
HAL Id: hal-02019705
https://uca.hal.science/hal-02019705

Submitted on 14 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model reverse-engineering of Mobile applications with
exploration strategies.

Sébastien Salva, Stassia R Zafimiharisoa

To cite this version:
Sébastien Salva, Stassia R Zafimiharisoa. Model reverse-engineering of Mobile applications with ex-
ploration strategies.. Ninth International Conference on Software Engineering Advances, ICSEA 2014,
Oct 2014, Nice, France. �hal-02019705�

https://uca.hal.science/hal-02019705
https://hal.archives-ouvertes.fr

Model reverse-engineering of Mobile applications with exploration strategies 1

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

email: sebastien.salva@udamail.fr

Stassia R. Zafimiharisoa
LIMOS - UMR CNRS 6158

Blaise Pascal University, France
email: s.zafimiharisoa@openium.fr

Abstract—This paper presents a model reverse-engineering
approach, combined with automatic testing, for mobile applica-
tions that belong to the GUI application category. Our method
covers the interfaces of an application to incrementally infer
a formal model expressing the navigational paths and states
of the application. The main contributions of this paper can
be summarised as follows: we propose an original definition
of the GUI application model which eases the limitation of
the application exploration. Then, we propose an algorithm
based upon the Ant Colony Optimisation technique which
offers the possibility to parallelise the application exploration
and to conceive any application exploration strategy as desired.
Finally, our approach is experimented on Android applications
and compared to other tools available in the literature.

Keywords-Model generation, Automatic testing, exploration
strategies, STS, Android applications

I. INTRODUCTION

Many software engineering approaches rely upon models
to automate some steps of development of an application.
Unfortunately, these kind of approaches suffer from an
indisputable problem which often make them impractical
with many real world systems: writing models, especially
exhaustive ones, is often a tedious and error-prone task.
As a consequence, only partial models are often available
which makes model-based approaches less interesting. For
instance, Model-based testing is an approach which takes
formal specifications to generate test cases, but the former
have to be complete.

Model inference or model reverse-engineering is a re-
cent research field that partially address this issue. Indeed,
models can be inferred from application documentation or
traces (sequences of actions given or observed from the
application) for comprehension or to automatically carry out
some tasks, e.g. the test case generation. Most of the model
generation approaches, available in the literature, focus on
GUI applications (a.k.a. event-driven applications), which
offer a Graphical User Interface (GUI) to interact with
and which respond to a sequence defined by the user. In
short, these applications are explored (a.k.a. crawled) with
automatic testing techniques for extracting traces to derive a
model. Furthermore, a large part of the application defects

1Thanks to the Openium company for providing advice and comments
on this paper and Android Applications.

can eventually be detected during the process. Afterwards,
these generated models may be manually extended, analysed
with verification techniques or employed for generating test
cases.

In this paper, we propose a model reverse-engineering
approach, combined with automatic testing, which is ded-
icated to mobile applications. These GUI applications for
smartphones, are usually poorly documented and are often
manually tested. From a mobile application, our solution
generates two STS (Symbolic Transition System) specifi-
cations, which can be seen as documentation either useful
for maintaining the application or for comprehension, or for
performing automatic analyses and generation (verification
with existing tools, test cases, etc.).

Several works already deal with the crawling of GUI
applications e.g., desktop applications [1], Web applications
[2], [3], [4] or Mobile ones [5], [6], [7]. These approaches
interact with applications in an attempt to either detect bugs
or record a model or both. These previous works already
propose interesting features, such as the test case generation
from the inferred models. Nonetheless, it also emerges that
many interesting issues still remain open. Firstly, experi-
menting the GUIs of Web or Mobile applications may lead to
a large and potentially unlimited number of states that cannot
be all explored. Furthermore, the application traversing is
usually guided by one of these strategies: DFS (Depth First
path Search) or BFS (Breadth First path Search). These are
relevant on condition that all the application states would
be explored. But when the GUI application state number is
large or the processing time is limited, using other strategies
could help in the exploration of the most interesting features
of the application as a first step.

This paper presents an innovative model generation ap-
proach which overcomes the previous problems by putting
forth the following features:
• model definition and compactness: we propose an

original model definition specialised to GUI appli-
cations. Combined with our application exploration
algorithm, this model especially offers the advantage
to help limit the exploration and to prevent from a
state space explosion. But, this model can still store
the discovered interfaces and their properties instead of
resorting abstract event-based descriptions only. These

detailed information are particularly relevant to later
perform precise analyses. A bisimulation minimisation
technique is also applied to yield a second reduced STS
which can be more easily interpreted,

• test data generation: instead of using random test val-
ues, the values used to fulfil the application interfaces
are constructed from several data sets, and in particular
from a set of fake identities. Furthermore, the sets of
test values are constructed by means of a Pairwise
technique to reduce their size and the testing cost,

• strategy choice: the application exploration is here
guided by strategies that are applied on the model under
generation by means of the Ant Colony Optimisation
(ACO) technique. We also show that our exploration
algorithm, based upon the ACO heuristic, is highly
parallelisable.

The paper is structured as follows: Section II sets down
the terminology of mobile applications used throughout the
paper and particularly presents our model definition. We
present, in Section III, our mobile application exploration
algorithm based upon the ACO heuristic. We give some ex-
perimental results and compare our approach with available
tools in Section ??. We briefly present some related work
and discuss about our proposal in Section V and we conclude
in Section VI.

II. MOBILE APPLICATION MODELLING WITH STS

A. Terminology

We say that a mobile application displays (graphical user)
interfaces, each representing one application state and the
number of states being potentially infinite. An interface is
generated by a component of the application. Here, we take
back the notation used in the Android OS where such a
component is called an Activity. These instantiate Widgets
(buttons, text fields, etc.) and declare the available events
that may be triggered by the user (click, swipe, etc.). A
Widget is characterised by a set of properties (colour, text
values, etc.); some of them are said editable, which means
that their values can be provided by users at runtime.

We take as example the Ebay Mobile application, which
is available on the Google Play store. Since this complex
application owns 135 Activities, we only depict a part of
its storyboard in Figure 1. The launcher interface is loaded
by the first Activity eBay (interface 0). A user may choose
to search form an item by clicking on the editable text
field Widget. In this case, the Activity MainSearchActivity
is reached (interface 1). For instance, if the user enters the
keyword shoes, the search result list depicted in interface
2 is displayed; the Activity is unchanged. Then, three
new Activities can be reached: 1) an Activity called Seg-
mentSearchResultActivity (interface 3) displays a result when
one element of the proposed list is chosen, 2) a Scanner
Activity (interface 4) is started when the text field Scan

(0) (1) (2)

(3) (4) (5)

Figure 1: Ebay Mobile Storyboard

is clicked and a log-in process is performed on the when
the saved search item is chosen (Activity SignInActivity,
interface 4).

B. The STS model

To represent the behaviours of mobile application, we
shall consider the Symbolic Transition System (STS) model,
which is a kind of automata model extended with variables
that encode the state of the system. Transitions also carry
actions combined with parameters, guards and assignments.
We chose the STS definition proposed in [8] which does not
explicitly represent states in transitions. Instead, (control)
locations are encoded with variables taking values in finite
domains. This definition offers more flexibility to represent
locations that have a precise meaning by means of variables.

Definition 1 (STS) A STS S is a tuple < V, V 0, I,Λ, →>,
where:

• V is the finite set of internal variables and I is the
finite set of parameter variables. A variable can have
a simple type (Integer, String, etc.) or a complex type
(List, etc.). We denote Dv the domain in which a
variable v takes values. The internal variables are
initialised with the initial condition V 0 ⊆ DV , which
is assumed to be unique,

• Λ is the finite set of symbolic actions a(p), with p =
(p1, ..., pk) a finite list of parameters in Ik(k ∈ N). p
is assumed unique,

• → is the finite transition set. A transition (a(p), G(p, v,
T (v, p)), A(v, p, T (v, p)) is labelled by an action
a(p) ∈ Λ. G ⊆ Dp×DV ×DT (p∪V) is a guard on in-
ternal variables, parameters and T (p∪V) a set of func-
tions that return boolean values only (a.k.a. predicates)
over p ∪ V . Internal variables are updated with the
assignment function A : DV ×Dp ×DT (p∪V) → DV

once the transition is fired.

Below, we adapt this generalised STS definition to express
mobile application properties, i.e. interfaces and events.

C. Mobile application modelling with STSs

Usually, GUI application models show the available in-
terfaces and the events that can be triggered. Some works
[6], [9] proposed representing all the observed interfaces
of a GUI application in a graph and to explore them
all. Nonetheless, this solution is not the most appropriate
in practice since the interface number may be potentially
infinite. Other works [1] construct one state in a graph for
every encountered Rendering component. We believe that
this solution is too abstract since such a component may
depict several different interfaces. Furthermore, the content
of the interfaces, e.g., the text field values, is lost in the
model but these data are usually considered as important
for model analysis, test case generation, etc.

We have chosen to formalise a mix of these propositions
with a specialised STS. Intuitively, as in the first previous
solution, our model definition allows to stock the interfaces
of a mobile application. Generally, a GUI application may
produce a potentially infinite set of interfaces, but many of
them are almost identical and only display different text field
values. For a set of almost identical interfaces, we propose to
only explore one interface in this set. To this end, we express
an interface by the tuple (wp,wt) where wt is the list of
Widget properties related to the text field values found in the
interface and wp the remaining list of Widget properties. We
define that a STS location is encoded by the variable loc, and
captures a value list of the form (rc, wp,wt, end, ph) with
rc an Activity name (or URI), accompanied by the Widget
property lists wp and wt. Furthermore, these locations are
completed with a boolean value denoted end indicating
whether the application has to be explored from this location:
when end is set to true, the exploration is stopped because
an interface (wp,wt2) almost identical to the current one
(wp,wt) has been previously explored. Finally, the positive
value ph denotes a pheromone amount that shall be used
by apply the ACO technique. The purpose of this value is
explained in the next Section.

We also interact with mobile applications by means of
events, e.g., click, applied on Widgets. Furthermore, the

Widgets of an interface are eventually completed before
triggering an event. We capture these events with STS
transitions of the form (event(widget), G,A). The guard
G is composed of conjunctions which show the initial
location of the transition, a constraint over editable Widgets
expressing their completion with user values, and the value
of widget, giving the Widget name on which is applied
the event. The assignment A gives the final location of the
transition.

It results that we express the functioning of a mobile
application with the following STS model, called the STS
Tree of an application:

Definition 2 A mobile application is modelled by the STS
Tree < V, V 0, I,Λ, →> where:
• Λ gathers the available events of the form

event(widget),
• → is composed of transitions (event(widget), G,A)

with a guard G of the form [loc ==
(rc, wp,wt, end, ph) ∧ editable constraint ∧
Widget == wn] and an assignment A of the form
loc := (rc2, wp2, wt2, end2, ph2):

– the expression loc == (rc, wp,wt, end, ph) gives
the initial location of the transition, while the as-
signment loc := (rc2, wp2, wt2, end2, ph2) gives
the final location. rc is an Activity name, wt is a
list of Widget properties relative to text field values,
wp is a list of Widget properties excluding wt, end
and ph are boolean values,

– editable constraint is a conjunction of atomic ex-
pressions of the form widgetprop == v with v a
value and the variable widgetprop corresponding
to an editable Widget property.

– widget == wn denotes the Widget name on which
is applied the event.

• V 0 denotes the initialisation of the loc variable.

Figures 2, 3 and 4 illustrate an example of STS Tree
derived from the Ebay Mobile Storyboard of Figure 1 with
our approach. ****strategy????***** Due to lack of room
and for readability, the locations are not detailed in the
figure, but some of them are listed in Figure 4. The STS
Tree is composed of several ”click” actions applied on
different Widgets (buttons, elements of listView Widgets,
etc.). The actions are given in Figure 3. The location
loc0 represents the initial interface of the application. loc1
is reached from loc0 by executing the action a1, i.e by
clicking on the home search text Widget. loc1 is com-
posed of the Activity MainSearchActivity which displays
the editable search src text Widget and several clickable
Widgets (button, list, texts), for instance a button called
search button. The locations loc6 and loc7 are respectively
reached after the completion of the search src text Widget
with the All shoes and shoes text values and the click on

Figure 2: Ebay Mobile STS tree

Label Action
a1 click(widget)[widget=id/home searchtext]
a6 1 click(widget)[widget=id/up ∧ search src text=All shoes]
a6 2 click(widget)[widget=id/up ∧ search src text=shoes]
a7 1 click(widget)[widget=id/search button ∧

search src text=All shoes]
a7 2 click(widget)[widget=id/search button ∧

search src text=shoes]
a8 1 click(widget)[widget=id/text1 ∧ search src text=All shoes]
a8 2 click(widget)[widget=id/text1 ∧ search src text=shoes]
a9 1 click(widget)[widget=id/text2 ∧ search src text=All shoes]
a9 2 click(widget)[widget=id/text2 ∧ search src text=shoes]
a10 i click(widget)[widget=listElement at position i ∧

search src text=shoes]

Figure 3: Actions and Guards of the STS Tree

the Widget up (actions a6 1 or a6 2). These two locations
corresponds to two different interfaces which differ from
each other on the value of the search src text field and
on the displayed item list number: one item is displayed for
loc6 and 10 for loc7.

The locations loc8 j that are reached from loc6 or loc7
with the actions a10 i, express j interfaces which only
differ from the interface stored in loc8 by some text field
values. As a consequence, they are marked by end to stop
the exploration.

After covering only 5% of the Ebay Mobile Activities, we
already obtain 19 Locations in the STS Tree. This is why
our approach, explained below, relies upon a minimisation
technique to reduce this location number.

III. AUTOMATIC TESTING AND MODEL GENERATION
WITH ACO

Intuitively, many inference model methods consists in
analysing and completing interfaces with random test data
and triggering events to discover new interfaces that are re-
cursively explored in an in-depth manner. As a consequence,
the application exploration is usually guided with either a
DFS (Depth First path Search) or a BFS (Breadth First path
Search) strategy. Nonetheless, when an application returns
a high number of new interfaces, the graph to be explored

Loc ActivityName Widget properties UE env
#list ele-
ment

Edtxt0

loc6 MainSearchActivity 1 All shoes true false
loc6 1 MainSearchActivity 1 All shoes true true
loc7 MainSearchActivity 10 shoes true false
loc7 1 MainSearchActivity 10 shoes true true

Figure 4: Locations definition

may become too large to visit in a reasonable time delay.
The search is only performed to a limited depth, and the
explored part of the application is not necessarily the most
interesting one. In this section, we address this issue and
we propose an algorithm which includes the possibility to
define an exploration strategy.

Figure 5: Parallel exploration functioning

Our proposal applies strategies by means of the Ant
Colony Optimisation (ACO) technique. With ACO, the op-
timal path search in a graph is performed by simulating the
behaviour of ants seeking a path between their colony and
a source of food: firstly the ants, explore randomly and lay
down little by little pheromone trails that are finally followed
by all the ants. In our case, this solution leads to the architec-
ture illustrated in Figure 5. The STS construction is guided
by laying down in locations an amount of pheromone with
regards to the chosen strategy. Each location exploration is
considered as a task that is placed into a task pool and
executed by threads simulating ants. Then, our algorithm
proceeds by exploring first the locations having the highest
amount of pheromones. The process ends when the task pool
is empty. These steps are explained below:

A. Application exploration

Algorithm 1 implements the initial part of this solution. It
takes as input a GUI application app and starts it to analyse
its first interface and to initialise the first location loc0 of the
STS Tree Tree. This step is carried out by one thread only.
*** The analysis of an interface does not rise any technical
difficulty with Android. Indeed, it is always possible to
retrieve the Activity and the Widget properties of the current
interface with testing tools such as Robotium 1. Afterwards,

1https://code.google.com/p/robotium/

Algorithm 1: GUI application exploration simplified
Algorithm

input : Application app
output: STS Tree, MTree

// initialisation performed by one ant only
1 Start the application app;
2 Analyse the current interface -¿ Activity rc, the Widget property

lists wp, wt;
3 Initialise ph0 (depends of the chosen strategy);
4 loc0:= (rc, wp,wt, false, ph0);
5 Initialise STS Tree (V 0Tree = loc0);
6 Add (Explore(Tree, loc0, RL = {(rc, wp)}, p = ∅)) to the task

pool;
// code performed by all the ants

7 while the task pool is not empty do
8 Take a task (Explore(Tree, loci, RL, p)) having a location

(rc, wp,wt, end, ph) with the highest pheromone amount
ph;

9 Reset and Execute app by covering p;
10 Explore(Tree,loci,RL,p);

// code performed by one ant only
11 MTree:= Minimise(Tree);
12 MEx= Minimise(STS Extrapolation of Tree);

the interface exploration can begin: each thread (ant) exe-
cutes the loop of Algorithm 1: while there is a task to do,
an instance of the application is launched in a re-initialised
test environment and a task (Explore(Tree, loci, RL, p))
having a location loci, composed of the highest pheromone
amount, is picked out. This task aims at exploring one
interface only and may produce other tasks. The set RL,
used by Explore, stores the discovered locations in a reduced
form (rc, wp). After the end of the exploration, a second
STS MTree is computed with a minimisation technique.

The STS minimisation aims to yield a second STS, more
compact in term of STS location number and more readable
for application comprehension. Here, we have chosen a
bisimulation minimisation technique since this one preserves
the functional behaviours represented in the original model
and reduces the location space without requiring to manually
give a location set as proposed in [2]. The time complexity of
this minimisation technique is also reasonable (proportional
to O(mlog(n)) with m the transition number and n the
state number). A detailed algorithm can be found in [10].
This algorithm constructs the location sets (blocks) that are
bisimilar equivalent. Due to lack of room, we only present
in Figures 6 and 7, the minimised STS obtained from the
STS Tree of Figure 2. Some locations are now grouped into
blocks: for instance, the locations loc6 and loc7 are grouped
onto the Block B1 because the same action sequences
leading to bisimilar locations can be executed from both
loc6 and loc7.

One task, pulled from the task pool, is now performed by
calling the Explore procedure given in Algorithm 2. It takes
the STS under construction Tree, a location loci, a path p
and the set RL of discovered locations stored in a reduced

Figure 6: Minimised STS Tree

block locations
B1 loc6, loc7
B2 loc6 1, loc7 1
B3 loc8 1, loc8 2, loc8 3, loc8 4 i

Figure 7: Location blocks of the minimised STS Tree

form. Initially, the procedure ends if a stopping condition,
based upon the code coverage and on the processing time,
holds. This condition allows to stop the exploration after
a reasonable delay. Otherwise, the Explore procedure calls
GenConstraints to analyse the current interface, extract
the editable Widgets and to produce a set of constraints
expressing how fulfilling these editable Widgets with test
values. Similarly, the events that can be triggered on the
Widgets are dynamically detected (with the Robotium tool).
It results a set of couples (event, w) with event the event
to apply on the Widget w. Then, the exploration of the
current interface begins. Its editable Widgets are completed
in accordance with a constraint c. A Widget w is stimulated
with an event in reference to a couple (event, w) found
in the Events set. This results in a new interface Inew
(line 9). A Ph Deposit procedure is called to compute
the pheromone amount that shall be deposed in the arrival
location of the transition constructed in the next step, with
regards to the chosen strategy. The algorithm now checks
whether this interface and its corresponding location have
to be explored. Naturally, if Inew reflects the end of the
application (exception, crash), Inew must not be explored.
Furthermore, if Inew only differs from a previously en-
countered interface by its text field values, we also stop the
exploration. This is done in the algorithm by checking if
the list (rcj , wpj), extracted from Inew which excludes the
Widget properties related to text field values, belongs to the
set RL. If one of these conditions hold then a new transition
carrying the arrival location (rcj , wpj , wtj , true, phj) is
added to the STS Tree. The boolean value true denotes
that this location must not be explored. On the contrary,

Algorithm 2: Explore Procedure
1 Procedure Explore(Tree, loci, RL, p);
2 if [processing time ¿T or code coverage ¿ CC] then
3 stop;
4 Generate constraints with GenConstraints-¿ C;
5 Analyse the current interface → Events;
6 foreach c ∈ C ∧ (event, w) ∈ Events do
7 fulfil the editable Widgets with c;
8 Apply event on the Widget w → new interface Inew;
9 Analyse the interface Inew → rcj , wpj , wtj ;

10 phj := Ph Deposit(loci, rcj , wpj , wtj);
11 if Inew is empty or Inew reflects a crash or there exists

(rcj , wpj) ∈ RL then
12 {Add a transition (event(widget),

G = [loc == loci ∧ c ∧ widget == w], A = (loc :=
(rcj , wpj , wtj , true, phj))) to →Tree;

13 } (in critical section)

14 else
15 locj := (rcj , wpj , wtj , false, phj);
16 {Add a transition t = (event(widget), G = [loc ==

loci ∧ c ∧ widget == w], A = (loc := locj)) to →Tree;
17 RL := RL ∪ {(rcj , wpj)}
18 Add the task (Explore(Tree, locj , RL, p.t)) to the task

pool;
19 } (in critical section)

20 Backtrack(loci, p);

a new transition is added (with a location locj whose last
boolean value is set to false). The arrival location locj must
be explored. Therefore, a new task is added to the task pool
(line 18).

To apply the next constraint and event, the application has
to go back to its previous interface by undoing the previous
interaction. This is done with the Backtrack procedure whose
role is to undo the most recent action. When the direct
interface restoration is not possible (when the backtrack
mechanism is not implemented or when the application
crashed), the Backtrack procedure resets the application and
incrementally replays the actions of the path p.

This algorithm also relies upon the procedure GenCon-
straints to construct constraints expressing how to fulfil an
interface under test with values. Due to lack of room, we
present it succinctly. The GenConstraints procedure aims
to generate constraints of the form w1.value = v1∧ ...
∧wn.value = vn, with (w1, ...wn) the list of editable
Widgets of an interface and (v1, ..., vn), a list of test values.
Instead of using random values like in many model inference
approaches, we propose to use several data sets: a set User
of values, eventually composed of logins and passwords,
provided by a user, a set RV composed of values well
known for detecting bugs, e.g., String values like ”&”, ””,
or null. A last set, denoted Fakedata, is composed of fake
user identities. An identity is itself a list of parameters
(p1, ..., pm), such as (name, age, email, address, gender), that
are correlated together to form realistic identities. Both User
and RV sets are segmented per type (String, Integer, etc.).
We denote type(User ∪ RV) ⊂ User ∪ RV the subset of

values having the type type. The GenConstraints procedure
starts collecting the editable Widget list (w1, ..., wn). Every
wi is then associated to a specific data set as follows:

1) GenConstraints extracts the larger subset (w1, ..., wk)
which is also a subset of the parameter list (p1, ..., pm)
(we try to find a correlation between the Widget names
and the identity parameters with regular expressions).
This subset of Widgets is then associated to a list of
”reduced” identities where the parameters which do
not belong to (w1, ..., wk) are removed. For instance,
if two Widgets named name and email are found, the
fake identities of Fakedata are parsed to remove the
undesired parameters and to return the set of identities
composed only of a name and an email,

2) each remaining Widget, is associated to the value set
t(User∪RV) with t the type of data expected by the
Widget (usually String). We obtain a list of value sets
{V1, ..., Vn} linked to the Widgets (w1, ..., wn)

Now, instead of using a cartesian product to derive a
set of tuple of values denoted V , we adopted a Pairwise
technique [11]. Assuming that errors can be revealed by
modifying pairs of variables, this technique strongly reduces
the coverage of variable domains by constructing discrete
combinations for pair of parameters only. Finally, the set of
constraints C is derived from V .

Last but not least, our proposal also offers the advantage
to be highly parallelisable. Indeed, the task pool is a known
paradigm of parallel computing where the tasks of the pool
are executed in parallel on condition that the tasks are
independent. This is the case in our Algorithms since several
application instances are experimented into independent test
environments. All the threads share the same STS Tree,
the same discovered location set RL and the same task
pool implemented as an ordered list. This is why we added
three critical sections in the Explore procedure to prevent
concurrent accesses when transitions are added to the STS
(line 12, 13), or when a task is added into the pool (line 18).

Complexity and termination of Algorithm 1: theoret-
ically, this algorithm does not end if the number of new
interfaces to visit is infinite. This is why we added a stopping
condition in the Explore procedure. But, our algorithm only
explores the interfaces which have new Widget properties
(in excluding those related to text field values), and we
have observed in practice that the number of these interfaces
is often bounded. Consequently, our algorithm ends with
most of the applications. Its complexity also depends on the
chosen exploration strategy. Here, we assume that the latter
aims at covering all the application interfaces. We also do not
consider the number of threads. If we assume that the num-
ber of locations to visit is then bounded to n, Algorithm 1
has a complexity proportional to O(m+n+mn+2mlog(n))
with m the number of transitions. For every location, the
number of transitions m is finite and depends on the number

of events that can be triggered and on the number of test
values used to fulfil the editable Widgets. More precisely,
if an interface is experimented with e events and has k
editable Widgets which have to be completed with nb values,
then the number of transitions is equal to e.nb2 (nb2 is
the maximum number of test value lists returned by the
Pairwise procedure). Thus, the total number of transitions
is m = n ∗ enb2. The above algorithm complexity stems
from the following steps: the Explore procedure covers
every transition twice (one time to execute the event and
one time to go back to the previous location) and every
location is processed once. Hence, the complexity should
be proportional to O(m+n). But, sometimes the backtrack
mechanism is not available. Hence, in the worst case, for
every location, the application is reset and the path p, at
worst composed of m transitions, is executed to reach each
location. Furthermore, the minimisation procedure whose
complexity is proportional to O(mlog(n)), is called twice.

B. Exploration strategies

Different strategies can be now used to cover an applica-
tion. We succinctly present some of them below. These have
to be implemented in the Ph Deposit procedure.

BFS strategy: this classical strategy can be expressed easily here.
Whenever a new location is built, it is only needed
to set the pheromone amount to 0. In our algorithm,
a location being explored, is completely covered with
the generated constraint set in a breadth-wise order
first and each location is added to the end of the task
pool (implemented as an ordered list). Thus, the newest
discovered locations are not chosen immediately. As a
consequence, the STS Tree is conceived in breadth-first
order,

DFS-BSF strategy a combination of both DFS and BFS strategies can be
easily put into practice as follows: the location loc0
is initialised with a pheromone amount equal to 0.
Afterwards, whenever a new location is detected from
an initial one loc, it is completed with the pheromone
amount found in loc increased by 1. In this case, the
next task chosen in the task pool shall be the one
including the first discovered location from loc. Tacitly,
a DFS strategy is followed. But, the current location
being explored, is also completely covered in a breadth-
wise order first,

crash-driven strategy the number of observed crashes could also be con-
sidered in a strategy: when the number of crashes
detected from the locations of a path p is higher than
the number of crashes detected from the locations of
another path p′, it may be more interesting to continue
to cover the former for trying to detect the highest
number of crashes. We call this strategy crash-driven
exploration. This strategy can be conducted as follows:
the pheromone amount is initialised to 0 in loc0.
Whenever a new location locj is built, it is completed

with a pheromone amount equal to the addition of the
pheromone amount found in the preceding location loci
with the number of crashes (or exceptions) detected
from loci,

semantic-driven strategy: these strategies denote an exploration guided by the
recognition of the meaning of some Widget properties
(text field values, etc.). Here, the pheromone deposit
mainly depends on the number of recognised Widget
properties and on their relevance. It is manifest that the
semantic-driven strategy domain can be tremendously
vast. For instance, for e-commerce applications, the
login step and the term ”buy” are usually important.
Thereby, a strategy can be defined as: an authentication
process is detected when a text field Widget has the
type ”passwdtype”. In this case, the pheromone amount
considered is set to X , otherwise it is equal to 1.
When a Widget name is composed of the term ”buy”,
the pheromone amount added in the location could be
Y < X , etc.

Many other strategies could be defined in relation to
the desired result in terms of model generation and test
coverage. Other criteria, e.g., the number of Widgets, could
also be taken into consideration. The strategies, succinctly
described above, could also be mixed together.

The STS Tree of Figure 2 is constructed with Algorithm 1
and the DFS-BFS strategy as follows: the Explore procedure
starts the exploration from loc0 which holds a pheromone
amount equal to 0. The actions a0 to a5 lead to new inter-
faces and locations loc1, ..., loc5 that have to be explored.
Here, the location loc1 is chosen since it is the first new
encountered location and has the highest pheromone amount.
From loc1, the execution of actions leads to new locations:
for instance the locations loc8 and loc8 1 are reached with
the actions a7 1 and a7 2. These locations only differ by
their text field values. Hence, the arrival location loc8 1 is
not explored and marked by end. The next location having
the highest pheromone amount is loc6. Therefore, this one
is explored. And so on.

We also applied two different exploration strategies on
the application ”Ebay Mobile” to illustrate the different STS
Trees which may be generated. With a DFS-BFS strategy,
its interfaces were explored independently of their meaning.
Figure 8 depicts a simplified graph, obtained with this
strategy, showing that it started to examine the RefineSearch
Activity. However, testing and exploring the account man-
agement part is usually considered as more important since
defects may have a negative impact on user accounts. This
choice can be followed with our approach by applying a
semantics-driven strategy where the targeted Activities are
those including Widgets of type ”passwdtype” or Widget
properties composed of the terms ”account” or ”sign in”.
Figure 9 illustrates the resulting graph after applying this
strategy: here the Activity SignAct, allowing to manage user
accounts, was directly targeted. This strategy makes the

generated STS more interesting to later analyse the security
of the application or to generate security test cases.

Figure 8: Ebay Mobile STS Tree obtained with a DFS-BFS
strategy

Figure 9: Ebay Mobile STS Tree obtained with a semantics
strategy

IV. EXPERIMENTATIONS

We conducted several empirical studies to assess the
overall results of our approach applied on Android mobile
applications. Our prototype tool, called MCrawlT (Mobile
Crawler Tool), is publicly available in a Github reposi-
tory2. It takes packaged Android applications (apk files) or
source projects and stimulates them by calling the testing
framework Robotium 3. An application can be experimented
in parallel by launching several Android emulators. We
experimented our tool with a Mid 2011 computer including a
CPU 2.1Ghz Core i5 and 4GB of RAM. We randomly chose
some Android applications of the Google Play store and
some applications taken as examples in other papers dealing
with Android application automated testing for comparison
purposes.

2https://github.com/statops/apset.git
3https://code.google.com/p/robotium/

Application DFS(1) DFS-BFS(1) DFS-BFS(3)
Converter (1) 478 435 295
NotePad (2) 268 310 175
Tippy Tipper (3) 251 210 110
ToDoManager (4) 551 410 210
LotsA (5) 70 83 48
OpenManager (6) 696 560 489
HelloAUT (7) 106 216 201
TomDroid (8) 235 256 196
ContactManager(9) 233 216 135
OpenSudoku (10) 434 456 411

Figure 10: Processing time to explore all the locations with
different strategies and number of simulators

Applications Mon
key

Orbit GUI
TAR

GUI
Rip-
per

MCrawlT

Code
cov.

Act.
cov.

NotePad (2) 60 82 - - 88 100
ToDoManager(4) 71 75 71 - 81 100
HelloAUT (7) 71 86 51 - 96 100
TomDroid (8) 46 70 - 40 76 100
Youtube (11) - - - - - 54.5
CNN (12) - - - - - 73
TaskKiller (13) - - - - - 57.1
Ebay (17) - - - - - 19
WordPress (18) - - - 39 - 47
CatLog (19) - - - - 77 80
DiskToFon (20) - - - - 42 67

Figure 11: Code and Activity coverage

Figure 10 presents the processing time for completely
exploring these applications. The tool were applied with a
DFS strategy (1 emulator), a mixed DFS-BFS (with 1 and
3 emulators in parallel).cOur results firstly show that the
chosen strategy has a direct impact on the processing time
required to cover an application. In this experimentation, half
of the applications are more rapidly covered with DFS-BFS
traversing. For instance, with toDoManager, using a DFS-
BFS strategy instead of a DFS one, reduces the exploration
delay by 140 seconds because all of its Activities are directly
accessible from the initial one. These results depend mainly
on the application structure though. When the insight of the
application structure is known, our tool offers the advantage
of choosing the most appropriate strategy. Otherwise, it may
be chosen in regards to the purpose of the test. Figure 10 also
shows that the parallelisation of our algorithm is effective.
With three emulators, the processing time is always reduced.
For instance, the parallel exploration of Tippy Tipper is
achieved with a processing time almost divided by two.

Figure 11 shows the resulting code coverage obtained
with our tool and other crawlers available in the literature:
Monkey [12], Orbit [7], GUITAR [1], GUI Ripper [6]. With
our tool, we provide the code coverage that is obtained for
the applications whose source code is available (small open
source applications). For the others, we can only give the
Activity coverage which is the number of rendering com-
ponents explored. Most of the other tools explore Android
applications in an in-depth manner. Therefore, MCrawlT

Applications MCrawlerT Monkey GUI Rip-
per

Converter 9 4
Notepad 2
TomDroid 3 1 14
WordPress 51 3 37
CatLog 17 0
DiskToFon 2 0
Sipdroid 1 1

Figure 12: Crash detection

was executed only with this strategy to carry out a fair
comparison. These results show that the code coverage is
between 42% and 96%. An application is incompletely
covered either on account of unused code parts (libraries,
packages, etc.) that are not called, or on account of func-
tionalities difficult to start automatically. The code coverage
achieved with MCrawlT is either equivalent or higher than
the one given by the other tools. For instance with TomDroid,
we obtained 76 %, whereas ORBIT covers 70%, Monkey
46% and GUI Ripper 40% of the code. ORBIT offers a
better code coverage with Contactmanager though. Indeed,
users interact on this application with long click events that
are supported by Orbit but not yet by our tool. The last
lines of Figure 11 show the results obtained with larger
applications (Youtube to DiskToFon). Since the time required
to discover these applications may be long, we have limited
the exploration time to 30 minutes. Without limitation, the
coverage should strongly augment. Surprisingly, this kind of
application is not considered by the other tools.

Finally, Figure 12 illustrates the number of observed
crashes while exploring some Android applications with
our tool MCrawlT. We also compare these results to those
obtained with the tools Monkey [12] and GUI Ripper. The
processing time was limited to 30 minutes for the two first
tools. For GUI Ripper, we have taken back the experimental
results given in [6] that were obtained with a processing
time varying between 3 and 5 hours.

MCrawlT outperforms Monkey in automatic crash detec-
tion, which is not surprising since it covers deeper Android
applications. The comparison with GUI Ripper is less ob-
vious since the authors only provides two results for this
tool. For the WordPress application, MCrawlT detects more
crashes than GUI Ripper, and on the contrary, more crashes
are detected with CatLog. But the time processing of GUI
Ripper is twelve times more long.

All these experimental results on real applications tend
to show that our tool is effective and leads to substantial
improvement in the automatic testing and model inference
of GUI applications.

V. RELATED WORK AND DISCUSSION

Several papers dealing with automatic testing and model
generation approaches were issued in the last decade. Here,
we present some of them relative to our work:

Firstly, Several works were proposed for white-box sys-
tems [5], [3]. For example, Contest [5] is a testing framework
which exercises smartphone applications with the generation
of input events. This approach relies upon a systematic
test generation technique, a.k.a. concolic testing, to explore
symbolic execution paths of the application. These white-
box based approaches should theoretically offer a better code
coverage than the automatic testing of black-box systems.
However, the number of paths being explored concretely
limits to short paths only. Furthermore, the constraints have
not to be too complex for being solved. As a consequence,
the code coverage of these approaches may be lower in
practice.

On the other hand, many black-box based methods were
also proposed. Memon et al. [1] initially presented GUITAR,
a tool for scanning desktop applications. This tool produces
event flow graphs and trees showing the GUI execution
behaviours. Only the click event can be applied and GUITAR
produces many false event sequences which may need to be
weeded out later. Furthermore, the actions provided in the
generated models are quite simple (no parameters). Mesbah
et al. [2] proposed the tool Crawljax specialised in Ajax
applications. It produces a state machine model to capture
the changes of DOM structures of the HTML documents by
means of events (click, mouseover,etc.). An interesting fea-
ture of Crawljax is the concatenation of identical states in the
model under construction, by comparison based on the DOM
structure. This helps reduce the number of states which may
be as large as the DOM modifications. In practice, to limit
the state space and to avoid a state explosion problem, state
abstractions should be given manually to extract a model
with a manageable size. The concatenation of identical
states proposed in [2] is done in our work by minimisation.
Although this minimisation guarantees to keep the original
functional behaviour of the model, the concatenation in [2]
requires less time computation and sounds to provide good
results.

Since our experimentation is based on Android appli-
cations, we explore more cautiously this field in the fol-
lowing. Google’s Monkey [12] is a random testing tool
(events and data) offering light coverage especially when
an authentication is required in the application. No model
is provided. Amalfitano et al. [6] proposed GUI Ripper,
a crawler for crash testing and for regression test case
generation. A simple model called GUI tree depicts the
observed GUI. Then, paths of the tree not terminated by a
crash detection, are used to re-generate regression test cases.
Joorabch et al. [9] proposed another crawler, similar to GUI
Ripper, dedicated to iOS applications. As previously, a tree
is constructed by a depth-first path search algorithm. A tree
state is composed of the current GUI and of the properties of
the GUI. These help to easier recognise application states. In
comparison to these works, our generated models are much
more detailed and can be used to derive new test cases with

less efforts since all the actions and parameters can directly
be found in the model. We also consider several exploration
strategies. The novelty of the work proposed by Yang et
al. [7] lies in the static analysis of the Android application
code to infer the events that can be applied to the GUI. The
graph of the application, expressing the calling methods, is
initially computed and filtered out to list the listener methods
and events. Then, a classical crawling technique is employed
to derive a tree composed of events. This grey-box testing
approach was implemented in the Orbit tool. When only one
emulator is used, this approach should cover an application
quicker than our proposal since the events to trigger are
listed by the static analysis whereas we try to detect them
dynamically or we try all the possible events when this
detection is not possible. But Orbit can be applied only when
the application source code is available. This is not the case
for many Android applications. Furthermore, our tool should
cover an application quicker than Orbit since the former can
be experimented in parallel with several emulators. Another
strong advantage proposed in our approach, is the support
of different exploration strategies. These can reduce the
exploration time when the application structure is known
or can guide the exploration when the application interface
number is large. Our generated models are richer and are
more compact thanks to the minimisation process.

VI. CONCLUSION

This paper presents a formal model inference approach
for Mobile applications, which performs automatic testing
through application interfaces and which explores applica-
tions by means of strategies. For one application, two STS
models are generated by this approach. Both express the
functional behaviours of the application, but the second one
is reduced with a bisimulation technique for readability.

In comparison to the application crawlers available in the
literature, this approach takes another direction by proposing
two following main contributions. We propose a formal
model definition whose aims are to store rich details about
the encountered interfaces and to help reduce the application
exploration. Our algorithms are based upon the application
of the ACO technique to guide the application exploration
with strategies that can be modified by managing differently
the pheromone deposit in locations.

Our experimental results show that this approach can be
used in practice: the prototype tool provides a good applica-
tion code coverage in a reasonable time delay. Furthermore,
the generated models are compact and can be reused for
automatic test case generation since the STS Tree model
stores all the properties of the explored interfaces.

REFERENCES

[1] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping:
Reverse engineering of graphical user interfaces for testing,”
in Proceedings of the 10th Working Conference on Reverse

Engineering, ser. WCRE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 260–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=950792.951350

[2] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling
Ajax-based web applications through dynamic analysis of
user interface state changes,” ACM Transactions on the Web
(TWEB), vol. 6, no. 1, pp. 1–30, 2012.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. Ernst, “Finding bugs in web applications using dynamic
test generation and explicit-state model checking,” Software
Engineering, IEEE Transactions on, vol. 36, no. 4, pp. 474–
494, 2010.

[4] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “Webmate:
a tool for testing web 2.0 applications,” in Proceedings of
the Workshop on JavaScript Tools, ser. JSTools ’12. New
York, NY, USA: ACM, 2012, pp. 11–15. [Online]. Available:
http://doi.acm.org/10.1145/2307720.2307722

[5] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393666

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,
and A. M. Memon, “Using gui ripping for automated
testing of android applications,” in Proceedings of the
27th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2012. New York, NY,
USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[7] W. Yang, M. R. Prasad, and T. Xie, “A grey-
box approach for automated gui-model generation of
mobile applications,” in Proceedings of the 16th
international conference on Fundamental Approaches to
Software Engineering, ser. FASE’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 250–265. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37057-1 19

[8] T. Jéron, “Symbolic model-based test selection,” Electronic
Notes in Theoretical Computer Science, vol. 240, no. 0,
pp. 167 – 184, 2009. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S157106610900173X

[9] M. E. Joorabchi and A. Mesbah, “Reverse engineering
ios mobile applications,” in Proceedings of the 2012
19th Working Conference on Reverse Engineering, ser.
WCRE ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 177–186. [Online]. Available: http:
//dx.doi.org/10.1109/WCRE.2012.27

[10] J.-C. Fernandez, “An implementation of an efficient algorithm
for bisimulation equivalence,” Science of Computer Program-
ming, vol. 13, pp. 13–219, 1989.

[11] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction testing,”
in Proc. of the 25th International Conference on Software
Engineering, 2003, pp. 38–48.

[12] Google, “Ui/application exerciser monkey,”
http://developer.android.com/tools/help/monkey.html, last
accessed jan 2014.

