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Abstract

Faced with both identity theft and the theft of means of authentication, users
of digital services are starting to look rather suspiciously at online systems.
To increase access security it is necessary to introduce some new factor of
implicit authentication such as user behavior analysis. A behavior is made
up of a series of observable actions and taken as a whole, the most frequent
of these actions amount to habit. The challenge is to detect identity theft
as quickly as possible and, reciprocally, to validate a legitimate identity for
as long as possible. To take up this challenge, we introduce in this paper a
closed set-based learning classifier. This classifier is inspired by classification
in concept lattices from positive and negative examples and several works
on emerging patterns. We also rely on the tf-idf parameter used in the con-
text of information retrieval. We propose three heuristics named Hc

tf−idf ,
Hc

sup and Hc
supMin to select closed patterns for each class to be described.

To compute performance of our models we have followed an experimental
protocol described in a previous study which had the same purpose. Then,
we compared the results from our own dataset of web navigation connection
logs of 3, 000 users over a six-month period with the heuristic Hsup intro-
duced in this study. Moreover, to strengthen our analysis, we have designed
and set up one model based on the naive Bayes classifier to be used as a
reference statistical tool.

Keywords: Machine learning, Classifier, Closed set, Emerging Patterns,
Implicit authentication
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1. Introduction

In order to achieve productivity gains, companies encourage their cus-
tomers to access their services via the Internet. It is accepted that on-line
services are more immediate and user-friendly than accessing these services
via a brick and mortar agency, which involves going there and, more often
than not, waiting around (cf. [8]). Nevertheless, access to on-line services
does pose security problems. Certain services provide access to sensitive
data such as banking data, for which it is absolutely essential to authen-
ticate the users concerned. However, identity theft is becoming more and
more common (cf. [17]). We can distinguish two paradigms for increasing
access security. The first one consists of making access protocols stronger by
relying, for example, on external devices for transmitting access codes that
are supplementary to the login/password pair. Nevertheless, these processes
are detrimental to the user-friendliness and usability of the services. The
number of transactions abandoned before reaching the end of the process
is increasing and exchange volumes are decreasing. The second paradigm
consists on the contrary to simplify the identification processes in order
to increase the exchange volumes. By way of examples, we can mention
single-click payment (cf. [8] and [3]) or using RFID chips for contact-less
payments. Where these two paradigms meet is where we find implicit means
of authentication.

A means of authentication is a process that makes it possible to ensure that
the identity declared in the event of access is indeed the user’s identity.
Traditionally, a user authenticates himself or herself by providing proof of
identity (cf. [9]). This process is called explicit authentication. In contrast,
implicit authentication does not require anything from the user but instead
studies his or her behavior, the trace left by the user’s actions, and then
either does or does not validate the declared identity. Thus, an authentica-
tion system is implicit if it does not require the user to take actions towards
his or her authentification (cf. Table 1 and [23] for a survey).

An implicit means of authentication cannot replace traditional means of
authentication as it is necessary for the user to have access to his or her
service so that the person’s behavior may be studied and their identity can
either be validated or rejected. However, with efficient implicit means of
authentication, it would be possible to avoid stronger authentication modes
(such as chip cards and PIN numbers), which are detrimental to the usability
of services.
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Feature Capturing
Method

Implicit/Explicit Spoofing Threats

Passcode Keyboard Explicit Keyloggers, Shoul-
der Surfing

Token Hardware
device

Mainly explicit, im-
plicit possible

None

Face & Iris Camera Both Picture of the legit-
imate user

Speech Microphone Both Recording of the
user’s voice

Keystroke Keyboard Implicit, explicit
possible

Typing imitation
(difficult)

Location GPS Implicit Informed strangers

Network Software
protocol

Implicit Informed strangers

Table 1: Comparison of different authentication methods (extract from [23]).

The challenge is to detect identity theft as quickly as possible and, re-
ciprocally, to validate a legitimate identity for as long as possible. To take
up this challenge, we propose to design a classifier. The purpose of this
classifier is to guess the corresponding user for a given anonymous behavior.
Through this tool, we will be able to authenticate a user as follows: if the
classifier correlates the right user behind the current behavior then the user
is authenticated, otherwise, the user may be rejected.

This contribution is organized as follows: in Section 2 we discuss the state-of-
the-art concerning implicit authentication and user profiles in web browsing,
as well as general techniques of classification that use closed sets. In Sec-
tion 3 we describe the formal frameworks and in Section 4 we present our
new learning model for implicit authentication of web users. Bayes model is
described in Section 5. Section 6 discusses experimental results. More pre-
cisely, in this section we compare performance of methods described above
and we analyze all of our results. Finally, in Section 7 we sum up our results.
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2. Related work

Classification with closed sets is a subject that has been developped, in
particular in concept lattices. Specifically, from the work of V.K. Finn in
[4] describing a plausible reasoning in JSM type systems, the authors of [14]
and [13] design and formalize a classifier in concept lattices from positive
and negative examples. But, by using this binary classifier to our context
with n classes (where n stands for the number of users of a given system)
we could classify as non-identifiable most of the anonymous behaviors.

In 2007, the authors of [19] defined emerging patterns as patterns ap-
pearing frequently on the objects in a single class, but being harder to find
in objects belonging to other classes (cf.[6] and [18] for surveys on emerging
patterns). However, a difficulty remains in selecting the most efficient emerg-
ing patterns among the large number of patterns. Intuitively, the authors
of [19] used the support measure to define and extract emerging patterns.

In our context of security, implicit authentication systems were studied
quickly for mobile phones. In [21], the authors studied behavior based on
variables specific to smart phones such as calls, SMSs, browsing between
applications, location, and the time of day. Experiments were conducted
based on the data for 50 users over a period of 12 days. The data were
gathered using an application installed by users who were volunteers. The
user profiles were built up from how frequently positive or negative events
occurred and the location. Within this context, a positive event is an event
consistent with the information gathered upstream. By way of an example,
calling a number which is in the phones directory is a positive event. The
results of this study show that based on ten or so actions, you can detect
fraudulent use of a smartphone with an accuracy of 95%. In a quite different
context, the authors of [25] relied on a Bayesian classification in order to
associate a behavior class with each video streaming user. The dataset is
simulated and consists of 1, 000 users over 100 days. The variables taken
into account are the quality of the flow, the type of program, the duration
of the session, the type of user, and the popularity of the video. The results
are not accurate enough for our needs, because the proposed model has an
accuracy rate of 50%.

The particular context of implicit authentication for web browsing was
studied in [26], [7], [12] and [1]. In [26], the author adopted the domain
name, the number of pages viewed, the session start time and its duration
as characteristic variables. The dataset, which was gathered by a service
provider, consisted of 300 first connections by 2, 798 users over a period of
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12 months. The user profiles consisted of patterns of size 1. The author
compares several pattern selection approaches such as the support and the
relative support approaches. The study shows that for small, anonymous
behavioral patterns (involving up to twenty or so sites visited), the most
effective models are still traditional classification models such as decision
trees. On the other hand, whenever anonymous behavior exceeds 70 or so
sites, the support and relative support-based classification models are more
accurate. The study conducted in [1] states that the size of the dataset
remains a determining parameter. Their study, conducted on 10 users over
a one-month period, did not enable them to build a significant model for
distinguishing users. The authors also concluded that no variable taken
individually enables a user to be authenticated. Drawing inspiration from
a study conducted in [26], the authors of [10] studied several techniques
for analyzing a user who holds a dynamic IP address, based on behavioral
models. The compared methods are seeking motives, the nearest neighbors
technique, and the multinomial Bayesian classifier. The dataset consisted
of DNS requests from 3, 600 users over a two-month period. In this study,
only the most significant variables and the most popular host names were
considered. The accuracy rate for the models proposed were satisfactory.

From our point of view, the study carried out in [26] is the most detailed
and accurate. For this reason, we faithfully reproduce here his experimental
protocol on our own dataset and we compare performance of our classifica-
tion heuristics to his specific models.

3. Formal framework

We call a session a set of visited websites by a given user ui with i in
[1, n] and n the number of users. The size of sessions is fixed1. The learning
database of each user ui takes the form of a list of sessions denoted Sui and
is built from log data2. More precisely, thanks to a timestamp associated to
each visited web site by a given user, we are able to build its set of sessions by
taking into account the natural order of the visits. But, after this last step,
each session is then considered as a non ordered set of websites. Thus, inside
a session the natural order is not taken into account. We call S =

⋃
i Sui the

whole list of sessions of the database. We call Xui the set of websites visited

1In our experimental protocol the best results are obtained with 10. But this choice
remains subjective and the size should be a natural parameter of the study. For this
reason we give experimental results with sessions of size 5 and 20 in Appendix.

2Cf. Section 6
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at least once by user ui and we call X =
⋃

iXui the whole set of websites.
Fig. 1 shows our running example.

abef
aceg
aefg
bcfg

Marion

Marion's sessions

bdeg
abcf
bdef
bcdf

Simon

XMarion = {a, b, c, e, f, g}

XSimon = {a, b, c, d, e, f, g}

Simon's sessions

Marion's log : eebafeaacggaeafccbggf

—>  eebaf  /  eaacg /  gaeaf /  ccbggf  —>  abef, aceg, aefg, bcfg 

Session-building process from Marion’s log
We cut after 4 unique sites

Figure 1: A learning database with two users, Marion and Simon. The set X of visited
web site is {a, b, c, d, e, f, g}. From Marion’s logs, we show the building process of her
sessions. Each session has to be a set of different websites of fixed size. Here, the size of a
session is 4 instead of 10. Each database has 4 sessions. S = SMarion∪SSimon. For short,
in the following we write abef instead of {a, b, e, f}. SMarion = {abef, aceg, aefg, bcfg}
and SSimon = {bdeg, abcf, bdef, bcdf}.

Definition 1 (k-pattern). Let X be a set of websites and S be a list of
sessions on X. A subset P of X of size k is called a k-pattern. A session S
in S is said to contain a k-pattern P if P ⊆ S.

Let S be a set, we note |S| the size of S.

Definition 2 (Supports and relative support). Let S be a list of ses-
sions and P a pattern. We define the overall support of a pattern P as the
percentage of sessions in S containing P :

supportS(P ) =
|{S ∈ S | P ⊆ S}|

|S|
By extension the support of a pattern P in the list of sessions Sui of a

user ui is :

supportSui (P ) =
|{S ∈ Sui | P ⊆ S}|

|Sui |
For a given user ui, the relative strength of a pattern is :

relSupportSuiS(P ) =
supportSui

(P )

supportS(P )
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The within-user support measures the strength of a pattern in behavioral
description of a given user. The relative support mitigates the within-user
support measure by considering the overall support of the pattern.

Example 1 (From our running example). Let P1 = {abe} and P2 =
{af} be two patterns. We have:

supportS(P1) = 1/8 supportS(P2) = 3/8

supportSMarion
(P1) = 1/4 supportSMarion

(P2) = 1/2

relSupportSMarionS(P1) = (1/4)/(1/8) = 2

relSupportSMarionS(P2) = (1/2)/(3/8) = 4/3

The tf-idf measure is a numerical statistic that is intended to reflect how
relevant a word is to a document in a corpus. The tf-idf value increases
proportionally to the number of times a word appears in the document, but
is offset by the frequency of the word in the whole corpus ([20]). In our
context, a word becomes a pattern, a document becomes a set of sessions
Sui of a given user and the corpus becomes the set S of all sessions.

Definition 3 (tf-idf). Let P be a pattern, let U be a set of users and
Up ⊆ U such that ∀ui ∈ Up, supportSui

(P ) 6= 0. Let Sui be the list of
sessions of a user ui and S a set of sessions. The normalized term fre-
quency denoted tf(P ) is equal to the within-user support supportSui

(P ) and
the inverse document frequency denoted idf(P ) is equal to log (|U |/|UP |).

tf−idfui(P ) = tf × idfui(P ) = supportSui
(P )× log

( |U |
|UP |

)
Example 2 (From our running example). Let us consider the list of
Marion’s sessions and Simon’s sessions. We have two users, thus |U | = 2.
Let the patterns P1 = aeg and P2 = bf , thus |Uaeg| = 1 since the pattern aeg
appears only in Marion’s sessions and |Ubf | = 2 since the pattern appears in
both sets of sessions. We have:

• tf−idfMar(aeg) = supportSMar
(aeg)× log 2 = 1/2

• tf−idfMar(bf) = supportSMar
(bf)× log 1 = 0

Properties of the tf-idf measure are discussed below (see Property 1).
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Definition 4 (Closure system). Let S be a list of sessions on the set X
of websites. We call closure system and we denote by Sc the closure under
intersection of S to which we add the set X.

Definition 5 (Closure operator). Let X be a set. A map C : 2X 7→ 2X

is a closure operator on X if for all sets A and B in X we have: A ⊆ C(A),
A ⊆ B =⇒ C(A) ⊆ C(B) and C(C(A)) = C(A).

Theorem 1. Let Sc be a closure system on a set X. Then the map CSc

defined on 2X by ∀A ∈ 2X , CSc(A) =
⋂{S ∈ Sc | A ⊆ S} is a closure

operator on X.

Definition 6 (Closed pattern). Let Sc be a closure system on a set X
and CSc its corresponding closure operator. Let P ⊆ X be a pattern (i.e. a
set of visited sites), we say that P is a closed pattern if CSc(P ) = P .

This definition is equivalent to the definition of a formal concept of the
formal context K = (S,X, I) where S (the sessions) is the set of objects, X
(the websites) the set of attributes and I a binary relation between S and
X. If s ∈ S and x ∈ X, (s, x) ∈ I is read “session s contains the web site
x”. For a framework about formal contexts as a representation of closure
systems, see [5].

In Fig. 2 we give a graphic representation of the lattice of closed patterns
from Marion’s set of sessions. The lattice of closed patterns from Simon’s
set of sessions is given in Appendix (see. Fig. A.10).

Property 1. Let P be a pattern and Sui be the list of sessions of a given
user ui. We have:

tf−idfui(P ) ≤ tf−idfui(CScui
(P ))

Proof: Since |UCScui
(P )| ≤ |UP | and straightforward from the definition,

the tf-idf measure is maximized by the closed patterns.

Remark: Unlike the support measure, the tf-idf does not admit a mono-
tonic behavior with inclusion set operator. Indeed, from the running exam-
ple, one can check that tf × idfMar(a) = 3.log(2/2) = 0, tf × idfMar(ae) =
3.log(2/1) = 3 and that tf × idfMar(aef) = 2.log(2/1) = 2.
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ae f g

aef aeg

aefg

cgfgbf

abef bcfgaceg

∅

abcefg

Figure 2: The Hasse diagram of the closure system Sc
Marion. The set aeg is a closed

3-pattern of Marion, and f is a closed 1-pattern.

4. Models for a learning closed-sets based classifier

The approach we have chosen to implement our classifier is based on
three points:

1. Closed patterns selection: From a dataset of web browsing logs we
compute a set of closed patterns for each user. We call those patterns
own patterns for a particular user. The measure used to select the
patterns and the size of these patterns may vary. See Def. 7 and Fig.
3 for a graphic representation.

2. User profiles computation: We compose a vector space that is com-
mon to all users from the closed patterns. Then we compute a vector
profile for each user. All users are embedded in a common space with
a similarity function.

3. Identification step: Thanks to the profiles computed in step 2, we are
able to provide an identification for anonymous sessions by searching
the nearest neighbor in the vector space. We then compute confusion
matrices and we provide accuracy of the models.

In the remainder of this section, we will develop each of the aforemen-
tioned steps.
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4.1. Own patterns selection

Definition 7 (Own patterns). Let Hcond be a heuristic that selects closed
patterns under condition cond for a given user ui. Then the set of patterns
selected by Hcond for ui is called the set of own patterns of ui and denoted
Pui.

The first and most important step of our model, called own patterns
selection is to calculate the set of own patterns for each user ui. This set of
patterns is denoted Pui = {Pi,1, Pi,2, ..., Pi,p} (See Fig. 3). Our experimental
results show that the value of p should belongs to the interval [100 − 140]
to obtain the best performance. In [26], each class is described by a set of
1-pattern with the best support or the best relative support. We call these
approaches Hsup and HrelSupport. The aim of our study is to show that
it could be more efficient to select closed k-patterns. But, the number of
closed patterns should be strong, thus we compare three heuristics (Hc

tf−idf ,
Hc

sup and Hc
supMin) to select the p closed k-patterns of each user. For each

heuristic, closed patterns are computed thanks to the Charm algorithm ([28])
provided by the Coron platform ([24]).

The main principles of the different heuristics are summarized below:

1. Hsup and HrelSupport : p 1-patterns with the largest support/relative
support values;

2. Hc
tf−idf : p closed k-patterns with the largest tf-idf values;

3. Hc
sup : p closed k-patterns with the largest support values;

4. Hc
supMin : p closed k-patterns with the largest support and minimal by

inclusion set operator.

User i
User i

List of sessions
for user i

List of closed 
k-patterns for user i

User i

Short list of p
closed k-patterns 

for user i

Extraction by
Charm algorithm

Filtering by one
heuristic PuiSui

Sc
ui

Figure 3: Closed k-patterns selection thanks to Charm algorithm and filtering by one of
the heuristics Hc

tf−idf , Hc
sup and Hc

supMin).
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Specifically, heuristic Hc
tf−idf is a simplified process based on the tf-idf mea-

sure to select the closed own patterns (cf. Algorithm 1). As Hsup, the
Process Hc

sup use the support measure to select the closed patterns. We
will be able to compare their performance to show that closed patterns are
more representative of a behavior. As previous processes, Hc

supMin (cf. Al-
gorithm 2) use the support measure to select the closed patterns but only
retain patterns which are minimal by inclusion set operator. This way, no
pattern could be included in another one. Comparative performance of the
heuristics are given in Fig. 6.

Algorithm 1: Hc
tf−idf : p closed k-patterns with the largest tf-idf val-

ues.
Data:
Cui : the set of closed patterns of user ui from Charm;
p : the number of selected own patterns.
Result: Pui : the set of p own patterns of user ui;

1 begin
2 Compute the tf−idf for each pattern from Charm;
3 Sort the list of patterns in descending order according to the

tf−idf value;
4 Return the top p patterns;

Algorithm 2: Hc
supMin : p closed k-patterns with the largest support

and minimal values by inclusion set operator.

Data:
Cui : the set of closed patterns of user ui from Charm;
(by decreasing order of support);
p : the number of selected own patterns.
Result: Pui : the set of p own patterns of user ui;

1 begin
2 Pui ← ∅;
3 while (|Pui | < p) do
4 Take next C ∈ Cui ;
5 if (∀P ∈ Pui , P 6⊆ C) then
6 Pui ← Pui ∪ {C};

7 Return Pui ;
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Example 3 (From our running example). The value of p is fixed at 4
(instead of 10 in the experimental protocol). We give Marion’s own patterns
for the four approaches. Marion’s closed patterns can be found in Fig. 2.

We have:

1. Hsup: 4 1-patterns: own patterns are taken in {a, b, c, e, f, g}. The
support function is max for each P in {a, e, f, g}. Thus PMarion =
{a, e, f, g}.

2. Hc
tf−idf : 4 k-patterns with the best tf-idf. We give the first closed

patterns and the corresponding tf-idf values together in pairs:
(ae, 3/4), (aeg, 1/2), (aef, 1/2), (fg, 1/2), (cg, 1/2), ....
Since p = 4, we can choose PMarion = {ae, aef, aeg, fg}.

3. Hc
sup: 4 k-patterns with the best support. Some execution of this process

may compute PMarion = {ae, f, g, aef}.
4. Hc

supMin: 4 k-patterns with the best support and minimal by inclusion.
Algorithm 2 gives only 3 k-patterns. PMarion = {ae, f, g}. Indeed,
other closed k-patterns are not minimal.

4.2. User profiles computation

We define and we denote Pall =
⋃

i Pui the set of all own patterns for
all users. The set Pall allows us to define a common space in which all
users could be embedded. More formally, Pall defines a vector space V of
size all = |Pall| where a given user ui is represented as a vector Vui =
〈mi,1,mi,2, ...,mi,all〉 (cf. Fig. 4). In the following we will refer to Vui as the
profile vector of the user ui.

Vui
mi,1 mi,2 mi,j

PjP1 P2

Figure 4: The set of own patterns denoted Pall =
⋃

i Pui defines a vector space V.

The second step of our model, called user profile computation, is to compute,
for each user ui, a numerical value for each component mi,j of the vector Vui .
i is the user id, j ∈ [1, all] is a pattern id and m stands for a given measure.
In our model, we use three measures: the support, the relative support and
the tf-idf. We have respectively:

mi,j = supportSui (Pj), mi,j = relSupportSuiS(Pj) or mi,j = tf−idfui(Pj)

12



Note that even if the choice of this measure can be seen as a parameter of the
model, experimental results confirm that best accuracies are obtained when
the measure is the same as that used to select own patterns. Specifically,
for heuristics Hsup, H

c
sup and Hc

supMin we will use the support measure, and
for Heuristic Hc

tf−idf (resp. HrelSupport) we will use the tf-idf measure (resp.
the relative support measure).

Example 4. For our running example, suppose that we have applied Hc
sup

heuristic to compute the own patterns of Marion and Simon and a third
given user Jean. PMarion = {ae, aef, aeg, fg}, PSimon = {b, bf, bd, bcf} and
PJean = {ag, aef, bcf, fg}. The size of the vector space V is equal to 10.
We give in Fig. 5 profile vectors of Marion and Simon computed with the
support measure.

3/4

VMarion

ae fg

3/4 3/4 1/2

2

0 0

ae fg

1 3/4 1/20 0

VSimon

10 0

ag

ag

f

f g

g

aef

aef b

b bf

bf

bd

bd bcf

bcf

1/2 1/2 1/4 1/21/2

3/4 1/4 3/4

Figure 5: Profile vectors for Marion and Simon with the support measure. The size of the
space vector V is 10, and not 12 since Jean shares 2 own patterns with Marion and Simon
(namely aef and bcf).

4.3. Identification step

Identification step is to guess the user corresponding to an anonymous set
of sessions. Note that all the sessions of a given anonymous set are naturally
coming from a same user. Then, for each anonymous set of sessions we have
to build a test profile and to find the nearest user profile defined during the
learning step.

4.3.1. Test sessions

Performance of our models are calculated on anonymous sets of sessions
of growing size, specifically from 1 session to 35 sessions. The more sessions
we have in an anonymous set, the better the classification will be.

13



4.3.2. Building test profile

Let S be the set of all sessions from the data test set. Let Sut be an
anonymous set of sessions from user ut, and Vut = 〈mt,1,mt,2, ...,mt,all〉 its
corresponding profile vector. As we have done it on the learning step, we
use three measures: the support, the relative support and the tf-idf. We have
respectively:

mt,i = supportSut (Pi), mt,i = relSupportSutS(Pi) or mt,i = tf−idfut(Pi)

4.3.3. Distance functions

Let Vui = 〈mi,1, ...,mi,all〉 and Vut = 〈mt,1, ...,mt,all〉 be two profiles. We
denote DisEuclidean(Vui , Vut) and SimCosine(Vui , Vut) the Euclidean distance
and the cosine similarity between two vectors Vui and Vut respectively, where:

DisEuclidean(Vui , Vut) =

√∑
j

(mt,j −mi,j)2

SimCosine(Vui , Vut) =

∑
j(mt,j ×mi,j)√∑

j(mt,j)2 ×
∑

j(mi,j)2

Note: Formally an Euclidean distance function has to be used in a linear
independent space. Even if the vector space V is not exactly linearly inde-
pendent, the results of our experimental tests look interesting (cf. Fig. 8).

We propose to test performance of two other similarity functions: the
Kulczynski measure introduced in 1927 and the Dice similarity introduced
independently by L.R Dice in 1945 and T. Sorensen in 1948. Both measures
are statistical tools used to compare two vectors in Rn.

SimKulczynski(Vui , V ut) =

∑
j min(mt,j ,mi,j)∑
j |mt,j −mi,j |

SimDice(Vui , V ut) =
2×∑j(mt,j ×mi,j)∑
j(mt,j)2 +

∑
j(mi,j)2

Comparative performance of the two latter similarity functions are given in
Fig.8.
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5. Bayesian models

By keeping the formal framework described in the previous section we
call S =

⋃
i Sui the whole set of sessions of the database, Sui being the list

of sessions of a given user ui. By this way, a set of n users defines a class
partition of the learning database. A Bayesian classifier states that a given
anonymous session of size l, S = {s1, s2, ..., sl} (each si is a web site in our
context), is assigned to a user i if and only if for all j in [1, n], i 6= j we have
P (ui|S) > P (uj |S).

From the Bayes’s theorem :

P (ui|S) =
P (S|ui)P (ui)

P (S)

5.1. Traditional Bayes classifier

In practice, there is interest only in the term P (S|ui) of that fraction.
Under the independence assumptions, the conditional distribution over the
class variable is:

P (S|ui) = P (s1|ui)× P (s2|ui)× ...× P (sl|ui)

For all k in [1, l], P (sk|ui) is calculated from the learning database. A
visited web site sk is not a continuous value then we can define P (sk|ui) as
the number of sessions of ui containing the visited web site sk divided by
the total number of ui’s sessions.

5.2. The smoothed Bayes classifier

The major drawback with the traditional Bayes classifier is that a de-
scriptor sk of an anonymous session, which never occurs in the learning
dataset of a given class, will produce a probability equal to zero. To avoid
this problem, we have applied the Laplace smoothing, also called add-one
smoothing, which consists of adding one to the support of each descriptor
appearing in the learning dataset of the given class. This way, the miss-
ing descriptor will have a support of 1/m (m being the number of sessions)
and all other descriptors will see their support incremented by one. Thus,
the frequency-based probability estimate will never be zero. When referring
with the Bayes classifier, we are discussing the classifier on which we have
applied the Laplace smoothing.
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6. Experimental results

Our dataset comes from Blaise Pascal University proxy servers. It con-
sists of 17 × 106 lines of connection logs from more than 3, 000 users and
contains the user ID, the timestamp and a domain name for each line. We
applied two types of filters on the domain names: blacklist filters and HTTP-
request based filters. We used some lists3 of domain names to remove all
domains regarded as advertising. We also filtered the data by the status
code obtained after a simple HTTP request on the domain name. After
those steps, we still have 4.106 lines. We divide the file between the 3000
users to obtain the class files. The studies were conducted on the 150 users
with the highest number of requests. Table 2 gives the detailed statistics for
this dataset4.

68.481 sessions Mean Minimum Maximum Std dev

# sessions/users 456 209 1909 318

Table 2: Descriptive statistics of the used dataset: number of sessions per user on the set
of 150 users with the higher number of requests.

6.1. Experimental protocol: a description

Algorithm 3 describes our experimental protocol. The first loop on line
2 sets the size of the anonymous set of sessions to be classified to each
attempt. For example, if S = 1, the classifier has to find the user behind
one anonymous session, if S = 10, the classifier has to find the corresponding
user of a set of 10 sessions. It is more difficult when the size of S is smaller.
The loop on line 8 computes the specific patterns of each user and establishes
the profiles vector. The loop on line 11 computes the vector’s components
for each user. The nested loops on lines 14 and 15 classify test data and
compute the accuracy rate.

3http://winhelp2002.mvps.org/hosts.htm and https://pgl.yoyo.org/as.
4This dataset is available at https://fc.isima.fr/~kahngi/cez13.zip.
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Algorithm 3: Experiment procedure

Data:
⋃

i Sui : all sessions from n users; p the number of own
patterns;

x: the number of executions to smooth results;
Result: The mean accuracy of selected models;

1 begin
2 for (S = {1, 3, 5, 10, 20, 30, 35}) do
3 for (k = 1, . . . , x) do
4 for (each ui, i = 1, . . . , n) do
5 S ′ui ← 2

3 of Sui to form the learning set;
6 Tui ← 1

3 of Sui to form the testing set;

7 Pk
all ← ∅ (the global profile vector for each k);

8 for (each ui, i = 1, . . . , N) do
9 Compute the p own patterns Pk

ui
on S ′ui ;

10 Pk
all ← Pk

all ∪ Pk
ui

;

11 for (each ui, i = 1, . . . , n) do
12 Compute the vector V k

ui
with support, relative support

or tf.idf;

13 Initialize to 0 the confusion matrix Mk of the execution k;
14 for (each ui, i = 1, . . . , n) do
15 while (Tui 6= ∅) do
16 Take S sessions from Tui to compute V k

T ;

17 ua ← max(simil(V k
ui
, V k

T )) or min(dist(V k
ui
, V k

T ));

18 Mk[ui][ua]←Mk[ui][ua] + 1;

19 Compute the mean accuracy of Mk[][] on k;

6.2. Comparative performance of Hc
tf−idf , Hc

sup and Hc
supMin

We have followed the protocol described above by executing our three
heuristics on our dataset of 150 users (cf. Table 2) with anonymous sets
of sessions of growing size, from one sessions to 35 sessions. The number
of own patterns per user is fixed to 140 and their maximal size to 7. Each
result is smoothed to 10 executions. Following Fig. 6 shows comparative
performance of the heuristics and our naive Bayes classifier.

We are able to present four significant results. Firstly, for the three
heuristics other than the Bayes classifier, models reach an accuracy close to
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Figure 6: Comparative performance of Hc
tf−idf , Hc

sup, Hc
supMin and Bayes on the dataset

of 150 users. The number of own patterns per user is fixed to 140 and their maximal size
to 7. Measured values are smoothed on 10 executions.

100% if the size of the anonymous set of sessions is beyond 25. Secondly,
Heuristic Hc

tf−idf and our Bayes classifier are able to recognize one user
among 150 with only one session (10 visited websites) with an accuracy close
to 35%. The accuracy reaches 50% (resp. 60%) with an anonymous set of
3 sessions for Hc

tf−idf (resp. for the Bayes model). Thirdly, performance
of Heuristic Hc

sup is significantly lower than the others. Finally, when the
number of sessions in the anonymous set is around 15, the Bayes classifier
reaches a plateau, and the different heuristics except Hc

sup have an accuracy
of 90%.

6.3. Comparative performance with Hsup and HrelSupport

In [26], the author compares, in particular, two methods called Hsup

and HrelSupport to select own 1-patterns. Hsup (resp. HrelSupport) selects the
patterns with the best support (resp. the best relative support) and uses it as
the numerical value for each component of the profile vector. In both cases,
the own patterns are size 1. In order to compare performance of the Hc

sup

and Hc
tf−idf models with Hsup and HrelSupport we have accurately replicated

the experimental protocol given in [26] on our own dataset. The results are
given in Table 3 and Table 7 for a zoom.
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# Users # Sessions Bayes HSup Hc
sup HrelSupport Hc

tf−idf
2 1 0.88 0.83 0.82 0.95(0.65) 0.96 (0.63)

10 0.97 1 1 0.95 1
20 1 1 1 1 1
30 1 1 1 1 1

10 1 0.71 0.55 0.53 0.83(0.64) 0.62
10 0.99 0.88 0.88 0.94 0.97
20 0.91 1 1 0.98 1
30 0.96 1 1 1 1

50 1 0.47 0.31 0.30 0.53(0.85) 0.39
10 0.90 0.89 0.88 0.87 0.92
20 0.91 0.94 0.94 0.93 0.99
30 0.88 0.98 0.98 0.98 1

100 1 0.40 0.25 0.24 0.43 0.33
10 0.88 0.83 0.82 0.84 0.88
20 0.88 0.95 0.95 0.92 0.98
30 0.87 0.98 0.98 0.95 1

150 1 0.35 0.21 0.20 0.39 0.28
10 0.85 0.80 0.78 0.79 0.85
20 0.86 0.94 0.93 0.90 0.98
30 0.84 0.98 0.97 0.92 1

Table 3: On the left we find the number of users and the size of the anonymous set of
sessions. Sessions are of size 10. Measured accuracy rate are smoothed on 10 executions.
The highest values are in bold. To compare fairly the different approaches we applied the
best parameters to each one. This way, we used the cosinus similarity for HSup, Hc

Sup

and HrelSupport and the Kulczynski similarity for Hc
tf−idf . All methods computes own

patterns of size one (i.d. 1-patterns).

In Table 3 we compare three classes of methods: the smoothed Bayes
classifier as a statistical approach, HSup or Hc

sup which rely on the sup-
port measure to obtain a formal description of each user, and HrelSupport or
Hc

tf−idf which rely on the relative support or the tf-idf as a relative measure.
From the relative support or the tf-idf our classifier is able to compute a
description of each user, which sets it apart from others.

From Table 3 we would like to highlight several key points. Firstly,
with 2, 50, 100 or 150 users, the results of the classifier are not so far from
each other for a given classifier. We conclude that it is possible to identify
one user among a large amount of users by learning its visited websites.
Secondly, regardless of the method, from an anonymous set of 10 sessions
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or more (in other words beyond 100 visited websites), the accuracy of the
classifier is beyond 80%, even with 150 users.

The challenge is then to identify a user from the smallest possible number
of sessions. In the case we have only one session to identify the given user,
the Bayes method and Hc

tf−idf give very similar results that are significantly
better than results from HSup or Hc

sup. HrelSupport over performs all methods
in that case with an accuracy of 39% with 150 users.

Finally, one can observe that results obtained with a relative measure as the
relative support or the tf-idf are significantly better than results obtained
with the support. Moreover, select own patterns with the best support is
not less efficient than select frequent closed own patterns since HSup or
Hc

sup give exactly the same results. Comparative performance of Hsup and
HrelSupport on one side and HSup, H

c
sup and Hc

supMin one another side, are
given in Appendix (see. Fig.B.11 and C.12).
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Figure 7: Comparative performance of Hc
tf−idf , HrelSupport and Bayes on the dataset

of 150 users. The number of own patterns per user is fixed to 140 and their size to 1.
Measured values are smoothed on 10 executions.

6.4. Distribution of own patterns according to size

From the own patterns of each user we compute the set Pall as the set
of all own patterns used to define the profile vector. In order to understand
the impact of the chosen heuristic on the selected own patterns, Table 4
provides the distribution of Pall according to size.
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1 2 3 4 5 6 7

Hc
tf−idf 8.7% 25.8% 30.3% 20.8% 9.7% 3.5% 1.2%

Hc
sup 11.7% 33.6% 33.1% 15.5% 4.1% 0.8% 1.2%

Hc
supMin 87.6% 9.5% 1.8% 0.5% 0.16% 0.02% 0.01%

Table 4: For each heuristic, the distribution of the own patterns according to size. As
an example, with Heuristic Hc

Sup, 33.1% of the patterns are of size 2. The number of
own patterns per user is fixed to 140 and their maximum size to 7. Measured values are
smoothed on 30 executions.

As we can observe in the Table 4, the distribution may vary considerably
depending on the method used. Heuristic Hc

tf−idf produces a nice normal
distribution centered at 3 for a maximum proportion of 30.3%. Heuristic
Hc

Sup produces a more compact normal distribution with 66.7% of own pat-
terns centered within the interval [2− 3].

Finally, Heuristic Hc
supMin, which selects closed own patterns which are min-

imal by inclusion set operator, produces an unbalanced distribution with
87.6% of own patterns of size one and 9.5% of size two. All these results are
obtains with a number of own patterns per user equal to 140. If this number
falls to 50 the distribution makes a shift to patterns of lower size (see Table
5).

1 2 3 4 5 6 7

Hc
tf−idf 13.8% 32.6% 29.81% 15.8% 5.7% 1.6% 0.5%

Hc
sup 21.8% 44% 27% 6.3% 0.5% 0.1% 0.01%

Hc
supMin 96% 3% 0.48% 0.08% 0.04% 0.005% 0.003%

Table 5: For each heuristic, the distribution of the own patterns according to size. The
number of own patterns per user is fixed to 50 and their maximum size to 7. Measured
values are smoothed on 30 executions.

6.5. Comparative performance of distance or similarity functions

We show in Fig. 8 and 9 the effect of the similarity function on model
accuracy rate. Cosine and Dice similarity measures have same accuracy rate
and rate of the Euclidean distance are always lower than the others.
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Figure 8: Comparative performance of Hc
tf−idf with Cosine similarity, Dice similarity,

Kulczynski similarity and the Euclidean distance. The number of sessions of the anony-
mous set is on the X-axis and accuracy rate on the Y-axis. Number of users is equal to
150. Measured values are smoothed on 10 executions.
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Figure 9: Comparative performance of Hc
supMin with Cosine similarity, Dice similarity,

Kulczynski similarity and the Euclidean distance. The number of sessions of the anony-
mous set is on the X-axis and accuracy rate on the Y-axis. Number of users is equal to
150. Measured values are smoothed on 10 executions.
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7. Analysis and conclusion

In this study, we addressed the issue of authenticating a user based on its
behavior in a system. In our experimental context, a behavior would consist
of a list of websites visited by each user, but the model could be extended
to a set of functions to be executed on a given system. For this purpose
we have compiled a large dataset of 17.106 connection logs for 3, 000 users.
This dataset has been cleaned and filtered, and we have designed a set of
68, 481 sessions for 150 users. To identify each user from the others we have
introduced a closed set-based learning classifier which can be described as
a combination of the binary classifier studied in [14] and classifiers based
on emerging patterns described in [19] and [6]. To select the best patterns
from the huge amount of closed patterns extracted from the dataset of each
user, we compared several approaches based on the support, the relative
support, and the tf-idf measures. To complete the study, we have designed a
smoothed Bayes classifier and we compared the set of models by reproducing
the experimental protocol described in [26] on our own dataset.

As explained in the introduction, the challenge is for example to detect
identity theft on a system used by numerous users as quickly as possible.
This way, there are two main parameters. The first lies in the number of
users of the system and the second lies in the number of sessions5 available
to the classifier to identify one user amongst the others. The lower the
number of sessions, the more difficult the problem is. Our experimental
results show that even with 150 users all heuristics have an accuracy rate
beyond 80% if the anonymous set contains 10 or more sessions (see Table 3).
Specifically, in that case Heuristic Hc

tf−idf is the most efficient and reaches
100% with 20 sessions or more. If the anonymous set of sessions contains
between one and ten sessions, heuristics based on relative measures such as
the relative support, and the tf-idf have much better accuracy rate than the
support measure. In particular, Heuristic HrelSupport has an accuracy rate
of 40% to identify one user among 150 with only one session. The smoothed
Bayes classifier has very good accuracy rate even with small anonymous set
of sessions but reaches a plateau with an accuracy of 85% for around 15
sessions in the anonymous set (see Fig. 6).

We recall that the design of our models depends on some others param-
eters such as the number of own patterns for each user, the maximal size of
these own patterns, the size of a session and the distance/similarity function.

5In our study a session contains 10 unique visited websites.
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All theses parameters can be set with our classifier.

Number of own patterns for each user. In the present study, we have
shown two major effects of increasing the number of own patterns to describe
each user. Firstly, if this number is smaller than 50 and if the anonymous
set of sessions contains only one session, then a significative number of these
sessions cannot be classified. Indeed, to classify a session (correctly or not)
the classifier needs to find at least one match between the profile vector
(seen as a list of patterns), and this anonymous session (See Fig. D.13 in
Appendix). Otherwise the vector is null. Secondly, as seen in Table 4 and 5
the distribution of own patterns according to size depends on their number.
The lesser the number of own patterns, the higher the proportion of small
size own patterns is.

Maximum size of own patterns. We have shown that we were able to
identify a user among 150 by extracting patterns of size one with HrelSupport

or Hc
tf−idf . However, an intuitive idea could be that with own patterns

of different sizes (between 1 and 7 for example) heuristics could extract
some very specific own patterns for each users and this way should be more
efficient. It is partially true. Specifically, when the anonymous set of sessions
is beyond 10 sessions Hc

tf−idf reaches an accuracy rate of 80% (see Fig. 6)
with patterns of different sizes (see Table 4) and is better than HrelSupport

with own patterns of size one. However, with few sessions in the anonymous
set, we can see in Fig. E.14 that increasing the maximum size slightly reduces
the accuracy. The possibility to choose the size of our patterns can give some
elements of semantic analysis, a feature that is desired in a fair number of
applications in the industry, such as profiling for users or behaviours.

Size of a session. As mentioned in [26] and other studies, we obtained the
best accuracy rate with sessions of 10 visited websites. There is no doubt
that the size of a session needs to be calibrated to the potential size of the
own patterns to be extracted. Indeed, the building-session process arbitrary
cuts the log after each 10 unique websites and this way may lose and spread
some valuable patterns across two different sessions.
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Similarity and distance functions. Finally, we compared performance of
different similarity functions and showed that for our study, Cosine and Dice
similarities present the best accuracy rate for all heuristics (see Fig. 9). The
Euclidean distance has average rate for Heuristic HsupMin and significantly
worse accuracy rate for Hc

tf−idf (see Fig. 8).

In the near term, our intention is to supplement the model by studying
some other own patterns selection criteria. Here, we can cite the stability
measure introduced in [11] and evaluated in [2] and [15]. In particular,
in a recent paper [16], Kuznetsov and Makhalova compare interestingness
measures of closed patterns including stability, some probabilistic estimates
of stability and robustness. It would be interesting to compare the accuracy
rate obtained by some heuristics based on these measures with the accuracy
rate obtained in the present study.

From a longer-term perspective, our goal is to extract some ordered
patterns. Indeed, in the present study, a session has been interpreted as
a set of visited sites and extracted own patterns are non ordered closed-
patterns. It seems intuitive that the order relation of visited websites should
provide more information to guess the user of a given anonymous set of ses-
sions. An ordered session is called a sequence in the literature and several
efficient algorithms have been designed specifically for their extraction (see
Algorithms GSP in [22] and Spade in [27]). However, the number of se-
quences which can be extracted from a given context is very large and, as
for the present study, some heuristics will have to be designed to select the
more relevant patterns.
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Appendix A. Lattice of closure system

Let SSimon be the set {bdeg, abcf, bdef, bcdf} of simon’s sessions. For
our running example, the size of each session is 4 instead of 10 in our ex-
perimental protocol. We give in Fig. A.10 the lattice of the closure system
ScSimon.

bcf bdf bde

abcf bcdf bdegbdef

∅

abcdefg

b

bf bd

Figure A.10: The Hasse diagram of the closure system Sc
Simon. The set bcf is a closed

3-pattern of Simon, and b is a closed 1-pattern.
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Appendix B. Performance comparison between Hsup and HrelSupport
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Figure B.11: Comparative performance of Hsup and HrelSupport. The number of sessions
of the anonymous set is on the X-axis and accuracy rate on the Y-axis. Number of users
is equal to 150. Measured values are smoothed on 10 executions.

Appendix C. Performance comparison Hsup, Hc
sup and Hc

supMin
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Figure C.12: Comparative performance of Hsup, Hc
sup and Hc

supMin. The number of
sessions of the anonymous set is on the X-axis and accuracy rate on the Y-axis. Number
of users is equal to 150. Measured values are smoothed on 10 executions.

Appendix D. Number of own patterns per user

The number of own patterns to be selected for describing each user is
an important parameter of our study. As an example, we have shown with
Table 4 and Table 5 that this parameter had an effect on the size of the
selected patterns. In the following diagram given in Fig. D.13 we give the
rate of anonymous set of sessions which they were able to be classify by the
classifier. However, the problem especially occurs with anonymous sets of
only one or two sessions. As an example, with one session and less than 20
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own patterns, the model classifies less than 60% of the anonymous set of
sessions. On the contrary, with more than 50 own patterns per user, the
model classifies 100% of the anonymous sets of three sessions or more.
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Figure D.13: The number of own patterns per user is on the X-axis and classified anony-
mous sets of sessions rate on the Y-axis. Number of users is equal to 150. Measured values
are smoothed on 10 executions.

Appendix E. Maximal size of own patterns
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Figure E.14: The maximal size of the own patterns is on the X-axis and accuracy rate
on the Y-axis. Number of users is equal to 150. Measured values are smoothed on 10
executions.
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Appendix F. The size of sessions
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Figure F.15: Accuracy rate of the Heuristic Hc
tf−idf with 140 closed own patterns and

their maximum size fixed to 7. For a given number of visited websites in the anonymous
set to be classify, the accuracy rate increases slightly if the size of the sessions decreases.
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