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Abstract. The main task of the paper is to investigate the question of
the recognition of digital polyhedra with a fixed number of facets: given
a finite lattice set S ⊂ Zd and an integer n, does there exist a polyhedron
P of Rd with n facets and P ∩ Zd = S? The problem can be stated in
terms of polyhedral separation of the set S and its complementary Sc =
Zd/S. The difficulty is that the set Sc is not finite. It makes the classical
algorithms intractable for this purpose. This problem is overcome by
introducing a partial order ”is in the shadow of ”. Its minimal lattice
elements are called the jewels. The main result of the paper is within
the domain of the geometry of numbers: under some assumptions on the
lattice set S (if S ⊂ Z2 is not degenerated or if the interior of the convex
hull of S ⊂ Zd contains an integer point), it has only a finite number of
lattice jewels. In this case, we provide an algorithm of recognition of a
digital polyhedron with n facets which always finishes.

Keywords: pattern recognition, geometry of numbers, polyhedral sep-
aration, digital polyhedron, convex sets, polytopes

1 Introduction

Since Bresenham’s pioneer work in the 1960s years, many digital objects or
primitives have been defined [1] while a large attention has been given to the
question of their recognition. Surprisingly, only small interest has been paid on
the digital counterparts of the old Euclidean two-dimensional figures such as
triangles, quadrangles, squares, rectangles or more generally regular or irregular
polyhedra with n faces in the field of digital geometry (Fig. 1).

There exist many mathematical results dealing with polytopes or polyhe-
dra and lattices. From Pick’s Theorem [4] to Ehrhart quasi-polynomials [8] via
Barvinok polynomial time algorithm for counting the number of vertices in a
polyhedron [3] with a fixed dimension, one of the mathematical stakes of the
geometry of numbers is to count the integer points in a convex polytope. There
are also many general results about lattice polytopes, namely polytopes with
their vertices in a lattice [13, 5].

A deep interest on lattices and polyhedra comes from computer science with
Integer Programming and Operations Research. In Integer Linear Programming,



Fig. 1. Digital polyhedra are the intersection of the classical Euclidean polyhedra with
the integer lattice. A is a digital triangle, B is a digital quadrangle, C a digital diamond.

a polyhedron is described by linear constraints and the question is to find integer
solutions. The problem considered in this paper is the converse : a set S ⊂ Zd of
integer points is given and the request is to find a minimal number of real linear
constraints which characterize it. A variant is to fix a number n of constraints
and to determine if it is possible to characterize S with n linear constraints.
This problem is a completely natural question of pattern recognition : given an
integer n and a finite subset S of Zd, is S the Gauss digitization of a convex
polyhedron of Rd with n faces? In other words, does there exist a real polyhedron
P verifying P ∩Zd = S? Such a natural question can wait an easy solution with
a quite simple algorithm. Unfortunately, even by adding some assumptions, we
only provide a weak result : the problem is decidable.

We prove it in several steps. First, in Sect.2, we state the problem of recogni-
tion of a digital polyhedron with n faces as a question of polyhedral separation.
Secondly, in Sect.3, we investigate the geometry of the problem by introducing
a partial order and prove that under some assumptions, the number of minimal
lattice elements is finite. At last, in Sect. 4, we present an algorithm and prove
that it terminates (under the same assumptions as in Sect.3).

2 Problem statement

Let us first recall some basics of the geometry of polytopes and polyhedra: a
polytope of Rd is the convex hull of a finite set of points of Rd while a polyhedron
is usually defined as the intersection of finitely many closed half-spaces vi.x ≥ hi
for i going from 1 to n. The main difference is that polyhedra can be unbounded
while polytopes are always compact. Nevertheless Minkowski-Weyl theorem [14]
states that bounded polyhedra (bounded means here for instance that they do
not contain any half-lines) are polytopes and conversely.

Now, we introduce the lattice Zd. The objects investigated in the paper are
the intersection between a real convex polyhedron P and Zd. This intersection
is usually called the Gauss digitization of P and we prefer to introduce a specific
notation taking into account the number of constraints:

Definition 1. A set S ⊂ Zd is a digital n-polyhedron if there exist n closed
half-spaces Hi defined by linear inequalities vi.x ≥ hi with vi ∈ Rd/{(0)1≤i≤d}



and hi ∈ R, such that the polyhedron P =
⋂

1≤i≤nHi has an intersection with
the lattice Z equal to S:

S = P ∩ Zd = {x ∈ Zd|∀i ∈ {1 · · ·n}, vi.x ≥ hi}.

Definition 1 is restricted to polyhedra and not polytopes although the paper
deals mainly with finite sets S. The reason is that it is more convenient for our
purpose and the difference is slight. There exist some finite subsets of Zd which
are digital n-polyhedra and not n-polytopes (the intersection of a polytope with
n faces and the lattice). These digital polyhedra remain, however, pathological.
Their recession cone is for instance degenerated with an irrational direction
(otherwise, it can be proved that an unbounded digital n-polyhedron contains
an infinite number of integer points).

We notice now that if S is a digital n-polyhedron, it is also a m-polyhedron
for all m ≥ n (just by adding useless linear constraints). Thus, given a finite
subset S of Zd, a question is to determine the minimum n for which S is a
digital n-polyhedron. There is of course a first condition on the convexity of S.
If S is not digitally convex (the intersection of the real convex hull conv(S) of S
with the lattice Zd is exactly S), then S is not a digital n-polyhedron. Moreover,
if S is convex, it is by definition the intersection of its convex hull with the
lattice. This convex hull conv(S) is a polytope. If its affine dimension is d, then,
it has some faces of dimension d− 1. Their cardinality provides an upper bound
for the minimal number of faces n of a polyhedron P verifying P ∩ Zd = S.

The problem investigated in this paper is the following :

Problem 1 (DigitalPolyhedronRecognition(d, n, S)).
Input: A dimension d, an integer n and a finite subset S of Zd.
Output: Is S a digital n-polyhedron? If yes, find a satisfying polyhedron P ⊂ Rd
with n faces and S = P ∩ Zd.

We can also state Problem 1 as a specific instance of a more generic problem
of separation of two sets by a polyhedron with n faces.

Problem 2 (PolyhedralSeparation(d, n, S, T )).
Input: A dimension d, an integer n and two subsets S and T of Rd.
Output: Find a polyhedron P defined by n linear inequalities with S inside P
and T outside.

In problem 2, the question is to find n vectors vi ∈ Rd and constants hi ∈ R
verifying ∀x ∈ S, ∀i ∈ {1 · · ·n}, vi.x ≤ hi and ∀x ∈ T, ∃i ∈ {1 · · ·n}, vi.x > hi.
This problem of polyhedral separability has been intensively investigated in the
1980s and 1990s years. The question of separating two sets by an hyperplane,
namely PolyhedralSeparation(d, 1, S, T ) can be solved with linear programming
with a worst case linear-time complexity in fixed dimension [11]. In dimension
d = 2, an algorithm with a worst case complexity in O(k log(k)) (k is the total
number of points |S|+ |T |) is given in [7] for finding the minimum feasible num-
ber of faces n. It solves PolyhedralSeparation(2, n, S, T ) in polynomial time. In



arbitrary dimension, the problem PolyhedralSeparation(d, n, S, T ) becomes NP-
complete [12] even with n = 2: the 2-separability PolyhedralSeparation(d, 2, S, T )
is NP-complete. In fixed dimension d = 3, as far as we know, the complexity of
the problem remains open.

There exist other results in the framework of nested polyhedra introduced
by Victor Klee. In this class of problems, the two sets of points S and T given in
the input are replaced by two polyhedra S′ and T ′. The solution has to contain
S′ and be contained by T ′. The problem is solved efficiently in dimension d = 2
[2], and is NP-complete from the fixed dimension d = 3 [6].

For general polyhedral separation PolyhedralSeparation(d, n, S, T ), a brute-
force approach is to proceed in the following way:

– Solve PolyhedralSeparation(d, 1, S, T ′) with linear programming for all sub-
sets T ′ of T .

– Find n subsets T i with T =
⋃

1≤i≤n T
i and where for each index i ∈ {1 · · ·n},

the instance PolyhedralSeparation(d, 1, S, T i) is feasible.

Even if PolyhedralSeparation(d, n, S, T ) is NP-complete, we need an algorithm
for solving the problem with finite sets S and T because it is used as routine
in Sect.4. PolyhedralSeparation(d, n, S, T ) provides also a generic way to express
the problem DigitalPolyhedronRecognition(d, n, S):

Lemma 1. Let S be a subset of Zd and Sc its complementary in Zd. The prob-
lems DigitalPolyhedronRecognition(d, n, S) and PolyhedralSeparation(d, n, S, Sc)
are equivalent.

Lemma 1 is straightforward. It shows that our task is to tackle a specific
instance of PolyhedralSeparation(d, n, S, T ) with the integer points outside from
S as outliers. Its main feature is that the set Sc is infinite. It makes this instance
intractable for the usual algorithms of computational geometry. Hence, the goal
of the paper is now to determine how we can deal with it.
A first idea is to reduce the set of outliers T = Sc to a smaller subset, for instance,
by using of the outer contour of S (we do not precise the notion of neighborhood
yet). We consider the instance Separation(d, n, S,OuterContour(S)) where the
set of outliers is the outer contour of S. As OuterContour(S) is a subset of the
complementary Sc of S, a solution Separation(d, n, S, Sc) is also a solution of
Separation(d, n, S,OuterContour(S)) but the converse is false. Although such
counterexamples are specific (in dimension d = 2, the counterexamples S should
have an acute angle θ < π

4 ), they can be easily built (Fig.2). Thus, the infinite
set Sc can not be replaced by the outer contour of S without precautions. It
requires at least a better understanding of the geometry of the problem and of
the properties of the lattice sets in this framework.

3 The shadows and the jewels

Let us consider the general problem PolyhedralSeparation(d, n, S, T ) of polyhe-
dral separation of two subsets S and T by a polyhedron with n faces.



Fig. 2. On the left, a finite subset S ⊂ Z2 and its outer contour, in red. On the right,
the polyhedron P is a solution of Separation(2, 3, S,OuterContour(S)) but it is not a
valid solution of Separation(2, 3, S, Sc) because there are integer points x in P outside
from the outer contour of S.

3.1 A partial order

We first notice that, in an instance PolyhedralSeparation(d, n, S, T ), the set S
can be replaced by its real convex hull conv(S) without changing the set of
solutions. The convex hull of S and its vertices play an important role in the
problem. On the side of T , there is no interest in considering its convex hull
conv(T ) but there exists another interesting structure -a partial order- that we
introduce now. Let us start with the notion of shadow. Given a point x ∈ Rd,
we define its shadow relatively to S as the points y of Rd partially hidden from
S by x, as if the convex hull of S was a light source and x a point generating a
shadow (Fig.3):

Definition 2. Let S be a subset of Rd and x a point of Rd. The shadow of x
relatively to S is the set of points y ∈ Rd whose convex hull with S contains x:

shadowS(x) = {y ∈ Rd/x ∈ conv(S ∪ {y})}.

If x is in the convex hull of S, its shadow is the whole space Rd. The definition
is interesting only if the point x does not belong to the convex hull of S. We
provide another characterization of the shadow of x:

Lemma 2. Let S be a subset of Rd and x, y two points of Rd different from
each other. The point y belongs to the shadow of x if and only if the half-line
starting from y and passing though x crosses the convex hull of S.

Proof. By definition, y is in the shadow of x if the convex hull of {y}∪S contains
x. It follows from Caratheodory theorem that there exists a m-simplex ∆ with its
vertices in {y}∪S containing x. Its vertices are denoted xk with k going from 0 to
m. If we assume that x is not in the convex hull of S, then we can state x0 = y
since y is necessarily one of the vertices of the simplex. The property x ∈ ∆
provides the existence of m + 1 reals λk ∈ [0, 1] with a sum

∑d
k=0 λk = 1 and

x =
∑m
k=0 λkxk. As x0 is y, it follows x−λ0y =

∑m
k=1 λkxk. After reorganization,

we have

y +
1∑m

k=1 λk
(x− y) =

1∑m
k=1 λk

m∑
k=1

λkxk



which proves the lemma. ut

We observe many other nice properties. First, the shadow of a point is convex
(Lemma 2 allows to prove that if y and y′ are in the shadow of x, then the
segment [y, y′] is also included in it). Secondly, the set S being fixed, the binary
relation ”is in the shadow of” defined on (Rd/conv(S))2 is reflexive, transitive
and antisymmetric (again with Lemma 2). It is a partial order and the set of its
minimal elements is going to play an important role (cf the jewels).

Fig. 3. On the left, the shadow of x is the set of points whose convex hull with S
contains x. On the right, given two subsets S and T , the shadow of T (in grey) is the
union of the shadows of the points of T . Some of the points of T are in the shadow of
others. The minimal elements of T according to this partial order are called the jewels
of T . They are colored in red.

The shadow of a set T is defined as the union of the shadows of its elements:
shadowS(T ) =

⋃
x∈T shadowx(T ). It is fully determined by the minimal elements

of T (minimal according to the relation ”is in the shadow of”). We call these
minimal elements the jewels of T :

Definition 3. Let S and T be two subsets of Rd. A point x ∈ T is a jewel of
T if there exist no point x′ ∈ T verifying x ∈ shadowS(x′) (Fig.3). We denote
jewelsS(T ) their set.

The jewels of T are the counterparts of the vertices of the convex hull of S
on the side of T . By construction, we have the following equivalence:

Lemma 3. Let S and T be two subsets of Rd. We have the equivalence between
PolyhedralSeparation(d, n, S, T ) and PolyhedralSeparation(d, n, S, jewelsS(T )).

Proof. Let the polyhedron P be a solution of PolyhedralSeparation(d, n, S, T ).
As the set jewelsS(T ) of the jewels is a subset of T , P is also a solution of
PolyhedralSeparation(d, n, S, jewelsS(T )). To prove the converse, let us assume
that P is a solution of PolyhedralSeparation(d, n, S, jewelsS(T )). If P is not a



solution of PolyhedralSeparation(d, n, S, T ), it means that P contains a point x
of T . Two cases can occur : First case, x is a jewel, but it contradicts that P
is a solution of PolyhedralSeparation(d, n, S, jewelsS(T )). Second case, x is not a
jewel. Then, it is not minimal in T according to the partial order. Let y be a
jewel of T such that y in the convex hull of {x} ∪ S. It follows that y is in P . It
contradicts that P is solution of PolyhedralSeparation(d, n, S, jewelsS(T )). ut

3.2 About the number of lattice jewels

We are mainly interested in the problem PolyhedralSeparation(d, n, S, T ) with a
lattice set S ⊂ Zd and its complementary T = Sc in Zd. The main difficulty is
that the set T = Sc is infinite which makes it intractable for usual algorithm.
Lemma 3 leads to consider the jewels of the complementary of S in the lattice.
As there is no ambiguity in the following, we provide some lighter expressions
and notations:

Definition 4. Let S be a subset of Rd. The lattice jewels of S are the jewels
of the complementary Sc = Zd/(Zd ∩ S) of S in the lattice Zd relatively to S
(Fig.4). We denote jewelsS the set jewelsS(Sc).

Fig. 4. Three lattice sets in dimension d = 2 in blue, their convex hulls in green, their
lattice jewels in red and their crown in grey.

Thanks to Lemma 3, we can replace the set T = Sc by its lattice jewels
jewelsS and solve PolyhedralSeparation(d, n, S, jewelsS). There are some cases
where this reduction is not sufficient to make the instance tractable: the set
of the lattice jewels is still infinite (Fig.5). We can, nevertheless, prove that it
can not happen under some assumptions. This result is within the area of the
geometry of numbers:

Theorem 1. Let S be a finite subset of Zd.

– If the interior of the convex hull of S contains an integer point (i)
– or, if d = 2, and the affine dimension of S is 2 (ii),

the set of the lattice jewels jewelsS of S is finite.



Fig. 5. An example of a finite lattice set with an infinite number of lattice
jewels: on the left, the pyramid S = {(−1,−1, 0), (−1, 0, 0), (−1, 1, 0), (0,−1, 0),
(0, 0, 0), (0, 1, 0), (1,−1, 0), (1, 0, 0), (1, 1, 0), (0, 0, 1)}. On the right, the complementary
of the pyramid Sc has infinitely many jewels colored in brown: each point (a, b, 1) ∈ Z3

with coprime a and b is a lattice jewel.

Proof. We assume that the set of the lattice jewels of S is infinite and prove a
contradiction with (i) or (ii). Under this assumption, we can consider a sequence
of lattice jewels xk ∈ jewelsS with xk different from xk′ if k 6= k′ and for any
k ∈ N, xk 6= (0)1≤i≤d. We consider the direction yk = xk

||xk||2 which belongs to

the hypersphere Sd centered at the origin and of radius 1. As Sd is compact,
the sequence yk admits a convergent subsequence y′k with a non null limit z:
limk→+∞y

′
k = z. It means that the corresponding subsequence of points x′k ∈

jewelsS is going in direction z (A).

Fig. 6. Case (i) : On the left, a set S of Zd, its convex hull conv(S) and the
polyhedron conv(S) + R+z. In the middle, an integer point x in the interior of
(conv(S) + R+z)/conv(S). On the right, a ball in the convex hull of S and an in-
teger point on the half-line from its center in direction z. By construction, the shadow
shadowB(x) of x relatively to the ball B contradicts the existence of jewels tending in
direction z.

In the case of (i), where the interior of the convex hull of S contains an integer
point s, let us prove that there exists an integer point in the interior of (conv(S)+
R+z)/conv(S) (B1). If the direction z is rational (the line Rz contains integer
points), then by translation, the half-line s+R+z contains infinitely many integer



points. The ones which are not in the convex hull of S and on the good side
towards it are in the interior of (conv(S)+R+z)/conv(S). Let’s take such a point
and call it x (B1). We have x = s+λz and we notice that by definition of s, there
is a ball B centered at s with a strictly positive radius r included in the convex
hull of S (B2). Now let us investigate the sub-case of an irrational direction: if
z is not a rational direction, we use a classical result of simultaneous rational
approximation. As s is in the interior of the convex hull of S, there exists a ball
Br(s) centered at s of radius r > 0 included in the interior of the convex hull of
S. Then, we consider the Minkowski sum Br(s) +R+z. By construction this set
is in the interior of conv(S)+R+z. The simultaneous rational approximation, for
instance with Dirichlet’s approximation theorem, allows to prove that Br(s) +
R+z contains infinitely many integer points. Another proof of this result can be
obtained with Minkowski’s theorem by using a sequence of symmetric cylinders
Brk(s)+Rz with rk tending to 0. Due to its infinite volume, Brk(s)+Rz contains
at least two symmetric integer points xk and 2s − xk different from s and by
stating rk+1 < d(xk, s + Rz), we obtain two new ones... and so on. It proves
that Br(s) + R+z and then also conv(S) + R+z contain infinitely many integer
points. As they cannot be all in the convex hull of S, it proves (B1) in the
sub-case of an irrational direction: we have an integer point x in the interior of
(conv(S)+R+z)/conv(S). We can also notice that x can be written s′+λz with
a ball B centered at s′ contained by the convex hull of S (B2).

With (A), (B1) and (B2), the last step of the proof is to show that the
shadow of x in the interior of (conv(S)+R+z)/conv(S) contradicts the existence
of lattice jewels x′k going to infinite in direction z (Fig.6). The sequence of the
integer points x′k is necessarily going to infinite since there is only a finite number
of lattice points in discrete balls of finite radius. It follows that the equality

limk→+∞
x′k−x
||x′k−x||

= limk→+∞
x′k
||x′k||

= z. Since the convex hull of S contains the

ball B centered at s (rational sub-case) or s′ (irrational sub-case), the shadow
shadowS(x) of x contains the shadow shadowB(x). As the points x′k are lattice
jewels of S, they don’t belong to the shadow of any other integer point and thus,
they are not in shadowB(x) which is a cone centered around the direction zand

with x as vertex. It is in contradiction with the limit limk→+∞
x′k−x
||x′k−x||

= z.

In the case of (ii), the same arguments are used. If S is not degenerated, since
we are in dimension d = 2, the polyhedron conv(S) + R+z is bounded by two
half-lines y+R+z and y′+R+z. If the direction z is rational (Fig.7), then there
are integer points x and x′ on each half-line. Their shadows shadowS(x) and
shadowS(x′) cover two angular sectors around the polyhedron conv(S) + R+z.
As the jewels are not in the shadows of other integer points, the only possibility
for the sequence of jewels x′k to go to infinite in direction z is to be in the strip
conv(S) + R+z. It follows that we have an integer point x′k in the interior of
conv(S) + R+z and outside from the convex hull. As in case (i), it leads to a
contradiction. If the direction z is irrational, the existence of an integer point
in (conv(S) + R+z)/conv(S) is a consequence of the density of Q in R. It leads
again to a contradiction as in case (i). ut



Fig. 7. Case (ii) with a rational z: On the left, the set S ⊂ Z2, its convex hull conv(S)
and the polyhedron conv(S) + R+z. In the middle, two integer points x and x′ on the
boundary of conv(S) + R+z and their shadows. On the right, the only way to have
integer points going in the direction z is that they belong to the strip between y + Rz
and y′ + Rz but the shadow shadowS(xk) of xk in the interior of the strip covers its
extremity and leads to a contradiction.

In dimension d = 2, Theorem 1 determines whether or not a finite set S has
an infinite number of vertices. If S is on a straight line, its complementary Sc has
an infinite set of jewels. Otherwise, according to Theorem 1, jewelsS is finite.

From dimension d = 3, the condition which guarantees that the set of jewels
is finite is the existence of an integer point in the interior of the convex hull
of S. There exists however many convex sets and in particular simplexes which
do not satisfy it. These lattice sets and their convex hulls are the subject of a
great interest in geometry of numbers and operational research [13, 9]. One of
these results on empty lattice simplexes -Khinchine’s flatness theorem- has for
instance been used by Lenstra in 1983 to prove that Integer Programming can
be solved in polynomial time in fixed dimension [10]. The possibility that they
could have an infinite number of lattice jewels makes them harder to investigate,
at least in the framework of PolyhedralSeparation(d, n, S, Sc).

4 Algorithm

We provide a pseudo-algorithm to solve DigitalPolyhedronRecognition(d, n, S)
for a finite subset S ⊂ Zd. Due to Lemmas 1 and 3, this instance is equivalent
with the instance PolyhedralSeparation(d, n, S, jewelsS). It means that, if the set
of the lattice jewels was previously computed and is finite, it leads to solve the
problem of polyhedral separation. It could be a strategy, but it remains the
problem of the computation of the jewels which is an open question.

We suggest another strategy: we start with the outer contour of S as ini-
tial set of outliers T and use a routine Fseparation(d, n, S, T ) for solving the
first instance PolyhedralSeparation(d, n, S, T ). If there is no solution, it ends the
problem. Otherwise, the function Fseparation(d, n, S, T ) provides a solution P . If
P contains no other integer solution than the points of S, it is a solution of
DigitalPolyhedronRecognition(d, n, S). Otherwise, there is a non empty set X of
integer points x which are not in S : X = P ∩ Sc. In this case, we update T



by adding one or more point of X. This addition is however not sufficient to
ensure at the end that the algorithm finishes. We add in T all the integer points
of the complementary of S which are in a ball BX centered at the barycenter
of S (the only thing which matters here is that the center of the ball is fixed,
it could even be outside from S) and containing at least a point x of X. We
proceed again to the resolution PolyhedralSeparation(d, n, S, T ) and repeat the
process until finding a negative answer or a valid polyhedron P .

Algorithm 1 Incremental recognition : DigitalPolyhedronRecognition(d, n, S)

1: T ← OuterContour(S)
2: polyhedron← Fseparation(d, n, S, T )
3: if (polyhedron = null) then
4: return null
5: X ← polyhedron ∩ Sc

6: while card(X) > 0 do
7: T ← T ∪BX

8: polyhedron← Fseparation(d, n, S, T )
9: if (polyhedron = null) then

10: return null
11: X ← polyhedron ∩ Sc

12: return polyhedron

Theorem 2. Let S be a finite subset of Zd.

– If the interior of the convex hull of S contains an integer point (i)
– or, if d = 2, and the affine dimension of S is 2 (ii),

then Algorithm 1 ends in a finite time.

Proof. Under the assumptions (i) or (ii), according to Theorem 1, the set S has
only a finite set of lattice jewels. As the set T is containing growing balls BX at
each step of the algorithms, if it is running an infinite number of times, there is
a step after which T is going to contain all the lattice jewels of S. According to
Lemma 3, a polyhedron P obtained at this step cannot contain any other integer
point than the ones of S.

4.1 Conclusion

The main task of the paper is to investigate the question of the recognition of
digital polyhedra with a fixed number of facets. This natural question of pattern
recognition leads to the world of the geometry of numbers which has been deeply
investigated in the framework of Integer Programming. We have introduced the
new notion of lattice jewel. They are the minimal lattice points under the partial
order ”is in the shadow of”. Our main result is that under some assumptions, a



lattice set S has only a finite number of lattice jewels. It is significant because
it allows to reduce a problem of polyhedral separation with an infinite set of
outliers to a finite set. Even if we don’t compute explicitly the lattice jewels
of S, it provides an algorithm of recognition of digital n-polyhedra with the
guarantee that it finishes (under some assumptions on S).

This work should be continued in several directions:
- Determine the complexity of the problem in fixed dimensions d > 2 and provide
some algorithms, perhaps based on the explicit computation of the jewels.
- Provide weaker assumptions in Theorem 1, for instance with the lattice width.
- Consider the problem of recognition of rectangles, squares, rotated polyominos
or other figures in dimension 2 or 3.
This work is a first step in a very wide range of open questions that relate to
both the geometry of numbers, computational geometry and digital geometry.
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