
HAL Id: hal-02019699
https://uca.hal.science/hal-02019699v1

Submitted on 14 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring models with rule-based expert systems.
William Durand, Sébastien Salva

To cite this version:
William Durand, Sébastien Salva. Inferring models with rule-based expert systems.. Fifth Sym-
posium on Information and Communication Technology, SoICT ’14, Dec 2014, Hanoy, Vietnam.
�hal-02019699�

https://uca.hal.science/hal-02019699v1
https://hal.archives-ouvertes.fr

Inferring models with rule-based expert systems.∗

William Durand
LIMOS - UMR CNRS 6158

Blaise Pascal University, France
william.durand@isima.fr

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

sebastien.salva@udamail.fr

ABSTRACT
Many works related to software engineering rely upon for-
mal models, e.g., to perform model-checking or automatic
test case generation. Nonetheless, producing such mod-
els is usually tedious and error-prone. Model inference is
a research field helping in producing models by generating
partial models from documentation or execution traces (ob-
served action sequences). This paper presents a new model
generation method combining model inference and expert
systems. It appears that an engineer is able to recognise the
functional behaviours of an application from its traces by
applying deduction rules. We propose a framework, applied
to Web applications, simulating this reasoning mechanism,
with inference rules organised into layers. Each yields par-
tial IOSTSs (Input Output Symbolic Transition Systems),
which become more and more abstract and understandable.

Keywords
Model inference, automatic testing, IOSTS, expert system

1. INTRODUCTION AND CONTRIBUTION
Software engineering is a disciple helping to design, imple-
ment and validate applications by means of a lot of dedicated
methods and tools. Many of them require either some doc-
umentation or models to automate or, at least, ease some
steps. For instance, model-based testing approaches rely
upon formal models to define test relation and to auto-
matically construct test cases. Nonetheless, writing com-
plete documentation or formal models is often a tedious and
error-prone task. That is why lightweight models are usually
found in the Industry. This leads to several issues, e.g., the
toughness of validating an application with a good test cov-
erage or the difficulty to diagnose its failures, and to main-
tain it since this one is poorly documented. The ultimate
alternative, usually left to developers, is to learn how the
application behaves before introducing changes on it.

∗Research conducted in collaboration with industrial part-
ner Michelin.

Model inference is a research field which brings interesting
concepts to bypass these issues. It aims at retrieving mod-
els, expressing functional behaviours of applications which
already exist or which are under development. These mod-
els, that help understand how an application behaves, are
generated from execution traces (observed action sequences)
or from documentation. These can be exploited to auto-
matically generate test cases, but could also be considered
as drafts to write complete specifications. Although this
area sounds promising, it still exposes several open prob-
lems, which require further investigation. Among them, the
model generation may lead to a state space explosion prob-
lem. Some works construct lightweight models to avoid this
issue, others yield extrapolated models by merging applica-
tion’s states which, of course, express more behaviours than
those observed [10, 5]. Furthermore, most of these methods
only works with event-driven applications, i.e. applications
offering a Graphical User Interface (GUI) to interact with,
and which respond to a sequence defined by the user. The
other kind of applications are barely targeted.

Our proposal takes another direction to infer models. First,
we do not suppose that the application being analysed is
event-driven, only that it yields traces. Intuitively, our pro-
posal emerges from the following idea: a human expert, who
is able to conceive specifications, is also able to diagnose the
behaviours of the corresponding implementation by reading
and interpreting its execution traces. His knowledge could
then be formalised and exploited to automatically infer mod-
els. Our approach is based upon this notion of knowledge
implemented with an expert system which includes busi-
ness rules. Such rules aim at analysing the behaviours of
the application and incrementally produce models captur-
ing the application’s behaviours at a higher level of abstrac-
tion. These models are tangentially reduced in term of size
without improper extrapolation. In this paper, we focus on
models called Input/Output Symbolic Transition Systems
(IOSTS) [8].

Paper organisation: below, we briefly present some re-
lated works and describe the architecture of our model gen-
eration framework. Then, we recall some definitions on the
IOSTS formalism used throughout the paper. We concretely
describe and define this framework in the context of Web
applications in Section 3. We give some experimentation
results in Section 4. Conclusions are drawn in Section 5
together with directions for further research and improve-
ments.

1.1 Related work
Model inference is a relatively recent research field which
originates from works of different nature. Below, we present
some of them related to our work.

Zong et al. [16] proposed to infer specifications from API
documentation in order to check whether implementations
match them. Such specifications do not reflect the imple-
mentation behaviour though. Furthermore, this method can
only be applied if the API documentation is written in a
readable format.

Most of the other methods aims at observing the applica-
tion’s behaviours at runtime. Some of them are proposed
in the context of white-box testing. In [13], specifications,
which are extremely detailed, show the method calls ob-
served from a related set of objects. The methods, presented
in [2, 4], exercise Mobile and Web applications written in
PHP. They rely upon concolic testing to explore symbolic
execution paths of the application and to detect bugs. These
white-box approaches could theoretically offer a better code
coverage than black-box automatic testing. However, the
number of paths being explored concretely limits to short
paths only. Furthermore, the constraints have not to be too
complex in order to be solved. Last but not least, the models
are too detailed for reading.

On the other hand, other methods [11, 12, 1, 6, 9, 15, 5],
which originate from automatic black-box testing, retrieve
specifications of event-driven applications (Desktop, Web or
Mobile) by exploring them (a.k.a. crawling). In practice,
the obtained models should encompass all the observed ac-
tions performed by the implementation. But, to avoid a
state explosion problem and to ease the understanding of
the application’s behaviours, only the three main leads have
been explored to reduce the model size. Some works [11,
1, 9] proposed to generate simplified trees, depicting the
observed GUI of the application. Mesbah et al. [12] pro-
posed the tool Crawljax specialised in Ajax applications. It
produces a state machine model to capture the changes of
the DOM structures of HTML documents. But here, state
abstractions have to be manually given. Also, some works
[5] rely upon standard learning algorithms such as L∗ [3],
but this technique leads to extrapolated models, potentially
describing incorrect behaviours.

1.2 Insight
Our proposal takes another direction by inferring several
models (and not only one), expressing the behaviours of the
same application at different abstraction levels by leveraging
an expert system.

We focus on Web applications in this paper, altough this ap-
proach could be applied on any application producing traces.
Thanks to its design, our framework supports any kind of
Web applications, including Single Page Applications.

The approach is divided into several modules as depicted in
Figure 1. The Models generator is the centrepiece of this
framework. It takes traces as inputs, which can be sent by a
Monitor collecting them on the fly. But it is worth mention-
ing that the traces can also be sent by any tool or even any
user, as far as they comply to a chosen standard format. The

Figure 1: Model generation framework

Models generator is based upon an expert system, which is
an artificial intelligence engine emulating acts of a human
expert by inferring a set of rules representing his knowledge.
Such knowledge are organised into a hierarchy of several
layers. Each gathers a set of inference rules written with a
first order predicate logic. Typically, each layer creates an
IOSTS, and the higher the layer is, the more abstract the
IOSTS becomes. Models are then stored and can be later
analysed by experts, verification tools, etc. The number of
layers is not strictly bounded even though it is manifest that
it has to be finite.

The Models generator relies upon traces to construct IOSTSs,
but the given trace set may not be substantial enough to gen-
erate relevant IOSTSs. More traces could be yet collected as
far as the application being analysed is an event-driven ap-
plication. Such traces can be produced by stimulating and
exploring the application with automatic testing. In our ap-
proach, this exploration is achieved by the Robot explorer.
In contrast with most of the existing crawling techniques
[11, 2, 12, 1, 15], our robot does not cover the application
in blind mode or with a static traversal strategy. Instead,
it is cleverly guided by the Models generator which applies
an exploration strategy carried out by rules. This involves
the capture of new traces by the Monitor or by the Robot
explorer which returns them to the Models generator, and
so on, as described in [14]. The advantages of this approach
are manifold:

• it takes a predefined set of traces collected from any
kind of applications producing traces. In the context
of Web applications, traces can be produced using au-
tomatic testing,

• the application exploration is guided with a strategy
which can be modified according to the type of appli-
cation being analysed. This strategy offers the advan-
tage of directly targeting some states of the application
when its state number is too large for being traversed
in a reasonable processing time,

• the knowledge encapsulated in the expert system can

be used to cover trace sets of several applications be-
longing to the same category with generic rules,

• but, the rules can also be specialised and refined for
one application to yield more precise models. This is
interesting for application comprehension,

• our approach is both flexible and scalable. It does not
produce one model but several ones, depending on the
number of layers of the Models generator, which is not
limited and may evolve in accordance to the applica-
tion’s type. Each model, expressing the application’s
behaviours at a different level of abstraction, can be
used to ease the writing of complete formal models, to
apply verification techniques, to check the satisfiabil-
ity of properties, to automatically generate functional
test cases, etc.

In the following, we focus on the Models generator in the
context of Web applications, this part being the centrepiece
of our framework. It is worth mentioning that the Moni-
tor is here a classical HTTP proxy, hence the support of
any kind of Web applications, and generally speaking, any
system producing traces.

2. MODEL DEFINITION AND NOTATIONS
We shall consider the input/output Symbolic Transition Sys-
tem (IOSTS) formalism [8] for describing the functional be-
haviour of systems or applications. An IOSTS is a kind of
automata model which is extended with two sets of variables,
internal variable to store data, and parameters to enrich the
actions. Transitions carry actions, guards, and assignments
over variables. The action set is separated with inputs be-
ginning by ? to express actions expected by the system, and
with outputs beginning by ! to express actions produced by
the system. An IOSTS does not have states but locations.

Definition 1 (IOSTS) An IOSTS S is a tuple < L, l0, V,
V 0, I,Λ, →>, where:

• L is the finite set of locations, l0 the initial location,

• V is the finite set of internal variables, I is the finite
set of parameters. We denote Dv the domain in which
a variable v takes values. The assignment of values
of a set of variables Y ⊆ V ∪ I is denoted by valua-
tions where a valuation is a function v : Y → D. v∅
denotes the empty valuation. DY stands for the valua-
tion set over the variable set Y . The internal variables
are initialised with the assignment V 0 on V , which is
assumed to be unique,

• Λ is the finite set of symbolic actions a(p), with p =
(p1, ..., pk) a finite list of parameters in Ik(k ∈ N). p
is assumed unique. Λ = ΛI ∪ΛO ∪{!δ}: ΛI represents
the set of input actions, (ΛO) the set of output actions,

• → is the finite transition set. A transition (li, lj , a(p),
G,A), from the location li ∈ L to lj ∈ L, denoted

li
a(p),G,A−−−−−−→ lj is labelled by: an action a(p) ∈ Λ, a

guard G over (p ∪ V ∪ T (p ∪ V)) which restricts the
firing of the transition. T (p ∪ V) is a set of functions
that return boolean values only (a.k.a. predicates) over

p∪V , an assignment function A which updates internal
variables. A is on of the form (x := Ax)x∈V , where Ax
is an expression over V ∪ p ∪ T (p ∪ V).

An IOSTS is also associated with an IOLTS (Input/Output
Labelled Transition System) to formulate its semantics. In-
tuitively, IOLTS semantics correspond to valued automata
without symbolic variable, which are often infinite: IOLTS
states are labelled by internal variable valuations while tran-
sitions are labelled by actions and parameter valuations.
The semantics of an IOSTS S =< L, l0, V, V0, I,Λ,→> is
the IOLTS JSK =< Q, q0,Σ,→> composed of valued states
in Q = L × DV , q0 = (l0, V0) is the initial one, Σ is the
set of valued symbols and → is the transition relation. The
IOLTS semantics definition of can be found in [8]. In short,

for an IOSTS transition l1
a(p),G,A−−−−−−→ l2, we obtain an IOLTS

transition (l1, v)
a(p),θ−−−−→ (l2, v

′) with v a set of valuations
over the internal variable set, if there exists a parameter
valuation set θ such that the guard G evaluates to true with
v∪ θ. Once the transition is executed, the internal variables
are assigned with v′ derived from the assignment A(v ∪ θ).
Runs and traces of an IOSTS can now be defined from its
semantics:

Definition 2 (Runs and traces) For an IOSTS S = <
L, l0, V, V 0, I,Λ,→>, interpreted by its IOLTS semantics
JSK =< Q, q0,Σ,→>, a run of S, q0α0q1...qn−1αn−1qn is
a sequence of terms qiαiqi+1 with αi ∈ Σ a valued action
and qi, qi+1 two states of Q. Run(S) = Run(JSK) is the set
of runs found in JSK.

It follows that a trace of a run r is defined as the projection
projΣ(r) on actions. TracesF (S) = TracesF (JSK) is the set
of traces of all runs finished by states in F ×DV .

3. MODEL INFERENCE

Figure 2: Models generator

The Models generator is mainly composed of a rule-based
system, adopting a forward chaining. Such a system sepa-
rates the knowledge base from the reasoning: the former is
expressed with data a.k.a. facts and the latter is realised
with inference rules that are applied on the facts. Our Mod-
els generator initially takes traces as an initial knowledge

base and owns inference rules organised into layers for try-
ing to match the human expert behaviour. These layers are
depicted in Figure 2.

Usually, when a human expert has to read traces of an ap-
plication, he often filters them out to only keep those which
make sense against the current application. This step is
done by the first layer whose role is to format the received
raw traces into sequences of valued actions and to delete
those considered as unnecessary. The resulting structured
trace set, denoted ST , is then given to the next layer. This
process is incrementally done, i.e. every time new traces are
given to the Models generator, these are formatted and fil-
tered before being given to Layer 2. The remaining layers
yield an IOSTS each Si(i ≥ 1), which has a tree structure
derived from the traces. The role of Layer 2 is to carry out a
first IOSTS transformation from the structured traces. The
next layers 3 to N (with N a finite integer) are composed of
rules that emulate the ability of a human expert to simplify
transitions, to analyse the transition syntax for deducing
its meaning in connection with the application, and to con-
struct more abstract actions that aggregate a set of initial
ones. Theses deductions are often not done in one step.
This is why the Models generator supports a finite but not
defined number of layers. Each of these layers i takes the
IOSTS Si−1 given by the direct lower layer. This IOSTS,
which represents the current base of facts, is analysed by the
rules to infer another IOSTS whose expressiveness is more
abstract than the previous one. We state that the lowest
layers (at least Layer 3) should be composed of generic rules
that can be reused on several applications of the same type.
In contrast, the highest layers should own the most precise
rules that may be dedicated to one specific application.

For readability purpose, we chose to represent inference rules
with this format: When conditions on facts Then actions on
facts (format taken by the Drools inference engine 1). Inde-
pendently on the application type, the Layers 2 to N han-
dle the following fact types: Location which represents an
IOSTS location, and Transition, which represents an IOSTS
transition, composed of two Locations Linit, Lfinal, and two
data collections Guard and Assign. Now, it is manifest that
the inference of models has to be done in a finite time and
in a deterministic way. To reach that purpose, we formulate
the following hypotheses on the inference rules:

1. (finite complexity): a rule can only be applied a limited
number of times on the same knowledge base,

2. (soundness): the inference rules are Modus Ponens
(simple implications that lead to sound facts if the
original facts are true),

3. (no implicit knowledge elimination): after the appli-
cation of a rule r expressed by the relation r : Ti →
Ti+1(i ≥ 2), with Ti a Transition base, for all transi-
tion t = (ln, lm, a(p), G,A) extracted from Ti+1, ln is
reachable from l0.

In the following, we detail these layers in the context of Web
applications while giving some rule examples.

1http://www.jboss.org/drools/

3.1 Layer 1: Trace filtering
Traces of Web applications are based upon the HTTP pro-
tocol, conceived in such a way that each HTTP request is
followed by only one HTTP response. Consequently, the
traces, given to Layer 1, are sequences of couples (HTTP re-
quest, HTTP response). This layer begins formatting these
couples so that these might be analysed in a more convenient
way.

For a couple (HTTP request, HTTP response), we extract
the following information: the HTTP verb, the target URI,
the request content which is a collection of data (headers,
content) and the response content which is the collection
(HTTP status, headers, response content). An header may
also be a collection of data or may be null. Contents are texts
e.g., HTML texts. Since we wish translating such traces into
IOSTSs, we turn these textual items into a structured valued
action (a(p), θ) with a the HTTP verb and θ a valuation
over the variable set p = {URI, request, response}. This is
captured by the following proposition:

Definition 3 (Structured HTTP Traces) Let t = req1,
resp1, ..., reqn, respn be a raw HTTP trace composed of
an alternate sequence of HTTP request reqi and HTTP re-
sponse respi. The structured HTTP trace σ of t is the se-
quence (a1(p), θ1)...(an(p), θn) where:

• ai is the HTTP verb used to make the request in reqi,

• p is the parameter set {URI, request, response},

• θi is a valuation p→ Dp which assigns a value to each
variables of p. θ is deduced from the values extracted
from reqi and respi.

The resulting trace set derived from raw HTTP traces is de-
noted ST .

Now, the structured traces can be filtered. For a main re-
quest performed by a user, many other sub-requests are also
launched by a browser in order to fetch images, CSS and
JavaScript files. Generally speaking, these do not enlighten
a peculiar functional behaviour of the application. This is
why we propose to add rules in Layer 1 to filter these sub-
requests out from the traces. Such sub-requests can be iden-
tified by different ways, e.g., by focussing on the file exten-
sion found at the end of the URI, or on the Content-type
value of the request headers. Consequently, we created a
set of rules, constituted of conditions on the HTTP content
found in an action, that remove valued actions when the
condition is met. A straightforward rule example, which re-
moves the actions relative to the retrieval of PNG images,
is given in Figure 3.

After the instantiation of the Layer 1 rules, we obtain a for-
matted and filtered trace set ST composed of valued actions.
Now, we are ready to extract the first IOSTSs.

Completeness, soundness, complexity: HTTP traces
are sequences of valued actions modelled with positive facts.
Typically, they form Horn clauses. Furthermore, inference

rule "Filter PNG images"
when

\$va: Get(request.mime_type = ’png’ or
request.file_extension = ’png’)

then
retract(\$va);

end

Figure 3: Filtering rule example

rules are Modus Ponens (soundness hypothesis). Conse-
quently, Layer 1 is sound and complete. Keeping in mind
the (finite complexity) hypothesis, its complexity is propor-
tional to Om(k + 1) with m the valued action number and
k the rule number. (at worst, every action is covered k + 1
times).

3.2 Layer 2: IOSTS transformation
Intuitively, the IOSTS transformation relies upon the IOLTS
semantics transformation that is achieved in a backward
manner. In order to generate the first IOSTS denoted S1,
the associated runs are first computed from the structured
traces by injecting states between valued actions.

These steps are detailed below:

3.2.1 Traces to runs
Given a trace σ, a run r is firstly derived by constructing and
injecting states on the right and left sides of each valued ac-
tion of σ. Keeping in mind the IOLTS semantics definition,
a state shall be modelled by the couple ((URI, k), v∅) with
v∅ the empty valuation. (URI, k) is a couple composed of a
URI and of an integer (k ≥ 0). Typically, a couple (URI, k)
shall be a location of the future IOSTS. All the runs r of
SR start with the same state (l0, v∅). Then, a run is con-
structed by incrementally covering one trace: for an action
actions (ai, θi) found in a trace, we extract the valuation
URI = val from θi giving the URI value of the next re-
source reached after the action ai.And we complete the cur-
rent run r with (ai, θi) followed by the state ((val, k), v∅).
Since we wish to preserve the sequential order of the actions
found in the traces, when a URI previously encountered is
once more detected, the resulting state is composed of the
URI accompanied with an integer k, which is incremented
to yield a new and unique state. Due to lack of room, the
algorithm translating the structured traces into a run set is
not provided in this paper but can be found in [14].

3.2.2 IOSTS generation
The first IOSTS S1 is derived from the run set SR in which
runs are disjoint except for the initial state (l0, v∅). Intu-
itively, traces are translated into IOSTS paths that are as-
sembled together (IOSTS disjoint union). The IOSTS forms
a tree composed of paths, each expressing one trace, starting
from the same initial location.

Definition 4 Given a run set SR, the IOSTS S1 is called
the IOSTS tree of SR and corresponds to the tuple < LS1 , l0S1 ,
VS1 , V 0S1 , IS1 ,ΛS1 ,→S1> such that:

• LS1 = {li | ∃r ∈ SR, (li, v∅) is a state found in r},

• l0S1 is the initial location such that ∀r ∈ SR, r starts
with (l0S1 , v∅),

• VS1 = ∅, V 0S1 = v∅,

• ΛS1 = {ai(p) | ∃r ∈ SR, (ai(p), θi) is a valued action
in r},

• →S1 is defined by the following inference rule applied
on every element r ∈ SR:

si(ai(p), θi)si+1 is a term of r, si = (li, v∅),

si+1 = (li+1, v∅), Gi =
∧

(xi=vi)∈θi

xi == vi

`
li

ai(p),Gi,(x:=x)x∈V−−−−−−−−−−−−−→S1 li+1

Here, locations could be merged to reduce the IOSTS size
with the classical learning algorithms based upon L∗ [3,
10]. Nonetheless, these would create an extrapolation of
this IOSTS. We prefer rejecting such a solution to preserve
the trace equivalence of the IOSTS S1 against the struc-
tured trace set ST before applying inference rules. Instead,
we propose to use a minimisation technique.

3.2.3 IOSTS minimisation
This IOSTS tree can be reduced in term of location size by
applying a bisimulation minimisation technique which still
preserves the functional behaviours expressed in the original
model. Intuitively, this minimisation constructs the state
sets (blocks) that are bisimilar equivalent. Two states are
said bisimilar equivalent, denoted q ∼ q′ iff they simulate
each other and go to states from where they can simulate
each other again. Due to lack of room, we only refer to the
bisimulation minimisation algorithm of [7].

When receiving new traces from the Monitor, the model
yield by this layer is not fully regenerated, but rather com-
pleted on the fly. New traces are translated into IOSTS
paths that are disjoint from S1 except from the initial loca-
tion. We perform an union between S1 and IOSTS paths.
Then, the resulting IOSTS is minimised.

Completeness, soundness, complexity: Layer 2 takes
any structured trace set obtained from HTTP traces. If
the trace set is empty then the resulting IOSTS S1 has a
single location l0. A structured trace set is translated into
an IOSTS in finite time: every valued action of a trace is
covered once to construct states, then every run is lifted
to the level of one IOSTS path starting from the initial lo-
cation. Afterwards, the IOSTS is minimised with the al-
gorithm presented in [7]. Its complexity is proportional to
O(mlog(m+ 1)) with m the number of valued actions. The
soundness of Layer 2 is based upon the notion of traces: an
IOSTS S1 is composed of transition sequences derived from
runs in SR, itself obtained from the structured trace set ST .
As defined, the behaviours encoded in ST and S1 are equiva-
lent since ordered runs are transformed into ordered IOSTS
sequences.

For sake of readability, we do not provide here the rules of

Layer 2, which match the above definitions and algorithms.
Instead, we illustrate an IOSTS generation example below:

Example 3.1 We take as example a trace obtained from
the GitHub Web site 2 after having executed the following
actions: login with an existing account, choose an existing
project, and logout. These few actions already produced a
large set of requests and responses. Indeed, a web browser
sends thirty HTTP requests on average in order to display
a GitHub page. The trace filtering form this example re-
turns the following structured traces where the request and
response parts are concealed for readability purpose:

1 GET(h t tp s : // github . com/)
GET(h t tp s : // github . com/ l o g i n)

3 POST(h t tp s : // github . com/ s e s s i o n)
GET(h t tp s : // github . com/)

5 GET(h t tp s : // github . com/wi l ldurand)
GET(h t tp s : // github . com/wi l ldurand /Geocoder)

7 POST(h t tp s : // github . com/ logout)
GET(h t tp s : // github . com/)

After the application of Layer 2, we obtain the IOSTS of
Figure 4. Locations are labelled by the URI found in the
request and by an integer to keep the tree structure of the
initial traces. Actions are composed of the HTTP verb en-
riched with the variables URI, request, and response. This
IOSTS exactly reflects the trace behaviour but is still diffi-
cult to interpret. More abstract actions shall be deduced by
the next layers.

3.3 Layers 3-N: IOSTS abstraction
As stated earlier, the rules of the upper layers analyse the
transitions of the current IOSTS for trying to enrich its se-
mantics while reducing its size. Given an IOSTS S1, every
next layer carries out the following steps:
1. apply the rules of the layer and infer a new knowledge
base (new IOSTS Si, i ≥ 2),
2. apply a bisimulation minimisation,
3. store the resulting IOSTS.

Without loss of generality, we now restrict the rule structure
to keep a link between the generated IOSTSs. Thereby, ev-
ery rule of Layer i (i ≥ 3) either enriches the sense of the
actions (transition per transition) or aggregates transition
sequences into one unique new transition to make the ob-
tained IOSTSs more abstract. It results in an IOSTS Si
exclusively composed by some locations of the first IOSTS
S1. Consequently, for a transition or path of Si, we can still
retrieve the concrete path of S1. This is captured by the
following proposition:

Proposition 5 Let S1 be the first IOSTS generated from
the structured trace set ST . The IOSTS Si(i > 1) produced
by Layer i has a location set LSi such that LSi ⊆ LS1 .

Completeness, soundness, complexity: the knowledge
base is exclusively constituted by (positive) Transition facts
that have an Horn form. The rules of these layers are Modus
Ponens (soundness hypothesis). Therefore, these inference

2https://github.com/

Figure 4: IOSTS S1

rules are sound and complete. Furthermore, a behaviour en-
coded in an IOSTS Si cannot be lost in Si. With regards
to the (no implicit knowledge elimination) hypothesis and
to Proposition 5, the transitions of Si are either unchanged,
enriched or combined together into a new transition. The
application of these layers ends in a finite time ((finite com-
plexity) hypothesis) and the complexity of each is propor-
tional to Om(k) with m the transition number and k the
rule number.

In the following, we detail two layers specialised for Web
applications:

3.3.1 Layer 3
As stated in Section 1.2, Layer 3 should correspond to a
set of generic rules that can be applied on a large set of
applications belonging to the same category. This layer has
two roles:

• the enrichment of the meaning captured in transitions.
In this step, we have chosen to mark the transitions
with new internal variables. These shall help deduce
more abstract actions in the upper layers. For exam-
ple, the rules depicted in Figure 5 aims at recognising
the receipt of a login or logout page. The first rule

means that if the response content, which is received
after a request sent with the GET method, contains a
login form, then this transition is marked as a ”login
page”with the assignment on the variable isLoginPage,

• the generic aggregation of some successive transitions.
Here, some transitions (two or more) are analysed in
the conditional part of the rule. When the rule con-
dition is met then the successive transitions are re-
placed by one transition carrying a new action. The
rule of Figure 6 corresponds to a simple transition ag-
gregation. It aims at recognising the successive send-
ing of information with a POST request followed by
a redirection to another Web page. If a request sent
with the POST method has a response identified as
a redirection, (identified by the status code 301 or
302), and a GET request comes after, both transitions
are reduced into a single one carrying the new action
PostRedirection.

rule "Identify Login Page"
when

$t: Transition(Action == GET, Guard.
response.content contains(’login-form’))

then
modify ($t) { Assign.add("isLoginPage:=true") }

end

rule "Identify Logout Request"
when

$t: Transition(Action == GET, Guard.
uri matches("/logout"))

then
modify ($t1) { Assign.add("isLogout:=true") }

end

Figure 5: Login and Logout page recognition rules

rule "Identify Redirection after a Post"
when

$t1: Transition(Action == POST and
(Guard.response.status = 301 or Guard.response.
status = 302) and $l1final := Lfinal)

$t2: Transition(Action == GET, linit == $l1final,
$l2linit:=Linit)

not (Transition (Linit == $l2linit))
then

insert(new Transition("PostRedirection", Guard(
$t1.Guard, $t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Figure 6: Simple aggregation

Example 3.2 When we apply these rules on the IOSTS
example of Figure 4, we obtain a new IOSTS illustrated in
Figure 7. Its size is reduced since it has 6 transitions instead
of 9 previously. However, this new IOSTS does not reflect
clearly the initial scenario yet. Rules deducing more abstract
actions are required. These are found in the next layer.

Figure 7: IOSTS S2

3.3.2 Layer 4
This layer aims to infer a more abstract model composed of
more expressive actions and whose size should be reduced.
Its rules may have different forms:

• they can be applied on one transition only. In this case,
the rule replaces the transition action to add more
sense to the action. The rule of Figure 8 is an example
which recognises a user de-authentication and adds a
new action ”Deauthentication”. This rule means that
if a PostRedirection action is triggered against a ”Lo-
gout” endpoint (given by the variable isLogout added
by Layer 3), then this is a deauthentication,

• the rules can also aggregate several successive transi-
tions up to complete paths into one transition labelled
by a more abstract action. For instance, the rule il-
lustrated in Figure 9 recognises a user authentication
thanks to the variable ”isLoginPage” added by Layer
3. This rule means that if a ”Login” page is displayed,
followed by a redirection triggered by a POST request,
then this is an authentication step, and the two tran-
sitions are reduced into a single one composed of the
action ”Authentication”.

Other rules can also be application-specific, so that these
bring specific new knowledge to the model. For instance,
the GitHub Web application has a dedicated URL grammar
(a.k.a. routing system). GitHub users own a profile page
that is available at: https://github.com/{username} where
{username} is the nickname of the user. However, some

rule "Identify Deauthentication"
when

$t: Transition(action == PostRedirection,
Assign contains "isLogout:=true")

then
modify ($t) (setAction "Deauthentication"));

end

Figure 8: Deauthentication recognition rule

rule "Identify Authentication"
when

$t1: Transition(Action == GET,
Assign contains "isLoginPage:= true",

$t1final:=Lfinal)
$t2: Transition(Action == PostRedirection,

Linit == $t1lfinal, $t2linit:=Linit)
not (Transition (Linit == $t2linit))

then
insert(new Transition("Authentication",

Guard($t1.Guard,$t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Figure 9: Authentication recognition

items are reserved e.g., edu and explore. The rule given
in Figure 10 is based upon this structure and produces a
new action ”Showprofile” offering more sense. Similarly, a
GitHub page describing a project has a URL that always
matches the pattern: https://github.com/{username}/{proj
ect name}. The rule of Figure 11 captures this pattern and
derives a new action named ”ShowProject”.

rule "GitHub profile pages"
when

$t: Transition(action == GET, (
Guard.uri matches "/[a-zA-Z0-9]+$",
Guard.uri not in ["/edu", "/explore"]))

then
modify ($t) (SetAction("Showprofile"));

end

Figure 10: User profile recognition

Example 3.3 The application of the four previous rules
leads to the final IOSTS depicted in Figure 12. Now, it
can be used for application comprehension since most of
its actions have a precise meaning and clearly describe the
application behaviour.

3.4 Strategy layer
Rather than using a static traversal strategy as in [11, 2,
12, 1, 15], we propose the addition of an orthogonal layer
in the Models generator to describe any kind of exploration
strategy by means of rules.

The simplified Algorithm of the Strategy layer is given in Al-
gorithm 1. The latter applies the rules on any stored IOSTS
Si. It emerges a location list Loc that are marked with ”ex-
plored” by the rules to avoid re-using them twice (line 4).

rule "GitHub project pages"
when

$t: Transition(action == GET,
Guard.uri matches "/[a-zA-Z0-9]+/.+$" $uri:=Guard.uri)

then
String s=ParseProjectName($uri);
modify ($t) (SetAction("Showproject")
Assign.add("ProjectName:="+s));

end

Figure 11: Project choice recognition

Figure 12: IOSTS S3

Then, the algorithm goes back to the first generated IOSTS
S1 in order to extract one complete and executable path p
ended by a location l of Loc (line 7). This step is sound
since all the locations of Si belong to the locations set of S1

(Proposition 5). Such an IOSTS preamble is required by the
Robot explorer for trying to reach the location l by execut-
ing every action of p. The algorithm finally returns a list of
paths List, which is sent to the Robot explorer. The explo-
ration ends once all the locations of Si or of S1 are visited
(line 3). The algorithm only returns unexplored locations
even if, while the execution of the algorithm, the IOSTS Si
has been regenerated several times since the marked loca-
tions are also stored in the set L. Hence, if a location of Si
is chosen a second time by the rules, the algorithm checks if
it has been previously visited (line 7).

The rules of the Strategy layer can encode different strate-
gies. We propose two examples below:

• classical traversal strategies can still be established.
For example, Figure 13 depicts two rules expressing the
choice the next location to explore in a breadth-wise
order first. First, the initial location l0 is chosen and
marked as explored (rule BFS). Then, the transitions
having an initial location marked as explored and a

Algorithm 1: Exploration Strategy

input : IOSTS S1, Si
output: List of preambles

1 L := ∅ List of explored locations of S1;
2 BEGIN;
3 while L 6= LS1 and L 6= Si do
4 1) Apply the rules on Si and extract a Location List Loc;
5 Goback to S1;
6 foreach l ∈ Loc do
7 if l /∈ L then
8 Compute a preamble p from l0S1 which reaches l;
9 L := L ∪ {l};

10 List := List ∪ {p};

11 END;

final location not yet explored are collected by the rule
BFS2, except for the transitions carrying an HTTP
error (response status upper or equal to 400). These
locations are marked as explored in the IOSTS Si with
the method Setexplored in the ”then” part of the rule,

• a semantic-driven strategy could also be applied, when
the meaning of some actions is recognisable. For in-
stance, for e-commerce applications, the login step and
the term ”buy” are usually important. Thereby, a
strategy targeting firstly the locations of transitions
carrying theses actions can be defined by the rule ”semantic-
driven strategy” of Figure 14. It is manifest that the
semantic-driven strategy domain can be tremendously
vast since it depends on the number of recognised ac-
tions and on their relevance.

rule "BFS"
when
$l: Location (name == l0, explored == false)

then
modify ($l) (explored=true);

end

rule "BFS2"
when

$Loc : ArrayList<Location> () from accumulate(
$t : Transition (Guard.response.status >199 &&

Guard.response.status <400 && Linit.explored==
true && Lfinal.explore==false),

init(ArrayList<Transition> Loc=new ArrayList<
Transition>();),

action(Loc.add($t.Lfinal);),
result(Loc));

then
Loc.Setexplored();

end

Figure 13: BFS strategy

4. EXPERIMENTATION
The framework presented in Section 1.2 has been imple-
mented in a prototype tool called Autofunk (Automatic Func-
tional model inference). A user interacts with Autofunk
through a Web interface and either gives a URL or a file
containing traces. These have to be stored in the HTTP
Archive (HAR) format as it is the defacto standard to de-
scribe HTTP traces, used by various HTTP related tools.
Such traces can be obtain from many HTTP monitoring

rule "semantic-driven strategy"
when

$t: Transition (Assign contains
"isLogin:=true" || Guard.response matches "*buy*")

then
ArrayList Loc = new ArrayList();
Loc.add($t.Linit, $t.Lfinal);
Loc.Setexplored();

end

Figure 14: Semantic-driven strategy

tools (Mozilla Firefox or Google Chrome included). Then,
Autofunk produces IOSTS models which are stored in a
database. The last model is depicted in the Web interface.
The JBoss Drools Expert tool has been chosen to imple-
ment the rule-based system. Such an engine leverages Ori-
ented Object Programming in the rule statements and takes
knowledge bases given as Java objects (Location, Transition,
GET, POST objects in this work).

The GitHub Web site is an example of application giving
significant results. We recorded a trace set composed of
840 HTTP requests / responses. Then, we applied Auto-
funk on them with a Models generator composed of 5 layers
gathering 18 rules whose 3 are specialised to GitHub. Af-
ter having performed trace filtering (Layer 1), we obtained
a first IOSTS tree composed of 28 transitions. The next 4
layers automatically infer a last IOSTS tree S4 composed of
12 transitions whose 9 have a clear and intelligible meaning.

5. CONCLUSION
This paper presents an original approach combining model
inference, expert systems and automatic testing to derive
IOSTSs models. Our proposal yields several models, reflect-
ing different levels of abstractions of the same application
with the use of inference rules that capture the knowledge
of an expert. The first contribution lies in the flexibility and
scalability brought by the inference rules since they can be
applied on several applications or on one application only
when the rules are specific. The whole framework has not
to be re-implemented for each application. Our approach
can be applied on event-driven applications since our frame-
work supports their exploration. Furthermore, it can also be
applied on other application types on condition that these
produce traces.

We designed our framework for Web applications as a premise.
In the future, we intend to apply it on industrial systems to
ease their diagnostics. But this kind of system brings sev-
eral issues not yet addressed in the model inference area.
For instance, industrial systems may include asynchronous
actions and timed properties. At the moment, our solution
does not yet support this kind of properties. Furthermore,
writing rules may be as tough as writing models in some
cases. This is why we are working on a human interface
which helps design rules from a trace set example. We also
plan to add a test case generation module for regression
testing.

6. REFERENCES
[1] D. Amalfitano, A. R. Fasolino, P. Tramontana,

S. De Carmine, and A. M. Memon. Using gui ripping

Figure 15: IOSTS S4

for automated testing of android applications. In
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2012, pages 258–261, New York, NY, USA, 2012.
ACM.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, FSE ’12, pages 59:1–59:11, New York,
NY, USA, 2012. ACM.

[3] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75(2):87 – 106, 1987.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig,
A. Paradkar, and M. Ernst. Finding bugs in web
applications using dynamic test generation and
explicit-state model checking. Software Engineering,
IEEE Transactions on, 36(4):474–494, 2010.

[5] W. Choi, G. Necula, and K. Sen. Guided gui testing of
android apps with minimal restart and approximate
learning. In Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented
Programming Systems Languages & Applications,
OOPSLA ’13, pages 623–640, New York, NY, USA,
2013. ACM.

[6] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
Webmate: a tool for testing web 2.0 applications. In
Proceedings of the Workshop on JavaScript Tools,
JSTools ’12, pages 11–15, New York, NY, USA, 2012.
ACM.

[7] J.-C. Fernandez. An implementation of an efficient
algorithm for bisimulation equivalence. Science of
Computer Programming, 13:13–219, 1989.

[8] L. Frantzen, J. Tretmans, and T. Willemse. Test
Generation Based on Symbolic Specifications. In
J. Grabowski and B. Nielsen, editors, FATES 2004,
number 3395 in Lecture Notes in Computer Science,
pages 1–15. Springer, 2005.

[9] M. E. Joorabchi and A. Mesbah. Reverse engineering
ios mobile applications. In Proceedings of the 2012
19th Working Conference on Reverse Engineering,
WCRE ’12, pages 177–186, Washington, DC, USA,
2012. IEEE Computer Society.

[10] B. Lambeau, C. Damas, and P. Dupont.
State-merging dfa induction algorithms with
mandatory merge constraints. In A. Clark, F. Coste,
and L. Miclet, editors, Grammatical Inference:
Algorithms and Applications, volume 5278 of Lecture
Notes in Computer Science, pages 139–153. Springer
Berlin Heidelberg, 2008.

[11] A. Memon, I. Banerjee, and A. Nagarajan. Gui
ripping: Reverse engineering of graphical user
interfaces for testing. In Proceedings of the 10th
Working Conference on Reverse Engineering, WCRE
’03, pages 260–, Washington, DC, USA, 2003. IEEE
Computer Society.

[12] A. Mesbah, A. van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB), 6(1):3:1–3:30,
2012.

[13] M. Pradel and T. R. Gross. Automatic generation of
object usage specifications from large method traces.
In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE
’09, pages 371–382, Washington, DC, USA, 2009.
IEEE Computer Society.

[14] S. Salva and W. Durand. Model inference combining
expert systems and formal models. Technical report,
LIMOS, http://sebastien.salva.free.fr/RR-14-04.pdf,
2014. LIMOS Research report RR-14-04.

[15] W. Yang, M. R. Prasad, and T. Xie. A grey-box
approach for automated gui-model generation of
mobile applications. In Proceedings of the 16th
international conference on Fundamental Approaches
to Software Engineering, FASE’13, pages 250–265,
Berlin, Heidelberg, 2013. Springer-Verlag.

[16] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
specifications for resources from natural language api
documentation. Autom. Softw. Eng., 18(3-4):227–261,
2011.

