
HAL Id: hal-02049020
https://uca.hal.science/hal-02049020v1

Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L 1-norm double backpropagation adversarial defense
Ismaïla Seck, Gaëlle Loosli, Stephane Canu

To cite this version:
Ismaïla Seck, Gaëlle Loosli, Stephane Canu. L 1-norm double backpropagation adversarial defense.
ESANN - European Symposium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning, Apr 2019, Bruges, France. �hal-02049020�

https://uca.hal.science/hal-02049020v1
https://hal.archives-ouvertes.fr

L1-norm double backpropagation adversarial
defense

Ismaila Seck1,2, Gaëlle Loosli2,3 and Stéphane Canu1

1- Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, France

2- UCA - LIMOS UMR 6158 CNRS
Clermont-Ferrand, France

3- PobRun, Brioude, France

Abstract. Adversarial examples are a challenging open problem for deep
neural networks. We propose in this paper to add a penalization term
that forces the decision function to be flat in some regions of the input
space, such that it becomes, at least locally, less sensitive to attacks. Our
proposition is theoretically motivated and shows on a first set of carefully
conducted experiments that it behaves as expected when used alone, and
seems promising when coupled with adversarial training.

1 Introduction
Deep learning algorithms have set the state-of-the-art in several domains among
which image classification. However, [1] showed that it is possible, and relatively
easy, to fool Deep Neural Networks by adding to the inputs a particular per-
turbation. This added perturbation may be such that the disturbed inputs and
the original ones are very close according to some metrics, but are assigned to
different classes. Several defense mechanisms have been introduced to prevent
such a behavior, but their efficiency is limited to specific cases so that the general
problem of preventing the existence of adversarial examples remains open.

One idea is to have a constant output over a region around known training
points. For a differentiable function, that means an arbitrarily chosen norm of
the output’s gradient with respect to the input should be 0 or at least as small
as possible over that region. Our claim is that by using adversarial training and
by penalizing the gradient’s norm of the output with respect to the input, the
robustness of the model can be improved. The L1-norm is chosen and this choice
will be theoretically motivated by calculus.

2 Related work
The adversarial examples were first presented in [2], and the principle of adver-
sarial training was introduced at the same time. Adversarial training consists in
augmenting the dataset with potentially adversarial points. But it was imprac-
tical, since the method used to generate adversarial samples, L-BFGS, was too
slow. Adversarial training became more convenient to use with the introduction
of Fast Gradient Sign Method (FGSM) [1], which is much faster and generates
adversarial examples with a good success rate. Moreover, using a first order ex-
pansion of Taylor series, adversarial training can be seen as an `1-norm penalty

of the derivative of the loss with respect to the inputs [3]. Note that regulariza-
tion functional which penalize derivatives of the resulting classifier function are
not typically used in deep learning [4].

The idea of penalizing the gradient of the output with respect to the input
was introduced by [5] under the name double backpropagation and later used in
[6] to find large connected regions of the error function called flat minima. The
ultimate goal was the improvement of the generalization of their models, which
differs slightly from our goal here. In double backpropagation, the `2-norm of
the loss is penalized. Using the Energy loss function, it was stressed that the
penalization of the loss would have little to no effect when the classification is
good. To balance out that effect, the multiplicative parameter of the penalization
ought to be large enough.

The difference between double backpropagation and our gradient penaliza-
tion is that we penalize the `1-norm of the gradient of each output with respect
to the input while, in backpropagation, the `2-norm of the loss is penalized.
Hence, we should not have the problem that occurs when the penalization term
is multiplied by a small error vector. Nevertheless, this might not be a problem
when using a different loss function. Although empirical evidence show double
backpropagation’s efficiency to enhance generalization, it is insufficient to defend
against adversarial examples. That is what [7] highlights saying limiting sen-
sitivity to infinitesimal perturbation [e.g., using double backpropagation 5] only
provides constraints very near training examples, so it does not solve the adver-
sarial perturbation problem. But there are evidence that coupling that gradient
penalty with adversarial training increases the robustness.

3 Defensive gradient penalty
It has been shown that that maliciously crafted examples can fool the deep learn-
ing classifiers and lead them to misclassify those examples with high confidence.
In addition to the adversarial training, a gradient penalization is proposed here
to make the models more robust. Let x be an input image stored in a vector
belonging to the input space X = [0, 1]d, where d is the dimension of x and
let y be the target, a one-hot label, associated with x. Let f , a differentiable
function, f : X → IRc where c is the number of classes, such that the decision
function D(x) = argmax(f(x)) represents our classifier. And let L(f(x),y) be
a common differentiable loss function.

For a given input x, a perturbation direction v and a positive scalar ε, the
first order expansion of the transfer function i-th component, fi, of the neural
network is:

fi(x+ εv) = fi(x) + εvT∇xfi(x) + ◦(ε‖v‖). (1)

Considering the FGSM attack [1] with v = sign(∇xL(f(x),y), we have vT =
{±1}d, |fi(x + εv) − fi(x)| ≈ |εvT∇xfi(x)| ≤ ε‖∇xfi(x)‖1 = εwT∇xfi(x) for
w =sign(∇xf(x)). So that, in this case, finding weights that minimize sensitivity
to infinitesimal perturbation of the input can be done by minimizing the `1-norm
of the gradient of each component of the transfer function with respect to the

input. Our approach is therefore to penalize the `1-norm of the gradient of
each coordinate fi(x) not only on the original point but also on the potentially
adversarial point generated. If we manage to have 0 as the `1-norm of those
gradients at two points that are very close, then the output of the classifier is
almost constant along the segment joining those two points. Indeed we have:

0 ≤ |fi(x+ εv)− fi(x)| ≤ ε sup
t∈[0,ε]

‖∇xfi(x+ tv)‖1 (2)

The regularization coefficient being small (ε has to be small for x + εv to be
considered as an adversarial example) the regularization is not used at its full
potential. In order to increase the regularization coefficient, an explicit penal-
ization of the `1-norm is added to the loss function. Hence the analogy with [5],
which penalize the `2-norm of the gradient of the loss while in this paper the sum
of the `1-norm of the outputs (f1(x), f2(x), . . . , fc(x)) with respect to the input
is directly penalized. But, it is very hard to make derivatives very small using
only the penalization of the gradient when penalizing on the training points only,
and it is also ineffective against adversarial examples.

Better results are obtained when we penalize the gradients on the training
set and also on the adversarial example near the training set. Doing so each
training point is associated with an adversarial example, as in classical adver-
sarial training, and we penalize the gradient on both these points. Let x be
a point of the training set and xadv the adversarial example computed from x
using the FGSM. Let us assume that we train the classifier for long enough so
that ‖∇xfi(x)‖1 ≈ 0 and ‖∇xfi(xadv)‖1 ≈ 0 for all i = 1, . . . , c, since those two
points are close enough, the variation of f on the segment joining x and y is so
small that the class does not change. The ideal training progress is presented in
figure 1. See section 4.2 for comparison of the results of between classical adver-
sarial training, and the new variant introduced in this paper. The loss function
used is:

=

=

Lgp(x,y) =

L(f(x),y) + λ‖J‖1,1,

L(f(x),y) + λ

c∑
i=1

d∑
j=1

|Jij |

L(f(x),y) + λ

c∑
i=1

‖∇xfi(x)‖1

(3)

where d denotes the dimension of the input image, c, the number of neurons
on the output layers of the neural network i.e. the number of classes, λ, the
penalization parameter, Jij = ∂fi(x)

∂xj
, the Jacobian matrix of f and ‖.‖1,1, the

entry wise L1-norm.

4 Experimental Results
All experiments here are built upon 3 models (referred as A,B and C for simplic-
ity) that are described in table 1. The first experiments is our proof of concept.
It shows that the penalization helps the defense. Since alone it’s still not enough
to propose a robust model, the second experiment explores the coupling with
adversarial training.

Fig. 1: Figure showing the ideal progression of the training for one training point
x, and associated adversarial points. At first, the difference ∆ = f(x + ε) − f(x) of
ordinates and gradients norm at x and x+ε are high. During the course of the training,
∆ decreases, making the value at x and x+ε closer. The gradients’ norm also decrease.
In the end, we have almost the same value for f at those points, and the gradients are
nearly 0. In those conditions, we have ∆1 > ∆2 > ∆3 > ∆4 ≈ 0, and the variation
between x and x+ ε is then very small.

model A model B model C
conv(64,8,2) conv(128,3,1) FC(512)
conv(128,6,2) conv(64,3,2) FC(256)
conv(128,5,1) FC(128) FC(128)

FC(10) FC(10) FC(10)
710,218 1,460,938 567,434

Table 1: Description of the models used in this paper: conv(nf, k, s) represents a
convolutional layer with nf filters, of size k × k applied with a stride s. FC(nn)
represents a fully connected layer with nn neurons. All activations are ReLU except
the output layer. The numbers in the last line represent the number of parameters.

4.1 Proof of concept

The goal of this experiment is to show that penalizing the gradient improves a
lot the robustness of the model while keeping the efficiency on the clean data,
and the more we penalize, the more the effect is visible. In our tests, we observe
that we double (at least) the number of correctly classified adversarial examples.

We attack the model using the FGSM in a white-box setup in which the
attacker has access to the parameters of the model and to the test set. The
value ε = 0.3 is chosen as the intensity of the pixel wise perturbation allowed to
the attacker as it is often the case for the data used in this experiment. Several
values of λ are used, allowing to have a notion of the influence of that hyper-
parameter on the performance on adversarial samples. The MNIST dataset and
three different architectures are used. The training and testing split of Keras
is used, and the training set is then split into two groups, one of 55000 used to
train models and the remaining 5000 are used as a validation set. Models are
trained until their accuracy on the validation set stop increasing (difference of
accuracy between 2 epochs less than 0.0001) after 10 epochs, or until 100 epochs
of training on the clean data is achieved. This process is repeated 10 times, the
mean value and the standard deviation are recorded in table 2. The program
always terminated before 100 hundred epochs were reached, around the 20th
epoch. The optimization method used is Adam with a learning rate of 0.001,

β1 = 0.9, β2 = 0.999 and ε = 10−8, a label smoothing of 0.1 was also used.

λ 50 25 10 1 0.1

A clean 99.37± 0.04 99.36± 0.03 99.38± 0.04 99.35± 0.03 99.35± 0.06
adv 45.09± 5.36 44.96± 4.44 46± 10.16 28.83± 9.34 22.64± 5.02

B clean 98.99± 0.05 98.99± 0.05 98.98± 0.07 98.94± 0.07 98.90± 0.05
adv 6.35± 3.258 4.69± 1.91 3.69± 0.73 3.00± 1.14 3.17± 0.82

C clean 98.63± 0.11 98.67± 0.05 98.57± 0.06 98.55± 0.05 98.60± 0.08
adv 29.92± 14.24 25.76± 11.96 18.24± 9.97 19.99± 5.63 13.66± 6.64

Table 2: Accuracy on clean test and adversarial test point of model. We observe that
the more we penalize, the more robust the model becomes. However, while the gain is
significant, it’s clearly not enough to call it a robust model.

4.2 Coupling with adversarial training

ε
0.05 0.1 0.2 0.3

clean adv clean adv clean adv clean adv

A adv_train 99.36
±0.05

98.57
±0.11

99.34
±0.06

97.50
±0.26

99.27
±0.03

96.39
±0.37

99.30
±0.06

95.72
±0.19

adv_train_gp 99.38
±0.028

98.73
±0.072

99.35
±0.035

97.45
±0.30

99.25
±0.061

96.63
±0.30

99.26
±0.06

97.60
±0.34

B adv_train 98.94
±0.079

98.37
±0.48

99.07
±0.03

98.22
±0.61

98.96
±0.05

98.55
±0.26

98.85
±0.05

98.67
±0.07

adv_train_gp 99.05
±0.05

98.18
±0.15

99.06
±0.05

97,64
±1.04

98.95
±0.02

98.30
±0.49

98.84
±0.07

97.80
±1.11

C adv_train 98.98
±0.06

96.26
±0.22

98.68
±0.06

93.56
±0.47

98.59
±0.07

93.24
±0.48

98.48
±0.1

95.52
±0.74

adv_train_gp 98.79
±0.04

96.36
±0.11

98.87
±0.07

94.56
±0.16

98.69
±0.09

93.73
±0.75

98.42
±0.08

96.62
±0.51

Table 3: Table showing the performance of models A, B and C, trained with adver-
sarial training and adversarial training plus gradient penalty (λ = 10)1. We can see
that, the adv_gp performs better for model A and ε = 0.3, and is sensibly equal for
other values of ε. The large standard deviation values might be an indication that the
training was still in progress when epoch 100th epochs was reached.

The previous experiments show that our penalization has an interesting effect
on the robustness of the models. Now we explore the coupling with adversarial
training, and the hope is that the penalization has the same impact, in order
to obtain more robust models than adversarial training alone. We train the
same model using adversarial training with the classical loss function and with
the gradient penalty in addition to that loss. We train for one hundred epochs.
The adversarial training consists in adding adversarial examples to the original
training set to make the models more robust. Typically, the FGSM is used to
generate those adversarial examples due to its practicality. So it will be used in
the following experiments with a clipping to make sure that adversarial examples
remains in X . During training, for each image of a batch, an adversarial image
is generated and added to the batch with the same target as the original image
associated. A label smoothing of 0.1 is also used for this experiment.

1The loss function used here is not exactly the one proposed in 3. Instead of ‖J‖1,1,∑d
j=1 |

∑c
i=1

∂fi(x)
∂xj

| is used due to time constraints.

Table 3 shows results for λ = 10. It turns out that performances are not
as impressive as they were without adversarial training, even though for some
settings, the penalization helps. One reason could be that λ is not high enough.
However for computing time reason, we could not conduct the same set of exper-
iments with different values at the same level of care. Hence we propose some
partial results to argue our point in table where we see that increasing λ provides
better results. We note also that we increased the number of epoch up to 150.

λ 0 10 50 100 200 1000
clean 98.48

±0.10
98.42
±0.08

98.49
±0.06

98.59
±0.10

98.60
±0.11

98.62
±0.07

adv 95.52
±0.74

96.62
±0.51

97.25
±0.05

96.88
±0.51

96.71
±0.19

94.65
±0.79

Table 4: For model C, we fixed ε = 0.3 and different λ, on the same setting as previous
experiment. λ = 0 refers to the adversarial learning alone. We observe improvement
when λ increases, until it fails when too high.

5 Conclusion and future work
In this paper we propose to improve deep neural networks’ robustness to ad-
versarial examples by adding a penalization term. We show that penalizing the
gradients of the output with respect to input, or in other words the Jacobian,
can have an effect defending against adversarial but does not suffice. Coupled
with adversarial training to give L1−norm double backpropopagation adversar-
ial defense, we provide good hints that it is still a good approach. In future
work we will extend the experimental part to more sets of parameters and other
datasets.

References
[1] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-

versarial examples. In International Conference on Learning Representations, 2015.
[2] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[3] Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon Bottou, and David
Lopez-Paz. Adversarial vulnerability of neural networks increases with input dimension.
arXiv preprint arXiv:1802.01421, 2018.

[4] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a
classifier against adversarial manipulation. In Advances in Neural Information Processing
Systems, pages 2266–2276, 2017.

[5] Harris Drucker and Yann Le Cun. Improving generalization performance using double
backpropagation. IEEE Transactions on Neural Networks, 3(6):991–997, 1992.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat
minima. In Advances in neural information processing systems, pages 529–536, 1995.

[7] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Dis-
tillation as a defense to adversarial perturbations against deep neural networks. In 2016
IEEE Symposium on Security and Privacy (SP), pages 582–597. IEEE, 2016.

