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Recognition of digital polyhedra with a fixed
number of faces is decidable in dimension 3
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Abstract. We consider a conjecture on lattice polytopes Q ⊂ Rd (the
vertices are integer points) or equivalently on finite subsets S ⊂ Zd, Q
and S being related by Q∩Zd = S or Q = conv(S): given the vertices of
Q or the list of points of S and an integer n, the problem to determine
whether there exists a (rational) polyhedron P ⊂ Rd with at most n
faces and verifying P ∩ Zd = S is decidable.
In terms of computational geometry, it’s a problem of polyhedral sepa-
rability of S and Zd \S but the infinite number of points of Zd \S makes
it intractable for classical algorithms. This problem of digital geometry
is however very natural since it is a kind of converse of Integer Linear
Programming.
The conjecture is proved in dimension d = 2 and in arbitrary dimension
for non hollow lattice polytopes Q [6]. The purpose of the paper is to
extend the result to hollow polytopes in dimension d = 3. An important
part of the work is already done in [5] but it remains three special cases
for which the set of outliers can not be reduced to a finite set: planar sets,
pyramids and marquees. Each case is solved with a particular method
which proves the conjecture in dimension d = 3.

Keywords: pattern recognition, geometry of numbers, polyhedral sep-
aration, digital polyhedron, hollow lattice polytopes

1 Introduction

The recognition of digital primitives is a classical task of pattern recognition
and digital geometry. It is usually question of recognizing digital primitives such
as digital straight segments, conics or more generally some families of shapes in
several dimensions. These problems can be stated in the following terms:

Problem 1 (Recognition(d,F , S)). Input: Let F be a family of subsets F of Rd
and S be a subset of Zd.
Output: Does there exists a set F of F verifying F ∩ Zd = S ?

We focus in this paper on the problem [Recognition(d,F , S)] where the fam-
ily F is a set of polyhedra with a prescribed number of faces. By denoting



Fig. 1. An instance of [Recognition(d,Pn, S)] is the given of dimension d (here d = 2),
a number of faces n (here n = 4) and a finite set of integer points. The problem is to find
a polyhedron P ⊂Pn with the prescribed number of faces containing S but no other
integer point: P ∩ Zd = S. The problem can be restated as a problem of polyhedral
separability [PolyhedralSeparability(d, n, S,Zd \S)] of S and its complementary Zd \S
by a polyhedron of Pn.

Pn the set of polyhedra of Rd defined as intersections of at most n linear
half-spaces (by convention, a polyhedron of Pn is in Pn+1), we investigate
[Recognition(d,Pn, S)] (Fig.1).

This problem [Recognition(d,Pn, S)] is mentioned in the review of open
questions in digital geometry [1]. Until 2015, it has been only investigated in di-
mension 2 with specific polyhedra such as squares and rectangles [7, 4, 10]. The
difficulty of [Recognition(d,Pn, S)] is that even its decidability is not straight-
forward. By definition, [Recognition(d,Pn, S)] enters in the class of problems of
polyhedral separability investigated in Computational Geometry:

Problem 2 (PolyhedralSeparability(d, n, S, T )).
Input: A dimension d, an integer n, a set S ⊂ Rd of inliers and a set T ⊂ Rd of
outliers.
Output: Find a polyhedron P ⊂ Pn such that all the points of S and none
point of T are in P : S ⊂ P ⊂ Rd \ T .

The problem [Recognition(d,Pn, S)] can be stated as [PolyhedralSeparabili
ty(d, n, S,Zd\S)] where the set of outliers T is the complementary of S in Zd. For
finite sets S and T , polyhedral separability can be solved in linear time if n = 1
[8] or in O((|S|+|T |) log(|S|+|T |)) if d = 2 for any n [3]. It becomes NP-complete
in arbitrary dimension even with n = 2 [9]. With any finite sets S and T , the
decidability of [PolyhedralSeparability(d, n, S, T )] is completely straightforward
but it is no more the case with the infinite set of outliers T = Zd \ S considered
for [Recognition(d,Pn, S)]. The problem is intractable for classical algorithms
of polyhedral separability.

This problem is however interesting because it is a kind of converse problem
of Integer Linear Programming [11]. In ILP, the input is a set of n linear in-
equalities and the purpose is to provide the integer points which satisfy them. In
[Recognition(d,Pn, S)], we have the set of integer points and we want to recover
a prescribed number of inequalities which characterize it. Although the geometry



of numbers provides a powerful framework to work on lattice polytopes, the clas-
sical algorithms of this field do not allow to solve directly [Recognition(d,Pn, S)].

We can however imagine a direct strategy by reducing the infinite set of
outliers T = Zd \ S to the subset of its minimal elements according to a partial
order relation “is in the shadow of” [6, 5]. The minimal elements of Zd \ S are
called the lattice jewels of S while the non minimal elements do not need to
be taken into account. This approach allows to prove the decidability of the
problem if the number of lattice jewels is finite. It holds in dimension d =
2 or in arbitrary dimension, if the polytope Q = conv(S) is not hollow (its
interior contains at least an integer point) [6]. In dimension d = 3, the hollow 3-
polytopes with a finite number of lattice jewels are characterized in [5]. For them,
[Recognition(3,Pn, S)] is also decidable. In this dimension, it just remains the
cases of the hollow 3-polytopes with an infinite number of lattice jewels (Fig.2),
namely if

– S is coplanar,

– or S is a pyramid of lattice height 1, namely the lattice width of S is 1 and
one of the two consecutive planar sections of S is reduced to a point,

– or S is a marquee: the lattice width of S is 1 and one of the two consecutive
planar sections of S in the thin direction is reduced to a segment.

Fig. 2. The three types of 3-polytopes S with infinitely many lattice jewels (thus the
decidability of [Recognition(3,Pn, S)] in dimensions d = 3 is an open question). On
the left, S is planar. In the middle, S is a pyramid of lattice height 1. On the right,
the lattice width of S is again 1 but one of its consecutive planar sections in the thin
direction is reduced to a segment. We refer to this case as a (circus) marquee.

In both cases, we provide an algorithm to decide [Recognition(3,Pn, S)] in
a finite time. It solves the last cases allowing to prove the following theorem:

Theorem 1. The problem [Recognition(3,Pn, S)] is decidable.

Sect.2 is devoted to the easiest cases of planar sets and pyramids while mar-
quees are investigated in Section 3.



2 Decidability for planar sets and pyramids

For planar set S of Z3, the strategy to solve [Recognition(3,Pn, S)] is to con-
sider the problem [Recognition(2,Pn, S)] in the sublattice of Z3 containing S.
If [Recognition(2,Pn, S)] admits no solution, neither [Recognition(3,Pn, S)].
If [Recognition(2,Pn, S)] has a solution P , then we have to expand P in a 3-
polytope without adding any integer point and by preserving the number of
faces.

2.1 Polytope’s expansion in higher dimensions

The following lemma is not easy to find in the state of the art may be while its
dual is trivial.

Lemma 1. Any polytope P of Rd with n ≥ d+ 2 faces is the planar section of
a polytope of Rd+1 with the same number n of faces (Fig.3).

Fig. 3. According to Theorem 1, any polytope of Rd with at least d + 2 faces is the
planar section of a polytope of Rd+1with the same number of faces.

Proof. Although its dual formulation is not far to be trivial, this sketch of proof
(Fig.4) is necessary to follow the proof of Lemma 2.

We assume that P is of full dimension in Rd. Otherwise, we proceed by
induction. Since P has n faces, the polar polytope P ∗ of P is the convex hull of
a finite set A ⊂ Rd of n points (we consider as origin O or pole an interior point
of P ) [12]. We can elevate the points of A in a set A′ of full dimension in Rd+1.
The intersection of the convex hull of A′ with the vertical line passing through
the origin is not reduced to a point (since the interior of the projection of the
convex hull of A contains the origin). It’s a segment. If it does not contain the
origin , we can translate A′ to obtain this property. It provides a polytope (P+)∗.
Its polar P+ is a polytope with n faces and P as planar section (Fig.4). ut

There is n degrees of freedom which allow to build an expanded polyhedron
with complementary constraints. We express it in the following lemma which
holds in general dimension but is given here for d = 2.

Lemma 2. Given a polytope P ⊂ R2 with n non parallel faces (n ≥ 4), embed-
ded in the plane z = 0 and a point X with zX 6= 0, there exists a pyramid PX

with n faces, X as apex, a basis as close as we want from P and P as planar
section of height z = 0.



Fig. 4. In a), we consider a d-polytope with n faces and n ≥ d+2. In b), we introduce its
polar polytope P ∗ for instance with respect to the barycenter of P . In c), we introduce
the elevation lines where we can move the vertices of P ∗. In d), we provide a vertical
expansion of P ∗ but the origin is not in the d + 1-polytope. In e), we translate it
vertically so that the origin enters in its interior. In f), we obtain a d + 1-polytope
(P+)∗ whose polar polytope has n faces and P as planar section.

Proof. The construction follows from the proof of lemma 1. The property that
P has no parallel faces means that there are no collinear vertices in its polar
polytope. We denote A the set of the vertices of P ∗. According to Carathéodory
Theorem, we can remove a vertex of A (it remains at least 3 vertices) and provide
a reduced set of vertice A′ with the origin in its convex hull. The condition of
non collinearity of the points of A guarantees that the origin is in the interior
of the convex hull of A′. Then we elevate the points of A′ at level +1 and send
the point of A \ A′ with a negative height h. This elevation puts the points in
the position of the vertices of a pyramid P ∗h ⊂ R3. There is a limit value h0 for
which the origin enters in the pyramid P ∗h. Its polar polyhedron with h < h0 is
a pyramid Ph with the prescribed horizontal section. We can change the apex
of Ph with linear transformations preserving the horizontal plane and send it to
X. And as h is tending to −∞, the lower face of the solution Ph -its basis- is
becoming closer and closer and as close as we want from P . ut

2.2 Proof of decidability for planar sets

We prove the decidability of [Recognition(3,Pn, S)] for planar subsets of Z3:

Lemma 3. If S is a finite planar set of Z3 and n ≥ 4, [Recognition(3,Pn, S)]
is decidable.

Notice that polyhedra with only n = 2 faces and a finite intersection with the
lattice Z3 exist but they are a bit pathological (they are planes with irrational
normal directions and an intersection with the lattice reduced to a point).

Proof. If S is reduced to a point or to a segment, the answer is positive for n ≥ 4.
Then we assume that the dimension of S is 2. We consider the sublattice of a



support plane HS of S. According to [5], [Recognition(d,Pn, S)] is decidable in
dimension d = 2. It allows to determine whether there exists a two dimensional
polyhedron P ⊂ HS with n faces separating S from the other integer points. If
there is no polyhedron of R2 solution in the sublattice, there exists no solution
in R3. If there is a polyhedron solution P , as S is finite, P is a polytope (the only
unbounded polyhedra of R2 having a finite intersection with Z2 have necessarily
a recession cone reduced to an irrational direction. It’s only possible if S is a
singleton). Then Lemma 1 allows to expand it in dimension 3. It provides a
solution of [Recognition(3,Pn, S)]. ut

2.3 Proof of decidability for pyramids

We prove the decidability of [Recognition(3,Pn, S)] for pyramids of Z3 of lattice
height 1:

Lemma 4. If S is an pyramid of Z3 of lattice height 1, [Recognition(3,Pn, S)]
is decidable (we assume n ≥ 4).

Proof. Up to an unimodular affine isomorphism preserving Z3, we can assume
that S is the union of a basis B in the horizontal plane z = 0 and the point
(0, 0, 1). We decompose the pyramid in its basis that we denote B and its vertex
y. The basis B is a planar set embedded in a plane HB . As for Lemma 3,
we consider the problem [Recognition(2,Pn, B)] in the sublattice of the plane
z = 0. If [Recognition(2,Pn, B)] is not feasible, neither [Recognition(3,Pn, S)].
Conversely if [Recognition(2,Pn, B)] has a solution P , we have to consider the
parallelism of the faces of P in order to provide a three dimensional solution.

If P has no parallel faces, then Lemma 2 allows to expand with a finite
number of computations P in a pyramid having (0, 0, 1) as apex and a basis
as close as we want from the plane z = 0. It allows to provide solutions whose
only integer points are (0, 0, 1) and the ones of B. In other words, the expan-
sion does not introduce any new integer point in the polytope. It proves that
[Recognition(3,Pn, S)] is feasible.

If P has parallel faces, we can perturb it to avoid the difficulty that it occurs.
By definition, a solution P of [Recognition(2,Pn, B)] contains all the points of
B and none point of Z2 \B. As it is compact, its minimal distance to Z2 \B is
strictly positive. It means that there exists an ε > 0 for which P and (1 + ε)P
are both solutions of [Recognition(2,Pn, B)]. The space between P and (1+ε)P
allows to move vertices and break the parallelism of the faces (Fig.5).

With a finite number of computations, we have reduced [Recognition(3,Pn, S)]
to [Recognition(2,Pn, B)] which is a decidable problem [6]. ut

3 Decidability for marquees

The approach to prove the decidability of [Recognition(3,Pn, S)] for marquees
can not be done just by considering its basis. Up to an affine isomorphism of Zd
sending S in a reference position, we can assume that the set S is covered by the



Fig. 5. In a), we consider a pyramid as instance of [Recognition(3,P4, S)] of basis B.
In b), we provide a two-dimensional solution P of [Recognition(2,P4, B)] but its faces
are parallel, which does not allow to use Lemma 2. In c), we can pertub P in P ′ in order
to break the faces parallelism by remaining between P and (1 + ε)P . Then Lemma 2
allows to expand P ′. The only new integer point in the expanded polyhedron is the
apex of the pyramid.

two consecutive planes z = 0 and z = 1 and that the section S1 of S is a segment
containing at least two integer points on the line passing through (0, 0, 1) in the
direction x. The section of S in the lower plane z = 0 is denoted S0. We are
interested in the width widthy(S0) of S0 in the y direction. We decompose the
proof of the decidability of [Recognition(3,Pn, S)] for marquees according to
the value of the width widthy(S0):

– if widthy(S0) = 0, the marquee S is a planar set (previously solved).
– if widthy(S0) = 1, the basis of the marquee is reduced to two consecutive

segments in the x direction. It is a particular case to which we refer as a
prism (Fig.6).

– if widthy(S0) ≥ 2, we have a general case which requires some specific work.

3.1 Decidability for prisms

The problem for prisms is particular because there are three lines of lattice jewels
(the three lines in the x direction passing through the points (0,−1, 1), (0, 1,−1)
and (0, 1, 1)) but it is easy to solve. They are intersections of a tetrahedron with
the lattice:

Lemma 5. If S ⊂ Z3 is a prism namely a finite set unimodularly equivalent to
the union of three segments in the x direction passing through the three points
(0, 0, 0), (0, 1, 0) and (0, 0, 1), then [Recognition(3,Pn, S)] is feasible for any
n ≥ 4.



Fig. 6. In a), we consider a prism S contained by three lines in the x direction and
passing through the points (0, 0, 0) (red), (0, 1, 0) (blue) and (0, 1, 0) (green). In b) we
introduce a vertex Q (red) on a line in the x direction passing through the interior of the
prism. We build a tetrahedron TQ containing S. In c), we notice that by construction,
the spike (the right part of the tetrahedron in red) can not contain any integer point.
By choosing Q far enough, we can guarantee that the tetrahedron does not contain
other integer points than the ones of the prism.

Proof. Notice that the notion of prism has here a very precise meaning. We
introduce a vertex Q on a line in the x direction crossing the interior of the
prism. Then we consider the tetrahedron containing S, with Q as apex and
the plane of the opposite face of Q in the prism as basis (Fig.6). We choose a
first position of Q0. The corresponding tetrahedron TQ0 might contain a finite
number of unwanted integer points (the important point is here that it is finite).
Then we push Q far enough to remove these integer points from the tetrahedron
TQ. The key-point is that by driving away the point Q in the x direction, the
spike is increasing but by construction, it does not contain any integer point.
The rear part of the tetrahedron is decreasing. It means that by choosing Q far
enough, we can exclude all the unwanted integer points from TQ.

3.2 Strategy for general marquees

It remains to establish the decidability of [Recognition(3,Pn, S)] for the general
marquees.

Lemma 6. If S ⊂ Z3 is a marquee and not a prism, then [Recognition(3,Pn, S)]
is decidable.

Before sketching a proof of Lemma 6, let us consider the particular case where
the basis S0 is of dimension 1. The marquee is made of two segments whose
convex hull is a tetrahedron. In this case, the convex hull of S is a solution
of [Recognition(3,Pn, S)] for any n ≥ 4. In the remaining case, a first result
provides a localization of an infinite set of the lattice jewels of S (Fig.7).

Lemma 7. For a finite marquee S ⊂ Z3 which is not a prism, with a non degen-
erated basis and placed in the reference position, we denote T− = {(k,−1, 1)|k ∈
Z} and T+ = {(k, 1, 1)|k ∈ Z} (Fig.7). We have two properties:



– For any k ∈ K, the points (k, 1, 1) and (k,−1, 1) are lattice jewels of S.
– The set of the other jewels T 0 = jewels(S) \ (T− ∪ T+) is finite.

Fig. 7. On the left a marquee which is not a prism and on the right, the sets of points
T− and T+ are the two main sets of lattice jewels (with a finite number of other integer
points not colored here).

The proof of Lemma 7 is based on the same arguments of compacity than
the ones used in [5] but due to the lack of space, it is absent from the paper.

Let us prove now Lemma 6 in the case of a basis S0 of dimension 2:

Proof. The approach provided in [6, 5] allows to reduce [Recognition(3,Pn, S)]
to [PolyhedralSeparability(3, n, S, jewels(S))]. With Lemma 7, we rewrite it [Poly
hedralSeparability(3, n, S, T 0 ∪ T− ∪ T+)]. Then the strategy is to process dif-
ferently with the constraints coming from S and T 0 than for the ones excluding
the points of T− and T+.

As T 0 is finite, the problem [PolyhedralSeparability(3, n, S, T 0)] is decidable.
The first key point is to decompose [PolyhedralSeparability(3, n, S, T 0)] in n in-
stances [PolyhedralSeparability(3, n, S, Ti)] with an index i going from 1 to n
where the sets Ti define a partition of T . We notice that any solution P of
[PolyhedralSeparability(3, n, S, T 0)] is the intersection of n half-planes Hi re-
spectively solutions of some instances [PolyhedralSeparability(3, n, S, Ti)] where
the sets Ti define a partition of T . Conversely, since any solution can be de-
composed in this way, our strategy is to consider all the partitions of T 0 in
sets Ti. Given such a partition, each one of the n half-space Hi has to be
chosen in a set of half-spaces Ki defined by the linear constraints expressing
[PolyhedralSeparability(3, n, S, Ti)]. By denoting aix+biy+ciz ≤ hi an equation
of the half-space Hi, the set Ki is a convex cone defined by the linear inequalities
aiu + biv + ciw ≤ hi where (u, v, w) is in S and aiu

′ + biv
′ + ciw

′ > hi where
(u′, v′, w′) is in Ti. Choosing the n half-spaces Hi in Ki guarantees that their
intersection contains S and no point of T 0. The separation from S and T 0 being
already taken into account, it remains to add the constraints of exclusion of the
points of T− and T+.

The restriction of Hi to the lines z = 1 and y = δ with δ = ±1 (these
two lines contain respectively T− and T+) is given by the linear inequalities



Hi : aix+ biδ + ci ≤ hi. Our task is to determine coefficients ai, bi, ci and hi in
each Ki so that no integer x ∈ Z with δ = +1 or −1 satisfies the n conditions.

The sets Ki are polyhedral cones in the space of dimension 4 of coordinates
(ai, bi, ci, hi). They can be described by their three sections by the hyperplanes
ai = 1, ai = 0 or ai = −1. The section of Ki with the hyperplane ai = α is
denoted Kα

i with α = −1 or 0 or +1.

For ai = 1, the linear inequality becomes Hi : x ≤ hi − biδ − ci with linear
constraints on the coefficients hi, bi and ci. For ai = 0, we have Hi : 0 ≤
hi−biδ−ci and for ai = −1, x ≥ biδ+ci−hi. Our problem is to decide if we can
choose the coefficients ai equal to −1, 0 or 1 and the coefficients hi, bi and ci so
that we can exclude all the points of T− and T+ namely all the integers x with
δ ∈ {−1, 1}. We can decompose again the problem in the following questions:

1. given Ki, does there exist an half-space in K0
i excluding all the points of

T+? of T−? of both ?

2. given Kα
i and K−αj with i 6= j, does there exist a pair of half-spaces in

Kα
i × K−αj excluding all the points of T+ ? of T−? of both ? (α and −α

because their orientation in the direction x should not be the same) ?

3. given Kα
i , K−αj and K−αj′ with different indices, does there exist a triplet of

half-spaces excluding T− and T+?

4. same questions with a pair excluding T+ and a pair excluding T−, but it
can be reduced to the second question.

There is no reason to increase the size of the tuple considered in these questions,
because if three intervals of the form ]∞, β] and [γ,+∞[ and [γ′,+∞[ are ex-
cluding the integers, one of them is redundant. Then if we cannot exclude T+

(or T−) with two half-spaces, we cannot exclude them at all.

The case 1 is solved by comparing hi − biδ− ci to 0 with δ = +1 for T+ and
δ = −1 for T−.

Let us focus now on the case 2. The equation of Hi can be rewriten x ≤
−biδ + di with di = hi − ci for Hi ∈ K+1

i and x ≥ bjδ − dj for Hj ∈ K−1j with
dj = hj − cj . By replacing the coordinates c and h by the coordinate d = h− c,
we proceed to a projection of the convex sets Kα

i . Its image by this projection
in the space of parameters (b, d) is denoted K ′αi . It is a two-dimensional convex
set described by a finite number of inequalities which can be obtained from the
inequalities characterizing Kα

i by Fourier-Motzkin elimination.

We notice now that two constraints issued from K+1
i and K−1j exclude T+

if and only if there is no integer x verifying bjδ − dj ≤ x ≤ −biδ + di for
δ = +1. We can determine the existence of such pair of points (bi, di) ∈ K ′+1

i

and (bj , dj) ∈ K ′−1j by computing the maximum max+
+1
i and max+

−1
j of b− d

for (bi, di) ∈ K ′+1
i and (bj , dj) ∈ K ′−1j . It follows that T+ can be excluded

by a pair of constraints coming from K+1
i and K−1j if and only if the interval

[max+
+
j ,−max+

+
i ] does not contain any integer. This last question can be solved

by Linear Programming (a similar approach holds for T− with −b − d instead
of b− d).



Fig. 8. In the cases 2) and 2’), excluding all the outliers of T+ with two half-spaces
in K+1

i and K−1
j is equivalent with finding a pair of points (bi, di) ∈ −K′+1

i and

(bj , dj) ∈ K′−1
j with no integer x verifying bj − dj ≤ x ≤ −bi + di. It’s not possible in

2) because there is a diagonal line b−d = x ∈ Z with K′−1
j above and −K′+1

i below. It
is possible in 2). This possibility is determined by the extreme points in the diagonal
direction namely the result of the comparison of dmax+

+
j e and −max+

+
i . In the cases

3) and 3’), we deal with the possibility to exclude all the outliers of T− and T+ with
only three constraints coming from the sets K+1

i , K−1
j and K−1

j′ . We can compute a

quadrant Q determined by the extreme points of K′−1
j and K′−1

j′ and determine its

intersection with K′+1
i . The outliers of T− ∪ T+ can all be excluded in this manner iff

the intersection is non empty (as in 3) and not in 3’)).

We end the proof with the case 3. In order to determine whether three
constraints coming from K ′+1

i , K ′−1j and K ′−1j′ can exclude T− and T+, we
use Linear Programming in the same manner. We compute again the max-
imum max+

−1
j of b − d for (bj , dj) ∈ K ′−1j and the maximum max−

−1
j′ of

−b − d for (bj , dj) ∈ K ′−1j . Then, we determine whether the set −K ′+1
i has

a non empty intersection with the quadrant Q = {(bi, di) ∈ R2| − bi + di <
dmax+

−1
j e and bi + di < dmax+

−1
j e}. It can be done with a linear program. ut

3.3 Perspectives

We have proved the decidability of the recognition of digital polyhedra [Recogni
tion(3,Pn, S)] in dimension 3. This result is weak and the three cases considered
in the paper can be considered as marginal. They are not because they require



to deal with an infinite number of irreducible constraints but we have proved
that by using their geometry, it is possible to decide in a finite time.

The reader can however believe that this standalone approach is not appropri-
ate and that some known results coming from the lattice polytope’s theory allow
to prove stronger results with less work. The problem [Recognition(d,Pn, S)] is
a kind of converse of Integer Linear Programming but the idea that some kinds
of ILP approaches could avoid the difficulty requires more than an intuition. One
of the most interesting results related with the conjecture could be the existence
of the finiteness threshold width [2]: for larger width than the threshold denoted
w∞(d) (we have for instance w∞(3) = 1), there exists only a finite number of
lattice polytopes (up to lattice preserving affine isomorphisms) containing a pre-
scribed number of integer points. Such a deep result could be used to prove that
for lattice polytopes Q verifying width(Q) > w∞(d), the number of lattice jewels
is finite which makes the problem decidable. It remains the mystery of what hap-
pens below the threshold namely exactly where infiniteness occures. We can at
last notice that as for the conjecture of decidability of [Recognition(d,Pn, S)]
which is unsolved in dimension d ≥ 4 for hollow polytopes, the infiniteness
threshold width is also related with hollow polytopes... It can explain that for
this specific class of objects, the decidability of [Recognition(d,Pn, S)] which
seems to be a so weak question remains challenging.
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