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Abstract The recognition of primitives in digital ge-

ometry is deeply linked with separability problems. This

framework leads us to consider the following problem of

pattern recognition : Given a finite lattice set S ⊂ Zd
and a positive integer n, is it possible to separate S

from Zd\S by n half-spaces? In other words, does there

exist a polyhedron P defined by at most n half-spaces

satisfying P ∩Zd = S? The difficulty comes from the in-

finite number of constraints generated by all the points

of Zd \ S. It makes the decidability of the problem non

straightforward since the classical algorithms of polyhe-

dral separability can not be applied in this framework.

We conjecture that the problem is nevertheless de-

cidable and prove it under some assumptions: in arbi-

trary dimension, if the interior of the convex hull of S

contains at least one lattice point or if the dimension d

is 2 or if the dimension d = 3 and S is not in a specific

configuration of lattice width 0 or 1. The proof strat-

egy is to reduce the set of outliers Zd \S to its minimal

elements according to a partial order “is in the shadow

of ”. These minimal elements are called the lattice jew-

els of S. We prove that under some assumptions, the set

S admits only a finite number of lattice jewels. The re-

sult about the decidability of the problem is a corollary

of this fundamental property.
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1 Introduction

Digital geometry is focused on lattice sets (subsets of

the lattice Zd). Some of these sets are considered as

the digital counterparts of the classical figures of the

Euclidean geometry. They are called digital primitives

and can be obtained by the digitization of the usual

Euclidean figures [28]. There exists however a class of

digital primitives which has been neglected in the past

years: the digital triangles, quadrilaterals, pentagons...

or more generally, the digital polyhedra. We define here

a digital polyhedron as the intersection of a real poly-

hedron P of Rd and the lattice Zd. The set P ∩ Zd is

sometimes called the Gauss digitization of the polyhe-

dron P .

The study of the relationship between lattices and
polyhedra is an mathematical field investigated since

Hermann Minkowski at the end of the nineteenth cen-

tury. The geometry of numbers provides many combi-

natorial results regarding the integer points in ratio-

nal polytopes (a rational polytope is a polytope whose

vertices are not necessarily on the integer lattice but

have rational coordinates), in real polytopes (the ver-

tices may have irrational coordinates) or in lattice poly-

topes (the vertices are integer points). Many of these

results, from Pick’s theorem [38] to Ehrhart’s polyno-

mials [19] or Barvinok’s algorithm [6] are focused on

the cardinality of the set of integer points in a poly-

hedron [7]. There exist also many other results dealing

with the relations between a rational polytope P and

the convex hull P ′ of its interior integral points, for in-

stance regarding the maximal number of vertices of P ′

according to the inequalities defining P [5,14].

Since the sixties, a deep interest on these combinato-

rial issues comes from computer science and more pre-

ciselly the field of Integer Linear Programming which
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is widely used in Operations Research. In Integer Lin-

ear Programming, a rational polyhedron is described by

rational linear inequalities, and the problem is to pro-

vide some of its interior integer points if any [43]. We

can remind to the reader that this class of problems is

NP-complete while it can be solved in polynomial time

in a fixed dimension [30]. One of the main tools used

to prove this result is the notion of lattice width which

plays also an important role in the following results.

1.1 Problem statement

We start with a classical problem regarding the recog-

nition of digital primitives:

Problem 1 (Digital Recognition: Reco(d,F , S))

Input: A dimension d, a family F of subsets F ⊂ Rd
and a subset S of Zd.
Output: Does there exists a shape F in F such that

F ∩ Zd = S?

The aforementioned problem [Reco(d,F , S)] lies in

the field of Pattern Recognition. The recognition of dig-

ital primitives has been investigated for several families

of shapes, such as digital straight segments in dimension

2 [11,17,31,16,42,45], pieces of digital planes in dimen-

sion 3 or hyperplanes in dimension d [10,24,25,39], cir-

cular arcs [13,35,47] or generic primitives in higher di-

mensions [2,3,8,9,21,26,40,46,47]. The problem of the

recognition of the digital circles in dimension 2 can for

instance be denoted [Reco(2,F , S)] with a set of annuli

as set F [3].

The purpose of the paper is to investigate the case

where the family of shapes F is a set of polyhedra

of Rd. We denote P the set of all polyhedra of Rd
and Pn the set of the polyhedra of Rd defined by at

most n linear inequalities. For any integer n, we have

of course the inclusion Pn ⊂ Pn+1. If we fix the di-

mension d = 2 and the number of faces n = 3, the

problem [Reco(2,P3, S)] is for instance to provide a tri-

angle having a prescribed intersection S ⊂ Z2 with the

lattice (Fig.1). The general problem [Reco(d,Pn, S)]

is one of the open problems mentioned in [4]. There

exists some recognition algorithms for more restricted

classes of polyhedra in dimension 2 such as squares [22,

34] and rectangles [29]. In any cases, the recognition

of a class of digital primitives benefits from the prop-

erties of the intersections of the shapes of F and the

lattice. A property of connectivity allows for instance

to reduce the problem of recognition to a neighborhood

of S. This makes most digital primitives recognition

problems much easier than [Reco(d,Pn, S)].

Fig. 1 On the left, an instance of [Reco(d,Pn, S)] with
d = 2 and n = 3: a finite lattice set S ⊂ Z2 is given and the
problem is to find a polyhedron P with at most 3 faces i.e
a triangle satisfying P ∩ Z2 = S. A solution is drawn on the
right. It is a polyhedron with the prescribed number of faces
separating the points of S from the other lattice points.

At last, we notice that the problem [Reco(d,Pn, S)]

is somehow the converse of Integer Linear Program-

ming. The input is a set of integer points S and the

problem is to find a polyhedron with a prescribed num-

ber of faces and S as set of interior integral points. Some

other classes of polyhedra could be considered, for in-

stance with constraints on their number of vertices or

with other complexities (total number of faces of any

dimension).

1.2 Polyhedral separability

A solution of an instance [Reco(d,Pn, S)] is a polyhe-

dron with at most n faces separating S from the inte-

ger points outside S. Polyhedral separability has been

intensively investigated in the framework of computa-

tional geometry:

Problem 2 (Polyhedral Separability: PolySep(d,

Pn, S, T ))

Input: A dimension d, an integer n and two subsets S

and T of Rd.
Output: Find a polyhedron P ∈ Pn with S ⊂ P and

P ∩ T = ∅ (Fig.2).

In other words, we have two sets of points: a set S

of inliers and a set T of outliers. The problem is to find

a polyhedron P ∈Pn, containing S and with an empty

intersection with T . The problem [Reco(d,Pn, S)] can

be reformulated as [PolySep(d,Pn, S,Zd \ S)].

If we fix the number of faces n to 1, then a solution

of an instance [PolySep(d,P1, S, T )] is an hyperplane

separating S and T . This problem can be expressed as

a system of linear constraints (one constraint per point

of S ∪ T ) and solved by Linear Programming. It can

be solved in pseudo-polynomial time or in a worst-case

linear time complexity in the number of points if the

dimension d is fixed [32].
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Fig. 2 On the left, an instance of [PolySep(d,Pn, S, T )]
with d = 2 and n = 5. We have a set S of inliers and a set T
of outliers. A solution, drawn on the right, is a polyhedron P
with at most n faces containing S but no point of T .

In dimension d = 2, an algorithm with a worst-case

complexity in O((|S| + |T |) log(|S| + |T |)) solves the

problem [PolySep(2,Pn, S, T )] for an arbitrarily large

number n of faces in polynomial time [18].

In arbitrary dimension, [PolySep(d,Pn, S, T )] is NP-

complete, even with a number of faces restricted to

n = 2 [33].

As far as we know, the worst-case time complexity of

the class of problems [PolySep(3,Pn, S, T )] in dimen-

sion d = 3 is an open question. There exists however

very close results in the framework of nested polyhedra.

In this class of problems introduced by Victor Klee [37],

the two sets of points S and T given in the input are

replaced by two polyhedra Psmall and Pbig [12]. The

solution P has to contain Psmall and be contained by

Pbig. This last condition P ⊂ Pbig can be rewritten

P ∩ (Rd \ Pbig) = ∅. It means that the complementary

Rd \ Pbig plays the role of the set of outliers T . It is

however no more a finite set as considered in previous

results of polyhedral separability. The computation of

nested polyhedra can be solved efficiently in dimension

d = 2 [1], and is NP-complete for larger dimensions

d ≥ 3 [15].

1.3 On decidability

Whatever the worst-case time complexity of polyhe-

dral separability, it can be easily proved that any in-

stance [PolySep(d,Pn, S, T )] is decidable for finite sub-

sets S and T . A brute-force approach is to consider

all partitions of T in n subsets T = ∪ni=1Ti and for

each set Ti use a Linear Programming algorithm solv-

ing [PolySep(d,Pn=1, S, Ti)]. This approach does not

work with an infinite set T of outliers. Unfortunately, by

rewriting the problem [Reco(d,Pn, S)] as an instance of

polyhedral separability [PolySep(d,Pn, S,Zd \ S)], the

set of outliers T = Zd\S is not finite. It makes the prob-

lem intractable for the usual algorithms of polyhedral

separability. The infinite number of outliers does not al-

low to guarantee that any instance [Reco(d,Pn, S)] is

decidable. Unlike to a remark of [4], the decidability of

the problem in dimension d = 2 is only granted by Min-

DSS algorithms [20] in some usual cases without acute

angles but not in particular cases, especially if the set S

is non connected. Even for triangles in dimension 2, the

decidability of [Reco(2,P3, S)] is not obvious (Fig.3).

Fig. 3 A finite lattice set S ⊂ Z2 (in black) and the set
T 4 ⊂ Z2 \ S of its outer 4-neighbors. There exists triangles
containing S and no 4-neighbor of S: the red triangle is a
solution of [PolySep(d,Pn=1, S, T 4)] but it is not a solution
of [Reco(d,Pn, S)] because it contains lattice points outside
S and its boundary (in yellow).

Although the decidability of most problems of com-

putational geometry is usually rather easy to obtain,

the infinite cardinality of the lattice makes the one of

[Reco(d,Pn, S)] non trivial. Each integer point outside

S is by itself a constraint. It makes the problem much

harder than it seems at first glance.

1.4 Overview of the conjectures and results

We conjecture that the recognition of digital polyhedra

with a given number of faces is decidable:

Conjecture 1 (Main Conjecture)

The problem [Reco(d,Pn, S)] is decidable for any finite

subset S ⊂ Zd.

We prove the conjecture under some complementary

assumptions: the problem [Reco(d,Pn, S)] is decidable

if

– the interior of the convex hull of S contains at least

one lattice point, or

– d = 2, or

– d = 3 with sets S of lattice width width(S) equal to

1 avoiding the specific configurations enumerated in

Theorem 3, or

– d = 3 with sets S having a lattice width width(S)

larger than or equal to 2.

It means that the decidability of [Reco(d,Pn, S)]

remains an open problem if d > 3 with sets S such that

the interior of the convex hull does not contain any

lattice point or in dimension 3, for the specific config-

urations of Theorem 3. These results come from prop-

erties of particular points called the lattice jewels of S.
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They are the minimal elements of a partial order rela-

tion “is in the shadow of ”. We prove that except in the

cases enumerated in Theorem 3, the set S has only a

finite number of such points. With this result, it is easy

to provide an algorithm for [Reco(d,Pn, S)] with the

guarantee that it always finishes.

In Sec. 2, we present the main conjectures and re-

sults. In Sec. 3, we introduce the shadow, the jewels

and the crown. In Sec. 4, we provide theorems about

the number of lattice jewels while the last section is

devoted to the proofs of decidability.

2 Conjectures and results

2.1 Conjectures

Conjecture 1 is the main conjecture of the paper. It

claims the decidability of [Reco(d,Pn, S)] for any finite

subset S ⊂ Zd and any integer n.

We introduce a second conjecture regarding the ex-

istence of rational solutions for any instance [Reco(d,

Pn, S)]. We denote PQ the set of rational polyhedra

and PQ
n the set of rational polyhedra defined by at

most n rational linear inequalities.

Conjecture 2 (Rational solutions)

Given a finite set S ⊂ Zd of cardinality at least 2,

if the instance of Digital Recognition [Reco(d,Pn, S)]

has a solution P , then it admits a solution P ′ ∈ PQ
n

([Reco(d,PQ
n , S)] has also a solution).

In other words, Conjecture 2 means that if there

exists a solution, there exists a rational one. The con-

jecture excludes the singletons because it would be false
by including them. If we consider for instance the set

S = {(0, 0)}, the instance [Reco(2,P2, S)] has a solu-

tion with the real polyhedron P defined by the linear

inequalities x +
√

2y ≤ 0 and x +
√

2y ≥ 0 (P is the

straight line x +
√

2y = 0 of irrational slope) while it

admits no rational solution (in PQ
2 ). The strategy to

prove such a result is usually to obtain a property that

the set of the solutions is open. it allows to find a ratio-

nal solution in the neighborhood of a real one, but we

don’t have such a topological property here. It makes

Conjecture 2 difficult to prove.

2.2 Results

The main result of the paper is the following theorem

which proves Conjecture 1 under some complementary

assumptions.

Theorem 1 The problem [Reco(d,Pn, S)] is decidable

if

– d = 2

– d = 3 and width(S) ≥ 2,

– d = 3 and widthu(S) = 1 and the property that the

two planar sections S ∩ {x ∈ Z3|u.x = h} of S in

the consecutive planes u.x = h and u.x = h+1 with

u ∈ Z3 and h ∈ Z covering S are of dimension 2

(Fig.4),

– or in arbitrary dimension, if the interior of the con-

vex hull of S contains at least one lattice point.

Fig. 4 For some finite lattice sets S ⊂ Z3 in dimension d =
3, the decidability of [Reco(3,Pn, S)] is not given by Theorem
1. It is for instance the case of the two ”pyramids” above.
Their lattice width is 1 (they are covered by two consecutive
horizontal planes) but the planar section of S in the upper
plane is reduced to a point (on the left) or to a segment (on
the right). These particular sets have an infinite set of lattice
jewels (see Fig.14 and Fig.15). It does not allow to obtain
their decidability as in other cases of Theorem 1.

This result is presented in [23] for dimension d = 2

and sets S with a convex hull containing an integer

point in their interior. It was not given in dimension

d = 3. The proof of Theorem 1 is given in Sec. 5. It is

based on the fundamental result that under some as-

sumptions, the set S has only a finite number of lattice

jewels. These theorems are proved in Sec. 4.2 in dimen-

sion d and in Sec. 4.3 for a complete characterization

in dimensions 2 and 3. The question of the decidabil-

ity of [Reco(d,Pn, S)] remains open even in dimension

d = 3, for the sets S which are not full-dimensional or

with a lattice width widthu(S) = 1 and a degenerated

section in one of the two consecutive planes of normal

direction u crossing S (Fig.4). For readers which are

not interested in decidability but in this specific notion

of jewels, theorems 2 and 3 are the main contribution

of the paper.

3 The shadow, the jewels and the crown

We have already noticed that the class of problems

[Reco(d,Pn, S)] can be written [PolySep(d,Pn, S, T )]

with T = Zd \ S namely the lattice points which are

not in S. The difficulty to provide an algorithm comes

from the infinite cardinality of Zd \ S. The goal of this

section is to prove that we can reduce the outliers to a

set of points that we call the lattice jewels of S. Then
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the decidability of [Reco(d,Pn, S)] can be obtained in

the case where there are only finitely many lattice jew-

els. The investigation of this property requires first to

introduce the notion of shadow.

3.1 The shadow of a point

We place us in a general framework where S is a subset

of Rd. Its convex hull is denoted conv(S). We define the

shadow of a point x ∈ Rd relatively to S as the set of

points which are hidden by x:

Definition 1 Given S ⊂ Rd and x ∈ Rd, the shadow

of x relatively to S is the set of points y ∈ Rd whose

convex hull with S contains x (Fig.5):

shadowS(x) = {y ∈ Rd|x ∈ conv(S ∪ {y})}. (1)

Fig. 5 Above, the shadow of a point x according to S. Below,
according to the definition, a point y is in the shadow of x if
x is in the convex hull conv(S ∪ {y}) (in green).

If x is in the convex hull of S, its shadow is the

whole space Rd. The definition is interesting only if the

point x does not belong to the convex hull of S. We

provide another characterization of the shadow of x:

Lemma 1 Let S be a subset of Rd and x, y two points

of Rd. The point y belongs to the shadow of x if and

only if they are equal or if the half-line starting from x

in the direction of x − y crosses the convex hull of S

(Fig.6).

Fig. 6 A point y is in the own shadow (in grey) of x rela-
tively to S if and only if the half-line (in green) starting from
x in the direction of x − y crosses the convex hull of S (in
blue).

Proof In the case where x = y, by definition a point

is in its shadow. If x and y are different and the half-

line starting from x in the direction x − y crosses the

convex hull of S, then x is in the convex hull of the

union S ∪ {y}. It proves that y is in the shadow of x.

For the converse, we consider two cases: if x is in

the convex hull of S, the shadow of x is the whole

space Rd and the proposition is trivial. Otherwise, we

use Caratheodory’s theorem. By definition, y is in the

shadow of x if the convex hull of {y} ∪ S contains x.

It follows from Caratheodory’s theorem that x is the

barycenter of a finite subset of {y}∪S: there exists d+1

reals λk ∈ [0, 1] and d + 1 points xk ∈ S with a sum∑d
k=0 λk = 1 and satisfying x =

∑d
k=0 λkxk. Since x is

not in the convex hull of S, y is one of the xk, let us say

x0. It leads to x− λ0y =
∑d
k=1 λkxk. After reorganiza-

tion, we have x+ λ0∑d
k=1 λk

(x−y) = 1∑d
k=1 λk

∑d
k=1 λkxk.

The expression x + λ0∑d
k=1 λk

(x − y) determines a point

of the half-line issued from x in the direction of x − y
while 1∑d

k=1 λk

∑d
k=1 λkxk is a point of the convex hull

of S. It proves the second direction of the lemma. ut

The shadow of a point has many properties. If S

is finite, the main one is to be a polyhedral cone with

x as vertex. It can be seen geometrically: we have the

polyhedral cone containing all the half-lines issued from

x and crossing a point of the convex hull of S. According

to Lemma 1, the shadow of x is its symmetric with

respect to x (Fig.7)

3.2 The binary relation ”is in the shadow of”

We consider now the binary relation ”is in the shadow

of”. We denote it with a triangle .S or /S indexed by the

set S: y is in the shadow of x is denoted y .S x or equiv-
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Fig. 7 The blue polyhedral cone is the union of the half-
lines issued from x and crossing the convex hull of S. The
shadow of x is its symmetric with respect to x.

alently x/S y. The relation /S has interesting properties

that we can summarize in the following proposition:

Property 1 The binary relation “is in the shadow of”

noticed .S is a partial order on the complementary Rd\
conv(S) of the convex hull of S.

Proof The relation is reflexive: by definition x is in the

shadow of x.

The transitivity means that if x /S y and y /S z,

then we have x /S z. We use Lemma 1 to prove it. We

denote px(y) a point of the convex hull of S crossed

by the half-line issued from x in the direction of x− y.

We denote py(z) a point of the convex hull of S crossed

by the half-line issued from y in the direction of y − z
and our goal is to prove the existence of a similar point
px(z) of the convex hull of S crossed by the half-line

issued from x in the direction of x− z. This result is an

exercise of planar geometry illustrated Fig.8 (we let to

the reader).

Fig. 8 The transitivity of the partial order relation /S comes
from the possibility to build a point px(z) in the intersection
of the convex hull of S and the half-line issued from x in the
direction of x−z. The existence of this point can be obtained
from the existence of similar points px(y) and py(z).

The antisymmetry means that x /S y and y /S x

implies x = y. It is not true if x and y are in the convex

hull of S. If the two points are different, according to

Lemma 1, it follows from x /S y and y /S x that both

half-lines issued from x in the direction of x − y and

issued from y in the direction y − x contain a point of

the convex hull of S. It follows that the line xy contains

a point of the convex hull of S on both sides of the

segment [x, y]. We obtain that x and y are both in the

convex hull of S, which is a contradiction if we consider

points outside from it. ut

The transitivity of the partial order /S means ex-

actly that if a point y is in the shadow of x namely

x /S y, then the shadow of y is included in the shadow

of x.

3.3 The shadow of a set of points

The notion of shadow can be easily extended to sets of

points. The shadow of a set T is defined as the union

of the shadows of its elements:

shadowS(T ) =
⋃
x∈T

shadowx(T ).

It follows from the transitivity of the partial order /S
that the shadow of T is fully determined by its min-

imal elements according to /S . We call these minimal

elements the jewels of T (Fig.9):

Definition 2 Let S and T be two subsets of Rd. A

point x ∈ T is a jewel of T if there exist no point

x′ ∈ T satisfying x′ /S x. We denote jewelsS(T ) their
set.

The jewels of T are the counterparts of the vertices

of the convex hull of S on the side of T . By construction,

we can reduce the problem of polyhedral separability of

two sets S and T to the polyhedral separability of S and

the set of the jewels of T :

Lemma 2 Let S and T be two subsets of Rd. The in-

stance of polyhedral separability [PolySep(d,Pn, S, T )]

is equivalent to the reduced instance [PolySep(d,Pn, S,

jewelsS(T ))] where the set of outliers T is reduced to

the jewels jewelsS(T ) of T .

Proof Let P be a polyhedron solution of [PolySep(d,

Pn, S, T )]. As the set jewelsS(T ) is a subset of T , P is

also a solution of [PolySep(d,Pn, S, jewelsS(T ))].

In order to prove the converse, we assume that P is a

solution of [PolySep(d,Pn, S, jewelsS(T ))] and not a so-

lution of the complete instance [PolySep(d,Pn, S, T )].

It follows that P contains a point x of T which is not a



About the decidability of polyhedral separability in the lattice Zd 7

jewel of T . Then there exists a jewel x′ ∈ T with x′/Sx.

By definition of the shadow, the jewel x′ is in the convex

hull of S∪{x}. As S∪{x} is included in the polyhedron

P , it follows from the convexity of P that the jewel x′

is also in P . It is in contradiction with the assumption

that P is a solution of [PolySep(d,Pn, S, jewelsS(T ))]

. ut

Lemma 2 is not only true for polyhedra. As it can

be noticed by reading the proof, it holds for any family

of convex shapes F : Any instance of separability of

inliers and outliers by convex shapes is equivalent to

a reduced instance where the outliers are reduced to

the jewels jewelS(T ). This approach has been used for

instance in the framework of digital circles recognition

in [13] where the set of the outliers is reduced to its

subset of jewels.

In order to complete the medieval glossary, we in-

troduce the crown of S relatively to T . It is the com-

plementary of the convex hull of S and the shadow of

T :

Definition 3 Let S and T be two subsets of Rd. The

crown of S with respect to T is the set of points x ∈ Rd
such that the convex hull of the union of S with {x}
has an empty intersection with T (Fig.9 and 10):

crownT (S) = {x ∈ Rd|T ∩ conv(S ∪ {x}) = ∅}.

Fig. 9 The partition of the space Rd in the convex hull of
S (blue), the crown (white) and the shadow of T (grey). The
set T contains the red and black points. The red ones are
the minimal elements of T according to the partial order /S
namely the jewels of T while the black points are the non
minimal elements of T . It can be noticed on the picture that
he shadow and the crown are fully determined by S and the
jewels of T . The jewels play the same role than the vertices
of the convex hull of S on the side of the outliers.

3.4 The lattice jewels

In the framework of our problem of decidability, we are

interested in the polyhedral separability of a lattice set

S ⊂ Zd from the integral points outside S. The set T

of the outliers is Zd \ S. Its jewels are called the lattice

jewels of T .

Definition 4 Let S be a subset of Rd satisfying a prop-

erty of digital convexity. The convex hull conv(S) of

S does not contain any other lattice points than the

ones already in S: conv(S) ∩ Zd = S ∩ Zd. The lat-

tice jewels of S are the jewels of the complementary

Zd \ S relatively to S (Fig.10). We denote jewelsS the

set jewelsS(Zd \ S).

The condition conv(S)∩Zd = S∩Zd of Definition 4

is necessary to guarantee that the relation /S is a partial

order on Zd \ S. Otherwise, for any lattice point x in

the complementary of x ∈ Zd \S, the lattice points y of

(conv(S)∩Zd) \ S satisfy y /S x. There can not be any

other jewels than the lattice points of (conv(S)∩Zd)\S.

If we consider a lattice set S, the condition conv(S) ∩
Zd = S ∩ Zd is usually called digital convexity : the set

S is said digitally convex. It’s a necessary condition to

speak about its lattice jewels.

Fig. 10 Two lattice sets S (deep blue), their convex hulls
(blue), their crown (white), their lattice jewels (red points)
and for each, the shadow (grey) of Z2 \ S.
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As corollary of Lemma 2, we can reduce any in-

stance [Reco(d,Pn, S)] to polyhedral separability with

a restricted set of outliers:

Lemma 3 Let S be a subset of Rd. Any instance of

problem [Reco(d,Pn, S)] is equivalent to the instance

of polyhedral separability [PolySep(d,Pn, S, jewelsS)].

This reduction becomes interesting if the set of the

lattice jewels is finite since the polyhedral separability

becomes decidable. It leads to the question of the num-

ber of the lattice jewels of a lattice set S. It can be seen

in Fig.10 that the set of lattice jewels of an aligned

point’s set has an infinite cardinality while it can be

finite for other examples.

4 About the number of lattice jewels

The results about the existence of a finite or infinite

number of lattice jewels are decomposed in two theo-

rems. A sufficient condition is given in arbitrary dimen-

sion in Theorem 2. A complete characterization is given

in dimensions d = 2 and 3 in Theorem 3.

4.1 Affine dimension and lattice width

We provide a list of cases where it can be guaranteed

that the set jewelsS of the lattice jewels of S remains

finite. It requires to introduce first the notions of di-

mension and lattice width.

Definition 5 The affine dimension of S ⊂ Rd is the

dimension of the minimal affine space containing S. It

is denoted dim(S).

The width of S in a direction u ∈ Rd is

widthu(S) = max{u.x|x ∈ S} −min{u.x|x ∈ S}. (2)

The lattice width of S is the minimal of the width

by choosing the direction u in all integral directions

(Fig.11):

width(S) = min{widthu(S)|u ∈ Zd, u 6= 0}. (3)

Geometrically, the lattice width of S provides the

minimal number of consecutive diophantine hyperplanes

required to cover S. This notion has been used in the

framework of integer programming to prove that Inte-

ger Linear Programming can be solved in polynomial

time in a fixed dimensions [30]. It is especially used for

characterizing empty lattice polytopes [44,27].

Fig. 11 A lattice set S and its lattice width in the two direc-
tions u = (1,−2) and v = (1,−1). Its lattice width width(S)
is the minimum achieved in all directions. For this set, it is
obtained in the diagonal direction: we have width(S) = 5

4.2 In arbitrary dimension

In a first theorem (Theorem 2), we provide a condition

in arbitrary dimension. This condition is sufficient to

guarantee a finite number of lattice jewels but it is not

necessary (cf Sec. 4.3).

Theorem 2 Let S be a finite digitally convex subset

of Zd. If the interior of the convex hull of S contains

an integer point, the set jewelsS of the lattice jewels is

finite.

Proof We assume that the interior of the convex hull of

S contains an integer point denoted s and that the set

of the lattice jewels jewelsS of Zd \ S is infinite. Our

goal is to obtain a contradiction.

As the set jewelsS is not finite, let xk ∈ jewelsS
be a sequence of pairwise distinct jewels that we as-

sume different from the origin (∀k ∈ N, xk 6= (0)1≤i≤d).

We consider the direction yk = xk

||xk||2 which belongs

to the hypersphere Sd centered at the origin and of

radius 1. As Sd is compact, the sequence yk admits

a convergent subsequence y′k with a non null limit z:

limk→+∞y
′
k = z. It means that the corresponding sub-

sequence of points x′k ∈ jewelsS is going in direction z

(A).

We intend to prove now that there exists an integer

point in the interior of (conv(S)⊕R+z) \ conv(S) (B1)

where the operator ⊕ denotes Minkowski addition and

R+z is the half-line starting from the origin in the di-

rection z. This part of the proof is illustrated in Fig.12.

If the direction z is rational (the line Rz contains

integer points), then by translation, the half-line s +

R+z contains infinitely many integer points. The ones

which are not in the convex hull of S are in the interior

of (conv(S)⊕R+z)\conv(S). Let’s take such an integer

point and call it x: this step is denoted (B1). We have

x = s+ λz and we notice that by definition of s, there
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Fig. 12 Above, the set S, its convex hull conv(S) (in red)
and the polyhedron conv(S)⊕ R+z (in blue). In the middle,
an integer point x in the interior of (conv(S)⊕R+z)\conv(S).
Its shadow (in grey) covers a polyhedron cone which the half-
cylinder (conv(S) ⊕ R+z) \ conv(S) except a bounded part.
Below, for the proof, we introduce a ball in the convex hull
of S and an integer point on the half-line from its center in
direction z. By construction, the shadow shadowB(x) of x
with respect to the ball B contradicts the existence of jewels
tending in direction z.

is a ball B centered at s with a strictly positive radius

r included in the convex hull of S (B2).

If the direction z is not rational, we use a classical

result of simultaneous rational approximation. As s is

in the interior of the convex hull of S, there exists a

ball Br(s) centered at s of radius r > 0 included in

the interior of the convex hull of S. Then we consider

the Minkowski sum Br(s) +R+z. By construction, this

half-cylinder is in the interior of conv(S) ⊕ R+z. Si-

multaneous rational approximation, for instance with

Dirichlet’s approximation theorem, allows to prove that

Br(s)+R+z contains infinitely many integer points. As

they can not be all in the convex hull of S, it proves

(B1): we have an integer point x in the interior of

(conv(S) ⊕ R+z) \ conv(S). We can also notice that

x can be written s′ + λz with a ball B centered at s′

contained by the convex hull of S (B2).

With (A), (B1) and (B2), the last step is to ob-

tain the contradiction: the shadow shadowS(x) of the

integer point x is a polyhedral cone which contradicts

the existence of jewels x′k going to infinite in direction z

(Fig.12). The sequence of the integer points x′k is neces-

sarily going to infinite since there is only a finite number

of lattice points at a given distance of the origin. It fol-

lows that limit of limk→+∞
x′
k−x

||x′
k−x||

= limk→+∞
x′
k

||x′
k||

=

z. As the ball B centered at s (rational case) or s′ (ir-

rational case) is in conv(S), the shadow shadowS(x) of

x contains the shadow shadowB(x). Since the points

x′k are jewels, they don’t belong to the shadow of any

other integer point and thus, they can not belong to

shadowS(x). It provides a contradiction with the limit

limk→+∞
x′
k−x

||x′
k−x||

= z. ut

4.3 Complete characterization in dimensions d = 2

and 3

Theorem 2 provides a sufficient condition in arbitrary

dimension to prove that a set S has only a finite number

of lattice jewels. This condition is not necessary. The

square S = {(0, 0), (1, 0), (1, 1), (0, 1)} has, for instance,

a finite number of lattice jewels without having any

integer point in the interior of its convex hull (Fig.13).

Fig. 13 The lattice set S (in blue) does not satisfy the
conditions of Theorem 2: it has no integer point in the interior
of its convex hull but it has only a finite number of lattice
jewels (in red). It shows that the condition of Theorem 2 is
sufficiant but not necessary.

We improve Theorem 2 in dimension d = 2 and 3

by providing a complete characterization of the finite

lattice sets having a finite or infinite number of lattice

jewels:

Theorem 3 A finite digitally convex set S ⊂ Z2 has

infinitely many lattice jewels if and only if its affine

dimension is 0 or 1 (a set of aligned points).

A finite digitally convex set S ⊂ Z3 has infinitely

many lattice jewels if and only if

– its affine dimension is dim(S) ≤ 2,
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– or if there exists a direction u ∈ Z3 with widthu(S) =

1 and such that one of the two non empty planar

sections Su,h = {x ∈ S|x.u = h} of S with u as

normal direction has an affine dimension equal to 0

or 1 (Fig.4 and 14).

Proof We prove first that the configurations mentioned

in Theorem 3 have infinitely many lattice jewels. If a

lattice set S is not full dimensional, it is contained by

an hyperplane u.x = h with u ∈ Zd having coprime

coordinates and h ∈ Z. In this case, any lattice point of

the neighboring diophantine hyperplanes u.x = h − 1

or u.x = h+ 1 is a lattice jewel.

For the last case, we have d = 3 and assume that there

exists u ∈ Z3 (with coprime coordinates) satisfying

widthu(S) = 1. We add the condition that one of the

two non empty planar sections of S namely Su,h = {x ∈
S|u.x = h} is of affine dimension 0 or 1. The set Su,h is

a singleton (Fig.14) or a set of aligned points (Fig.15).

In both cases, we consider a line L (with a rational di-

rection) containing Su,h. The sub-lattice of the integer

points in the plane u.x = h can be decomposed in dio-

phantine lines parallel to L. It can be easily checked

that the lattice points in the two diophantine lines par-

allel to L and surrounding L in the plane u.x = h are

lattice jewels (even if it is in dimension 2 and not 3, the

figure Fig. can help to see it).

It proves that all the configurations enumerated in The-

orem 3 have an infinite number of lattice jewels.

Fig. 14 The set S already drawn Fig.4 is a pyramid with its
basis in the plane z = 0 and its vertex of coordinate (0, 0, 1).
Its lattice width is width(S) = 1. The set S has infinitely
many lattice jewels (in red): any lattice point of coordinates
(x, y, 1) with coprime x and y is a lattice jewel.

In order to prove the converse, we use the same prin-

ciple than the proof of Theorem 2 without giving again

all its technical details. We assume that S is not in

one of the configurations mentioned in Theorem 3 and

that it admits an infinite number of lattice jewels. Then

there exists a sub-sequence of lattice jewels tending to

Fig. 15 The set S already drawn Fig.4 has a lattice width
width(S) = 1 and a degenerated section Su,h in its upper
plane u.x = h. The section Su,h is contained by the line L (in
yellow). All the integer points in the neighboring diophantine
lines (in green) of its degenerated section are lattice jewels
(in red).

infinite in a direction z, as in part (A) of the proof of

Theorem 2. Our goal consists in obtaining a contradic-

tion.

As S does not satisfy the conditions of Theorem 3,

it is of full dimension and it is necessarily in one of the

three following configurations:

– d = 2 and dim(S) = 2. We refer to this case as (i).

– d = 3 and width(S) ≥ 2 (ii).

– d = 3 and width(S) = 1 and for all direction u

such that widthu(S) = 1, the two consecutive pla-

nar sections of S with u as normal direction, are of

dimension 2 (iii). This last condition excludes the

examples shown in Fig.4 or in Fig.14.

Case (i) The lattice set S ⊂ Z2 is fully dimensional in

R2. The polyhedron conv(S)⊕R+z is bounded by two

half-lines y ⊕ R+z and y′ ⊕ R+z (Fig.16). If the direc-

tion z is rational, then there are integer points x and

x′ on each half-line. Their shadows shadowS(x) and

shadowS(x′) cover two cones around the polyhedron

conv(S) ⊕ R+z. As the jewels are not in the shadows

of any other integer points, the only possibility for the

sequence of jewels x′k to go in direction z is to be in the

strip conv(S)⊕R+z. It follows that we have an integer

point x′k in the interior of conv(S) ⊕ R+z and outside

conv(S). If the direction z is irrational, the existence

of an integer point in the interior of (conv(S)⊕R+z) \
conv(S) is a consequence of the Dirichlet approxima-

tion theorem. As in the proof of Theorem 2, it leads to

a contradiction.

Before starting with the cases (ii) and (iii), we re-

call some algebraic properties of the projection of the

lattice Zd in a non null direction z ∈ Rd. We denote

(zi)1≤i≤d the coordinates of z. The projection can be

considered in any hyperplane which is not parallel with

z, for instance the plane of equation z.x = 0 but it does

not matter. We introduce the Q linear space Ez gen-

erated by the coordinates zi: Ez = {q.z|q ∈ Qd}. The



About the decidability of polyhedral separability in the lattice Zd 11

Fig. 16 Case (i) with a rational z: Above, the set S, its
convex hull conv(S) (in red) and the polyhedron conv(S) ⊕
R+z (in blue). In the middle, two integer points x and x′ on
the boundary of conv(S) ⊕ R+z and their shadows. Below,
the only way to have integer points going in the direction z
is that they belong to the strip between y ⊕ Rz and y′ ⊕ Rz
but the shadow shadowS(xk) of xk in the interior of the strip
covers its extremity and leads to a contradiction.

dimension of Ez can take all the integral values from

1 to d according to the rational relations between the

real coordinates zi.

If the dimension d is 2, given z ∈ R2, the rational

dimension dimQ(Ez) of Ez can be 1 or 2. If it is 1 it

means that there is a rational linear relation between z1
and z2. In other words, z is a rational direction and the

projection of the lattice Z2 in the direction z is lattice of

dimension 1 in the line of projection. Otherwise, the di-

mension dimQ(Ez) is 2 and the projection of the lattice

Z2 in the direction z is dense on the line of projection.

If the case of Z3, there are three cases to investi-

gate (Fig.17). If the dimension dimQ(Ez) is 3, there is

no rational relation between the three coordinates of z.

As in the two-dimensional case, the projection of Z3 is

dense in the plane z.x = 0. If the dimension dimQ(Ez)

is 1, there are two rational relations between the three

coordinates of z which makes the z direction rational.

Then the projection of the lattice Z3 in the z direction

is a lattice of dimension 2. An hybrid case occurs if the

dimension dimQ(Ez) is 2. There exists one rational lin-

ear relation between z1, z2 and z3. By multiplying it

by the least common multiple of the denominators, we

can denote it α.z = 0 with α ∈ Z3. This relation pro-

vides a partition of Z3 in consecutive planes of equa-

tions α.x = h with h ∈ Z. Since α is normal to z, the

projection in the z direction preserves the scalar prod-

uct α.x with the consequence that the projections of

the lattice points still satisfy α.x ∈ Z. The projected

points of the lattice Z3 belong to the equidistant par-

allel lines α.x = h in the plane z.x = 0. The projection

of the lattice is not dense in the plane z.x = 0 but it is

dense on these straight lines.

Fig. 17 On the left, the projection of Z3 in the z direction
if the rational dimension of Ez = {q.z|q ∈ Qd} is 1. It means
that the z direction is rational and the projection of the lat-
tice is a lattice of dimension 2. In the middle, the rational
dimension of Ez = {q.z|q ∈ Qd} is 2. We have a rational
linear relation between the coordinates of z. The projection
of the lattice Z3 in the z direction is dense on equidistant
parallel lines. On the right, if dimQ(Ez) = 3, there exists
no rational linear relation between the coordinates of z. The
projection of the lattice Z3 is dense in the plane of projection.

The general strategy to prove the result in the cases

(ii) and (iii) remains roughly the same than previously:

we prove that there exists a lattice point in the interior

of the set (conv(S)⊕R+z)\conv(S). Sometimes, we ob-

tain however more directly that there can not be jewels

tending in the direction z. It contradicts the existence

of infinitely many lattice jewels.

Although the cases (ii) and (iii) are different, we

do not consider them separately. In dimension d = 3,

the existence of an integer point in the set (conv(S) ⊕
R+z) \ conv(S) can be investigated by considering the

projections of the lattice Z3 and of the convex hull of S

according to the direction z in a cutting plane. Six dif-

ferent configurations denoted from A) to F) can occur.

They depend on the rational dimension dimQ(Ez) and

on the direction of z with respect to S (Fig.18).

– The configuration A) occurs with a rational dimen-

sion dimQ(Ez) equal to 1. The projection of Z3 in



12 Yan Gerard

Fig. 18 The figure shows the different possible configura-
tions of the projection of Z3 and the projection of the convex
hull of S in the direction z. The projection of Z3 in the direc-
tion z on a cutting plane may have different structures. In A),
B) and C), the rational dimension dimQ(Ez) of Ez is 1 and
the projection of Z3 is a lattice. The dimension dimQ(Ez) is
2 in D) and E): the projection of Z3 is dense on equidistant
parallel lines. The dimension dimQ(Ez) is 3 in F) with a dense
projection of Z3 in the cutting plane. The goal is to determine
the cases where a projection of a point of Z3 (a blue point)
in the interior of the projection of the convex hull of S (the
red polygon) because they lead to obtain a contradiction. It
allows to refute the existence of infinitely many lattice jewels.
There are three cases where it is not true: there is no blue
point in the interior of the polygon in B), C) and D). B) and
D) are excluded from (ii) due to their lattice width width(S)
equal to at most 1. They are investigated in the case (iii). The
case C) falls in (ii) and requires a specific proof illustrated in
Fig.21 with a similar construction than in Fig.16.

the direction z is a lattice. We place us in the cut-

ting plane. It contains the two-dimensional lattice

obtained by projection of Z3. The lattice width of

the projection of S in this planar lattice is necessar-

ily at least the lattice width of S. The configuration

A) corresponds to the case where the interior of the

projection of the convex hull conv(S) of S contains

at least one point of the projection of Z3 (Fig.18

A)). Then we apply the same construction than in

the proof of Theorem 2 to prove the existence of

an integer point in (conv(S)⊕R+z) \ conv(S). The

shadow of this integer point covers the half-cylinder

(conv(S)⊕R+z)\conv(S) except a compact part. It

contradicts the existence of a sequence of lattice jew-

els of S tending to infinite in the direction z (Fig.12).

– In the configuration B) of Fig.18, the lattice width

of S in a direction u ∈ Z3 normal to z is at most 1.

It falls in the case (iii). Three different sub-cases can

arise (Fig.19). B2) and B3) are the ones where we

have obtained an infinite number of lattice jewels.

They are excluded from the case (iii) since the lat-

tice width in a direction u ∈ Zd is 1 and one of the

two consecutive planar sections of S in the planes

u.x = h and u.x = h+ 1 is degenerated.

It remains only to focus on B1). We introduce four

lattice points a, b, c and d on the boundary of the

half-cylinder (conv(S)⊕R+z)\conv(S) (Fig.20) such

that the convex hull of their projections in the cut-

ting plane is a fundamental domain of the projected

lattice of Z3. The shadows of these four points de-

fine a cross between two pairs of consecutive paral-

lel planes. There is no integer point in between. It

follows that we can not have a sequence of integer

points tending in z direction. It is in contradiction

with the existence of infinitely many lattice jewels.

– The configuration C) of Fig.18 is the default con-

figuration if we are not in A) or B) with a rational

dimension dimQ(Ez) equal to 1. Avoiding A) and

B) means that the sub-lattice width of the projec-

tion projz(S) of S in the plane of projection is at

least 2 -it avoids B- and its convex hull (in red)

does not contain any sub-lattice point (in blue) -

it avoids A. In dimension 2, such a configuration

is isomorphic to a unique subset of Z2: any lattice

sets H ∈ Z2 with width(H) > 1 and with no lattice

point in the interior of its convex hull is isomor-

phic to the triangle of vertices {(0, 0), (2, 0), (0, 2)}
[36,41]. It explains the specific configuration which

arises in C). In this case, the strategy is close to

the one of B1). There exist three integer points a,

b, and c in the interior of the faces of the half-

cylinder (conv(S)⊕ R+z) \ conv(S) (Fig.21). Their

three shadows are polyhedral cones which surround
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Fig. 19 Three different configurations can arise in the case
B) of Fig.18. In these three cases, the projection of S in the
cutting plane has a lattice width equal to 1. It follows that
the lattice width of S in the direction u ∈ Z3 normal to z
and to the green lines is at most 1. In case B2), one of the
two planar sections Su,h = {x ∈ S|x.u = h} containing the
points of S is of affine dimension 0 or 1. In case B3), there is
only one non empty planar section. These two configurations
can be excluded because they don’t satisfy the conditions of
(iii) (notice that they provide infinitely many lattice jewels).
It remains to prove that B1) provides only a finite number of
lattice jewels.

the half-cylinder (conv(S)⊕R+z) \ conv(S). There

is no integer point in between. It contradicts the ex-

istence of a sequence of lattice jewels tending in the

direction z.

– In the configuration D) of Fig.18), the rational di-

mension dimQ(Ez) is 2. The projection of Z3 in the

direction z is dense on equidistant parallel lines.

Three sub-configurations are possible (Fig.22).

As for B), the sub-configurations D2) and D3) of

Fig.22 are excluded. It remains only the case D1)

where the two planar sections of S with the normal

direction of u ∈ Z3 (with widthu(S) ≤ 1) are not

degenerated. Then there exists two lattice points a

and b in the half-cylinder (conv(S)⊕R+z)\conv(S)

having their projections in the interior of the edges

of the projection of the convex hull of S (Fig.23).

The shadows of these two points define a strip be-

tween two consecutive parallel planes. There is no

Fig. 20 In the case B1) of Fig.19, we have four integer points
a, b, c and d in the half-cylinder (conv(S)⊕R+z)\conv(S) (in
blue). Below, the space between their four shadows (in four
colors) defines a cross which does not contain any integer
point. It contradicts the existence of a sequence of lattice
jewels tending in the direction z.

Fig. 21 In the case C) of Fig.18, we have three integer points
a, b and c on the faces of (conv(S)⊕R+z)\conv(S) while the
interior of (conv(S) ⊕ R+z) \ conv(S) does not contain any
integer point. Below, the shadow of the three lattice points a,
b and c are polyhedral cones which surround the half-cylinder
(conv(S) ⊕ R+z) \ conv(S). It contradicts the existence of
jewels tending to infinite in the direction z.

integer point in between. It follows that we can not

have a sequence of integer points tending in the di-

rection z. It is in contradiction with the existence of

infinitely many lattice jewels.

– In the configurations E) and F) of Fig.18), the ex-

istence of integer points in the interior of the half-

cylinder (conv(S) ⊕ R+z) \ conv(S) is straightfor-

ward. It leads to a contradiction. We obtain the

same contradiction than previously.
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Fig. 22 As for the case B), three different configurations
can arise in the case D) of Fig.18. D2) and D3) are excluded
because one of the planar sections of S in a direction u with
widthu(S) ≤ 1 is degenerated. We focus on D1) and prove
that the number of lattice jewels is finite.

In all the cases and sub-cases, the existence of in-

finitely many lattice jewels leads to a contradiction. We

conclude that there exists only a finite number of lattice

jewels in the case (ii).

We have proved that in all the configurations al-

lowed by the assumptions (i), (ii) or (iii), the hypothe-

sis that there exists infinitely many lattice jewels leads

to a contradiction. It proves that the only sets S having

a infinite number of lattice jewels are the ones enumer-

ated in Theorem 3. ut

5 Proof of Theorem 1

We prove here the decidability of [Reco(d,Pn, S)] stated

in Theorem 1. The assumptions are

– d = 2, or

– d = 3 and the set S has a finite set of lattice jewels

(see Theorem 3 for a characterization), or

– in arbitrary dimension, the interior of the convex

hull of S contains at least one lattice point.

We decompose the proof in two cases:

Fig. 23 In the case D1) of Fig.22, we have two integer points
a and b in the half-cylinder (conv(S) ⊕ R+z) \ conv(S). On
the right, the space between their two shadows (brown and
orange) defines a strip which does not contain any integer
point. It contradicts the existence of a sequence of lattice
jewels tending in the direction z.

– If S has a finite number of lattice jewels, the decid-

ability of the instance [Reco(d,Pn, S)] is proved in

Lemma 5. According to Theorems 2 and 3, it con-

cerns the lattice sets S in dimension d = 2 and an

affine dimension dim(S) = 2, or the lattice sets S in

dimension d = 3 which are not in the specific con-

figurations of Theorem 3 or the lattice sets S with

an integer point in the interior of their convex hull.

– If the affine dimension of S ⊂ Z2 is 0 or 1, the

decidability is established in Lemma 6. This specific

case is the only one allowed by the assumptions of

Theorem 1 but with an infinite number of lattice

jewels.

5.1 Sets with a finite number of lattice jewels.

We focus now on the case where the set S admits only

a finite number of lattice jewels. According to Lemma

3, we can reduce [Reco(d,Pn, S)] to the decidable in-

stance of [PolySep(d,Pn, S, jewelsS)] (decidable since

jewelsS is finite). It requires to compute first the set

of lattice jewels jewelsS but even if such a strategy is

interesting in terms of computational complexity, this

computation is not necessary to prove the decidability.

We choose another strategy: we can solve a sequence of

instances [PolySep(d,Pn, S, T
k)] where the set of out-

liers T k is a growing subset of integer points outside

S.

By solving one of these instances of polyhedral sep-

arability [PolySep(d,Pn, S, T
k)] where T k is a set of

lattice points outside S, three cases can occur:
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– the instance [PolySep(d,Pn, S, T
k)] has no solution.

This result can be extended to [PolySep(d,Pn, S,

Zd \ S)]. It follows that [Reco(d,Pn, S)] has no so-

lution.

– the instance [PolySep(d,Pn, S, T
k)] has a solution

P but P might contain some lattice points outside

S and T k. In this case, the solution P is not a valid

solution of [Reco(d,Pn, S)]. We can not conclude

and we have to proceed to further computations:

we increase T k.

– the instance [PolySep(d,Pn, S, T
k)] has a solution

P and this solution does not contain any other lat-

tice point than the ones of S. Then P is a valid

solution of [Reco(d,Pn, S)].

We notice now that the second case, where we can

not conclude, can not arise if the set of outliers T k

contains all the lattice jewels. It is a consequence of the

following lemma:

Lemma 4 Let P be a convex set containing S. If P

contains at least one lattice point x ∈ Zd \S outside S,

then it contains a lattice jewel of S: P ∩ jewelS 6= ∅.

Proof If x is not itself a lattice jewel, then there exists

a lattice jewel x′ ∈ jewelS with x′ /S x. It means that

x′ is in the convex hull of S ∪ {x} itself included in the

convex set P . It proves that the lattice jewel x′ is in

P . ut

Lemma 4 states that the second case, where we can

not conclude, can not arise if the lattice jewels of S are

all in the set of outliers T k: jewelS ⊂ T k. This remark

leads to a simple strategy. We can take for instance

Tk = {x ∈ Zd|||x|| ≤ k, x /∈ conv(S)}. (4)

As the set jewelsS is finite, there exists a finite in-

teger K with jewelsS ⊂ TK . The algorithm 1 is to

solve the sequence of instances of polyhedral separabil-

ity [PolySep(d,Pn, S, T
k)] until finding a conclusion.

Algorithm 1 Algorithm for [Reco(d,Pn, S)] with a

finite jewelS
1: k ← 1
2: Tk ← {x ∈ Zd|||x|| ≤ k, x /∈ S}
3: loop
4: P ← PolySep(d,Pn, S, Tk)
5: if (P = null) then
6: return null
7: if (P ∩ Zd = S) then
8: return P
9: k ← k + 1

10: Tk ← {x ∈ Zd|||x|| ≤ k, x /∈ S}

The only case where the answer of [PolySep(d,Pn,

S, T k)] does not allow to conclude on [Reco(d,Pn, S)]

is the one where its solution P is not valid since P

contains lattice points outside S. For k = K, as all

the lattice jewels are outliers (jewelS ⊂ T k) and due to

Lemma 4, this case can not arise. Then, the algorithm

1 terminates at the worst for k = K. It proves the

following lemma:

Lemma 5 If the set of lattice jewels jewelS of S is fi-

nite, then the algorithm 1 solves the instance [Reco(d,

Pn, S)] in a finite time.

5.2 Sets S ⊂ Z2 of dimension 0 or 1

In dimension d = 2, according to Theorem 3, the only

case where we have an infinite set of lattice jewels is the

one of the degenerated sets: S contains only one point

(its dimension is 0) or it is a set of aligned points (its

dimension is 1). We can easily notice that, in these two

cases, the set of lattice jewels of S in infinite but it is of

little importance since the answer of [Reco(d,Pn, S)]

is straightforward.

Lemma 6 If the set S ⊂ Z2 contains only one point,

then the instance [Reco(2,Pn, S)] admits solutions for

n ≥ 2.

If the set S ⊂ Z2 is of dimension 1 and convex,

then the instance of problem [Reco(2,Pn, S)] admits

solutions if and only if n ≥ 3.

If the set S is not convex, then the instance [Reco(2,

Pn, S)] has no solution.

Proof If the set S ⊂ Z2 contains only one point denoted

s, a solution of the instance [Reco(2,Pn, S)] is given

by two half-planes n.x ≤ n.s and n.x ≥ n.s with an

irrational normal vector n (for instance (1,
√

2)).

If the set S ⊂ Z2 is of dimension 1, there is of course

no solution if it is not convex (but this trivial case has to

be mentioned). If the set S ⊂ Z2 is of dimension 1 and

convex, there is no solution with only n = 2 half-planes,

because they should be of parallel bounding lines and

there is either 0 lattice point, or 1 lattice point or in-

finitely many lattice points in strips between parallel

lines. With n = 3, many triangles containing the set of

aligned points provide solutions (Fig.24).

6 Conclusion

Is the problem [Reco(d,Pn, S)] decidable for any fi-

nite lattice set S? Some algorithms for solving this ex-

act problem would be of interest in the framework of

pattern recognition even if it is much easier to tackle
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Fig. 24 In the case of aligned points of Z2, a triangle solu-
tion namely a solution of [Reco(2,P3, S)] can be easily built.

an approximate version where the set S is only sepa-

rated from its neighbors. More than its practical inter-

est, the resolution of the exact theoretical issue can at-

tract attention since much of the problems of discrete

and computational geometry can be easily proved to

be decidable. It is not true with [Reco(d,Pn, S)] due

to the infinite number of constraints generated by the

points of Z2\S. Conjecture 1 claims that the problem is

decidable. We have proved it under some assumptions

given in Theorem 1. This result provides a better un-

derstanding of convex primitives recognition problems

in the framework of digital geometry. The proof is based

on the introduction of a partial order “is in the shadow

of” and of the minimal elements of Zd \ S: the lattice

jewels of S. These particular lattice points have inter-

esting properties. The most useful in the framework of

polyhedral separability is the possibility to reduce the

infinite set of outliers Z2 \S to the lattice jewels of S. It

makes [Reco(d,Pn, S)] decidable when the number of

lattice jewels is finite. The conditions stated in Theorem

1 leave a lot of unsolved questions:

- The main conjecture itself: is [Reco(d,Pn, S)] de-

cidable for any finite lattice set S?

Or some more restricted questions:

- is [Reco(3,Pn, S)] decidable in the dimension d =

3? This question can be focused on the lattice sets with

a lattice width equal to 1 and with a degenerated non

empty planar section as in Fig.14 or 4 (otherwise the fi-

nite number of lattice jewels provides the decidability).

- What happens in higher dimensions ? Regarding

Theorem 2, is it possible to provide a complete charac-

terization of the sets S with a finite number of lattice

jewels in arbitrary dimension?

- Is it always possible to find rational solutions if

there exists a real one (it is clearly true for finite lat-

tice sets S having a finite number of lattice jewels), as

claimed by Conjecture 2?

- For sets S ⊂ Zd which are not full dimensional, is

it possible to expand a solution in their support sub-

lattice?

All these questions show that the decidability of

[Reco(d,Pn, S)] is the starting point of many open per-

spectives. More than a conclusion to the problem, the

complexity of the numerous cases investigated in the

proofs and the remaining open problems are invitations

to search further, with more generic tools.... or more

imagination.
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