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Radiative transfer in multifractal clouds 

R6gis Borde and Harumi Isaka 
Laboratoire de M6t6orologie Physique, Universit6 Blaise Pascal, Aubi•re, France 

Abstract. We studied effects of the cloud inhomogeneity in subcloud scale on the 
reflectance, transmittance, and absorptance of two-dimensional, inhomogeneous clouds. 
We generated the inhomogeneous clouds as multifractal clouds with a lognormal 
multiplicative process. For such clouds, the information codimension C• is a measure of 
the cloud inhomogeneity. Radiative transfer through the multifractal clouds was computed 
with a discrete angle radiative transfer model. The average reflectance, transmittance, and 
absorptance of multifractal clouds with a given codimension were estimated as averages of 
200 realizations. They were computed for different sets of the C• parameter, cloud total 
optical thickness, and asymmetry factor of cloud scatterers. An effective optical thickness 
of inhomogeneous clouds was defined empirically in the framework of a homogeneous, 
plane parallel cloud model. Consequently, computation of radiative flux in an 
inhomogeneous cloud could be transformed into that of an equivalent homogeneous, 
plane parallel cloud. For a two-dimensional, inhomogeneous, absorbing cloud we found 
that an inhomogeneous cloud absorbs generally less energy than its homogeneous 
counterpart. An exception was found for inhomogeneous clouds characterized by a small 
information codimension, a large cloud optical thickness, and a large single-scattering 
albedo and for which absorptance is much larger than for their homogeneous counterpart. 
However, this increase was less than 5% of the homogeneous cloud absorptance. The use 
of the effective optical thickness also enabled us to treat an inhomogeneous absorbing 
cloud as an equivalent homogeneous absorbing cloud and to estimate the radiative flux of 
the equivalent homogeneous cloud as an approximation to the one in the inhomogeneous 
cloud. We found no immediate need to conceive of a direct effect of the cloud 

inhomogeneity on the single-scattering albedo, as far as we considered this treatment as a 
first-order approximation. We discussed the use of the effective optical thickness in two- 
stream radiative approximations. We also compared our results with those based on the 
independent pixel approximation. 

1. Introduction 

The effect of clouds on the radiation budget of the atmo- 
sphere is one of the fundamental issues for the study and 
modeling of the climate. Radiative fluxes and absorption in the 
clouds are frequently estimated in the framework of a uniform 
plane-parallel cloud and two-stream approximation [Coakley 
and Chylek, 1975; Joseph et al., 1976; Stephens, 1978a, b; Mea- 
dor and Weaver, 1980; Zdunkowski et al., 1980]. Recent studies 
tend to show that the absorption of solar energy by clouds 
might be much larger than that expected from typical cloud 
radiative transfer models and call into question the real effect 
of clouds on the atmosphere and Earth radiation budgets [Ra- 
manathan et al., 1995; Cess et al., 1995]. 

The area-averaged albedo and transmission of broken cloud 
fields have been investigated by many physicists [Aida, 1977; 
Wendling, 1977; Schmetz, 1984; Welch and Wielicky, 1984; Jo- 
seph and Kagan, 1988; Br•on, 1992; Barker, 1992]. In these 
studies the broken cloud fields were generated by distributing 
randomly or regularly clouds with simple geometrical shapes 
and different sizes over a limited area. The clouds were also 

assumed to have uniform microphysical characteristics. The 
cloud shapes and distributions assumed in these studies were 
quite idealized, when compared with those in real broken 
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cloud fields. The radiative transfer through the broken cloud 
fields still remains one of the major issues in the theory of 
atmospheric radiation. 

Clouds, even apparently homogeneous stratiform clouds, ex- 
hibit a highly inhomogeneous distribution of liquid or ice water 
content at subcloud scale induced by turbulent air motion 
[Duroure and Guillemet, 1990; Brenguier, 1990]. The inverse 
convection induced by radiative cooling at the cloud top also 
plays an important role in generating inhomogeneity in ex- 
tended stratiform clouds. Such inhomogeneity in the micro- 
physical properties may have significant influence on the radi- 
ative properties of the clouds. Effects of such cloud 
inhomogeneity have been discussed in relation to the unex- 
plained cloud absorption-albedo anomaly [Davis et al., 1990; 
Stephens and Tsay, 1990]. Effects of the cloud inhomogeneity 
were studied for various kinds of fluctuations of the optical 
thickness: sinusoidal variations [Weinman and Swarztrauber, 
1968], stochastic variations [Mikhaylov, 1982], or experimen- 
tally observed variations of liquid water content [Welch and 
Wielicki, 1984; Cahalan et al., 1994a, b]. However, there still is 
no well-established theoretical framework to deal with the 

radiative transfer in inhomogeneous media [Fouquart et al., 
1990]. 

The classical approach of this problem was often limited to 
study relationships between microphysical and optical proper- 
ties of the inhomogeneous clouds at a "characteristic" scale, 
though the interaction between clouds and radiation occurs 
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over a wide range of scales [Lovejoy and Schertzer, 1992]. Love- 
joy et al. [1990], Gabriel et al. [1990], and Davis et al. [1990] 
studied recently the radiative transfer in fractal clouds with 
conservative scatterers, by using a discrete angle radiative 
transfer (DART) model with a four- or six-stream scattering 
phase function. They showed that the albedo and transmission 
through fractal clouds could be expressed as a function of the 
total cloud optical thickness and cloud fractal dimension. 
Barker [1992] and Evans and Stephens [1993] also discussed the 
radiative transfer in inhomogeneous clouds. Barker [1992] sug- 
gested a possible adaptation of homogeneous, plane parallel 
radiative transfer model to capture effects of the cloud inho- 
mogeneities. More recently, Cahalan et al. [1994a, b] proposed 
an effective optical thickness of inhomogeneous cloud based 
on the independent pixel approximation (IPA). 

The purpose of the present study is also to examine the 
possibility to transform the radiative transfer in the inhomo- 
geneous clouds into the usual framework of uniform plane 
parallel clouds. Such a transformation, if possible, should be of 
practical importance for the radiative flux computation in cli- 
mate modeling as well as for the retrieval of cloud parameters 
from spaceborne radiometer data. We simulated radiative 
transfer by using the DART model in horizontally and verti- 
cally multifractal clouds generated with a lognormal multipli- 
cative process [Monin and Yaglom, 1975a, b] in vertical plane. 

Fluctuations of the water content in a multifractal cloud 

generated by a pure multiplicative process are more intermit- 
tent than those in natural clouds. In spite of this unnaturalness, 
we adopted the lognormal multiplicative process because the 
cloud inhomogeneity can be completely characterized by the 
information codimension C•. No such parameter has been 
defined yet to describe completely the intermittency of natural 
clouds. This uniqueness of the inhomogeneity parameter 
should make it easier to analyze simulations and parameterize 
the intermittency effect on the cloud radiative properties. Since 
the present study mainly aims to show a feasibility of such 
approach, the precise representation of the cloud inhomoge- 
neity may be expected not to be essential to its results. 

We have defined an effective optical thickness of an inho- 
mogeneous cloud and shown how this parameter varies with 
cloud characteristics: the C • parameter, total optical thickness 
of the cloud, and asymmetry factor of the scattering phase 
function. The study was extended to the case of nonconserva- 
tive scatterers to investigate effects of cloud inhomogeneity on 
the radiative properties of absorbing clouds. We evaluated how 
the absorptance of inhomogeneous clouds varies as a function 
of the information codimension C •, total optical thickness to, 
and single scattering albedo to o. Then, we examined how the 
effective optical thickness could be integrated into the frame- 
work of the plane parallel homogeneous cloud and that of 
typical two-stream approximations. Finally, we compared our 
evaluation of effective optical thickness with those derived 
from the IPA. 

2. Generation of Multifractal Clouds 

To investigate effects of the cloud inhomogeneity on the 
cloud radiative properties, we need not only to generate an 
inhomogeneous cloud, but also to estimate statistical parame- 
ters that provide a complete quantitative description of the 
cloud inhomogeneity. This is not an easy task because we still 
do not know what is meant by a complete quantitative descrip- 
tion of the cloud inhomogeneity or what aspect of the inho- 

mogeneity has effective influence on the cloud radiative prop- 
erties. 

Many physicists have recently had recourse to the fractal and 
multifractal analysis of real clouds and cloud fields to investi- 
gate their scaling and autosimilarity properties [Lovejoy, 1982; 
Duroure and Guillemet, 1990; Joseph and Cahalan, 1990; Mar- 
shak et al., 1994; Tessier et al., 1993]. The grounds for this 
recourse are that the degree of inhomogeneities can be char- 
acterized with only a few parameters, but these parameters, 
once estimated, can be used to generate other fields with the 
same multifractal characteristics [Schertzer and Lovejoy, 1991; 
Davis et al., 1993; Marshak et al., 1994]. 

A multifractal medium can be easily generated with multi- 
plicative cascade process [Monin and Yaglom, 1975a, b; Parisi 
and Frisch, 1985]; this process is also called "weighted cur- 
dling" by Mandelbrot [1983]. The lognormal process used here 
follows that formalized by Yaglom as a model of eddy break- 
down and described by Monin and Yaglom [1975a, b]. One 
starts with an initial homogeneous field (in our case a homo- 
geneous square) with a given total mass Mo of scatterers. One 
subdivides this initial square into four subsquares, and after- 
wards, repeats the same operation to each newly formed subs- 
quare. After n steps of subdividing, the initial square is divided 
into 2 2n subsquares. At each step of subdividing, the mass in a 
subsquare is distributed over four newly created subsquares 
according to a prefixed rule of cascade. Mass in a cell after n 
steps is given by 

mn = mn-lOtn--- M0o•1o•2 ' ' ß O•n, (1) 

where Mo, m n_ • and m n are the mass in the initial square, 
n - lth and n th step cells, respectively; a i is a multiplicative 
factor at thejth subdividing step. Different rules can be defined 
and adopted to select the multiplicative factor a at each sub- 
dividing step. The mass distribution at large scale modulates 
multiplicatively the mass at smaller scale, which assures the 
self-similarity and scale invariance of the field and creates a 
hierarchy of singularities. Stochastic variables In a•,..., In a n 
are assumed to have a normal distributions with a mean r• and 
a variance/•2. Hence the mean and the variance of the variable 
In m n can be expressed as 

thn = In (mn) = In (M0) + A (x) + n r• 
(2) 

2 = A l(X) + n t• 2 O' n 

where A(x) and A •(x) represent the effect of the first few 
coefficients ai. 

In this way, an initial homogeneous distribution of the mass 
Mo is transformed into an inhomogeneous distribution over 
the same area. The mean of the variable m n is independent of 
the observation scale Xn (= L o/2n), where L o is the size of 
the initial square. Consequently, the mean r• is related to the 
variance /.•2 of the Gaussian generator by r/ = -/•2/2 [Monin 
and Yaglom, 1975a]. The qth order statistical moment of m n 
may be written as 

2 

mqn = Mg exp {3q(q - 1)(o' n + A1) } • M•(Xn/Lo) -1/2q(q-1)V2 
(3) 

This expression is formally identical with the qth-order sta- 
tistical moment of a multifractal field ex(x) at an observation 
scale X [Schertzer and Lovejoy, 1987]: 

I•x(X) q •: t•. -K(q) (4) 
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where the function K(q) is a convex function with predeter- 
mined values K(0) = K(1) = 0. A generalized dimension Dq 
is defined by 

K(q) 
Dq=D (5) q-1 

and the information codimension C1 is defined by 

C1 = D - D1 = dq (6) q=l 

where D is the topological dimension of the space [Hentschel 
and Procaccia, 1983]. The information codimension C• repre- 
sents a measure of intermittency of the field. As C• increases 
from 0 for a homogeneous medium to D, the total mass of the 
scatterer tends to be distributed over fewer and fewer points; 
for C• = D, all the mass is found at a randomly positioned 
single point. A case with C1 > D is called "degenerated," 
meaning that every realization is empty and, now and then, a 
realization occurs with a huge peak [Davis e! al., 1993]. By 
equating the exponent of (3) with the function K(q), we have 

• /z2. X(q) - q) (7) 

The multifractal field generated by a lognormal multiplicative 
process with r/= -/•2/2 has an information codimension C 1 = 
/•2/2. In other words, a multifractal field with a given C • can 
be generated by choosing the variance of the lognormal distri- 
bution /•2 __ -2r/ = 2C•. Such a multifractal field is a 
nonlacunary and dense fractal according to Mandelbrot's 
[1983] terminology. 

The one-dimensional (l-D) spatial correlation of the lognor- 
mal field can be expressed in the form 

r ) - + r) - (8) 

where r and L are the observation and external scales, respec- 
tively [Monin and Yaglom, 1975a, b]. Generally, the correlation 
decreases with the distance r, but for too rapid decay (/•2 > 1), 
the correlation becomes basically a "quasi-6 correlation" [Mar- 
shaket al., 1994]. 

The Fourier spectrum S(K) corresponding to this autocor- 
relation function is given by 

S(K) • K '+•:: K-• (9) 

where K is the wave number. Since the variance/•2 is positive, 
the spectrum slope cannot be steeper than -1 as C• ap- 
proaches 0. Therefore fluctuation spectra generated by a pure 
multiplicative cascade process are flatter than those of liquid 
water content in real clouds, for which spectral slopes between 
-3/2 and -3 were often reported [King e! al., 1981; Barker, 
1992]. Marshak et al. [1994] tried to remedy this limitation in 
spectral slope, by introducing a second multifractal parameter 
H•, which represents a "nonstationary" state of fluctuations. 
Shortcomings of the lognormal process were also discussed by 
Frisch [1996]. 

In spite of this unnatural feature of pure multiplicative cas- 
cade fields, we still used two-dimensional multifractal clouds 
generated with lognormal multiplicative process. We did so 
because we have investigated the impact of cloud inhomoge- 
neity on the radiative transfer as a function of other cloud 
optical parameters (total cloud optical thickness, asymmetry 
factor and single-scattering albedo of the scatterers) and we 
had to keep the number of parameters used to generate the 

LOcal optical thickness 
8 

C1 = 0.05 

128 

z 

LOcal optical thickness 
, 

(a) 

C1 = 0.5 

(b) 

128 

Figure 1. Multifractal fields of the scatterer mass generated 
with a multiplicative lognormal cascade process and different 
information codimensions' (a) C• = 0.05 and (b) C• = 0.5. 
Both fields have the same total mass of the scatterer. 

inhomogeneous clouds as small as possible. The lognormal 
multiplicative process generates a "one-parameter-controlled" 
inhomogeneous medium, in which both the probability distri- 
bution and the spatial correlation of fluctuations are defined by 
the information codimension C•. As was mentioned above, 
this made the search for an empirical relationship between 
radiative properties and inhomogeneity parameter of the 
clouds significantly easier. 

Like other random cascade models, the lognormal process is 
nonconservative, [Frisch, 1996], so after we generated a mul- 
tifractal cloud, we recomputed the total mass of the generated 
cloud by adding the mass of all the elementary cells. When this 
recomputed mass differed from the initial one, we corrected 
the mass in each elementary cell by multiplying it with a cor- 
rection factor and conserved the initial mass of the cloud. To 

illustrate how the cloud inhomogeneity varies with C•, we 
reproduced examples of two-dimensional (2-D, x-z) multifrac- 
tal clouds generated with the C • parameter respectively of 0.05 
and 0.5 (Figures la and lb). As C• increases from 0.05 to 0.5, 
the mass becomes distributed over fewer cells, and the local 
density of these cells becomes much higher. 

3. Discrete Angle Radiative Transfer Model 
To compute the radiative transfer in a 2-D multifractal cloud 

such as those presented above, we have two options: a Monte 
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Carlo code or a discrete angle radiative transfer code in which 
light scatters only in a limited number of angular directions. 
The DART model with a four-stream (six streams for 3-D 
case) scattering phase function was previously used to compute 
radiative transfer in fractal media [Lovejoy et al., 1990; Gabriel 
et al., 1990; Davis et al., 1990; Gierens, 1993]. Although the 
DART model implies overhead sun and a limited number of 
scattering directions, it nevertheless allows the effects of cloud 
inhomogeneity to be studied in some detail. It also requires 
much less computing time. Hence we adopted the DART 
model in this study. 

By discretizing the radiative transfer equation, the DART 
equation can be expressed for a four-stream scattering func- 
tion in the following form: 

I(x, u) - I(x - uSx, u) - I(x, u)Sr + to0tru,uI(x, u)Sr 

+ • to0tru,vI(x- vax, v)ar (10) 

where I(x, u) is the intensity in the direction of propagation u 
at a position x. The quantity to o represents the single-scattering 
albedo of the cloud scatterer, and the local optical thickness of 
a cell is given by 8r = trp(x)Sx, where tr, p(x), and 8x are the 
extinction coefficient, scatterer density, and size of the elemen- 
tary cell, respectively. The quantity tru, v represents the fraction 
of the energy scattered from the direction v into the direction 
u. Equation (10) is obtained by discretizing the direct light in 
the implicit mode and discretizing the side scattering and re- 
flection in the explicit mode. This semi-implicit equation differs 
from the explicit mode used by Lovejoy et al. [1990], Gabriel et 
al. [1990], and Davis et al. [1990]. Local transmittance and 
reflectance are expressed for the explicit and semi-implicit 
discretizations in the following forms: 
Explicit mode 

I(x + u 8x, u) 

t = I(x, u) = 1 - 8 r(1 - Oootru,u) 
I(x-uSx, -u) 

r = I(x, -u) - 8rtootru,_u 
Semi-implicit mode 

I(x, u) 1 
t •- '-- 

I(x- uSx, u) 1 + 8r(1 - 

I(x, -u) 8rto0tr,,_u 
I(x + uSx, u) 1 + 8r(1 - 

(11a) 

(11b) 

The energy side-scattered or absorbed by a cell is expressed 
respectively by 

•J T OO O O'u,u ñ 
1 + at(1- tOoO'.,.) 

at(1 - too) 

1 + at(1 - tOoO'u,.) 

(11c) 

S -- 

a -- 

In the explicit mode, we have t --> - 
oo, while t -• 0 and r 
This means that in the case of a cell with a very high local 
optical thickness the explicit mode would not provide correct 
local values of transmittance and reflectance [Gierens, 1993]. 
The asymmetry factor is equal to g = tr•,u - tr•,_•. For the 
conservative scattering, we verify tr,, + 2tru,,ñ + tr,,_, = 

1 and r + 2s -• 1 as 8r -• oo in the semi-implicit mode. Davis 
et al. [1990] showed that the transmitted and reflected energy 
computed by means of a DART model agreed with those 
obtained with a Monte Carlo code and validated the DART 

approach in computing radiative fluxes in inhomogeneous 
clouds. 

The cloud top was illuminated with a uniform normalized 
flux of incident energy. Equation (10) was solved numerically 
by a relaxation method. Iterations were stopped when the differ- 
ence between sums of incoming (I+(0) = 1 and I_(ro) = O) 
and outgoing (I_ (0) and I + (to) ) fluxes was less than 0.1% for 
a conservative scattering and when the transmitted, reflected, 
and absorbed energies at every pixel in the domain did not 
change more than 0.1% during an iteration for absorbing 
clouds. Clouds were simulated in a domain of 128 x 128 

square cells, each cell having a local value of cloud optical 
thickness 8rii. We adopted a cyclic lateral condition. The semi- 
implicit scheme can also provide exact two-stream solutions for 
a homogeneous cloud with the conservative scattering and 
cyclic lateral boundary conditions. 

4. Definitions of the Average Transmittance, 
Reflectance and Optical Thickness in 
Inhomogeneous Clouds 

Figures 2a and 2b illustrate the simulated transmission of 
light in a homogeneous cloud and an inhomogeneous cloud, 
respectively. The transmission of light through the inhomoge- 
neous cloud varies from point to point as a function of the 
spatial distribution of scatterers, while the transmission in the 
homogeneous cloud changes regularly with the distance from 
the cloud top. Light penetrates deeply into the less dense part 
of the cloud and hardly through much denser parts. Evaluating 
the influence of cloud inhomogeneity corresponds to evaluat- 
ing the nonlinear contribution of this larger transmission of 
light through optically thinner parts in the cloud. 

The optical thickness in a homogeneous cloud varies pro- 
portionally as a function of the geometrical depth, while such 
a proportionality cannot be valid for an inhomogeneous cloud. 
Therefore in dealing with an inhomogeneous cloud, we need to 
define an average optical thickness in a way compatible with 
both homogeneous and inhomogeneous clouds. We defined 
the average optical thickness at the ith level as the vertical sum 
from the first to the ith layer of the horizontally averaged local 
optical thickness: 

l 

Ti --- Z ( •j Tlj)J' 
j=l 

(12a) 

where ( )i designates the average over n cells (Srli, l = 
1, "', n) in the j th layer. According to this definition, the 
total average optical thickness of the inhomogeneous cloud 
can be kept identical with that of the homogeneous cloud. The 
average optical thickness in the inhomogeneous cloud does not 
vary linearly with the geometrical depth as in the homogeneous 
cloud. The total transmittance T i at the i th layer is the hori- 
zontal sum of transmitted energy Tli through n cells in the i th 
layer: 

ri •- Z rli. (12b) 
/=1 
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The horizontal average and sum are taken over the largest 
horizontal scale of fluctuations of scatterers concentration in 

the cloud. This scale is equal to the side length L 0 of the cloud 
domain in the present study. 

When one generates inhomogeneous clouds with a given 
mass of scatterers and a given C 1, there are an infinite number 
of inhomogeneous clouds that are apparently different. This 
also arises a need to estimate the average radiative behavior of 
inhomogeneous clouds as an set average over all the possible 
realizations. A two-dimensional distribution of frequency of 
occurrence was estimated as a function of transmittance and 

optical thickness for a set of 200 clouds (Figure 3). Each cloud 
has the same set of parameters: a total optical thickness of 
r 0 = 20, an asymmetry factor g = 0, a geometrical depth of 
128Az (where Az is the thickness of each layer), and C1 = 
0.2. 

We reproduced histograms of the transmittance for four 
different values of the average optical thickness, r = 4, 8, 12, 
and 16 (Figure 4). The mean and standard deviation are 

ø'1•ø g • 0 

0.1( 

0.0{ 

ß C l • 0.2 .ro• 20 

• lOO 
o 

c• 50 

0 

0 

Transmission 
Homogeneous cloud 

50 100 

Horizontal extension 

Transmission 

Heterogeneous cloud 

Figure 3. Joint distribution of frequency of occurrence as a 
function of the transmittance and optical thickness. The fre- 
quency of occurrence was estimated from 199 realizations of 
the inhomogeneous cloud with a total optical thickness of 20 
and an information codimension of 0.2. 

0.822 _+ 0.042, 0.664 _+ 0.060, 0.501 + 0.063, and 0.335 _+ 0.047, 
respectively. The skewness is slightly negative for r = 4 and 
positive for other values of r, and the tail of the distribution 
becomes more important for large r. We tested the Gaussianity 
of these distributions by applying X 2 and Kolmogorov-Smirnov 
tests to the cumulative frequency of occurrence. The tests 
showed that all the distributions could be considered as normal 

distribution at a significant level of 10%. 
We computed the transmittance in other inhomogeneous 

clouds with the same mass of scatterers (r o = 20), but with 
different C• parameters. The standard deviation increases with 
C1 (Table 1), because the mass distribution of a multifractal 
cloud with a large C 1 has fewer and more intermittent singu- 
larities and consequently changes considerably from one real- 
ization to another. 

0 

0 50 100 

b Horizontal extension 

Figure 2. Intensity of transmitted light through (a) a homo- 
geneous cloud and (b) an inhomogeneous cloud as computed 
with the DART model. Both the clouds have same average 
total optical thickness of 20. The inhomogeneous cloud is gen- 
erated with an information codimension of 0.3. 

5. Radiative Fluxes Through Multifractal 
Clouds in Conservative Scattering 
5.1. Variation of the Transmittance With C• 

In Figure 5 we plotted the average transmittance as a func- 
tion of the average optical thickness for inhomogeneous clouds 
with the same total optical thickness r 0 = 20 and different 
values of C1. The line labeled "homog" presents the transmit- 
tance with the optical depth in the homogeneous cloud, which 
is a linear function with a slope of -1/(2 + r0). For r < 3 the 
transmittance through the inhomogeneous clouds decreases 
with the optical thickness in the same way for all C1. In the 
range r > 3 the transmittance through inhomogeneous clouds 
decreases almost linearly as a function of the average optical 
thickness for any value of C 1. As the optical thickness becomes 
large, more photons can interact with the scatterers, and the 
multiple scattering becomes more important. Hence the trans- 
mission of light is more dependent on the spatial inhomoge- 
neity of the scatterers. 

The transmittance for a given optical thickness increases 
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Figure 4. Histograms of the transmittance at four different average optical thickness (z = 2, 4, 8, and 16). 
The histograms are established from 199 realizations of the inhomogeneous cloud with a total optical 
thickness of 20 and an information codimension of 0.2. The estimated means and standard deviations of these 

histograms are 0.822 +_ 0.042, 0.664 +_ 0.060, 0.501 +_ 0.063, and 0.335 +_ 0.047 for z = 2, 4, 8, and 16, 
respectively; the normal distributions with these means and standard deviations are plotted. 

with C1 because more light is transmitted through the part of 
the cloud with smaller local optical thickness. Figure 5 con- 
firms that an inhomogeneous cloud transmits a greater amount 
of energy than a homogeneous one. Since the scattering is 
supposed to be conservative, an inhomogeneous cloud has a 
smaller albedo than a homogeneous one. 

5.2. Definition of an Effective Optical Thickness 

These inhomogeneity effects may be taken into account by 
defining an "effective OlStical parameter" as a function of C •. A 
basic idea is to define this effective optical parameter so that 

Table 1. Variation of the Standard Deviation of the 

Transmittance at Four Optical Thickness in 
Inhomogeneous Clouds 

Standard Deviation of Transmittance 

C 1 T = 4 z = 8 z = 12 z- 16 

0.1 0.022 0.033 0.033 0.023 

0.2 0.042 0.060 0.063 0.047 
0.3 0.049 0.073 0.076 0.060 
0.4 0.059 0.081 0.089 0.079 
0.5 0.066 0.097 0.109 0.100 
0.6 0.063 0.089 0.102 0.098 

The inhomogeneous clouds are generated for a given total optical 
thickness of 20 with different information codimensions C 1. The stan- 
dard deviation are estimated as an ensemble average over 199 realiza- 
tions. 

the radiative transfer in inhomogeneous clouds might be 
treated in the classical framework of a plane parallel homoge- 
neous cloud. Such a definition should take into account not 

only the C 1 parameter but also the asymmetry factor g of the 
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Figure 5. Variation of the transmittance in inhomogeneous 
clouds as a function of the average optical thickness. The 
transmittance is computed as an ensemble average over 200 
realizations of the inhomogeneous cloud with the same cloud 
characteristics. The inhomogeneous clouds have the same total 
optical thickness of 20, but they are generated for different 
information codimensions (C1 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 
and 0.6); the cloud with C1 = 0 represents a homogeneous 
cloud. 
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scatterers and the cloud total optical thickness r o. For simplic- 
ity, we will first define this effective optical thickness as a 
function of only C1 and afterward consider the effects of the 
other parameters. 

An effective optical thickness r' of an inhomogeneous cloud 
is defined as the optical thickness of an "equivalent" homoge- 
neous cloud that would have the same transmittance as that of 

the inhomogeneous cloud. This is shown schematically in Fig- 
ure 6. T(r, r o, C1) represents the transmittance for an optical 
thickness of r, through a cloud with a total optical thickness to, 
and C1. For conservative scattering, the global transmittance 
of a homogeneous cloud with a total optical thickness r o is 
given by the two-stream approximation solution: T(r o, r o, 
C• = 0) = 2/[2 + (1 - 9)ro] [Meador and Weaver, 1980]. 
The curve labeled "2 streams" represents this relation. 

An equivalent homogeneous cloud is a homogeneous cloud 
that has the same total transmittance as that of the inhomo- 

geneous cloud. The total optical thickness r/• of the equivalent 
homogeneous cloud is given by the relation 

2 

T(r;, r;, C•: 0): 2 + (1 - 9)r; = T(r0, r0, C• = 0.5) 

where T(rb, rb, C1 = 0) and T(%, %, C1 = 0.5) designate 
the global transmittance of the equivalent homogeneous cloud 
with a total optical thickness of rD and that of the inhomoge- 
neous cloud with a total optical thickness of r o and a C1 of 0.5, 
respectively. The total optical thickness of the equivalent ho- 
mogeneous cloud is the "effective" total optical thickness of 
the inhomogeneous cloud. The straight line labeled "equiv 
homog" represents the transmittance in a homogeneous 
cloud that is equivalent to the inhomogeneous cloud labeled 
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0.2 

0.0 
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ß i , 

•:' 10 •: 20 

Optical thickness 
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Figure 6. Schematic representation of the definition of an 
effective optical thickness r' of an inhomogeneous cloud. The 
"C1 = 0.5" curve represents the transmittance versus optical 
thickness relation for an inhomogeneous cloud with a total 
optical thickness of 20 and an information codimension of 0.5. 
The "homog" line represents the transmittance versus optical 
thickness relation for a homogeneous cloud with the same 
optical thickness of 20. The "equiv.homog" line represents the 
transmittance versus optical thickness relation of an "equiva- 
lent" homogeneous cloud that has the same global transmit- 
tance as the inhomogeneous cloud. The effective optical thick- 
ness of the inhomogeneous cloud is defined by taking the 
optical thickness on this line corresponding to the transmit- 
tance of the inhomogeneous cloud. The "2 streams" curve 
represents the global transmittance versus total optical thick- 
ness relation of a homogeneous cloud obtained under the 
two-stream approximation. 

2O 

10 

o 
o lO 20 

• C1=0.1 

- C 1 =0.2 

t C 1 =0.3 

.--o--.-- C1=0.4 

;.; C1=0.5 

-- C 1 =0.6 

Optical thickness 

Figure 7. Variation of the effective optical thickness as a 
function of the optical thickness for the same inhomogeneous 
clouds as in Figure 5. The inhomogeneous clouds have the 
same total optical thickness of 20, but they are generated for 
different information codimensions (C• = 0, 0.1, 0.2, 0.3, 
0.4, 0.5, and 0.6); the cloud with C1 = 0 represents a homo- 
geneous cloud. 

"C1 = 0.5". The slope of the "equiv.homog" line is given by 
2/[2 + (1 - 9)r•]. The "effective" optical thickness of the 
"C1 = 0.5" inhomogeneous cloud is estimated by taking the 
correspondence: 

' c: 0): = 0 5) TO, 1 ß ß 

This equation means the transmittance T(r', r;, C1 = 0) for 
an optical thickness r' in an equivalent homogeneous cloud 
(C] - 0) is identical with that T(r, %, C1 : 0.5) for an 
optical thickness r in an inhomogeneous cloud (C• = 0.5). 

We applied this transformation of the average optical thick- 
ness r into the equivalent optical thickness r' to all the curves in 
Figure 5. The effective optical thickness r' is plotted as a function 
of the average optical thickness r for various C ] (Figure 7); the 
total optical thickness of the clouds is kept constant ro = 20. 
For large optical thickness (r > 3), r' exhibits a linear variation 
as a function of r. A priori, these curves should be subject to 
the following conditions: 

lim r' = 0 (15a) 
•'--->0 

lim r': r (15b) 
C•0 

lim drJ = 2+ (1-9)r0 •---->0 

(dr'/dr)o<<•<_•o = F(C•) (15d) 

where r, r', and C1 are the usual optical thickness expressed by 
equation (12a) the effective optical thickness, and the infor- 
mation codimension of the inhomogeneous cloud, respectively. 
The first condition is a trivial condition expressing that when 
the usual optical thickness is small, the corresponding equiva- 
lent optical thickness is also small. The second condition is that 
a homogeneous cloud is its own equivalent homogeneous 
cloud. The third condition results directly from the ratio be- 
tween the slope of T(r', r•, C1 = 0) and that of T(r, r o, 
C1 -- 0). We have already shown above that in the uppermost 
layer of an inhomogeneous cloud (r < 3) the inhomogeneity 
has little influence on the transmission: T(r < 3, to, C1 = 0) 
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• T(z < 3, Zo, C1 -• 0). In spite of this fact, the corre- 
sponding effective optical thickness should depend on the de- 
gree of cloud inhomogeneity because the effective optical 
thickness is defined in the framework of the two-stream ap- 
proximation and the total cloud optical thickness has to be 
transformed in the equivalent total cloud optical thickness. 
The fourth condition implies that for large optical thickness 
the effective optical thickness varies linearly with the average 
optical thickness of the inhomogeneous clouds and that the 
slope is function of the degree of inhomogeneity C 1. Accord- 
ingly, we assumed that the semiempirical expression of the 
equivalent optical thickness z' can be written in the following 
form: 

'r '= {B(C1, T0)C 1 q- F(C1)'r} 1 - exp -•-•11 ' (16) 
where A is a constant, B (C 1, Zo) is a function of C 1 and %, 
and F (C 1) is a function of C 1 only. From (15c), we can derive 
the relation between A and B(C1, 'to): 

2 + - 
= A. B(C1, 'r0) 2 + (1 -g)z0 

By using this relation in (16) and setting z' = •-• and z = %, we 
obtain the expression 

T; = F(C1)(T 0 q- C1) , (18) 

and consequently 

( 2- (2-C1)F(C1)} B(C1, r0)= I'(C1) + 2 + (1 -g)r0 A. (19) 
To obtain 19, we assumed that % is large enough that the 

exponential term can be neglected. The slope for large average 
optical thickness (dr'/dr),>>• • F(C1) varies as a function 
of C1. It has to satisfy the relation F (C1 = 0) = 1. Therefore 
it may be approximated in an exponential form: 

r(c,) = e -kc'. (20) 

For isotropic scattering (# - 0) and inhomogeneous clouds 
with various C• and % = 20, we estimated the constants A and 
k with a nonlinear least squares method and obtainedA • 0.4 
and k • 3.21. 

6. Variation of the Effective Optical Thickness 
With the Asymmetry Factor and the Total 
Optical Thickness of Clouds 

The volume-scattering phase function of a cloud varies with 
microphysical characteristics (phase, size distribution, etc.) of 
the cloud. Compared with the isotropic scattering we used 
above, they have generally much larger forward scattering with 
an asymmetry factor around 0.85. Therefore we have to exam- 
ine the dependency of the effective optical thickness z' on the 
asymmetry factor #. 

6.1. Contributions of the Asymmetry Factor 

The effective optical thickness is computed as a function of 
the optical thickness z for various values of the asymmetry 
factor and C1 parameter. As for the isotropic scattering (Fig- 
ure 7), the effective optical thickness z' is found to vary almost 
linearly with the average optical thickness z when it is large 
enough. Slopes of this linear function (dz'/dz),>> 1 are exam- 

ined as a function of C 1 for different values of #. It was found 
that the slope (dz'/dz),>> 1 might be expressed with an expo- 
nential function of C1 (equation (21)) and that (15b) and (15c) 
have to be satisfied for any g. These considerations lead us to 
assume an expression: 

= F(C1, #) = exp [-•/(#, COC1], (21) 
dz J r>>l 

where T(g) is a function of the asymmet• factor g. The 
function F(C1, g) was assumed to be a polynomial of the 
second order with respect to C1 and its coefficients as a func- 
tion of the variable (1 - g). A second-order polynomial is 
preferred here. •ter some trials, the following form was fitted 
to the computed slopes: 

In F(C1, g) = - 0.055 + 0.195(1 - g) C• 

+ 0.9 - 0.070 + 0.330(1 - g) ' 
For a given g the slope (dr'/d,),>> 1 becomes smaller and 

removed from 1 as C1 increases. For a given C1 this slope 
varies first moderately with g when g is less than about 0.8 and 
increases rapidly up to 1 as g approaches 1. For example, for 
C1 = 0.3, the slope (d ,' /d r),>> 1 varies from 0.32 to 0.42 as 
g changes from 0 to 0.7 and goes up to 0.86 for g = 0.98. This 
suggests that the impact of the inhomogeneity on the radiative 
properties of the clouds decreases continuously as g is near 1; 
in the particular case of g = 1 the cloud inhomogeneity does 
not affect the transmittance of light through the cloud. This is 
a consequence of increased fo•ard scattering. Ener• scat- 
tered fo•ard has the same effect as directly transmitted en- 
er•. As g increases, photons appear to have less interaction 
with the cloud scatterers. It is quite evident that as photons 
interact little with the cloud scatterers, their spatial distribution 
has little influence on the transmittance of the ener• through 
the clouds. Thus the impact of the cloud inhomogeneity on the 
effective optical thickness should decrease as g increases to 1. 
Relation (22) does not satis• exactly this limit condition F (C 1, 
g) = 1 as g • 1, but this discrepancy has little numerical 
effect as long as g remains not too close to 1. 

6.2. Contribution of the Total Optical Thickess 

The global transmittance and reflectance of a cloud in the 
flamework of the •o-stream approximation is expressed as a 
function of both the asymmet• factor and total optical thick- 
ness for consedative scattering. Therefore we have to include 
the dependency of the effective optical thickness on the total 
optical thickess of the cloud into the above empirical relation. 
To keep a simple expression for the effective optical thickess, 
we assume that the dependency on % can be written as a 
multiplication factor of each term in (22) 

• 1 -- g C1Fl(•0) lnF(Cl, g)=- 0.055+0.195(1-g) 

+ 0.9 - 0.070 + 0.330(1 - g) 
This expression is fitted with the points computed for clouds 

with the total optical thickness va•ing from 0 to 80. Functions 
Fl(,O) and F2(ro) are assumed to be quadratic with respect to 
'o: 
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F•(%) = 0.30 + 0.04% + 0.000239% 2 (24a) 
o 10 

= eO F2('r0) -2.6 + 0.24r0 + 0.0014r02 (24b) 
The function Fl(rO) varies from 0.3 to about 2.5 as ro changes 

'• 5 
from 0 to 80. The function F2(%) varies from -2.6 to about 7 
for 'o from 0 to 80. 

6.3. Empirical Expression of the Effective Optical • 0 
Thickness as a Function of C1, g, and % 

By summarizing all the adjustment and dependency exam- o 
ined above, we can write a final expression for the effective 
optical thickness. In doing so, we have to take account of the 
constraints given by (15) and other equations discussed above. 
This leads us to express the effective optical thickness ,' in the 

'• o 
following form' 

r' =[B(C•,#, r0) +F(C•,#, r0) r] 1-exp - 

o 1,50 
(25) 

where A is a constant. The first factor describes the linear 

dependency of the effective optical thickness on the original 
optical thickness of the inhomogeneous clouds, and the second • 100 
factor describes the correction term effective in the range of 
small optical thickness. Data from simulations were fitted to 
this functional form, and the expressions B(C•, #, %) and 
F(C1 #, %) were determined as a function of C1, #, and to: • ,50 • O 

B(C•, g, r0) = F(C•, 9, r0) 

'• 0 

[2 (2 C,)F(C,, g, r0)] AC, (26) + 2 + (1 - g)r0 
F(C•, g, r0) = exp {-[G,(g, ro)C• + G:(g, r0)C•]} (27) 

with 

I 1-g lF•(,0) (28) G,(g, r0) = 0.0SS +07•95(1-g) 

[ 1-g ]F2(r0) (29) G:(a, ,0) = O.9 - 0.070 + 0•õ30(• - a) 
where the functions F•(ro) and F2(ro) are given in (24). 

6.4. Application of the Effective Optical Thickness in Two 
Stream Approximation 

We estimated the transmittance and reflectance of inhomo- 

geneous clouds by applying two-stream approximation to cor- 
responding equivalent homogeneous clouds and using the 
equivalent optical thickness given by (25). These estimates 
were compared with those obtained for the same clouds with 
the DART model. Such a comparison can test the utility of the 
effective optical thickness in dealing with radiative properties 
of the inhomogeneous clouds and also evaluate globally the 
degree of adjustment of (25) established step by step. 

We compared the global transmittance of the clouds whose 
data were not used for the adjustment of (25). These inhomo- 
geneous clouds are of three types of the clouds with different 
sets of C1 and#, (C• = 0.1, # = 0.8), (C• = 0.2, # = 0.7), 
and (C1 = 0.3, # = 0.6), and a total optical thickness varying 
from 0 to 60. Figure 8a shows the relative difference for the 
global transmittance of the inhomogeneous clouds estimated 
from the equivalent optical thickness and two-stream approx- 

! ' ß ' i ' ' ' ! 
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Figure 8. Comparison of the relative difference of the global 
transmittance of inhomogeneous clouds estimated from (25) 
with those obtained under the homogeneous cloud assump- 
tion. The inhomogeneous clouds are generated for total optical 
thickness varying from 0 to 60 with three sets of information 
codimensions and asymmetry factors: (C• = 0.1, # = 0.8), 
(C1 = 0.2, # = 0.7), and (C• - 0.3, # = 0.6) (a) Relative 
difference between the global transmittances estimated from 
(25) and those estimated with the DART model as a function 
of the total optical thickness of the clouds for the three types 
of inhomogeneous clouds. (b) Relative difference between the 
global transmittances of the inhomogeneous clouds estimated 
under the homogeneous cloud assumption with those esti- 
mated with the DART model as a function of the total optical 
thickness for the same clouds as in Figure 8a. 

imation. This relative difference is less than about 3%. Figure 
8b shows the relative difference for the same inhomogeneous 
clouds but without taking account of the cloud inhomogeneity. 
The bias between homogeneous and inhomogeneous transmit- 
tance increases with the total optical depth and C1, and it may 
attain 150% for optically thick and very inhomogeneous clouds 
(Figure 8b). Thus much of the effect of heterogeneity can be 
captured by the introduction of the effective optical thickness 
in two-stream solutions. 

7. Transmittance, Reflectance, and Absorption 
in Multifractal Absorbing Clouds 

Figures 9a, 9b, and 9c present transmittance, reflectance, 
and absorptance as a function of co o and C• for the inhomo- 
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Figure 9. Variations of the (a) transmittance, (b) reflec- 
tance, and (c) absorptance of inhomogeneous clouds as a func- 
tion of the single-scattering albedo too for different values of 
the information codimension C 1. The total optical thickness of 
the clouds and the asymmetry factor of the scatterers are kept 
constant at 20 and 0.86, respectively. 

geneous clouds with ro = 20 and g = 0.86. We varied too from 
0.7 to 0.99 and C1 from 0 to 0.6. 

The transmittance increases and the reflectance decreases as 

the cloud inhomogeneity increases from C1 = 0 to C1 = 0.6 
(Figures 9a and 9b) for a fixed to o. These variations are qual- 

itatively the same as those obtained for the nonabsorbing, 
inhomogeneous clouds. The transmittance of an inhomoge- 
neous cloud increases by an extra transmittance that depends 
on C 1 and too. For a given C 1 this increase is significantly larger 
for the interval 0.9 < too < 0.97 than outside it, but the mag- 
nitude of this increase does not exceed 15%. The effect of 

inhomogeneity on the reflectance differs significantly from the 
effect on the transmittance. It lessens rapidly as too decreases 
from 1 to 0.7, because the reflectance of a homogeneous cloud 
itself varies very rapidly with too. The cloud inhomogeneity has 
a larger effect, in both absolute and relative value, on the 
transmittance than on the reflectance, but this feature may 
depend on the value of g. 

As for the absorptance, an inhomogeneous cloud absorbs 
less energy than a homogeneous cloud with the same total 
mass of the scatterers (Figure 9c). As too decreases from 0.99 to 
0.80, the absorptance increases from 0.23 to 0.95 for a homo- 
geneous cloud and from 0.18 to 0.78 for an inhomogeneous 
cloud with a C 1 of 0.6. Hence the absorptance of highly inho- 
mogeneous clouds with a moderate optical thickness is smaller 
than that of the corresponding homogeneous clouds by 20 to 
30%. These features are due to the fact that increasing inho- 
mogeneity enlarges the area with small local optical thickness 
through which light is preferentially transmitted and reduces 
the area with large local optical thickness from which light is 
preferentially reflected. 

Figures 10a, 10b, and 10c present the variation of the trans- 
mittance, reflectance, and absorptance as a function of the 
single-scattering albedo for the inhomogeneous clouds with 
the same characteristics as in Figure 1, but with a total optical 
thickness of 80. The transmittance and reflectance (Figure 10a 
and 10b) show variations with the cloud inhomogeneity similar 
to those in Figure 9a and 9b. The transmittance still changes 
significantly with the cloud inhomogeneity for a too close to 1, 
while its variation with C 1 lessens rapidly in amplitude for too 
less than 0.9. This feature differs from that observed above for 

the clouds with a total optical thickness of 20. 
The reflectance from the clouds with r o = 80 does not differ 

from that obtained for the clouds with ro = 20. This suggests 
that the energy is reflected by the upper part of the cloud 
whose optical thickness is less than 20. Therefore adding more 
absorbing scatterers does not affect the amount of reflected 
energy. An optically very thick cloud absorbs almost all non- 
reflected energy, except in the case with too very close to 1. As 
too decreases from 0.99 to 0.80, the absorptance increases from 
0.48 to 0.97 for a homogeneous cloud and from 0.36 to 0.93 for 
an inhomogeneous cloud with a C 1 of 0.6. Hence moderate to 
high cloud inhomogeneity generally reduces the absorptance 
from its homogeneous cloud value. However, the magnitude of 
the effect is much smaller than the previous case (% = 20), 
except for a too very close to 1. This implies that cloud inho- 
mogeneity is not a pertinent physical factor for the reflectance 
for a highly absorbing cloud. 

A close examination of Figure 10c shows that the ab- 
sorptance of an inhomogeneous cloud with a small C 1 (C 1 < 
0.2) is equal to or slightly higher than the absorptance of a 
homogeneous cloud with the same optical characteristics. This 
feature is quite different from that obtained for the same in- 
homogeneous clouds with a smaller total optical thickness of 
20. 

The conservation of the energy derives the expressions 

•,Z•ho m = 1 - [Thom(tOo, g) -1- ghom(to0, g)] (30a) 
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Ain h -- 1 - [Tinh(co0, g, C1) q- Rinh(co0, g, C1) ] 

= Ahom- [STinh(co0, #, C•) + 8Rinh(co0, #, C•)] (30b) 

where Ax, Tx, and Rx are the absorptance, transmittance and 
reflectance of the cloud, respectively, the index x designating 
the homogeneous (hom) or inhomogeneous (inh) cloud. 

Figures 11a, lib, and 11c show the relative difference, de- 
fined by (Aho m -- A inh)/Ahom, of the absorptance between 
inhomogeneous and homogeneous clouds with total optical 
thickness of 20, 50, and 80, respectively. 

For moderate and large cloud inhomogeneity (C• > 0.2), 
the relative difference generally increases as Wo approaches to 
1. A highly intermittent inhomogeneous cloud (C• > 0.4) 
absorbs 10-40% less energy than a homogeneous cloud for 
ro = 20 and 5-30% less for ro = 80), while a slightly or 
moderately inhomogeneous cloud (0.2 < C• < 0.4) absorbs 
5-20% less energy for ro = 20 and 2-10% less for ro = 80). The 
relative difference increases with COo because the decrease of 
the absorptance is large enough to compensate the lessening 
inhomogeneity effect as COo approaches 1. 

For the inhomogeneous clouds with C • smaller than 0.2, the 
cloud inhomogeneity tends to increase systematically the ab- 
sorptance of the clouds with a total optical thickness larger 
than 50 and COo larger than 0.85. However, the increase is less 
than 5%, much smaller than expected. This result agrees with 
that obtained by Barker [1992] for monofractal clouds with a 
total optical thickness larger than 40. This increase happens 
because the cloud inhomogeneity enables photons to penetrate 
deeper into the clouds, but these photons cannot come out 
from the clouds owing to the large optical thickness and are 
finally absorbed into the clouds. 

For a cloud with a small to moderate optical thickness (to < 
30) the effect of inhomogeneity on the transmittance is larger 
than that on the reflectance (Figures 12a and 12b), so the sum 
8Tinh + 8Rinh is always positive. Consequently, the ab- 
sorptance of an inhomogeneous cloud is always smaller than 
that of a homogeneous cloud with the same total optical thick- 
ness. 

For an optically thick cloud with a total optical thickness 
(to > 50), the situation becomes more complicated. The cloud 
inhomogeneity always decreases the reflectance. However, the 
reflectance of an optical thick cloud does not differ very much 
from that of a cloud with an optically moderate thickness 
because the energy is reflected mostly by the upper part of the 
cloud. Nonreflected energy penetrates into the cloud, but the 
transmittance rapidly approaches zero for a weakly inhomoge- 
neous cloud with COo less than 0.95. Consequently, the nonre- 
flected energy is trapped into the cloud and is finally absorbed 
by the cloud scatterers. In this case, we have the sum •Tin h q- 
•Rin h negative, which corresponds to the increased ab- 
sorptance. For an inhomogeneous cloud with a large C•, the 
inhomogeneity effect allows a small amount of the energy to 
still be transmitted through the cloud, and this effect remains 
larger than the negative effect on the reflectance. Therefore 
the sum •rin h q- •Rin h remains positive, and the absorptance 
decreases because of the cloud inhomogeneity. Radiative 
fluxes are computed again for the same clouds, but with larger 
total optical thickness ro = 80 (Figure 1 lc). Results show that 
the absorptance of an inhomogeneous cloud can be larger than 
the absorptance of a homogeneous cloud with the same optical 
thickness by 5%. Therefore how the cloud inhomogeneity af- 
fects the radiative properties of a cloud depends not only on 
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Figure 10. The same as Figure 9, but for a total optical 
thickness of 80. 

the scattering properties of the scatterers and the total optical 
thickness of the cloud, but also on the characteristics of the 
inhomogeneity. Hence we have to be careful to generalize this 
result for all types of inhomogeneous clouds because the mul- 
tifractal medium has a very specific distribution of fluctuations. 

8. Application of the Effective Optical Thickness 
to Inhomogeneous Absorbing Clouds 

For nonconservative scattering we have defined an effective 
optical thickness for inhomogeneous clouds as a function of 
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C• and optical thickness of (a) 20, (b) 50, and (c) 80. Aho m and 
.Ainh designate the absorptance of a homogeneous cloud and 
corresponding inhomogeneous cloud, respectively. The total 
optical thickness of the clouds and the asymmetry factor of the 
scatterers are kept constant at 20 and 0.86, respectively. 

the C•, #, and r o and transformed the estimation of the radi- 
ative flux in the inhomogeneous cloud into that in an equiva- 
lent homogeneous cloud. Can we apply the same approach to 
inhomogeneous, absorbing clouds? The effective optical thick- 
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Figure 12. Variations of the (a) transmittance, (b) reflec- 
tance, and (c) absorptance of inhomogeneous clouds as a func- 
tion of the total optical thickness ro for different values of the 
information codimension C•. The dashed line corresponds to 
the homogeneous cloud. The single-scattering albedo and the 
asymmetry factor of the scatterers are kept constant at 0.97 
and 0.86, respectively. 

ness we have defined for the inhomogeneous, nonabsorbing 
clouds may be considered as weighted average of local optical 
thickness over an inhomogeneous cloud layer with an average 
optical depth (r -< to). Because the scatterers have been as- 
sumed to be nonabsorbing, the effective optical thickness de- 
fined in (25) takes into account only effects of the cloud inho- 
mogeneity on the scattering. For the absorbing scatterers we 
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need to consider effects of the cloud inhomogeneity on both 
the scattering and absorption, since the cloud inhomogeneity 
may affect the scattering and absorption in different ways. 

There are many possible options to define an effective op- 
tical thickness for the absorbing clouds. The first one is to 
consider two distinct effective optical thickness, one similar to 
that defined in (25) for the scattering part, and the other one 
for the absorption part of the average optical thickness. We did 
not adopt such an approach for two reasons. Such a definition 
will result in too cumbersome expressions. Moreover, it will be 
difficult to separate an experimentally measured optical thick- 
ness into these two distinct parts. The second option is to 
define an effective optical thickness from an equivalent homo- 
geneous absorbing cloud based on a delta-Eddington approx- 
imation. We could adopt this definition if the radiative prop- 
erties of homogeneous clouds estimated with a two-stream 
approximation agreed well with those estimated with the 
DART model. However, we found small but systematic biases 
between the DART model and delta-Eddington approxima- 
tions which make the error analysis of the results difficult. The 
third option is to adopt the effective optical thickness defined 
in (25) and to define a correction term on •o o if necessary. The 
use of the effective optical thickness defined in (25) assumes 
that the inhomogeneity has the same effect on both the scat- 
tering and absorption. In spite of this ad hoc assumption, we 
preferred to try this definition because of its simplicity. 

Figures 13a, 13b and 13c show the same radiative parame- 
ters, presented in Figure 12, as a function of the effective 
optical thickness •-•. The most remarkable difference between 
Figures 12 and 13 is that all the dispersed points in Figure 12 
are gathered along the corresponding homogeneous cloud 
curves in Figure 13, which shows that the cloud inhomogeneity 
effect is almost entirely accounted for by the effective optical 
thickness. The same feature can also be observed in Figure 14, 
which is identical to Figure 13 but corresponds to •o o = 0.9. 
These figures confirm the above observation that the effective 
optical thickness makes it possible, from the practical point of 
view, to deal with the inhomogeneous cloud problem as the 
homogeneous cloud problem. Nevertheless, we can see some 
systematic difference between two DART estimations, one for 
the inhomogeneous clouds and the other for the equivalent 
homogeneous clouds. 

The transmittance of the equivalent homogeneous clouds is 
slightly larger than that of the inhomogeneous clouds; when 
the clouds have a large cloud intermittency (C• > 0.5) and a 
total optical thickness larger than 50, the difference may reach 
0.05. As for the absorptance, the inhomogeneous cloud points 
are distributed around the homogeneous cloud curve for •o o = 
0.97. Their departure from the homogeneous cloud curve is 
larger for •o o = 0.9 than for •o o = 0.97, but it remains less than 
0.05, The reflectance of the equivalent homogeneous clouds 
always overestimates the reflectance of the inhomogeneous 
cloud, particularly for C• larger than 0.5. For •o o = 0.9 the 
reflectance of the homogeneous clouds itself is small, and 
consequently the difference is small. 

9. Use of the Effective Optical Thickness in 
Two-Stream Approximations 

We have seen above that the effective optical thickness al- 
lows us to treat an inhomogeneous cloud as a homogeneous 
cloud and to improve significantly the estimation of its optical 
and radiative properties. In doing so, we compared the radia- 
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Figure 13. Variations of the (a) transmittance, (b) reflec- 
tance, and (c) absorptance of inhomogeneous clouds as a func- 
tion of the total effective optical thickness for different values 
of the information codimension C•. The dashed line corre- 
sponds to the homogeneous cloud. The single-scattering al- 
bedo and the asymmetry factor of the scatterers are kept con- 
stant at 0.97 and 0.86, respectively. 

tive flux in the inhomogeneous clouds with the flux in the 
equivalent homogeneous clouds calculated with the DART 
model, because of systematic bias between the DART model 
and typical two-stream approximations. In this section we ex- 
amine how worthwhile it is to use the effective optical thickness 
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Figure 14. The same as Figure 13, but for a single-scattering 
albedo of 0.9. 

in these typical radiative transfer approximations. According to 
Meador and Weaver [1980], the transmittance T and reflectance 
R of a homogeneous layer with an optical thickness equal to to, 
can be expressed by 

r • 
2k exp (-kr0) 

k q- 3,1 q- (k- 3,1) exp (-2k r0) 

g • 
3'2[ 1 - exp ( - 2k r0) ] 

k q- 3'1 q- (k - 3'1) exp (-2kr0) 

(31) 

with 

k: (3'12 -- 3'1) 1/2 

where the quantities 3'• and 3'2 depend on the type of the 
approximation. They vary with #, •o o, and other parameters 
but do not depend on the total optical thickness ro of the layer. 
These expressions are established with the boundary condi- 
tions at the upper and lower surface: I $ (0) = F/% and 
I 1' (%) = 0, where F is the incident flux per unit area per- 
pendicular to the propagation direction defined by/% and to. 
We selected the delta-Eddington approximate solutions [Jo- 
seph et al., 1976]. The quantities T• and T2 are expressed as 
follows: 

Delta-Eddington approximation 

7- 3• 2-- •0(4 + 3g) + m0•2(4•0 + 3g) 
T,= 411-- a2(1-- g0)] 

(32) 
1 -- g2_ m0(4 -- 3g) -- m092(4•0 + 3g -- 4) 

Y2= 411--a2(1--•0)] 

The term •o represents the global backscattering coefficient 
defined by 

•o = P(-•'; •) d•' d• (33) 

where P(-•'; •) represents the scattering phase function. 
From the consedation of the ener•, the absorptance of the 

cloud is given by the expression A = 1 - (T + R). For an 
optically thick cloud we have limiting values 

T(r0 -• o•) = 0 

3'2 (34) R(ro -• oo) = k + 

A (ro -• Oo) = 1 
3'2 

k+3'1 

We calculated the transmittance, reflectance, and a.b- 
sorptance with the DART model, discrete ordinate method 
(DOM) [Iaquinta, 1996] and delta-Eddington approximation, 
as a function of the total optical thickness ro for the homoge- 
neous plane parallel clouds. The single-scattering albedo was 
taken equal to 0.97 and 0.9, and the asymmetry factor of the 
scatterers was of 0.86. Results are plotted in Figure 15 (to o = 
0.97) and Figure 16 (to o = 0.9). The largest relative difference 
between these two models does not exceed 8% (Figure 15) for 
the absorptance, reflectance, and transmittance. DART results 
agree better with those computed with the discrete ordinate 
method, especially in the case of low single-scattering albedo 
(Figure 16), than with the delta-Eddington approximation re- 
sults. The larger difference remarked between these the 
DART and DOM results in Figure 16 may be explained be- 
cause when to o approaches 1, the number of iterations in- 
creases considerably for the evaluation of multiple scattering, 
as well as the unavoidable numerical errors (particularly in the 
DOM). 

Although the delta-Eddington approximation may some- 
times produce nonphysical results [Welch and Zdunkowski, 
1982], it remains the most frequently used radiative transfer 
model, and so we compare its results with the DART results in 
more detail. It is well known that the classical Eddington ap- 
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proximation is not adapted to a large asymmetry factor (# > 
0.6). The delta-Eddington approximation remedies this fault 
and improves the flux estimation over a large range of appli- 
cability: 0.7 < to o < 0.99 and 0 < # < 0.95 [Joseph et al., 
1976]. Consequently, it is not surprising that the delta- 
Eddington approximation behaves as a good approximation of 
the DART model, in spite of some characteristic differences in 
the range of moderate and large optical thickness (Figures 15 
and 16). The transmittance exhibits quite similar variations 
with optical thickness for both the methods. The discrepancy 
between two transmittances is larger for to o = 0.9 than for to o 
= 0.97. However, since the slope is highly negative for to o = 
0.9, a large difference in the transmittance corresponds only to 
a very small variation of the optical thickness (less than 1.0). 

The absorptance and reflectance vary in almost identical 
ways for both the methods. The delta-Eddington approxima- 
tion slightly underestimates the absorptance and overestimates 
the reflectance in the range of large optical thickness (to > 30 
in Figure 15 and ro > 20 in Figure 16). However, the difference 
between the DART model and delta-Eddington does not ex- 
ceed 0.03 in absolute value for both the absorptance and re- 
flectance. So, delta-Eddington approximation can be consid- 
ered as a reasonable approximation to the DART model in 
computing the radiative fluxes through homogeneous clouds, 
except clouds with a reflectance less than 0.2, for which a bias 
of 0.03 represents a relative error of more than 10%. The 
relative error on the absorptance is generally less than that for 
the reflectance. For example, for too = 0.97 the relative error 
on the absorptance is about 2.6% for an optically thick cloud 
and less than 4% in an optically thin cloud. For more absorbing 
scatterers (too < 0.9), the limits of errors become 3.5% and 7%, 
respectively. 

In the preceding section we showed that the introduction of 
the effective optical thickness in the DART model enables to 
treat an inhomogeneous cloud as a equivalent homogeneous 
plane parallel cloud despite some minor discrepancy. This 
finding, combined with the result for the delta-Eddington ap- 
proximation, suggests that we can use the delta-Eddington 
approximation with the effective optical thickness to improve 
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Figure 15. Comparison between the delta-Eddington ap- 
proximation, DOM, and DART results of the transmittance, 
reflectance, and absorptance of homogeneous clouds as a func- 
tion of the total optical thickness %. The single-scattering 
albedo and the asymmetry factor of the scatterers are kept 
constant respectively at 0.97 and 0.86. 
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significantly the estimation of the radiative fluxes of an inho- 
mogeneous cloud. If we calculate the reflectance and ab- 
sorptance of an inhomogeneous cloud as for a homogeneous 
cloud, the relative error would be greater than 60% for highly 
inhomogeneous clouds. The use of the effective optical thick- 
ness in the delta-Eddington approximation may diminish this 
error less than 10% in most of the conditions. Moreover, this 
errors in the flux estimation should be mainly due to the 
systematic bias between the DART model and delta- 
Eddington approximation. 

10. Comparative Analysis With Independent 
Pixel Approximation 

Cabalan [1989], Cabalan et al. [1994a, b] and Marshak et al. 
[1995] have considered the impact of cloud heterogeneity on 
radiative transfer, based on independent pixel approximation 
(IPA), in which the reflectivity of each cloud pixel depends 
only on its own optical thickness and not on the optical thick- 
ness of neighboring pixels. An average reflectance of inhomo- 
geneous clouds was defined by taking account of spatial fluc- 
tuations of the optical thickness. For the comparison of 
DART- and IPA-based effective optical thickness, we need to 
transform the DART results into the IPA framework. 

Figures 17a and 17b show the transmittance and reflectance, 
respectively, calculated with the DART model and IPA model 
(upper curves), and the difference (lower curves). We simu- 
lated two clouds of 512 x 512 pixels with r o = 20, # = 0.86, 
and too = 0.99 but with different values of C • (0.1 in Figure 17a 
and 0.3 in Figure 17b). In the IPA model, the reflectance and 
transmittance of each columns are estimated by applying the 
classical two-stream approximation formula proposed by Mea- 
dor and Weaver [1980] on vertically integrated optical thickness 
for each column. Differences between the IPA and DART 

results should occur in regions where the optical thickness of 
columns differs significantly from the ones of neighboring col- 
umns. (We can see that this difference reaches a value of 0.2 
for both transmittance and reflectance.) In these regions the 
IPA tends to underestimate the reflectance, while for optically 
thin or relatively uniform regions the DART and !PA results 
agree fairly well, as expected. 

A variance parameter f is defined as the variance of the 
logarithm of the cloud liquid water path W. According to 
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Figure 17. Comparison of DART and IPA transmittance, 
17a, and reflectance, 17b in two 2-D heterogeneous clouds 
which have respectively an information codimension equals to 
0.1 (Figure 17a) and 0.3 (Figure 17b). Lower curve shows the 
absolute difference between DART and IPA results. 

Cahalan et al. [1994a, b] and Marshak [1995], this parameter 
varies with the seasons, time of day, and cloud type. A value of 
about 0.39 is reported for marine stratocumulus. For 1-D log- 
normal multiplicative model f can be theoretically expressed as 
a function of C• by 

f = 2C• In (L/r) (35) 

where r and L are the observation and external scales. Unfor- 

tunately, there is no simple analytical expression relating the 
parameter f to the information codimension C • of 2-D multi- 
fractal fields. Hence we estimated f from the water path W 
vertically integrated for each column of the 2-D multifractal 
clouds, as a function of C •. Figure 18 shows the mean and first 
through and third quartiles of the histogram of f determined 
from 50 realizations. The respective location of these statistical 
parameters indicates the histogram is positively skewed. We 
may nevertheless fit the mean with a linear expression. From 
this empirical curve we can estimate an information codimen- 
sion of C• •- 0.22 corresponding to the parameter f •- 0.39 
evaluated by Cahalan et al. [1994a] for real marine stratocu- 
mulus. 

Figure 19 shows the DART- and IPA-based effective optical 
thicknesses of 2-D heterogeneous clouds with r 0 = 20, ro 0 = 
0.99, and # = 0.86, as a function of C•. The DART-based 
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Figure 18. Variance parameter f of vertically integrated 2-D 
heterogeneous field as a function of the 2-D information codi- 
mension. Mean and quartiles are estimated from 50 realiza- 
tions. 

effective optical thickness from this study, 'lB&i, is calculated 
from (25), and the IPA-based effective optical thickness TCa h is 
evaluated from Cahalan's expression [Cahalan et al., 1994a] 

TCa h = )('T O (36) 

where the "reduction factor" X is expressed as a function of the 
variance parameter f and cascade step by 

1/2 

(37) 

Figure 19 shows significantly different behaviors of the two 
effective optical thicknesses with the 2-D information codimen- 
sion C•. Consequently, the radiative properties of the corre- 
sponding "equivalent plane parallel" clouds should also differ 
considerably. The IPA based effective optical thickness TCa h 
decreases very rapidly with the heterogeneity in comparison 
with rB&I. This difference is a consequence of the vertical 
heterogeneity in the 2-D lognormal multiplicative fields. We 
need a further investigation, however, to evaluate the effect of 
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Figure 19. Variation of the IPA-based (TCah) and DART- 
based (rB&•) effective optical thicknesses of heterogeneous 
clouds (r 0 - 20, # = 0.86, ro 0 = 0.99) as a function of the 
2-D information codimension C•. 
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vertical inhomogeneity on the radiative properties of natural 
clouds. 

11. Summary and Conclusion 
The objective of this study was to investigate relationships 

between radiative properties of inhomogeneous and homoge- 
neous clouds by using the DART model and 2-D multifractal 
clouds. It was shown that inhomogeneous clouds transmit 
more radiation energy than their homogeneous counterparts in 
the hypothesis of conservative scattering, because the direct 
transmission of light is favnred thrnugh optically less dense 
area of the cloud and this overcompensates lesser direct trans- 
mission in optically denser area of the cloud. To quantify the 
nonlinear effect of inhomogeneity, we defined an effective op- 
tical thickness of inhomogeneous clouds in the framework of 
the two-stream approximation and plane parallel homoge- 
neous clouds. 

A semiempirical relation for the effective optical thickness 
was established as a function of the information codimension 

C•, total optical thickness, %, and asymmetry factor # of the 
scatterer by step by step fitting. It should be valid for an 
inhomogeneous cloud with a C• parameter (0 < C• < 0.6), 
a total optical thickness (0 < r 0 < 80) and an asymmetry factor 
(0 < • < 1). For 2-D clouds with nonabsorbing scatterers, we 
showed that the introduction of this effective parameter into 
the two-stream equations enables calculation of the global 
transmittance and reflectance with a relative error less than 

5%. 

This paper presents also an investigation on the impact of 
the cloud heterogeneity on the absorption process. We showed 
that an inhomogeneous cloud absorbs generally less radiation 
than its homogeneous counterpart for an optically thin or 
moderate cloud. However, for an optically thick cloud an in- 
homogeneous cloud can absorb more energy than its homoge- 
neous counterpart when the degree of inhomogeneity of the 
cloud is not too high and its optical thickness is high enough. 
The inhomogeneity tends to decrease the albedo at the top of 
the cloud, while the high optical thickness does not allow the 
energy that has penetrated to leave the cloud. The limit be- 
tween these two behaviors depends on C•, •o0, and #. Al- 
though this effect is smaller than expected, this finding may 
provide an explanation for anomalous cloud absorption [Ste- 
phens and Tsay, 1990]. In spite of residual biases, we have 
shown too that the use of the effective optical thickness in the 
delta-Eddington equations gives a fairly good evaluation of the 
transmittance, reflectance, and absorptance of an inhomoge- 
neous absorbing cloud. 

Many problems have been left outside the limited scope of 
the present study. We need to look into the eventual difference 
of effects of the inhomogeneity on the absorption and scatter- 
ing, which may lead to modifying the definition of the effective 
optical thickness. 

One of the main problems in both the climate modeling and 
the processing of satellite data is how to integrate effects of 
subgrid-scale or subpixel-scale inhomogeneities of the clouds 
and cloud fields in the cloud parametrization and/or retrieval 
of cloud characteristics. The present results show a possibility 
of transforming some radiative transfer problems in inhomo- 
geneous clouds into those in equivalent homogeneous clouds, 
even if it is far from providing reliable solutions to the above 
questions. We have shown that for two-dimensionally inhomo- 
geneous clouds the DART-based effective optical thickness 

differs considerably from the IPA-based effective optical thick- 
ness proposed by Cahalan et al. [1994a]. 

In this study we used multifractal clouds because their in- 
termittency is entirely defined by the information codimension. 
We intentionally adopted the simplest representation that is 
available to generate a multifractal field in spite of the unnat- 
uralness of such a field to represent natural cloud inhomoge- 
neity on subcloud scales. Schertzer and Lovejoy [1991], Tessier et 
al. [1993], and Marshak et al. [1994] proposed methods of 
multifractal analysis to process satellite pictures and/or "in 
situ" microphysical data and estimate the C• parameter and 
the other multifracta! parameter H•. Therefore the present 
investigation needs to be extended to other inhomogeneity 
generation processes. 

We have to emphasize the need for reliable statistical meth- 
ods and parameters to describe inhomogeneous structure of 
the clouds. Indeed, we could develop the above approach and 
define the effective optical thickness of the inhomogeneous 
clouds, because the inhomogeneous structure of the cloud was 
characterized only by the C• parameter. This parameter inte- 
grates at least two distinct information contents about the 
inhomogeneity of the cloud, the one on the amplitude of fluc- 
tuations and the other on the spatial correlation of fluctuations 
as discussed above. The results of our present study do not give 
any indication about which of these inhomogeneity character- 
istics is pertinent to the effective optical thickness we have 
defined. Answers to this question may have important impact 
on the processing of experimental data, because we do not 
have well-established methods for processing these data. There 
is a urgent need for a better understanding of what heteroge- 
neity characteristics are relevant to the radiative transfer in 
inhomogeneous clouds. 

All these approaches are based on an empirical adjustment 
of simulation data without any detailed theoretical analysis of 
the radiative transfer equation. It is now evident that the 
present empirical approach should be put on a more solid 
theoretical basis. In this study we discussed only the radiative 
flux in a very simple situation of vertical illumination. This 
approach also has to be extended to consider the angle of 
incident light and also to examine effects of cloud inhomoge- 
neity on the bidirectional reflectance. These problems need to 
be investigated in relation to the integration of the inhomoge- 
neity effect in procedures of retrieval of the cloud character- 
istics from satellite measurements. 
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