimum error for nine datasets (Coffee, ECGFiveDays, Gun-point, ItalyPowerDemand, OliveOil,
Plane, Synthetic control, Trace, Two patterns) and outperforms the smallest classification error reported in the
literature on dataset CBF (No. 5).

Heuristic execution speed:
As already suggested by the time complexity of FDTW and IDDTW heuristics, IDDTW tests fewer candidates
than FDTW and is therefore faster. However, the number of candidates tested by FDTW reduces exponentially
with the length of the time series (Fig. 4). Actually, the number of candidates to be tested ranges from 1 to n,
n being the length of time series, and FDTW considers

√
n candidates for each iteration.

In average, FDTW is 8 times faster than Brute-force search with an average execution time of 176 minutes
against 1386 min for Brute-force search. IDDTW is seven times faster than FDTW and remains the fastest with
an average execution time of 24 min. The execution time increases with the length of the time series (Fig. 5).
The increase of Brute-force search execution time is faster than that of FDTW and IDDTW. This is observable
from the datasets Lightning-2 whose time series have a length equal to 637 data points. Note: The experiments
were conducted on a PC with an Intel Core i7 processor, 16GB of RAM and a Windows 7 64-bit operating
system.

Comparison with other classification algorithms:
To evaluate the quality of FDTW, we compared its classification errors (generalization error) with that of
35 other classification algorithms [2] of the literature on 84 datasets of UCR archive. The performances of
the algorithms are compared using the Nemenyi test that compares all the algorithms pairwise and provides
an intuitive way to visualize the results (Fig. 6). The Nemenyi test allows ranking classification algorithms
according to their average accuracy on 84 datasets. FDTW obtained good results on the simulated datasets in
terms of average accuracy (3rd/37 algorithms, Fig. 6) because the data of the training set and the testing set
are generated by the same models.

However, to evaluate the significance of the difference between the classification algorithms on 84 datasets,
we used the Wilcoxon signed rank test with continuity correction, which has more statistical power.The results
of these experiments show that despite data compression,

• FDTW have better performance than Naive Bayes (NB), C45, logistic regression (Logistic), BN;
• FDTW has similar performance to that of 26 other algorithms in the literature, namely : SVMQ, RANDF,

ROTF, MLP, EUCLIDEAN 1 NN, DDTW R1 1NN, DDTW RN 1NN, ERP 1NN, LCSS 1NN, MSM 1NN,
TWE 1NN, WDDTW 1NN, WDTW 1NN, DD DTW, DTD C, LS, BOP, SAXVSM, TSF, TSBF, LPS, PS,
CID DTW, SVML, FS, ACF;

• Only five algorithms DTW F, Shapelet Transform (ST), BOSS, Elastic Ensemble (EE) and COTE perform
better overall than FDTW.
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Table 2. Comparison of generalization errors. In italics, the smallest generalization error.
In bold, the smallest generalization error between IDDTW and FDTW. N is the number of
segments selected and ` is the number of data points in a segment (l = b n

N c). The generalization
error is computed on the testing set.

Results reported in [1, 5] Our experiments

No. 1NN 1NN 1-NN Brute N(`) IDDTW N(`) FDTW N(`)

Eucli DTW DTW (r) force

dean search

distance

1 0.369 0.310 0.242 (6) 0.262 251(1) 0.268 256(1) 0.268 258(1)

2 0.389 0.396 0.391 (3) 0.379 162(1) 0.432 128(1) 0.414 143(1)

3 0.333 0.367 0.333 (0) 0.233 286(2) 0.3 8(59) 0.367 94(5)

4 0.425 0.274 0.288 (5) 0.192 150(2) 0.301 64(5) 0.301 170(2)

5 0.26 0.25 0.253 (5) 0.233 27(2) 0.283 2(40) 0.283 385(2)

6 0.148 0.003 0.004 (11) 0 118(1) 0.003 128(1) 0.001 128(1)

7 0.000 0.000 0.000 (0) 0 13(22) 0 64(4) 0.000 286(1)

8 0.423 0.246 0.228 (10) 0.228 142(2) 0.256 256(1) 0.269 84(4)

9 0.433 0.256 0.238 (17) 0.231 271(1) 0.241 256(1) 0.244 294(1)

10 0.413 0.246 0.254 (5) 0.221 249(1) 0.223 256(1) 0.233 276(1)

11 0.218 0.208 0.228 (1) 0.2 78(1) 0.225 16(5) 0.223 80(1)

12 0.273 0.29 0.272 (0) 0.263 35(2) 0.288 16(5) 0.278 80(1)

13 0.326 0.258 0.258 (22) 0.198 176(2) 0.258 512(1) 0.276 101(5)

14 0.120 0.230 0.120 (0) 0.13 38(3) 0.19 8(12) 0.180 11(9)

15 0.203 0.232 0.203 (0) 0.117 11(12) 0.289 32(4) 0.117 11(12)

16 0.286 0.192 0.192 (3) 0.091 79(2) 0.194 128(1) 0.148 99(1)

17 0.216 0.170 0.114 (2) 0.08 107(3) 0.352 32(11) 0.102 140(3)

18 0.217 0.177 0.154(4) 0.154 149(3) 0.257 16(29) 0.177 27(17)

19 0.087 0.093 0.087 (0) 0.02 38(4) 0.073 32(5) 0.020 38(4)

20 0.4 0.533 0.400 (0) 0.343 21(20) 0.026 32(13) 0.432 32(13)

21 0.630 0.623 0.588 (2) 0.549 328(3) 0.588 64(17) 0.594 948(1)

22 0.658 0.616 0.613 (14) 0.578 1770(1) 0.627 64(29) 0.622 171(11)

23 0.045 0.050 0.045 (0) 0.033 20(1) 0.043 8(3) 0.033 24(1)

24 0.133 0.167 0.133 (0) 0.1 191(3) 0.167 32(18) 0.100 234(2)

25 0.267 0.267 0.233 (1) 0.183 52(11) 0.367 8(72) 0.367 377(1)

26 0.038 0 0.000 (6) 0 35(4) 0 128(1) 0 135(1)

27 0.439 0.416 0.419 (2) 0.398 27(2) 0.414 32(2) 0.416 80(1)

28 0.121 0.165 0.134 (1) 0.135 14(6) 0.197 16(5) 0.165 84(31)

29 0.246 0.131 0.131 (6) 0.082 70(9) 0.246 16(40) 0.180 524(1)

30 0.479 0.409 0.388 (7) 0.364 31(14) 0.372 32(13) 0.409 35(12)

31 0.316 0.263 0.253 (20) 0.255 95(1) 0.271 64(2) 0.280 34(3)

32 0.292 0.263 0.263 (6) 0.24 75(1) 0.288 4(20) 0.288 4(20)

33 0.461 0.35 0.300 (3) 0.083 54(9) 0.239 64(7) 0.122 48(10)

34 0.305 0.275 0.305 (0) 0.206 37(2) 0.208 16(4) 0.304 26(3)

35 0.141 0.169 0.141 (0) 0.14 5(13) 0.197 16(4) 0.178 45(1)

36 0.211 0.208 0.154 (2) 0.165 59(2) 0.195 64(2) 0.208 55(2)

37 0.100 0.050 0.062 (8) 0.044 376(1) 0.059 32(12) 0.060 34(12)

38 0.120 0.007 0.017 (6) 0.007 60(1) 0.437 2(30) 0.007 60(1)

39 0.240 0.000 0.010 (3) 0 47(6) 0 64(4) 0 275(1)

40 0.090 0.000 0.002 (4) 0 21(6) 0 64(2) 0 128(1)

41 0.253 0.096 0.132 (5) 0.045 55(1) 0.073 32(3) 0.112 70(1)

42 0.005 0.020 0.005 (1) 0.007 109(1) 0.013 8(19) 0.008 95(2)

43 0.389 0.426 0.389 (0) 0.204 3(78) 0.463 20(11) 0.37 128(1)

44 0.382 0.351 0.252 (8) 0.337 133(2) 0.365 64(4) 0.343 135(2)

45 0.170 0.164 0.155 (2) 0.149 117(4) 0.158 128(3) 0.154 384(1)

X 0.268 0.227 0.242 0.175 0.232 0.214

Notes. DTW(r) is a constraint version of DTW where the number of consecutive data points that can be compared to
a single point during the warping is bounded. r represents the size of the warping windows.
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Figure 4. Comparison of the number of tested values of the parameter number of segments
with the FDTW and IDDTW. x-axis datasets are sorted according to the length of the time
series.

Figure 5. Comparison of the execution time of the Brute-force search algorithm, FDTW and
IDDTW.
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Figure 6. Critical difference diagram for FDTW and 36 other classification algorithms on six
simulated datasets. FDTW is ranked 3rd/37 algorithms.
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Figure 7. Eight types of time series corresponding to the vocabulary of eight gestures.

These results demonstrate the competitiveness of FDTW. Moreover, this algorithm outperforms the best
result reported in the literature on UWaveGestureLibraryAll dataset (Fig. 7). The challenge with this dataset
is to recognize the gesture made by a user from measurements made by accelerometers. As reported in [1] the
best accuracy obtained on this dataset is 83.44% with TSBF algorithm; FDTW outperforms this result and
allows to obtain 91.87% of accuracy.

Additional experiments are available here [24].

5. Conclusion and perspective

This paper deals with the problem of choosing an appropriate number of segments to compress time series
with PAA in order to improve the alignment with DTW. In this aim, we proposed a parameter Free heuristic
named FDTW, which approximates the optimal number of segments to use. The experiments showed that
FDTW increased the quality of alignment of time series especially on synthetic datasets where DTW associated
with PAA performed better than any other variant of DTW on a classification task and was rank 3rd/37 behind
two ensemble classification algorithms COTE and EE. This algorithm allows reducing the storage space and
the processing time of time series while increasing the quality of the alignment of DTW. As a perspective, the
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problem we have dealt with in this paper could be modeled as a multi-objective optimization problem where
one objective function would be compression and the other the classification of time series.
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