
Domain-Driven Model Inference
Applied To Web Applications.

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

Email: sebastien.salva@udamail.fr

William Durand
LIMOS - UMR CNRS 6158

Blaise Pascal University, France
Email: william.durand@isima.fr

Abstract—Model inference methods are attracting increased
attention from industrials and researchers since they can be
used to generate models for software comprehension, for test
case generation, or for helping devise a complete model (or
documentation). In this context, this paper presents an original
inference model approach which recovers models from Web
application HTTP traces. This approach combines formal model
inference with domain-driven expert systems. Our framework,
whose purpose is to simulate this human behaviour, is composed
of inference rules, translating the domain expert knowledge,
organised into layers. Each yields partial IOSTSs (Input Output
Symbolic Transition System), which become more and more
abstract and intelligible.

Index Terms—Model inference, formal model, IOSTS, rule-
based system

I. INTRODUCTION AND CONTRIBUTION

In the Industry, legacy applications are often problematic as
they are hard to maintain, poorly documented, and usually not
covered by tests. When it comes to this situation, there is a
high risk of introducing a bug, and options left to developers
are weak. The only way to ensure stability while fixing a bug
is to learn how the application behaves.

A first classic solution is to express these behaviours with
formal models, for instance Input/Output Symbolic Transition
Systems (IOSTS) [3]. Such models are particularly interesting
to automatically generate test suites using Model- based testing
techniques. But, the complete model writing is often an heavy
task, and is error prone; hence the need for model inference
approaches.

Model inference is a relatively recent research field aim-
ing at recovering the application behaviours captured by a
model. Zong et al. [9] proposed to infer specifications from
API documentations to check whether implementations match
them. Such specifications do not reflect the implementation
behaviours though. In [6], specifications, which are extremely
detailed, show the method calls observed from a related set
of objects. Some works [4], [5], [1], [8] proposed to derive
models by automatically testing an application. These are often
based upon crawling techniques, which can produce either
basic models or too detailed models. In both cases, it is
not suitable for test case generation. For instance, Memon
et al. [4] initially presented GUITAR, a tool for scanning
desktop applications which produces event flow graphs and
trees showing the GUI execution behaviours. The generated

models are quite simple and many false event sequences have
to be weeded out later. Mesbah et al. [5] proposed the tool
Crawljax specialised in AJAX applications, which produces
state machine models that are too complex and unreadable.

In this paper, we leverage model inference techniques in
order to obtain a model from an existing application, running
in a production environment. We decided to record incoming
and outgoing data (traces) by monitoring applications, rather
than crawling the entire application to prevent the limitations
described above. Our proposal takes another direction to infer
models. We do not suppose that the application being analysed
is event-driven but at least yields traces. It emerges from the
following idea: a domain expert, which is able to conceive
specifications, is also able to diagnose the behaviour of the
corresponding implementation by reading and interpreting
its execution traces. His knowledge can be formalised and
exploited to automatically infer models. Our approach is based
upon this notion of domain knowledge, implemented with an
expert system which includes inference rules. The originality
of our approach also resides in the incremental production
of several models, expressing the behaviour of the same
application at different abstraction layers. This approach can
be applied on any application producing traces, i.e. not only
event-driven applications.

Below, we describe the architecture of our model infer-
ence framework. Then, we recall some definitions on the
IOSTS formalism used throughout the paper in Section III.
We concretely describe and define this framework in the
context of Web applications in Section IV. We give some
experimentation results in Section V. Conclusions are drawn
in Section VI together with directions for further research and
improvements.

II. ARCHITECTURE OF OUR FRAMEWORK

Our framework is divided into several modules as depicted
in Figure 1. The Models generator is the centrepiece of the
framework. It takes traces as inputs, which can be sent by a
Monitor collecting them on the fly. But it is worth mentioning
that the traces can also be sent by any tool or even any
user, as far as they comply to a chosen standard format. The
Models generator is based upon an expert system, which is
an artificial intelligence engine emulating acts of a domain
expert by inferring a set of rules representing the expert

Fig. 1: Model generation framework

knowledge. This knowledge is organised into a hierarchy with
several layers. Each gathers a set of inference rules written
with a first order predicate logic. Typically, each layer creates
two IOSTSs (except the first one), and the higher the layer
is, the more abstract the IOSTSs become. These models are
then successively stored and can be later analysed by experts,
verification tools, etc. This number of layers is not strictly
bounded even though it is manifest that it must be finite. The
domain knowledge encapsulated in the expert system can be
used to cover trace sets coming from several applications of
the same category thanks to generic rules. But, rules can also
be specialised and refined for a given application in order to
yield more precise models, easing application comprehension.

Our approach allows to take a predefined set of traces
collected from any kind of applications producing traces.
For event-driven applications, traces could be produced using
automatic testing techniques. We provide a Robot explorer
which will not be presented here because of lack of room. It
generates traces and find new application states in an efficient
manner using strategies, that are expressed with inferences
rules as well, tackling the issue related to the amount of traces
needed to decently cover an application.

Our proposal is both flexible and scalable. It does not
produce one model but several ones, depending on the number
of layers of the Models generator, which is not limited and
may evolve in accordance to the application type. Each model,
expressing the application behaviours at a different level of
abstraction, can be used to ease the writing of complete
formal models, to apply verification techniques, to check the
satisfiability of properties, to automatically generate functional
test cases, etc.

In the following, we detail the different framework parts in
the context of Web applications, except for the Monitor, which
is here a classical proxy.

III. MODEL DEFINITION AND NOTATIONS

We consider the Input/Output Symbolic Transition System
(IOSTS) formalism [3] for describing the functional behaviour

of systems or applications. An IOSTS is a kind of automata
model which is extended with two sets of variables, internal
variable to store data, and parameters to enrich the actions.
Transitions carry actions, guards, and assignments over vari-
ables. The action set is separated with inputs beginning with
? to express actions expected by the system, and with outputs
beginning with ! to express actions produced by the system.
An IOSTS does not have states but locations.

Definition 1 (IOSTS) An IOSTS S is a tuple < L, l0, V,
V 0, I,Λ, →>, where:
• L is the finite set of locations, l0 the initial location,
• V is the finite set of internal variables, I is the finite

set of parameters. We denote Dv the domain in which
a variable v takes values. The assignment of values of
a set of variables Y ⊆ V ∪ I is denoted by valuations
where a valuation is a function v : Y → D. v∅ denotes
the empty valuation. DY stands for the valuation set over
the variable set Y . The internal variables are initialised
with the assignment V 0 on V , which is assumed to be
unique,

• Λ is the finite set of symbolic actions a(p), with p =
(p1, ..., pk) a finite list of parameters in Ik(k ∈ N). p is
assumed unique. Λ = ΛI ∪ΛO ∪ {!δ}: ΛI represents the
set of input actions, (ΛO) the set of output actions,

• → is the finite transition set. A transition (li, lj , a(p),
G,A), from the location li ∈ L to lj ∈ L, denoted

li
a(p),G,A−−−−−−→ lj is labelled by: an action a(p) ∈ Λ, a

guard G over (p ∪ V ∪ T (p ∪ V)) which restricts the
firing of the transition. T (p ∪ V) is a set of functions
that return boolean values only (a.k.a. predicates) over
p ∪ V , an assignment function A which updates internal
variables. A is of the form (x := Ax)x∈V , where Ax is
an expression over V ∪ p ∪ T (p ∪ V).

An IOSTS is also associated with an IOLTS (Input/Out-
put Labelled Transition System) to formulate its semantics.
Intuitively, IOLTS semantics correspond to valued automata
without symbolic variables, which are often infinite: IOLTS
states are labelled by internal variable valuations while tran-
sitions are labelled by actions and parameter valuations. The
semantics of an IOSTS S =< L, l0, V, V0, I,Λ,→> is the
IOLTS JSK =< Q, q0,Σ,→> composed of valued states in
Q = L×DV , q0 = (l0, V0) which is the initial one, Σ which
is the set of valued symbols, and → which is the transition
relation. The IOLTS semantics definition of can be found in
[3]. In short, for an IOSTS transition l1

a(p),G,A−−−−−−→ l2, we
obtain an IOLTS transition (l1, v)

a(p),θ−−−−→ (l2, v
′) with v a

set of valuations over the internal variable set, if there exists
a parameter valuation set θ such that the guard G evaluates to
true with v ∪ θ. Once the transition is executed, the internal
variables are assigned with v′ derived from the assignment
A(v ∪ θ). Runs and traces of an IOSTS can now be defined
from its semantics.

Definition 2 (Runs and traces) For an IOSTS S = <
L, l0, V, V 0, I,Λ,→>, interpreted by its IOLTS semantics
JSK =< Q, q0,Σ,→>, a run of S, q0α0q1...qn−1αn−1qn is
a sequence of terms qiαiqi+1 with αi ∈ Σ a valued action
and qi, qi+1 two states of Q. Run(S) = Run(JSK) is the set
of runs found in JSK.

It follows that a trace of a run r is defined as the projection
projΣ(r) on actions. TracesF (S) = TracesF (JSK) is the set
of traces of all runs finished by states in F ×DV .

IV. MODEL INFERENCE

Fig. 2: Models generator layers

The Models generator is mainly composed of a rule-based
system, adopting a forward chaining. Such a system separates
the knowledge base from the reasoning: the former is ex-
pressed with data a.k.a. facts and the latter is realised with
inference rules that are applied on the facts. Our Models
generator initially takes traces as an initial knowledge base
and owns inference rules organised into layers for trying to
match the human expert behaviour. These layers are depicted
in Figure 2.

Usually, when a human expert has to read traces of an
application, he often filters them out to only keep those that
are relevant to him. This step is done by the first layer whose
role is to format the received raw traces into sequences of
valued actions, and to delete those considered as unnecessary.
The resulting structured trace set, denoted ST , is then given
to the next layer. This process is incrementally done, i.e.
every time new traces are given to the Models generator,
these are formatted and filtered before being given to Layer
2. The remaining layers yield two IOSTSs each: the first
one Si(i ≥ 1) has a tree structure derived from the traces.
The second IOSTS, denoted App(Si), is an approximation
which captures more behaviours than Si. Both IOSTSs are
minimised with a bisimulation minimisation technique. The
role of Layer 2 is to carry out a first IOSTS transformation
from the structured traces. The obtained IOSTSs are not re-
generated each time new traces are received but are completed
on the fly. The next layers 3 to N (with N a finite integer)
are composed of rules that emulate the ability of a human
expert to simplify transitions, to analyse the transition syntax

for deducing its meaning in connection with the application,
and to construct more abstract actions that aggregate a set
of initial ones. Theses deductions are often not done in one
step. This is why the Models generator supports a finite but
not defined number of layers. Each of these layers i takes
the IOSTS Si−1 given by the direct lower layer. This IOSTS,
which represents the current base of facts, is analysed by the
rules to infer another IOSTS whose expressiveness is more
abstract than the previous one. The lowest layers (at least
Layer 3) are composed of generic rules that can be reused on
several applications of the same type. In contrast, the highest
layers own the most precise rules that may be dedicated to
one specific application.

In the following, and for readability purpose, we chose to
represent inference rules using this format: When conditions on
facts Then actions on facts (format borrowed from the Drools
inference engine 1). Independently on the application type, the
Layers 2 to N handle the following fact types: Location which
represents an IOSTS location, and Transition, which represents
an IOSTS transition, composed of two Locations Linit, Lfinal,
and two data collections Guard and Assign. Now, it is manifest
that the inference of models has to be done in a finite time and
in a deterministic way. To reach that purpose, we formulate
the following hypotheses on the inference rules:

1) (finite complexity): a rule can only be applied a limited
number of times on the same knowledge base,

2) (soundness): the inference rules are Modus Ponens,
3) (no implicit knowledge elimination): after the applica-

tion of a rule r expressed by the relation r : Ti →
Ti+1(i ≥ 2), with Ti a Transition base, for all transition
t = (ln, lm, a(p), G,A) extracted from Ti+1, ln is
reachable from l0.

In the following, we detail these layers in the context of
Web applications while giving some rule examples.

A. Layer 1: Trace filtering

Traces of Web applications are based upon the HTTP
protocol, conceived in such a way that each HTTP request
is followed by only one HTTP response. Consequently, the
traces, given to Layer 1, are sequences of couples (HTTP
request, HTTP response). This layer begins formatting these
couples so that these might be analysed in a more convenient
way.

For a couple (HTTP request, HTTP response), we extract
the following information: the HTTP verb, the target URI, the
request content which is a collection of data (headers, content),
and the response content which is the collection (HTTP status,
headers, response content). An header may also be a collection
of data or may be null. Contents are texts e.g., HTML texts.
Since we wish translating such traces into IOSTSs, we turn
these textual items into a structured valued action (a(p), θ)
with a the HTTP verb and θ a valuation over the variable
set p = {URI, request, response}. This is captured by the
following proposition:

1http://www.jboss.org/drools/

Definition 3 (Structured HTTP Traces) Let t = req1,
resp1, ..., reqn, respn be a raw HTTP trace composed of an
alternate sequence of HTTP request reqi and HTTP response
respi. The structured HTTP trace σ of t is the sequence
(a1(p), θ1)...(an(p), θn) where:
• ai is the HTTP verb used to make the request in reqi,
• p is the parameter set {URI, request, response},
• θi is a valuation p→ Dp which assigns a value to each

variables of p. θ is deduced from the values extracted
from reqi and respi.

The resulting trace set derived from raw HTTP traces is
denoted ST .

Now, the structured traces can be filtered. Given a main
request performed by a user, many other sub-requests are
also sent by a browser in order to fetch images, CSS and
JavaScript files. Generally speaking, these do not enlighten a
peculiar functional behaviour of the application. This is why
we propose to add rules in Layer 1 to filter these sub-requests
out from the traces. Such sub-requests can be identified by
different ways, e.g., by focussing on the file extension found at
the end of the URI, or on the Content-Type value of the request
headers. Consequently, we created a set of rules, constituted
of conditions on the HTTP content found in an action, that
remove valued actions when the condition is met.

After the instantiation of the Layer 1 rules, we obtain
a formatted and filtered trace set ST composed of valued
actions. Now, we are ready to extract the first IOSTSs.

Completeness, soundness, complexity: HTTP traces are
sequences of valued actions modelled with positive facts. Typi-
cally, they form Horn clauses. Furthermore, inference rules are
Modus Ponens (soundness hypothesis). Consequently, Layer 1
is sound and complete. Keeping in mind the (finite complexity)
hypothesis, its complexity is proportional to Om(k + 1) with
m the valued action number and k the rule number. (at worst,
every action is covered k + 1 times).

B. Layer 2: transformation of the traces into IOSTSs

Intuitively, the IOSTS transformation relies upon the IOLTS
semantics transformation that is achieved in a backward
manner. Two IOSTSs are built: the former, structured as a
tree, represents the original traces modelled with an IOSTS
formalism. The latter is an over approximation of the former.
These IOSTSs are generated by performing the following
steps:
1. the associated runs are computed from the structured traces
by injecting states between valued actions,
2. the first IOSTS denoted S1 is derived from these runs and
minimised,
3. a second IOSTS, denoted App(S1), is obtained from S1

by merging some of its locations, and by also applying a
minimisation technique.

These steps are detailed below:
1) Traces to runs: Given a trace σ, a run r is firstly

derived by constructing and injecting states on the right and
left sides of each valued action of σ. Keeping in mind the

IOLTS semantics definition, a state shall be modelled by the
couple ((URI, k), v∅) with v∅ the empty valuation. (URI, k)
is a couple composed of a URI and of an integer (k ≥ 0).
Typically, a couple (URI, k) shall be a location of the future
IOSTS. Since we wish to preserve the sequential order of the
actions found in the traces, when a URI previously encoun-
tered is once more detected, the resulting state is composed of
the URI accompanied with an integer, which is incremented
to yield a new and unique state. Due to lack of room, the
algorithm translating the structured traces into a run set is not
provided in this paper but can be found in [7].

2) IOSTS generation: The first IOSTS S1 is derived from
the run set SR. It corresponds to a tree composed of paths,
each expressing one trace starting from the same initial loca-
tion.

Definition 4 Given a run set SR, the IOSTS S1 is called the
IOSTS tree of SR and corresponds to the tuple < LS1 , l0S1 ,
VS1

, V 0S1
, IS1

,ΛS1
,→S1

> such that:
• LS1

= {li | ∃r ∈ SR, (li, v∅) is a state found in r},
• l0S1 is the initial location such that ∀r ∈ SR, r starts

with (l0S1 , v∅),
• VS1

= ∅, V 0S1
= v∅,

• ΛS1
= {ai(p) | ∃r ∈ SR, (ai(p), θi) is a valued action

in r},
• →S1 is defined by the following inference rule applied

on every element r ∈ SR:

si(ai(p), θi)si+1 is a term of r, si = (li, v∅),

si+1 = (li+1, v∅), Gi =
∧

(xi=vi)∈θi

xi == vi

`
li

ai(p),Gi,(x:=x)x∈V−−−−−−−−−−−−−→S1
li+1

From an IOSTS tree S1, an over-approximation IOSTS can
now be straightforwardly deduced by merging together all
the locations of the form (URI, k)k≥0 into a single location
(URI). This possibly cyclic IOSTS usually expresses more
behaviours and should be strongly reduced in term of location
size. But this is also an approximation in the sense that new
action sequences, which do not exist into the initial traces,
may appear. This model may be particularly interesting to
help establish a complete model or to increase the coverage
of specific testing methods e.g., security testing, since more
behaviours are represented. In contrast, it is manifest that a
conformance testing method must not take this model as a
reference to generate test cases.

Definition 5 Let S1 be an IOSTS tree of SR. The approxima-
tion of S1, denoted App(S1), is the IOSTS < LApp, l0App,
VApp, V 0App, IApp,ΛApp,→App> such that:
• LApp = {(URI) | (URI, k) ∈ LS1

, k ≥ 0},
• l0App = l0S1

, VApp = VS1
, V 0App = V 0S1

, ΛApp =
ΛS1

,

• →App= {(URIm)
a(p),G,A−−−−−−→ (URIn) |

(URIm, k)
a(p),G,A−−−−−−→ (URIn, l) ∈→S1

} ∪ {l0App
a(p),G,A−−−−−−→ (URIn) | l0S1

a(p),G,A−−−−−−→
(URIn, l) ∈→S1} ∪ {(URIm)

a(p),G,A−−−−−−→ l0App |
(URIm, k)

a(p),G,A−−−−−−→ l0S1
∈→S1

}(k ≥ 0, l ≥ 0).

3) IOSTS minimisation: Both IOSTSs are reduced in term
of location size by applying a bisimulation minimisation tech-
nique which still preserves the functional behaviours expressed
in the original model. Intuitively, this minimisation constructs
the state sets (blocks) that are bisimilar equivalent. Two states
are said bisimilar equivalent, denoted q ∼ q′ iff they simulate
each other and go to states from where they can simulate
each other again. A bisimulation minimisation algorithm can
be found in [2].

Completeness, soundness, complexity: Layer 2 takes any
structured trace set obtained from HTTP traces. If the trace
set is empty then the resulting IOSTS S1 has a single location
l0. A structured trace set is translated into an IOSTS in
finite time: every valued action of a trace is covered once
to construct states, then every run is lifted to the level of
one IOSTS path starting from the initial location. Afterwards,
the IOSTS is minimised with the algorithm presented in [2].
Its complexity is proportional to O(mlog(m + 1)) with m
the number of valued actions. The soundness of Layer 2
is based upon the notion of traces: an IOSTS S1 and its
approximation are composed of transition sequences derived
from runs in SR, itself obtained from the structured trace set
ST . As defined, the behaviours encoded in ST and S1 are
equivalent since (ordered) runs are transformed into ordered
IOSTS sequences. On the other hand, the approximation of S1

shares the behaviours found in S1 and ST but also describes
new behaviours. This is captured by the following Proposition:

Proposition 6 Let ST be a trace set and SR be is corre-
sponding run set. If S1 is the IOSTS tree of SR, we have
Traces(S1) = ST and Traces(App(S1)) ⊇ ST .

The proof is this proposition is Given in [7]. For sake of read-
ability, we do not provide the rules of Layer 2, which match
the above definitions and algorithms. Instead, we illustrate an
IOSTS generation example below:

Example IV.1 We take as example a trace obtained from the
Github Web site 2 after having executed the following actions:
login with an existing account, choose an existing project,
and logout. These few actions already produced a large set of
requests and responses. The trace filtering from this example
returns the following structured traces where the request and
response parts are concealed for readability:
1 GET(h t t p s : / / g i t h u b . com /)

GET(h t t p s : / / g i t h u b . com / l o g i n)
3 POST(h t t p s : / / g i t h u b . com / s e s s i o n)

GET(h t t p s : / / g i t h u b . com /)
5 GET(h t t p s : / / g i t h u b . com / w i l l d u r a n d)

GET(h t t p s : / / g i t h u b . com / w i l l d u r a n d / Geocoder)
7 POST(h t t p s : / / g i t h u b . com / l o g o u t)

GET(h t t p s : / / g i t h u b . com /)

2https://github.com/

(a) IOSTS tree S1 (b) IOSTS App(S2)

Fig. 3: Approximation models

After having applied rules of Layer 2, we obtain the IOSTS
of Figure 3(a). Locations are labelled by the URI found in the
request plus an integer to keep the tree structure of the initial
traces. Actions are composed of the HTTP verb enriched with
the variables URI, request, and response. This IOSTS exactly
reflects the trace behaviour but is still difficult to interpret.
More abstract actions shall be deduced by the next layers.

C. Layers 3-N: IOSTS Abstraction

As stated earlier, the rules of the upper layers analyse
the transitions of the current IOSTS for trying to enrich its
semantics while reducing its size. Given an IOSTS S1, every
next layer carries out the following steps:
1. apply the rules of the layer and infer a new knowledge base
(new IOSTS Si, i ≥ 2),
2. derive App(Si) and apply a bisimulation minimisation on
both,
3. store the two IOSTSs.

Without loss of generality, we now restrict the rule structure
to keep a link between the generated IOSTSs. Thereby, every
rule of Layer i (i ≥ 3) either enriches the sense of the actions
(transition per transition) or aggregates transition sequences
into one unique new transition to make the obtained IOSTSs
more abstract. It results in an IOSTS Si exclusively composed
by some locations of the first IOSTS S1. Consequently, for a
transition or path of Si, we can still retrieve the concrete path
of S1. This is captured by the following proposition:

Proposition 7 Let S1 be the first IOSTS generated from the
structured trace set ST . The IOSTS Si(i > 1) produced by
Layer i has a location set LSi such that LSi ⊆ LS1 .

Completeness, soundness, complexity: the knowledge
base is exclusively constituted by (positive) Transition facts
that have an Horn form. The rules of these layers are Modus
Ponens (soundness hypothesis). Therefore, these inference
rules are sound and complete. Furthermore, a behaviour en-
coded in an IOSTS Si cannot be lost in Si. With regards
to the (no implicit knowledge elimination) hypothesis and
to Proposition 7, the transitions of Si are either unchanged,
enriched or combined together into a new transition. The appli-
cation of these layers ends in a finite time ((finite complexity)
hypothesis) and the complexity of each is proportional to
Om(k) with m the transition number and k the rule number.

In the following, we detail two layers specialised for Web
applications:

1) Layer 3: As stated above, Layer 3 corresponds to a set of
generic rules that can be applied on a large set of applications
belonging to the same category. This layer has two roles:
• the enrichment of the meaning captured in transitions. In

this step, we have chosen to mark the transitions with new
internal variables. These shall help deduce more abstract
actions in the upper layers. For example, the rule depicted
in Figure 4 aims at recognising the receipt of a login
page: if the response content, which is received after a
request sent with the GET method, contains a login form,
then this transition is marked as a ”login page” with the
assignment on the variable isLoginPage,

• the generic aggregation of some successive transitions.
Here, some transitions (two or more) are analysed in the
conditional part of the rule. When the rule condition is
met then the successive transitions are replaced by one
transition carrying a new action. The rule of Figure 5 cor-
responds to a simple transition aggregation, introducing
a new PostRedirection action.

rule "Identify Login Page"
when

$t: Transition(Action == GET, Guard.
response.content contains(’login-form’))

then
modify ($t) { Assign.add("isLoginPage:=true") }

end

Fig. 4: Login page recognition rule

Example IV.2 When we apply these rules on the IOSTS
example of Figure 3(a), we obtain a new IOSTS, illustrated
in Figure 3(b), which has 6 transitions instead of 9 initially.
However, it does not reflect clearly the initial scenario yet.
Rules deducing more abstract actions are required. These are
found in the next layer.

2) Layer 4: This layer allows to infer a more abstract
model composed of more expressive actions. Its rules may
have different forms:
• they can be applied on a single transition. In this case,

the rule replaces the transition action to add more sense,
• the rules can also aggregate several successive transitions

up to complete paths into one transition labelled by a

rule "Identify Redirection after a Post"
when

$t1: Transition(Action == POST and
(Guard.response.status = 301 or Guard.response.
status = 302) and $l1final := Lfinal)

$t2: Transition(Action == GET, linit == $l1final,
$l2linit:=Linit)

not (Transition (Linit == $l2linit))
then

insert(new Transition("PostRedirection", Guard(
$t1.Guard, $t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Fig. 5: Redirection recognition rule

more abstract action. For instance, the rule illustrated in
Figure 6 recognises a user authentication thanks to the
variable ”isLoginPage” added by Layer 3.

rule "Identify Authentication"
when

$t1: Transition(Action == GET,
Assign contains "isLoginPage:= true",

$t1final:=Lfinal)
$t2: Transition(Action == PostRedirection,

Linit == $t1lfinal, $t2linit:=Linit)
not (Transition (Linit == $t2linit))

then
insert(new Transition("Authentication",

Guard($t1.Guard,$t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Fig. 6: Authentication recognition rule

Other rules can also be application-specific, so that these
bring specific new knowledge to the model. For instance,
the GitHub Web application has a dedicated URL grammar
(a.k.a. routing system). GitHub users own a profile page
that is available at: https : //github.com/username where
username is the nickname of the user. However, some items
are reserved e.g., edu and explore. The rule given in Figure
7 is based upon this structure and produces a new action
Showprofile offering more sense. We did the same for
projects as well, introducing a Showproject action.

rule "GitHub profile pages"
when

$t: Transition(action == GET, (
Guard.uri matches "/[a-zA-Z0-9]+$",
Guard.uri not in ["/edu", "/explore"]))

then
modify ($t) (SetAction("Showprofile"));

end

Fig. 7: User profile recognition rule

Example IV.3 The application of the previous rules leads to
the final IOSTS depicted in Figure 8, owning actions that have
a precise meaning, and now clearly describing the application
behaviour.

Fig. 8: IOSTS App(S3) obtained from Layer 4

V. EXPERIMENTATION

The framework presented earlier has been implemented
in a prototype tool called Autofunk (Automatic Functional
model inference). A user interacts with Autofunk through a
Web interface and either gives a URL or a file containing
traces formatted with the HTTP Archive (HAR) format, the
defacto standard for describing HTTP traces, used by various
HTTP related tools (many HTTP monitoring tools, and Web
browsers such as Mozilla Firefox and Google Chrome). The
JBoss Drools Expert tool has been chosen to implement the
rule-based system. Such an engine leverages Oriented Object
Programming in the rule statements and takes knowledge bases
given as Java objects (Location, Transition, GET, POST gt
stobjects in this work).

From the Github Web site, we recorded a trace set composed
of 840 HTTP requests / responses. Then, we applied Autofunk
on them with a Models generator composed of 5 layers
gathering 18 rules whose 3 are specialised to Github. After
the trace filtering (Layer 1), we obtain a first IOSTS tree
composed of 28 transitions. The next 4 layers automatically
infer a last IOSTS tree S4 composed of 13 transitions whose
7 have a clear and intelligible meaning. Its approximation
App(S4) is illustrated in Figure 9. Most of its actions have a
precise meaning reflecting the user interactions while the trace
recording. Now, one can easily deduce that the user created,
chose, deleted some projets and read the issues of others.

VI. CONCLUSION

This paper presents an original approach combining model
inference and expert systems to derive IOSTSs models. Our
proposal yields several models, reflecting different levels of
abstractions of the same application with the use of inference
rules that capture the knowledge of an expert. Our approach
can be applied on all applications that are able to produce
traces.

We applied our framework on Web applications as a
premise. In the future, we intend to apply it on industrial sys-
tems to ease their diagnostics. But this kind of system brings

Fig. 9: IOSTS App(S4) obtained from the Github Web site

several issues not yet addressed in the model inference area.
For instance, industrial systems may include asynchronous
actions and timed properties. At the moment, our solution does
not yet support this kind of properties. Furthermore, writing
rules may be as tough as writing models in some cases. This is
why we are working on a human interface which helps design
rules from a trace set example. We also plan to add a test case
generation module for regression testing.

REFERENCES

[1] V. Dallmeier, M. Burger, T. Orth, and A. Zeller. Webmate: a tool
for testing web 2.0 applications. In Proceedings of the Workshop on
JavaScript Tools, JSTools ’12, pages 11–15, New York, NY, USA, 2012.
ACM.

[2] J.-C. Fernandez. An implementation of an efficient algorithm for
bisimulation equivalence. Science of Computer Programming, 13:13–219,
1989.

[3] L. Frantzen, J. Tretmans, and T. Willemse. Test Generation Based on
Symbolic Specifications. In J. Grabowski and B. Nielsen, editors, FATES
2004, number 3395 in Lecture Notes in Computer Science, pages 1–15.
Springer, 2005.

[4] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Reverse
engineering of graphical user interfaces for testing. In Proceedings of
the 10th Working Conference on Reverse Engineering, WCRE ’03, pages
260–, Washington, DC, USA, 2003. IEEE Computer Society.

[5] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[6] M. Pradel and T. R. Gross. Automatic generation of object usage specifi-
cations from large method traces. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09,
pages 371–382, Washington, DC, USA, 2009. IEEE Computer Society.

[7] S. Salva and W. Durand. Model inference combining ex-
pert systems and formal models. Technical report, LIMOS,
http://sebastien.salva.free.fr/RR-14-04.pdf, 2014. LIMOS Research report
RR-14-04.

[8] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated
gui-model generation of mobile applications. In Proceedings of the 16th
international conference on Fundamental Approaches to Software Engi-
neering, FASE’13, pages 250–265, Berlin, Heidelberg, 2013. Springer-
Verlag.

[9] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring specifications for
resources from natural language api documentation. Autom. Softw. Eng.,
18(3-4):227–261, 2011.

