
HAL Id: hal-02019712
https://uca.hal.science/hal-02019712

Submitted on 14 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proxy-Monitor: An integration of runtime verification
with passive conformance testing.

Sébastien Salva, Tien-Dung Cao

To cite this version:
Sébastien Salva, Tien-Dung Cao. Proxy-Monitor: An integration of runtime verification with passive
conformance testing.. International Journal of Software Innovation, 2014. �hal-02019712�

https://uca.hal.science/hal-02019712
https://hal.archives-ouvertes.fr

Title: Proxy-Monitor: An integration of runtime verification with passive conformance

testing.

Authors

Sébastien Salva,

Corresponding author

LIMOS CNRS UMR 6158, PRES Clermont-Ferrand University, France

Email: sebastien.salva@udamail.fr

Tien-Dung Cao,

School of Engineering, Tan Tao University, Vietnam

Email: dung.cao@ttu.edu.vn

Proxy-Monitor: An integration of

runtime verification with passive

conformance testing.

ABSTRACT
This paper proposes a conformance testing method combining two well-known testing

approaches, runtime verification and passive testing. Runtime verification addresses the

monitoring of a system under test to check whether formal properties hold, while passive testing

aims at checking the conformance of the system in the long-term. The method, proposed in this

paper, checks whether an implementation conforms to its specification with reference to the ioco

test relation. While passively checking if ioco holds, it also checks whether the implementation

meets safety properties, which informally state that “nothing bad ever happens”. This paper also

tackles the trace extraction problem, which is common to both runtime verification and passive

testing. We define the notion of Proxy-monitors for collecting traces even when the

implementation environment access rights are restricted. Then, we apply and specialise this

approach on Web service compositions. A Web service composition deployed in different

Clouds is experimented to assess the feasibility of the method.

Keywords: Conformance testing, Passive Testing, Runtime Verification, Proxy-Tester, ioco,

Monitoring, Service Composition, Clouds.

INTRODUCTION
Model-based Testing is a Software testing approach that is gaining ground in the Industry as

an automatic solution to find defects in black-box implementations. Usually, deciding whether an

implementation conforms to its specification comes down to checking whether a test relation

holds. Such a relation defines the notion of correctness without ambiguity by expressing a

comparison of observable functional behaviours. But beyond the use of formal techniques,

model-based testing offers the advantage to automate some (and eventually all) steps of the

testing process. Generally, the mainstream of testing is constituted by active methods: basically,

test cases are constructed from the specification and are experimented on its implementation to

check whether the latter meets desirable behaviours. Active testing may give rise to some

inconvenient though, e.g., the repeated or abnormal disturbing the implementation.

Passive testing and runtime verification are two complementary approaches, employed to

monitor implementations over a longer period of time without disturbing them. The former relies

upon a monitor, which passively observes the implementation reactions, without requiring

pervasive testing environments. The sequences of observed events, called traces, are analysed to

check whether they meet the specification (Miller & Arisha, 2000; (Alcalde, Cavalli, Chen,

Khuu, & Lee, 2004; Lee, Chen, Hao, Miller, Wu, & Yin, 2006). Runtime verification,

originating from the verification area, addresses the monitoring and analysis of system

executions to check that strictly specified properties hold in every system states (Leucker &

Schallhart, 2009).

Both approaches share some important research directions, such as methodologies for

checking test relations and properties, or trace extraction techniques. This paper explores these

directions and describes a testing method, which combines the two previous approaches. Our

main contributions can be summarized threefold:

1. combination of runtime verification and ioco passive testing: we propose to monitor an

implementation against a set of safety properties, which express that ”nothing bad ever

happens”. These are known to be monitorable and can be used to express a very large set

of properties. We combine this monitoring approach with a previous work dealing with

ioco passive testing (IdentificationRemoved, 2012). Ioco (Tretmans, 1996) is a well-

known conformance test relation that defines the conforming implementations by means

of suspension traces (sequences of actions and quiescence). Starting from an ioSTS (input

output Symbolic Transition System) model, our method generates monitors for checking

whether an implementation ioco-conforms to its specification and meets safety

properties,

2. trace extraction: the trace recovery requires an open testing environment where tools,

workflow engines or frameworks can be installed. Nonetheless, the real implementation

environment access is more and more frequently restricted. For instance, Web server

accesses are often strictly limited for security reasons. And these restrictions prevent

from installing monitors collecting traces. Another example concerns Clouds. Clouds,

and typically PaaS (Platform as a service) layers are virtualized environments where Web

services and applications are deployed. These virtualizations of resource, whose locations

and details are not known, combined with access restrictions, make difficult the trace

extraction. We face this issue by using the notion of transparent proxy and by assuming

that the implementation can be configured to pass through a proxy (usually the case for

Web applications). But, instead of using a classical proxy to collect traces, we propose

generating a formal model from a specification, called Proxy-monitor, which reflects a

proxy functioning combined with the automatic detection of implementation errors,

3. the proposed algorithms also offer the advantage of performing synchronous (receipt of

an event, error detection, forward of the event to its recipient) or asynchronous analysis

(receipt and forward of an event, error detection) whereas the use of a basic proxy allows

asynchronous analysis only. We compare these two modes and give some experimental

measurements.

The paper is structured as follows: we review some related work on passive testing and

runtime verification in the next Section. We provide some notations to be used throughout the

paper in Section Model definition and Notations. Then, we recall the principles of runtime

verification and ioco passive testing. The combination of both which leads to the Proxy-monitor

model is defined in Section Combining runtime verification and Proxy-tester. Afterwards, we

apply the concept of Proxy-monitor on Web service compositions. Conclusions with directions

for further research are drawn in Section Conclusion.

RELATED WORK
Several research works dealing with runtime verification or passive testing have been

proposed recently in the literature. We briefly compare some of them with the present work.

In most of the runtime verification approaches, violations of safety properties are detected by

monitors whose functioning can be summarized by: maintain a checker state from system

observations and produce a verdict (Havelund & Rosu, 2002; Barringer, Goldberg, Havelund &

Sen, 2004; Falcone, Jaber, Nguyen, Bozga, & Bensalem, 2011). Safety properties can be

modelled with several formalisms, e.g., temporal logics (Arthoa, Barringerb, Goldbergc,

Havelundc, Khurshidd, Lowrye, Pasareanuf, Rosug, Seng, Visserh, & Washingtonh, 2005),

automata or similar formalisms (Falcone, Jaber, Nguyen, Bozga, & Bensalem, 2011; Constant,

Jeron, Marchand & Rusu, 2007). (Falcone, Jaber, Nguyen, Bozga, & Bensalem, 2011) proposed

an approach dedicated to runtime verification of component-based systems. Instead of

considering one general model for describing the composition as in this paper, each composite

component has its own ioLTS model. The specialized BIP framework is used to compose them

later. The composition monitoring is performed with a classical runtime verification framework

(monitor generation, trace extraction and analysis).

On the other hand, passive testing also aims to monitor systems, but offers slightly different

features since this technique usually serves to detect defects continuously in the system under

test. Passive testing is often used to check whether a system under test conforms to its

specification by means of a forward checking algorithm (Miller & Arisha, 2000; Lee, Chen, Hao,

Miller, Wu, & Yin, 2006). Implementation reactions are given on the fly to an algorithm, which

detects incorrect behaviours by covering the specification transitions with these reactions. In this

field, Lee et al. propose a passive testing method dedicated to wire protocols (Lee, Chen, Hao,

Miller, Wu, & Yin, 2006). In (Lalanne, Che & Maag, 2011; Che, Lalanne & Maag, 2012), a

data-centric approach is here proposed to test the conformance of protocols by defining a

message as a collection of data fields and a logic syntax and semantics based in Horn logic in

order to express properties. Forward checking algorithms may be improved with backward

checking (Alcalde, Cavalli, Chen, Khuu, & Lee, 2004). With this approach, the specification is

covered with a given trace in a backward manner to seek the starting states in which the variables

can be determined. When such states are reached, a decision is taken on the validity of the

studied paths. Passive testing can be also employed to check invariant satisfiability (Bayse,

Cavalli, Nunez & Zaidi, 2005; Andres, Cambronero & Nunez, 2011) where invariants represent

properties that are always true. This method is very similar to runtime verification.

Few works have focused on the combination of runtime verification with conformance

testing. (Arthoa, Barringerb, Goldbergc, Havelundc, Khurshidd, Lowrye, Pasareanuf, Rosug,

Seng, Visserh, & Washingtonh, 2005; Leucker & Schallhart 2009) consider active testing and

therefore a combination of properties with classical test cases that are later actively executed on

the system. Test cases are derived from a model describing system inputs and properties on these

inputs. Once test cases are executed, the resulting traces are analysed to ensure that the properties

hold. Runtime verification and active testing have been also combined to check whether a system

meets a desirable behaviour and conformance expressed by ioco (Constant, Jeron, Marchand &

Rusu, 2007). Here, the combination of active testing with runtime verification helps choose in

the set of all possible test cases, only those expressing behaviours satisfying the given

specification and safety properties. The other behaviours (those satisfying the specification but

not the safety property and vice-versa) are not considered. Our proposal is based upon passive

testing and solves this issue by defining differently specifications and safety properties so that

the resulting monitors could cover any behaviours passively over a long period of time.

To collect traces, three main possibilities have also been proposed. Monitors can be

encapsulated within the system (Barringer, Gabbay & Rydeheard, 2007; Cavalli, Benameur,

Mallouli & Li, 2009), can be composed of probes deployed in the system environment

(D’Angelo, Sankaranarayanan, Sanchez, Robinson, Finkbeiner, Sipma, Mehrotra & Manna,

2005; Pellizzoni, Meredith, Caccamo & Rosu, 2008; Falcone, Jaber, Nguyen, Bozga, &

Bensalem, 2011), or composed of probes directly injected into the code (d’Amorim &

Havelund, 2005). These solutions bring several disadvantages such as risks of adding bugs in the

implementation environment and/or require an open access to deploy tools. Guaranteeing this

last hypothesis is more and more difficult for security or technical reasons. Our work mainly

focuses on these issues by proposing the use of Proxy-monitors. We also show that the resulting

algorithms can be easily modified to propose either synchronous or asynchronous analysis.

MODEL DEFINITION AND NOTATIONS
In this paper, we focus on models called input/output Symbolic Transition Systems (ioSTS).

An ioSTS is a kind of automata model, which is extended with two sets of variables, with guards

and assignments on transitions, giving the possibilities to model the system states and constraints

on actions. The fact of using symbolic variables helps describe infinite state transition systems in

a finite manner. These potentially infinite behaviours can be expressed by the semantics of an

ioSTS, given in terms of input/output Labelled Transition Systems (ioLTS). This model offers

the advantage of reusing the ioco theory (Tretmans, 1996).

With ioSTSs, the action set is separated with inputs beginning by ? to express actions

expected by the system, and with outputs beginning by ! to express actions produced by the

system. Inputs of a system can only interact with outputs provided by the system environment

and vice-versa. An ioSTS is also input-enabled, i.e., it always accepts any of its inputs. Outputs

of the environment are never rejected. ioSTSs gather two set of variables, internal and interaction

variables. This distinction is convenient to clearly express the state of the system (internal

variables) and to model complex actions composed with communication parameters.

Below, we recall the definition of an extension, called ioSTS suspension which also expresses

quiescence i.e., the absence of observation from a location. The ioSTS suspension offers the

advantage of expressing when it is allowed to have a system in a deadlock state and of detecting,

with conformance testing, unauthorized deadlocks in the system under test. Usually, quiescence

is observed on implementations with timers: after each event, a timer is reset. If it expires, then

quiescence is observed. Timers are assumed initialized with a duration sufficiently long to ensure

that any output action, provided by the implementation, can be observed.

Quiescence is modelled by a new symbol !d and an augmented ioSTS denoted ()ioST SD .

For an ioSTS S , ()SD is obtained by adding a self-loop labelled by !d for each location where

quiescence may be observed.

Definition 1 (ioSTS suspension) A deterministic Input Output Symbolic Transition System

(ioSTS) suspension ()SD is a tuple
0 0 ()

, , , , , {! },
S

L l V V I d
D

L È ® , where:

 L is the finite set of locations, with
0

l the initial one,

 V is the finite set of internal variables, while I is the finite set of parameter ones. The

assignment of values of a set of variables Y XÍ is denoted by valuations where a

valuation is a function :v Y D® . We denote
Y

D the set of valuations over the set of

variables Y . The internal variables are initialized with the valuation
0 V

V DÎ , which is

assumed to be unique,

 L is the finite set of symbolic actions ()a p , with
1

(, ...,)
k

p p p= a unique finite set of

parameter variables in ()kI k Î ¥ : if ()a p Î L , then (')a p , with 'p p¹ does not belong

to L . L is partitioned by I OL = L È L ()I OL L represents the set of input actions

beginning with ? (the set of output actions beginning with ! respectively),

 ® is the finite transition set. A transition (, , (), ,)
i j
l l a p G A , from the location

i
l LÎ to

j
l LÎ , also denoted (), ,a p G A

i j
l l¾ ¾ ¾ ¾® is labelled by an (input or output) action ()a p Î L ,

()p V T p VG D D D is a guard on internal variables, parameters and ()T p V a set of

functions that return Boolean values only (a.k.a. predicates) over p V . Internal

variables are updated with a set A of assignments of the form (:)
v V

v Av
Î

= such that for

each variable v , Av is an expression on ()p V T p VÈ È È ,

 for any location l L and for all pair of transitions 1 1 1(, , (), ,)l l a p G A , 2 2 2(, , (), ,)l l a p G A

labelled by the same action, 1 2G G is unsatisfiable.

These notations are expressed in the straightforward example of Figure 1 and Table 1. This

specification, taken from the BPEL 2.0 specification (Jordan & Evdemon 2007), describes the

functioning of a Loan approval service receiving as input loan requests composed of personal

information and the amount being requested. If the amount is less than or equal to $10,000, a

Risk-assessment service is called to return a risk level. The loan request is then approved when

the risk level is estimated as low. For larger amounts or when the risk level is medium or high,

the request requires the call of the Approver service which yields the final decision. In the

remainder of the paper, we use the label “*” as a shortcut notation gathering all the valued

actions that are not explicitly carried by other transitions.

Figure 1: An ioSTS suspension

Symbol Message Guard Update

?loanReq ?loanRequest(profile, amount) a:=amount

p:=profile

!riskReq !assessmentRequest(profile,

amount)

G1=[profile=p˄amount=

a˄amount £10,000]

!approveReq !approveRequest(profile,amount

)

G2=[profile=p˄amount=

a˄(amount>10,000r=”

unknown”)]

Table 1: Symbol table

An ioSTS is also associated to an ioLTS (Input/Output Labelled Transition System) to

formulate its semantics. Intuitively, the ioLTS semantics corresponds to a valued automaton: the

ioLTS states are labelled by internal variable valuations while transitions are labelled by actions

and parameter valuations.

Definition 2 (ioLTS semantics) The semantics of an ioSTS
0 0

, , , , , ,S L l V V I= L ® is the

ioLTS
0

, , ,S Q q= å ® where:

V

Q L D= ´ is the set of states;

0 0 0

(,)q l V= is the initial state;

 { }(), () ,
p

a p a p Dq qå = Î L Î

is the set of valued symbols. Iå is the set of input

actions and Oå is the set of output ones,

 ® is the transition relation Q Q´ å ´ deduced by the following rule:

(), ,

1 2

(),

1 2

, , , ' , (,) , ' ()

(,) (, ')

a p G A

p V V

a p

l l D v D v D G v true v A v

l v l v
q

q q q¾ ¾ ¾ ¾® Î Î Î = = È

¾ ¾ ¾¾®

?riskResp G3 ?assessmentResponse(risk) G3=[risk=”low”] r:=”approved”

?riskResp ¬ G3 ?assessmentResponse(risk) ¬ G3 r:=”unknown”

?approveResp ?approveResponse(resp) r:=resp

!loanResp G4 !loanResponse(result) G4=[result=r˄(result=”a

pprovedresult=”refuse

d”)]

?loanReq* ?loanRequest(profile, amount) G5=[amount £10,000]

!riskReq* !assessmentRequest(profileObje

ct, amount)

!loanResp* !loanResponse(result)

!loanResp ¬ G4 !loanResponse(result) ¬ G4

?loanReq1 ?loanRequest(profileObject,

amount)

¬ G5

?R1

?assessmentRequest(profileObje

ct, amount)

?approveRequest(profileObject,

amount)

?δ

¬ G1

¬ G2

?R2 ?assessmentRequest(profile,

amount)

?approveRequest(profile,

amount)

?δ

?R3 ?assessmentRequest(profile,

amount)

?approveRequest(profile,

amount)

This rule can be read as follows: for an ioSTS transition
(), ,

1 2

a p G A
l l¾ ¾ ¾ ¾® , we obtain an ioLTS

transition
(),

1 2
(,) (, ')

a p
l v l v

q
¾ ¾ ¾¾® with v a valuation over the internal variable set, if there exists a

valuation q such that the guard G evaluates to true with v and q . Once the transition is fired,

the internal variables are assigned with 'v derived from the assignment A over v qÈ . An ioSTS

suspension ()SD is also associated to its ioLTS semantics suspension by () ()S SD = D .

Runs and traces of ioSTSs, which represent executions and action sequences, can now be

derived from the ioLTS semantics:

Definition 3 (Runs and traces) For an ioSTS
0 0

, , , , , ,S L l V V I= L ® , interpreted by its

ioLTS semantics
0

, , ,S Q q= å ® , a run
0 0 1 1 1

...
n n n

q q q qa a
- -

 is an alternate sequence of states

and valued actions. () ()RUN S RUN S= is the set of runs found in S . ()
F

RUN S is the set

of runs of S finished by a state in
V

F D Q´ Í with F a location set in L . It follows that a trace

of a run r is defined as the projection ()proj r
å

 on actions. () ()
F F

T races S T races S= is the

set of traces of runs finished by states in
V

F D´ .

The parallel product is a classical state-machine operation used to produce a model

representing the shared behaviours of two original automata. For ioSTSs, these ones are to be

compatible:

Definition 4 (Compatible ioSTSs) An ioSTS 0 0

1 1 1 1 1 1 1 1
, , , , , ,S L l V V I= L ® is compatible

with 0 0

2 2 2 2 2 2 2 2
, , , , , ,S L l V V I= L ® iff

1 2
V VÇ = Æ,

1 2

I IL = L ,
1 2

O OL = L and
1 2

I I= .

Definition 5 (Parallel product) The parallel product of two compatible ioSTSs
1

S =

0 0

1 1 1 1 1 1 1
, , , , , ,L l V V I L ® and 0 0

2 2 2 2 2 2 2 2
, , , , , ,S L l V V I= L ® , denoted

1 2
S S , is the ioSTS

0 0, , , , , ,
P P P P P P P

P L l V V I= L ® such that
1 2P

V V V= È ,
0 0 0

1 2P
V V V= Ù ,

1 2P
I I I= = ,

1 2P
L L L= ´ ,

0 0 0

1 2
(,)

P
l l l= ,

1 2P
L = L = L , The transition set

P
® is the smallest set satisfying

the following rule:

'

' '

'1 1 2 2

1 2

1 2 1 2

a(p),G ,A a(p),G ,A
S S1 2 1 2

a(p),G G ,A A
P1 1 2 2

l l ,l l

(l ,l) (l ,l)

Lemma 1 (Parallel product traces)
1 2 1 2

1 2 1 2
() () ()

F F F F
T races S S T races S T races S

´
= Ç with

1 2
1 2

,
S S

F L F LÍ Í .

We end this Section with the definition of the ioSTS operation refl , which exchanges input

and output actions of an ioSTS.

Definition 6 (Mirrored ioSTS and traces) Let S be an ioSTS. ()
def

refl S =

0 0

()
, , , , , ,

S S S S S refl S S
L l V V I L ® , where

()

I O

refl S S
L = L ,

()

O I

refl S S
L = L . We extend the refl notation

on trace sets. * * * *: () ()refl å ® å is the function which constructs a mirrored trace set from an

initial one (for each trace, input symbols are exchanged with output ones and vice-versa).

RUNTIME VERIFICATION AND PASSIVE IOCO TESTING
To reason about model-based testing, one assume that the functional behaviours of the

implementation can be modelled with an ioLTS I which is unknown and which provides exactly

the same observations as the implementation. This classical assumption is required to formally

define violations or fulfilment of implementations against properties or specifications. I is also

assumed to have the same interface as the specification (actions with their parameters) and is

input-enabled, i.e., it accepts any output actions.

Runtime verification

The primary objective of runtime verification is to check whether an implementation I meets

a set of properties expressed in trace predicate formalisms such as regular expressions, temporal

logics or state machines. We propose to reuse the notion of observers (Chen & Wagner, 2002;

Constant, Jeron, Marchand & Rusu, 2007) for modelling safety properties. An observer is an

ioSTS specialized to capture the negation of a safety property by means of final “bad” locations.

Runs, which lead to these locations, represent behaviours violating the property.

Definition 7 (Observer) An Observer is a deterministic ioSTS W composed of a non-empty

set of sink locations Violate L
W W
Ì , called violation locations. W must be both input and output-

enabled, i.e. for each state (,) (/)l v L Violate D , and for each valued action ((),)a p

pD , there exists (,)l v (), (', ')a p l v

 .

Given an ioSTS S , ()Comp S stands for the set of compatible Observers of S . We shall also

say that ()ViolateTraces

 gathers all the traces in ()Traces which violate .

Given an implementation I , I satisfies the Observer if I does not yield any trace which

also violates :

Definition 8 (Implementation satisfies Observer) Let S be an ioSTS and I an

implementation. I satisfies the Observer (())Comp S , denoted I , if

(()) ()ViolateTraces I Traces

 .

Figures 2 and Table 1 illustrate an Observer example that expresses a safety property for the

specification of Figure 1. The underlying property means that the receipt of a loan response,

without requesting the Assessment service when the loan amount is less than $10,000, must

never occur.

Figure 2: A safety property

Two Observers Ω
1
 and Ω

2
, describing two different safety properties can be interpreted by

the Observer Ω Ω
1 2

 composed of a Violation location set
1 2

Violate V iolate
W W
´ . In the

remainder of the paper, we shall consider only one Observer, assuming that it may represent one

or more safety properties.

Ioco testing with proxy-testers

In the paper, we define conformance with the ioco test relation (Tretmans, 1996), which

intuitively means that I conforms to its specification S if, after each trace of the ioSTS

suspension ()SD , I only produces outputs (and quiescence) allowed by ()SD . For ioSTSs, ioco

is defined as:

Definition 9 An implementation I ioco-conforms to a specification S , denoted I ioco S if

{ }(()).(!) (())OT races S T races IdD å È Ç D Í (()).T races SD

We have shown in (IdentificationRemoved, 2012) that the ioco theory can be applied on

passive testing with the concept of Proxy-tester. A Proxy-tester formally expresses the

functioning of a transparent proxy, able to collect traces and to detect non-conformance without

requiring to be set up in the same environment as the implementation one. We recall here the

notion of Proxy-tester that shall be combined with runtime verification in the next section.

To collect the events observed from an implementation and to detect non-conformance, a

Proxy-tester is constructed from the Canonical tester of the specification. A Canonical tester is

an ioSTS containing the specification transitions labelled by mirrored actions (inputs become

outputs and vice-versa) and transitions leading to a new location Fail, exhibiting the receipt of

unspecified actions:

Definition 10 (Canonical Tester). Let
0 0, , , , , ,

S S S S S S S
S L l V V I= L ® be an ioSTS and

()SD be its suspension. The Canonical tester of S is the ioSTS ()Can S =

0 0

() (()) ()
, , , , , ,

S Can S S S S S refl S Can S
L LF l V V I

D
È L ® such that { }()Can S

LF Fail= is the Fail location

set composed of the Fail location. ()Can S
® is defined by the following rules:

{ }
(), ,

()
1

(())

()

1

? (), , (:)
()

1

! , ,
a p G A

S

a a x V

refl S

Can S

O

S S a
l l

a p G A x x
Can S

t

t

a l L G G

l Fail

d
D

Î

D

¾ ¾ ¾ ¾ ¾®

= =

Î ®

Î ®

Î L È Î = Ø

¾ ¾ ¾ ¾ ¾ ¾ ¾¾®

Ù

As an example, the Canonical tester of the ioSTS depicted in Figure 1 is illustrated in Figure

3. If we consider the location 2, new transitions to Fail (grouped by the symbol ?R1) are added

to model the receipt of unspecified actions.

Figure 3: An ioSTS Canonical tester

The Proxy-tester of an ioSTS S corresponds to a Canonical tester where all the transitions,

except those leading to Fail , are doubled to express the receipt of an event and its forwarding to

its real recipient.

Definition 11 (Proxy-tester) The Proxy-tester of the ioSTS
0 0, , , , , ,

S S S S S S S
S L l V V I= L ®

is the ioSTS (())Pr Can S where Pr is an ioSTS operation such that def
Pr(Can(S)) =

0 0

() () () ()
, , { , }, { : "", : ""}, , ,

P P Can S Can S Can S Can S P P
L LF l V side pt V side pt IÈ È È = = L ® .

P
LF =

()
{ }

Can S
LF Fail= is the Fail location set.

P
L ,

P
L and

P
® are constructed with the following

rules:

()

! (), ,
()

1 2 2 ()

! (),[],{(:) , : " ", : }
? (), , { : , : ""}

1 1 2 2

? (), ,
()

1 2 2 ()

? ()

1

,

(, , (),)

,

t x V t tCan St

a p G A
Can S

Can S

a p p== p x x side Can p p
a p G A p p side

P P

a p G A
Can S

Can S

a p

l l l LF

l l l a p G l

l l l LF

l

Î
= = =

È = =

¾ ¾ ¾ ¾® Ï

¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾¾® ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾®

¾ ¾ ¾ ¾® Ï

()
! (),[],{(:) , : "", : }

, , { : , : " "}

1 2 2

(), ,
()

1 2 2 ()

(), , { : " ", : }

1 2

(, , (),)

,

t x V t tCan St

t t

a p p== p x x side p p
G A p p side Can

P P

a p G A
Can S

Can S

a p G A side Can p p
P

l l a p G l

l l l LF

l l

Î
= = =

È = =

È = =

¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾¾® ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾®

¾ ¾ ¾ ¾® Î

¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾¾®

Intuitively, the two first rules double the transitions whose terminal locations are not Fail to

describe the functioning of a transparent proxy. The first rule means that, for an event (action or

quiescence) initially sent to the implementation, the Proxy-tester waits for this event and then

forwards it. The two transitions are separated by a unique location composed of the tuple

1 2
(, , (),)l l a p G to ensure that these two transitions, and only them, are successively fired. The last

rule enriches the resulting ioSTS with transitions leading to Fail . A new internal variable,

denoted side , is also added to keep track of the transitions provided by the Canonical tester

(with the assignment : " "side Can=). This distinction shall be useful to define partial traces of

Proxy-testers and to express conformance with them.

As ioSTS specifications are input-enabled, a Proxy-tester accepts any output provided by the

external environment. Since it is constructed from a Canonical tester, it also accepts any output

provided by the implementation. Consequently, deadlocks can only occur in Proxy-testers when

one of its Fail states is reached.

Figure 4 depicts the resulting Proxy-tester obtained from the previous specification (Figure 1)

and its Canonical tester (Figure 3). For readability, the dashed transitions stand for the transitions

labelled by the assignment (: " "side Can=) and the self-loop transitions, carrying “!*” in the

Canonical tester, are gathered and only depicted with empty transitions and locations labelled by

“!*”. Figure 4 clearly illustrates that the initial behaviours of the Canonical tester are kept.

Figure 4: A Proxy-tester.

Previously, we have intentionally enriched Proxy-tester transitions with assignments on the

variable side. These assignments help extract partial runs and traces in Proxy-testers:

Definition 12 (Partial runs and traces) Let P be a Proxy-tester and

|| || , 0 , ,P P P PP Q q be its ioLTS semantics. We define :
PP VSide Q D the mapping

returning the valuation of the side variable of a state in PQ . ()E

P PSide Q Q is the set of states

such that ()Side q E . Let ()RUN P be the set of runs of P . We denote ()ERUN P the set of

partial runs derived from the projection ()
(())E

P P PQ idS e Q
proj RUN P

å . It follows that ()ETraces P is

the set of partial traces of (partial) runs in ()ERUN P .

With these notations, we can write that the behaviours expressed in the Canonical tester with

(())T races Can S still exist in its Proxy-tester and are expressed by the trace set

()))CanT races (Pr(Can S .

Proposition 1. Let S be an ioSTS, we have ()))CanT races (Pr(Can S = (T races

(()))) (())-1Pr (Pr Can S T races Can S= . In particular, (()))Can

Fail
T races Pr(Can S = (

Fail
T races

())Can S .

The definition of -1Pr (with the proof of the previous Proposition is given in

(IdentificationRemoved, 2013). The ioco relation can now be rephrased by:

Proposition 2. (()) ((())))Can

Fail
I ioco S T races I refl T races Pr(Can SÛ D Ç = Æ.

So defined, ioco means that I conforms to its specification when the implementation traces

do not belong to the set of partial Proxy-tester traces leading to Fail .

COMBINING RUNTIME VERIFICATION AND PROXY-TESTER
As defined, both Canonical testers and Observers describe undesired behaviours. This

similarity tends to combine them to produce a model that could be used to detect both property

violations and non-conformance. We call this model a Monitor. It results from the product of one

Canonical tester ()Can S with an Observer W and refines ()Can S by separating the traces that

violate safety properties among all the traces. A monitor is defined as:

Definition 13 (Monitor) Let ()SD be an ioSTS suspension and (())Comp SWÎ D be an

Observer. The Monitor of the Canonical tester ()Can S and of the Observer W is the ioSTS

() ()M Can S refl= W .

A monitor M is still a Canonical tester in the sense that it owns a mirrored action set and can

communicate with an implementation. It also has a Fail location set. But, it is specialised to

recognise property violations.

As an example, the Monitor constructed from the previous Canonical tester (Figure 3) and the

Observer of Figure 2 is depicted in Figure 5 and Table 1. It contains different verdict locations:

Fail received from the Canonical tester, Violate received from the Observer and a combination

of both Fail/Violate, which denotes non-conformance and the safety property violation. For

example, the trace “?loanRequest(“John_account”;9000) !loanResponse(“denied”)” violates the

Observer of Figure 2 because the action !assessmentRequest does not appear. This trace also

reflects an incorrect behaviour because the response “denied” is incorrect. It must be either

“approved” or “”rejected.

The combination of Canonical tester and Observer locations leads to new locations labelled

by local verdicts. We group these locations in verdict location sets:

Definition 14 (Verdict location sets) Let ()Can S be a Canonical tester and

(())Comp SWÎ D be a compatible Observer with ()SD . The parallel product M =

() ()Can S refl W produces new sets of verdict locations defined as follows:

1. ()
(\ { })

Can S
VIOLAT E L Fail V iolate

W
= ´ ,

2. { } (\)FAIL Fail L V iolate
W W

= ´ ,

3. / {(,)}FAIL VIOLAT E Fail V iolate
W

= .

We also denote /
M

LF FAIL FAIL VIOLAT E= È , the Fail location set of M.

Figure 5: An ioSTS Monitor

As for the parallel product (Lemma 1), the traces of a Monitor () ()M Can S refl= W can

be expressed with the traces of the composed ioSTSs.

Lemma 2 (Monitor traces) Let M be a Monitor constructed from a Canonical tester ()Can S

and a compatible Observer (())Comp SWÎ D . We have:
1 2

()
F F

T races M
´

=
1

(
F

T races

2

()) (())
F

Can S T races reflÇ W .

In accordance with Definition 13, a Monitor can be seen as a Canonical tester, with a verdict

location set LF, specialised for recognizing property violations. Consequently, to passively check

whether an implementation meets safety properties, it sounds natural to apply the concept of

Proxy-tester on Monitors. This gives a final model called Proxy-monitor:

Definition 15 (Proxy-monitor) Let M be a Monitor resulting from the parallel Product

() ()Can S refl W with S an ioSTS and (())Comp SWÎ D an Observer compatible with the

suspension of S. We denote Pr(M), the Proxy-monitor of M.

Proxy-monitors are constructed as Proxy-testers except that Fail location sets are different.

For a Proxy-tester, there is only one Fail location, whereas a Proxy-monitor has a Fail location

set LFM equals to /FAIL FAIL VIOLATE since it stems from a composition between an

Observer and a Canonical tester. Except this difference, transitions of the Monitor are still

doubled in its Proxy-monitor.

It remains to define formally the notion of passive monitoring of an implementation I by

means of a Proxy-monitor. This cannot be defined without modelling the external environment,

e.g., the client side, which interacts with the implementation with mirrored actions. We assume

that this external environment can be also modelled with an ioLTS suspension Env such that

()refl Env is compatible with I and (())T races EnvD is composed of sequences in
*

()
(())

I
refl

D
å .

Definition 16 (Implementation monitoring) Let be
0, , ,

PM PM PM PM
PM Q q= å ® the

ioLTS semantics of a Proxy-monitor Pr(M) derived from an ioSTS S and an Observer WÎ

(())Comp SD .
Pr(M)

PM PM Pr(M) V
QF Q LF DÍ = ´ is its Fail state set.

0, , ,
I I I M I

I Q q= å Í å ®

is the implementation model, assumed compatible with S and
0, , ,

Env Env Env P Env
Env Q q= å Ì å ® is the ioLTS modelling the external environment

compatible with ()refl I . The monitoring of I by Pr(M) is expressed with the product

(, ,)
P

Env PM I =
0 0 0

(, ,)
, , ,

P
Env PM I Env PM I PM Env PM I

Q Q Q q q q´ ´ ´ ´ å ® where the transition

relation (, ,)
P

Env PM I
® is defined by the smallest set satisfying the following rules.

For readability reason, we denote an ioLTS transition
!

" "1 2

a

E
q q¾ ¾ ¾® if

2
()Side q E= (the

variable side is valued to E in q2).

! ? ? !" " ' ' '

() ()
"" " "1 2 2 3 1 2 3

? !' " ' " ' "

"" " "1 1 2 2 2 2 2 3 3(, ,) (, ,)

? ! ? !" " ' ' '
() ()

" " ""2 3 1 2 1 2 3

2

, ,

, ,

P P

a a a a
Env I

CanPM PM

a a

CanEnv PM I Env PM I

a a a a
Env I

Can PM PM

q q q q q q q

q q q q q q q q q

q q q q q q q

q q

D D

D D

¾ ¾¾® ¾ ¾¾® ¾ ¾¾® ¾ ¾ ¾®

¾ ¾¾® ¾ ¾ ¾®

¾ ¾¾® ¾ ¾¾® ¾ ¾ ¾® ¾ ¾¾®

? !' " ' " ' "

" " ""1 1 2 2 2 3 3 2(, ,) (, ,)

? ! ?" " ' ' '
() ()

" "2 3 1 2 1 2 2

?' " '

" "2 1 1 2(, ,)

, , ,

P P

P

a a

Can Env PM I Env PM I

a a
Env I

Can PMPM

a

Can Env PM I

q q q q q q q

q q q q q q q QF

q q q q

d
D D

¾ ¾ ¾® ¾ ¾¾®

¾ ¾¾® ¾ ¾¾® ¾ ¾ ¾® Î

¾ ¾ ¾ ®

One can deduce from the
| | (, ,)

p
Env PM I

® definition that (Identificationremoved, 2012):

Proposition 3 We consider the notations of Definition 16. We have (CanT races

| | (, ,))
p

Env PM I = ((())) () ((()))Canrefl T races I T races PM refl T races ID Ç = D

(())CanT races Pr MÇ .

The verdict list can now be drawn up from Definition 14. Concretely, the observed traces

lead to a set of verdicts, extracted from the verdict location sets which indicate specification

and/or safety property fulfilments or violations:

Proposition 4 (Test Verdicts) Consider an external environment Env , an implementation I

monitored with a Proxy-monitor ()Pr M , itself derived from an ioSTS S and an Observer

 (())Comp SÎ D . Let (| | (, ,))
p

OT T races Env PM IÍ be the observed trace set. If there exists

OTs Î such that:

1. s belongs to
/

(| | (, ,))
FAIL VIOLAT E p

T races Env PM I , then I does not satisfy the safety

property and I does not ioco-conform to S ,

2. s belongs to (| | (, ,))
FAIL p

T races Env PM I , then I does not ioco-conform to S . No

violation of the safety property were detected on I ,

3. s belongs to (| | (, ,))
VIOLAT E p

T races Env PM I , then I does not satisfy the safety

property. Non-conformance between I and S were not detected.

Proof of Proposition 4 (sketch).

Proof of 1):

s belongs to
/

(| | (, ,))
FAIL VIOLAT E p

T races Env PM I . Therefore,
/

(
FAIL VIOLAT E

T races

| | (, ,))
p

Env PM I ¹ Æ and
/

(| | (, ,))Can

FAIL VIOLAT E p
T races Env PM I ¹ Æ.

/
(| | (, ,))Can

FAIL VIOLAT E p
T races Env PM I = (refl (()))T races ID

/
 (())Can

FAIL VIOLAT E
T rac Pre MsI

(Proposition 3)

/ /
(()) ()Can

FAIL VIOLAT E FAIL VIOLAT E
T races Pr M T races M= (Proposition 1).

 It follows that
/

(| | (, ,))Can

FAIL VIOLAT E p
T races Env PM I = ((()))refl T races ID Ç

((())
Fail

T races Can S
Violate

T racesÇ (()))refl ¹ Æ(Lemma 2).

We deduce that
/

(| | (, ,))Can

FAIL VIOLAT E p
T races Env PM I ¹ Æ iff ((()))refl T races ID Ç

(())
Fail

T races Can S ¹ Æ ()a and iff

((())) (())
Violate

refl T races I refl T racesD Ç ¹ Æ()b .

From (a) and Propositions 1 and 2, we have ioco I SØ .

From (b) and Definition 8, we have I — .

Consequently, I does not satisfy the safety property and I is not ioco-conforming to S .

Proofs of 2) and 3) can be deduced by considering the same reasoning as 1).□

APPLICATION TO WEB SERVICE COMPOSITION DEPLOYED IN

CLOUDS
 This section presents the practical application of our approach on Web service compositions

deployed in Clouds. We particularly present the Proxy-monitor algorithms which are designed to

test concurrent instances of a composite service.

Web service composition modelling

Web services are components offering some special features relative to the service-oriented

architecture. Firstly, their methods, named operations, are called with the sending or the receipt

of messages. To model them, we assume that an action ()a p represents either the call of an

operation op (() ()a p opReq p), or the receipt of an operation response (() ()a p opResp p).

The set of parameters p must also be composed of these specific variables:

 the variable from stands for the calling partner (Web service or client), the variable to

stands for the called partner,

 Web services may engage in concurrent interactions by means of several stateful instances

called sessions, each one having its own state. For the delivery of incoming messages to the

correct session, when several sessions are running in parallel, the usual solution is to add in

messages a set of correlation values which match a part of the session state. Hence, an action

()a p must be composed of a valuation called correlation set to identify the session.

The use of correlation sets also involves assuming the following hypotheses so that clients

and Web service instances can correctly be correlated:

Session identification: the specification is well-defined. When a message ()a p is received,

it always correlates with at most one session.

Message correlation: except for the first operation call which starts a new composition

instance, an operation call ()opReq p must contain a correlation set coor p such that a non-

empty part c coor of the correlation set is composed of parameter valuations given in previous

messages.

The first hypothesis results from the correlation functioning. The last one is added to

correlate the successive operation calls of a given composite service instance.

The example depicted of Figure 1 represents a Web service composition. Nonetheless, to

match the above message modelling, the ioSTS symbols have to be replaced with those of Table

2.

Table 2: Symbol table

Symbol Message Guard Update

?loanReq ?loanReq(from,to,profile,

amount,corr)

from="Client"˄to="Loa

nA.Service"˄corr={prof

ile, amount}

a:=amount

p:=profile

c1:=corr

!riskReq !assessmentReq (from,to,profile,

amount,corr)

from=”LoanA.Service"˄

to="RiskA.Service"˄coo

r=c1˄profile=p˄amount

=a˄amount £10,000

!approveReq !approveReq(from,to, profile,

amount,coor)

from=”LoanA.Service"˄

to="A.Service"˄coor=c

1˄profile=p˄amount=a˄

amount >10,000

?riskResp G3 ?assessmentResp(from,to,risk,

coor)

from=”RiskA.Service"˄

to="LoanA.Service"˄co

or=c1˄ risk=”low”

r:=risk

?riskResp ¬ G3 ?assessmentResp(from,to,risk,

coor)

from=”RiskA.Service"˄

to="LoanA.Service"˄co

or=c1˄risk≠”low”

?approveResp ?approveResp(from, to, resp,

coor)

from=”A.Service"˄to="

LoanA.Service"˄coor=c

1

r:=resp

!loanResp G4 !loanResp(from, to, result,coor) from=”LoanA.Service"˄

to="Client"˄coor=c1˄re

sult=r˄(result=”approve

dresult=”refused”)

Passive tester Implementation

Figure 6: The passive tester architecture

 The passive tester architecture, depicted in Figure 6, aims to collect all the traces of Web

service composition instances. We assume that each partner participating to the composition

(Web services and clients) are configured to pass through the passive tester which is mainly

based upon Proxy-monitors. To collect traces from several instances, several Proxy-monitor

analysers are executed in parallel. Any incoming message received from the same composition

instance must be delivered to the right Proxy-monitor analyser: this step is performed by a

module called entry point which routes messages to Proxy-monitor analysers by means of

correlation sets.

The entry point functioning is given in Algorithm 1. It handles a set L of pairs (,)
i

p PV with

i
p a Proxy-monitor analyser identifier and PV the set of parameter values received in previous

messages. Whenever a message ((),)e p q is received, its correlation set c is extracted to check if

a Proxy-monitor analyser is running to accept it. This analyser exists if L contains a pair

(,)
i

p PV such that a subset c c¢Í is composed of values of PV (correlation hypothesis). In

this case, the correlation set has been constructed from parameter values received in previous

messages. If an analyser is already running, the message is forwarded to it. Otherwise, (line 7), a

new one is started. When an analyser
i

p ends (line 9), the resulting trace set is stored in

(())T races Pr M .

The functioning of one Proxy-monitor analyser is described in Algorithm 2. Basically, it

aims to wait for an event (message or quiescence), to cover the Proxy-monitor transitions, to

construct traces and to detect non-conformance or property violations when a verdict location is

reached. Algorithm 2 is based upon a forward checking approach: it starts from its initial state

i.e.,
() ()

(0 , 0)
Pr M Pr M

l V and constructs runs stored in the RUNS set. Whenever an event ((),)e p q

is received, with eventually q a valuation over p (line 3), it looks for the next transition which

can be fired for each run r in RUNS (line 7). This transition must have the same start location

as the one found in the final state (,)l v of the run r , the same action as the received event ()e p

and its guard must be satisfied over the valuations v and q . If a verdict location is reached

(Definition 14) then the algorithm adds the resulting run 'r to RUNS and ends by returning

the trace set T derived fromRUNS (lines 11-16). Otherwise, the event ((),)e p q is forwarded to

the called partner with the next transition
2

t (lines 17 to 21). The new run ''r is composed of 'r

followed by the sent event and the reached state
2 2

(,)
next next

q l v¢¢= . Then, the algorithm waits for

the next event. The algorithm also ends when no new event is observed after a delay sufficient to

detect several times quiescent states (set to ten times in the algorithm with the variable qt).

Algorithm 2 reflects exactly the monitoring of an implementation (Definition 16). It collect

valued events and constructs traces of | | (, ,)
p

Env PM I by supposing that both I and Env are

ioLTS suspensions. Definition 16 (implementation monitoring) is implemented in lines (7-21).

When a verdict location lv is reached in particular (line 11 or 14), the analyser has constructed a

run which belongs to (| | (, ,))
V p

RUN Env PM I with V a verdict location set. From this run, we

obtain a trace of (| | (, ,))
V p

T races Env PM I . Having in mind Proposition 4, we can now state the

correctness of the algorithm with:

Proposition 5 The algorithm has reached a location verdict in:

 FAIL/VIOLATE
/

(| | (, ,))
FAIL VIOLAT E p

T races Env PM I IÞ ¹ ÆÞ —

(,)Violate and

()I ioco SØ ,

 FAIL (| | (, ,)) ()
FAIL p

T races Env PM I I ioco SÞ ¹ ÆÞ Ø ,

 VIOLATE (| | (, ,))
VIOLAT E p

T races Env PM IÞ ¹ ÆÞ

(,)I V iolate— .

Both the previous algorithms perform a synchronous analysis: Algorithm 1 receives a

message, transfers it to Algorithm 2, which analyses Proxy-Monitor transitions and states before

eventually forwarding the message to its recipient. The synchronous method is particularly

interesting for example when the implementation supports recovery actions whenever a fault is

identified. However, this analysis can be also done asynchronously to reduce the checking

overhead with slight modifications: as soon as Algorithm 1 receives a message, it can forward it

directly. Then, the message can be also given to Algorithm 2 which executes only its behaviour

analysis.

Pragmatically, the above proposition holds on condition that the delay involved in routing

messages through Proxy-monitors is lower than the quiescence timeout. Furthermore, the

message flows sent by the implementation under test and the client side have to be ordered. We

assume that the messages flows are sent either through ordered queues or by means of a

sequencing protocol (Oasis, 2009). When the implementation is a component-based system, the

former case involves that each component is connected to the passive tester with one queue, but

two actions of two different queues may be still interleaved. A formal solution for this problem is

to consider an ioSTS subclass so that ioco holds despite the action interleaving, which is

explicitly represented in the specification (Petrenko, Yevtushenko & Le Huo, 2003; Noroozi,

Khosravi, Mousavi & Willemse, 2011). Another more pragmatic solution is to assume that the

component clocks are synchronous and that timestamps are added into messages to support the

message sequencing in the entry point. This solution is sound on condition that two successive

actions could not be executed at the same time (the action execution is ordered). This is the

solution chosen for the experimentation presented in the next Section.

Experimentation

We have implemented this approach in a tool called CloudPaste (Cloud PASsive Testing,

IdentificationRemoved) to assess the feasibility of the approach. We experimented it with the

Web service composition of Figure 1. To illustrate the flexibility of proxy-monitoring, we

deployed this composition in two Clouds, Microsoft Azure (http://www.windowsazure.com) and

Google AppEngine (https://developers.google.com/appengine/): the Loan Approval service was

coded in C# and deployed in Azure, the two other services were coded in Java and deployed in

AppEngine.

The guard solving in Algorithm 2 is performed by the SMT (Satisfiability Modulo Theories)

solver Z3 (http://z3.codeplex.com) that we have chosen since it offers good performance, takes

several variable types and allows a direct use of arithmetic formulae. However, it does not

support String variables. So, we extended the Z3 expression language with String-based

predicates. In short, our tool takes Z3 expressions enriched with predicates. These are evaluated

and replaced with Boolean values, then a Z3 script, composed of the current valuations and the

guard, is dynamically written before calling Z3.

We generated a Proxy-monitor from the ioSTS of Figure 1 combined with five safety

properties. The first is the one described in Figure 2. The other properties are based on basic

security vulnerabilities. Quiescence was implemented with a timeout set to 10 seconds with

respect to the HTTP timeout (usually set between 3 and 100 seconds). Client applications were

simulated with at most 50 instances of Java applications performing requests to the Loan

Approval service in a continuous loop with one of these scenarios:

1) a client asks for an amount greater than $10000, therefore the Loan Approval service

calls the Approver service to retrieve a decision (4 messages),

2) a client asks for an amount less than $10000, hence the Loan Approval service calls the

Assessment service which returns a high risk level, involving the call of the Approver

service (6 messages).

Firstly, the experimentation showed that Proxy-monitor analysers can correlate the

successive messages of one composition instance by means of the Message correlation

assumption and hence can compute traces. We also injected some faults (modification of values,

of messages, etc.) in the implementation code to check if these could be detected. The obtained

results were promising since we detected all of them.

Figure 7: Processing time measurements.

https://developers.google.com/appengine/
http://z3.codeplex.com/

Figure 7 depicts the average processing time (milliseconds) of one client performing one

request when one up to 50 clients are running concurrently. Figure 7 (left) gives the processing

time obtained when the clients execute the first scenario. Figure 7 (right) is dedicated to the

second scenario. The curves represent the average time, without passive-tester, with the use of

the debugging proxy Charles (http://www.charlesproxy.com), with CloudPaste in both

asynchronous and synchronous modes.

Initially, the use of CloudPaste in asynchronous mode gives a reasonable higher processing

time than not using any proxy (average difference of 1s with scenario 1 thus 250ms per message

and 992ms with scenario 2 thus 166ms per message). This good performance originates from

our choice of deploying CloudPaste in Azure. Indeed, the communication delays between Clouds

are low, lower than the communication delays measured between our clients, executed in a

computer settled in Vietnam, and the Clouds. Depending on the client and the passive tester

locations, the processing times could be further reduced. With both scenarios, the average time

processing is far lower than the quiescence timeout (and than the HTTP timeout as well).

CloudPaste offers a better performance than Charles: for instance, when 20 clients are launched,

CloudPaste processes one request with 223ms less than Charles with scenario 1 (731ms with

scenario 2).

In synchronous mode, the checking overhead with CloudPaste becomes higher than using

Charles though. The difference of delay equals to 871ms for 20 clients with scenario 1 (1.6s with

scenario 2). This difference, which is not surprising, results from the call of Z3 to check if guards

are satisfiable. With more than 50 simultaneous clients, we started to reach the limitations of

CloudPaste as it is implemented at the moment. Indeed, neither the entry point nor the call of Z3

are multithreaded. This leads to a bottleneck with a high number of clients.

 Nevertheless, in synchronous mode and even with 50 clients, the processing time (8504ms

with scenario 2, thus 1417ms per message) is still lower than the timeout set to observe

quiescence (the testing process can be done) and than the HTTP timeout (messages can be

forwarded correctly). This mode is also particularly interesting since it offers the advantage to

eventually implement recovery action calls, e.g., error compensation or implementation reset,

whenever an error is detected. Error recovery is not possible with classical proxies or in

asynchronous mode.

These results, obtained from a composition deployed in two different Clouds tend to show

that our approach represents an efficient testing solution and that it can be done in real-time.

CONCLUSION
We have proposed a testing method which combines passive conformance testing with

runtime verification. Our method generates Proxy-monitors from safety properties and

specifications modelled with ioSTSs. Then, it simultaneously checks if an implementation ioco-

conforms to its specification and meets safety properties. Proxy-monitors are based upon the

notion of transparent proxy to ease the extraction of traces from environments in which testing

tools cannot be deployed for security or technical reasons. Our approach can be applied on

different types of communication software, e.g., Web service compositions, on condition that

they could be configured to send messages through a proxy.

In this paper, we have dealt with deterministic specifications, like many testing approaches

proposed in the literature. A direct solution for considering nondeterministic ioSTSs is to apply

determinization techniques (Jéron, Marchand & Rusu, 2006) on them. In a future work, we could

also consider nondeterministic ioSTSs and a weaker test relation than ioco to generate

nondeterministic Proxy-monitors. Another direction for future research is to focus on security

testing instead of conformance. Indeed, a Proxy-monitor exhibits the functioning of a transparent

intermediary between clients and the implementation under test. It could be modified to separate

the actions received from external entities (clients or other components) to those produced by the

implementation itself. As a consequence, a Proxy-monitor could protect the implementation from

external attacks while checking if it meets security policies expressed with safety properties

(Schneider, 2000). This would result in a kind of specialised application firewall associated with

a security passive testing tool.

REFERENCES
Arthoa, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M., Pasareanu,

C., Rosu, G., Sen, K., Visser, W., & Washington, R. (2005). Combining test case generation and

runtime verification. Theoretical Computer Science, 336(2-3), 209–234.

Alcalde, B., Cavalli, A. R., Chen, D., Khuu, D., & Lee, D. (2004). Network protocol system

passive testing for fault management: A backward checking approach. In Frutos-Escrig, D. &

Nunez, M. (Ed.), FORTE, Vol 3235, Lecture Notes in Computer Science, (pp 150–166).

Springer.

Andres, C., Cambronero, M. & Nunez, M. (2011). Passive testing of web services. In

Bravetti M. & Bultan, T., (Ed.), Web Services and Formal Methods, Vol 6551, Lecture Notes in

Computer Science, (pp 56–70). Springer Berlin / Heidelberg.

Bayse, E., Cavalli, A. Nunez, M. & Zaidi, F. (2005). A passive testing approach based on

invariants: application to the wap. Computer Networks, Vol 48, 247–266, Elsevier Science.

Barringer, H., Goldberg, A., Havelund, K. & Sen, K. (2004). Rule based runtime verification.

In Steffen, B. & Levi, G., (Ed.), VMCAI, Vol 2937, Lecture Notes in Computer Science, (pp 44–

57), Springer.

Barringer, H., Gabbay, D. & Rydeheard, D. (2007). From runtime verification to evolvable

systems. In In the 7th international conference on Runtime verification, RV’07, (pp 97–110),

Springer-Verlag.

Cavalli, A., Benameur, A., Mallouli, A. & Li, K. (2009). A Passive Testing Approach for

Security Checking and its Practical Usage for Web Services Monitoring. In NOTERE 2009.

Constant, C., Jéron, T., Marchand, H. & Rusu, V. (2007). Integrating formal verification and

conformance testing for reactive systems. IEEE Trans. Softw. Eng., 33(8), 558–574.

Che, X., Lalanne, F., & Maag, S. (2012). A logic-based passive testing approach for the

validation of communicating protocols. In ENASE 2012 – Proceedings of the 7th International

Conference on Evaluation of Novel Approaches to Software Engineering, Wroclaw, Poland, (pp

53–64).

Chen, H & Wagner, D. (2002). Mops: an infrastructure for examining security properties of

software. In the 9th ACM Conference on Computer and Communications Security, (pp 235–244).

ACM Press.

D’Amorim, M. & Havelund, K. (2005). Event-based runtime verification of java programs.

In the 3rd international workshop on Dynamic analysis, (pp 1–7), ACM Press.

D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B., Sipma, H.

B., Mehrotra, S. & Manna, Z. (2005). Lola: Runtime monitoring of synchronous systems. In the

12th International Symposium on Temporal Representation and Reasoning, (pp 166–174), IEEE

Computer Society.

Falcone, Y., Jaber, M., Nguyen, T. H., Bozga, M. & Bensalem, S. (2011). Runtime

Verification of Component-Based Systems. In 9th International Conference on Software

Engineering and Formal Methods.

Havelund, K. & Rosu, G. (2002). Synthesizing monitors for safety properties. In the 8th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems,

(pp 342–356), Springer-Verlag.

Jéron, T. Marchand, H. & Rusu, V. (2006). Symbolic determinisation of extended automata.

In Navarro, G., Bertossi, L. & Kohayakawa, Y., (Ed.), Fourth IFIP International Conference on

Theoretical Computer Science, Vol 209, IFIP International Federation for Information

Processing, (pp 197–212), Springer US.

Jordan, D. & Evdemon, J. (2007). Web Services Business Process Execution Language

Version 2.0, OASIS Standard, (pp 179-183), from http://docs.oasis-open.org/wsbpel/2.0/wsbpel-

v2.0.pdf

Lalanne, F., Che, X., and Maag, S. (2011). Data-centric property formulation for passive

testing of communication protocols. In Proceedings of the 13th IASME/WSEAS,

ACC’11/MMACTEE’11, (pp 176–181).

Lee, D., Chen, D., Hao, R., Miller, R. E., Wu, J. & Yin, X. (2006). Network protocol system

monitoring: a formal approach with passive testing. IEEE/ACM Trans. Netw., 14:424–437.

Leucker, M. & Schallhart, C. (2009). A brief account of runtime verification. Journal of

Logic and Algebraic Programming, 78(5), 293–303.

Miller, R.E. & Arisha, K.A. (2000). On fault location in networks by passive testing. In

IEEE International Conference on Performance, Computing, and Communications, (pp 281–

287).

Montesi F. & Carbone, M. (2011). Programming services with correlation sets. In Kappel,

G., Maamar, Z. & Motahari-Nezhad, H. M., (Ed.), ICSOC, Vol 7084, Lecture Notes in

Computer Science, (pp 125–141), Springer.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6712
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6712

Noroozi, N., Khosravi, R., Mousavi, M. R., & Willemse, T. A. C., (2011), Synchronizing

asynchronous conformance testing, Proceedings of the 9th international conference on Software

engineering and formal methods, SEFM'11, 334—349, Montevideo, Uruguay, Springer-Verlag.

Oasis (2009) Web Services Reliable Messaging (WS-ReliableMessaging),

http://docs.oasis-open.org/ws-rx/wsrm/200702.

Pellizzoni, R., Meredith, P., Caccamo, M. & Rosu, G. (2008). Hardware runtime monitoring

for dependable cots-based real-time embedded systems. In Real-Time Systems Symposium, (pp

481–491), IEEE Computer Society.

Petrenko A., Yevtushenko N., & Le Huo J. (2003), Testing Transition Systems with Input

and Output Testers, TESTERS, PROC TESTCOM 2003, SOPHIA ANTIPOLIS, 129--145,

Springer-Verlag.

IdentificationRemoved (2012)

IdentificationRemoved (2013)

Schneider, F. B. (2000). Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–

50.

Tretmans, J. (1996) Test generation with inputs, outputs and repetitive quiescence. Software -

Concepts and Tools, 17(3),103–120.

