
HAL Id: hal-02019691
https://uca.hal.science/hal-02019691v1

Submitted on 14 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Inference and Automatic Testing of Mobile
Applications

Sébastien Salva, Patrice Laurencot

To cite this version:
Sébastien Salva, Patrice Laurencot. Model Inference and Automatic Testing of Mobile Applications.
International Journal On Advances in Software, 2015. �hal-02019691�

https://uca.hal.science/hal-02019691v1
https://hal.archives-ouvertes.fr

Model Inference and Automatic Testing of Mobile Applications∗

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

email: sebastien.salva@udamail.fr

Patrice Laurençot
LIMOS - UMR CNRS 6158

Blaise Pascal University, France
email: laurenco@isima.fr

Abstract—We consider, in this paper, the problem of au-
tomatically testing Mobile applications while inferring formal
models expressing their functional behaviours. We propose a
framework called MCrawlT, which performs automatic testing
through application interfaces and collects interface changes to
incrementally infer models expressing the navigational paths
and states of the applications under test. These models could
be later used for comprehension aid or to carry out some
tasks automatically, e.g., the test case generation. The main
contributions of this paper can be summarised as follows: we
introduce a flexible Mobile application model that allows the
definition of state abstraction with regard to the application
content. This definition also helps define state equivalence
classes that segment the state space domain. Our approach
supports different exploration strategies by applying the Ant
Colony Optimisation technique. This feature offers the ad-
vantage to change the exploration strategy by another one
as desired. The performances of MCrawlT in terms of code
coverage, execution time, and bug detection are evaluated on 30
Android applications and compared to other tools found in the
literature. The results show that MCrawlT achieves significantly
better code coverage in a given time budget.

Keywords-Model inference; Automatic testing; Android appli-
cations.

I. INTRODUCTION

One of the primary purposes of software testing is to
assess the quality of the features offered by an application
in terms of conformance, security, performance, etc., to dis-
cover and fix its defects. Traditionally, testing is performed
by means of test cases written by hands. But manual testing
is often tedious and error-prone. Model-based Testing is
another well-known approach, which automates the test case
generation from a formal model describing the functional
behaviours of the application. MbT makes possible the
generation of exhaustive test suites (composed of all combi-
nations of input values), but a complete model expressing all
the expected behaviours of an application is then required.
Unfortunately, writing complete models is often a long,
difficult, and tedious task. As a consequence, only partial
models are often proposed and available for testing. This
makes MbT less interesting and even impractical with many
real systems.

This work was co-financed by the Openium company
(http://www.openium.fr) and the European Regional Development
Fund.

For specific applications, model inference methods based
upon automatic testing can strongly help in the design of
models. In particular, GUI applications (a.k.a. event-driven
applications) belong to this category. Such applications
offer a Graphical User Interface (GUI) to interact with
and respond to a sequence of events played by the user.
Partial models can be inferred by exploring (a.k.a. crawling)
interfaces with automatic testing approaches. Furthermore, a
large part of the application defects can be detected during
the process. Afterwards, these generated models may be
manually extended, analysed with verification techniques or
employed for generating test cases.

This work falls under the automatic testing category and
tackles the testing and the generation of functional models
for Mobile applications. It provides additional details over
[1] on various aspects, e.g., the use of strategies to explore
applications. Several works already dealt with the crawling
of GUI application, e.g., Desktop applications [2], Web
applications [3], [4], [5] or Mobile ones [6], [7], [8], [9].
These approaches interact with applications in an attempt to
either detect bugs or record models or both. These previous
works already propose interesting features, such as the test
case generation from the inferred models. However, it also
emerges that many interesting issues still remain open.
Firstly, performing experiments with the GUIs of Web or
Mobile applications may lead to a large and potentially
unlimited number of states that cannot be all explored.
Additionally, the application traversing is usually guided
by one of these strategies: DFS (Depth First path Search)
or BFS (Breadth First path Search). These are relevant on
condition that all the application states would be explored.
But when the application state number is large or the
execution time is limited, using other strategies could help
target the most interesting application features as a first step.

This paper contributes in these issues by proposing a
framework called MCrawlT. Its goals are to experiment
Mobile applications to infer both storyboards and formal
models, and to detect bugs. It also aims to achieve good
code coverage quickly. The originality of our approach lies
in the following features:
• model definition and state abstraction: we use PLTSs

(Parametrised Labelled Transition Systems) as models
that we specialise to capture the functional behaviours

of Mobile applications. Most of the model inference
approaches use state abstractions to produce models.
But they often either face the problem of state space
explosion or produce too abstract models that do not
capture sufficient information to later perform analysis
and testing. Both issues often occur because of an inap-
propriate and unmodifiable state abstraction definition.
Here, we propose a flexible PLTS state representation
which allows the definition of state abstraction with
regard to the application content. This PLTS state
definition also helps define state equivalence classes,
which slice a potentially infinite state space domain
into finite equivalence classes. Our algorithm aims at
exploring every discovered state equivalence classes
once. As a consequence, our algorithm terminates;

• exploration strategies performed in parallel: we propose
a first algorithm which uses exploration strategies to
target specific parts of a Mobile application. The al-
gorithm is based upon the Ant Colony Optimisation
(ACO) technique and simulates several ants represented
by threads, which explore application states and lay
down pheromones. These pheromone trails, built in
parallel, allow the ants to target the most relevant states
w.r.t. a chosen strategy. A strategy can be replaced by
another one as desired;

• code coverage enhancement: GUI application testing
approaches traditionally start exercising an applica-
tion from its root interface. Nevertheless, we observed
that some application features cannot be automatically
tested and hence block the application exploration,
which may lead to low code coverage. This is why we
propose an extended algorithm which tries to cover an
application starting from each of its available interfaces
and which infers several PLTSs along the execution.
If a blocking feature is bypassed, the application is
deeper covered and therefore the code coverage is
improved. Furthermore, the algorithm avoids exploring
states previously encountered to not build several iden-
tical models.

In collaboration with the Openium company, which is
specialised in the design of Mobile applications, we have
implemented MCrawlT for Android applications. The tool is
publicly available at https://github.com/statops/MCrawlerT.
We applied MCrawlT to 30 real-world Android applications
and compared its effectiveness against other available auto-
matic testing tool in terms of code coverage, execution time
and bug detection.

The paper is structured as follows: Section II surveys
related work and introduces our motivations. For exposi-
tory purposes, we start by presenting an overview of our
approach in Section III that we apply on the Ebay Mobile
application, taken as example throughout the paper. We also
give the assumptions that guided the design of our approach.

Section IV gives definitions and notations about the PLTS
model. In particular, we specialise the PLTS formalism for
Mobile applications and give a state equivalence relation.
Our exploration algorithms are detailed in Section V. Section
VI presents experimental results. Conclusions are drawn in
Section VII along with directions for further research and
improvements.

II. RELATED WORK AND DISCUSSION

Several papers dealing with automatic testing and model
inference approaches were issued in the last decade. Here,
we present some of them relative to our work.

Several works were proposed for white-box systems.
For example, Contest [6] is a testing framework which
exercises smartphone applications with the generation of
input events. This approach relies upon a systematic test
generation technique, a.k.a. concolic testing, to explore
symbolic execution paths of the application. Artzi et al.
[4] proposed an automatic white-box testing approach for
finding faults in PHP Web applications. The application code
is covered using combined concrete and symbolic (concolic)
execution, and constraint solving to detect execution fail-
ures and malformed HTML code. These white-box based
approaches should theoretically offer a better code coverage
than the automatic testing of black-box systems. However,
the number of paths being explored concretely limits to
short paths only. Furthermore, the constraints have not to
be too complex for being solved. As a consequence, the
code coverage of these approaches is not high in practice.

On the other hand, many black-box based methods were
also proposed. Memon et al. [2] initially presented GUI
Ripper, a tool for scanning and testing desktop applications.
This tool produces event flow graphs and trees showing
the GUI execution behaviours. Only the click event can
be applied, and GUI Ripper produces many false event
sequences which may need to be weeded out later. Fur-
thermore, the actions provided in the generated models are
quite simple (no parameters). This approach was extended
to support Mobile applications in [10] with the tool Guitar.
This one is based upon GUI Ripper but also supports the
inference of Event flow graphs and test case generation.
Mesbah et al. [3] proposed the tool Crawljax specialised
in Ajax applications. It produces state machine models
which capture the changes of the DOM structures of HTML
documents by means of events (click, mouseover, etc.).
An interesting feature of Crawljax is the concatenation of
identical states in the model under construction. If two states,
which represent the DOM structures of HTML documents,
are similar, they are assembled together. This helps reduce
the number of states which may be as large as the DOM
modifications. In practice, to limit the state space and to
avoid the state explosion problem, state abstractions have to
be given manually to extract a model with a manageable
size. Webmate [5] is another automatic testing tool for Web

applications. It produces graphs showing the observed GUI
and events.

Since our approach targets Mobile applications, we ex-
plore more cautiously this field in the following. Monkey
[11] is a random testing tool proposed by Google. It is
considered as a reference in many papers dealing with
Android application automatic testing. However, it cannot
simulate complex workloads such as authentication, hence,
it offers light code coverage in such situations. The tool
Dynodroid [9] exercises Android applications with UI events
like Monkey but also with system events to improve code
coverage. A similar technique is applied on Android applica-
tions in [12]. But, the approach additionally performs static
analyses on Android application source codes to later guide
the application exploration. No model is provided with these
approaches. Amalfitano et al. [7], [13] proposed AndroidRip-
per, a crawler for crash testing and for regression test case
generation. A simple model, called GUI tree, depicts the
observed screens. Then, paths of the tree not terminated
by a crash detection, are used to re-generate regression test
cases. Joorabch et al. [14] proposed another crawler, similar
to AndroidRipper, dedicated to iOS applications. Yang et
al. proposed the tool Orbit [8] whose novelty lies in the
static analysis of Android application source code to infer
the events that can be applied on screens. Then, a classical
crawling technique is employed to derive a graph labelled
by events. This grey-box testing approach should cover an
application quicker than our proposal since the events to
trigger are listed by the static analysis. But Orbit can be
applied only when source code is available. This is not the
case for many Android applications though. The algorithm
implemented in SwiftHand [15] is based on the learning
algorithm L∗ [16] to generate approximate models. The
algorithm is composed of a testing engine which executes
applications to check if event sequences meet the model
under generation until a counterexample is found. An active
learning algorithm repeatedly asks the testing engine ob-
servation sequences to infer and potentially regenerate the
model w.r.t. all the event and observation sequences.

We deduced from these papers the main following key
observations:

1) to prevent from a state space explosion, the approaches
that infer models, e.g., [2], [8], [17], usually represent
application states in a fixed manner and with a high
level of abstraction. This choice is particularly suitable
for comprehension aid, but these models often lack
information for test case generation. In contrast, other
approaches try to limit the model size on the fly. The
algorithms introduced in [3], [13] concatenate iden-
tical states of the model under construction, but the
resulting model does not capture the same behaviours
as those expressed in the original model. Such an
extrapolated model may lead to false positives if used
for test case generation. We propose here another

solution based upon the PLTS formalism and the def-
inition of state equivalence classes. We specialise the
PLTS for Mobile applications to ease the definition of
state abstraction. Users can modify the latter to build
models as desired. We define state equivalence classes
to segment the potentially infinite state space domain
of an application in a finite manner. As a consequence,
we show that our algorithm terminates. Finally, we use
a bisimulation minimisation technique [18] to reduce
the PLTS size. This technique offers the advantage to
preserve behavioural equivalence between models;

2) many inference model methods consist in analysing
and completing interfaces with random test data and
triggering events to discover new interfaces that are
recursively explored in an in-depth manner. As a con-
sequence, the application exploration is usually guided
with a DFS strategy. When an application returns
a high number of new interfaces, the graph to be
explored may become too large to visit in a reasonable
time delay. The search is only performed to a limited
depth, and the explored section of the application is
not necessarily the most interesting one. We believe
that a strategy choice is relevant when the execution
time is limited, for instance or when an insight of the
application functioning (code structure) is known or
both. Indeed, strategies allow to quicker target some
application features. Our algorithm is based upon the
ACO technique in order to accept a large strategy
set. For instance, our algorithm supports semantics-
based strategies, i.e., strategies guided by the content
found in applications screens. Furthermore, the ACO
technique is known as a good heuristic to cover paths
through graphs in parallel;

3) crash reporting is another feature supported by some
of these methods. Stress testing is performed in [11],
[19], [9] for trying to reveal more bugs, for instance
by using random sequences of events. Besides, the
tool AndroidRipper [7] generates test cases for each
observed crash. Our approach also performs stress
testing: like Monkey [11], random sequences of events
are applied on screens. We also use well-known values
for revealing bugs for testing. Our tool reports the
observed bugs and generates one test case for each as
well. These ease the analysis of the detected errors and
help deduce whether some errors are false positives.
As crash reporting and detection are not original fea-
tures, we do not detail this part in the paper. We only
discuss about crash detection in the section dealing
with the evaluation of our framework (Section VI).

We presented in [1] a rudimentary introduction of this
work describing an initial algorithm based upon the ACO
technique. In this paper, we define another model, state
equivalence classes, and we revisit the exploration algorithm

to better match the concept of the ACO technique. Then,
we propose a second Exploration algorithm to enhance
code coverage and we show that our algorithms terminate.
Finally, our evaluation focuses on much more applications
and criteria.

III. OVERVIEW

In this section, we introduce the terminology used
throughout the paper and a motivating example on which
we apply our framework MCrawlT. The formal details and
MCrawlT algorithms are introduced in Section V.

A. Terminology and assumptions

Generally speaking, we say that users expect screens to
interact with Mobile applications. We consider that a screen
represents one application state, the number of states being
potentially infinite. A screen is built by a GUI application
component, e.g., a class. We call them Activities (in ref-
erence to Android applications). These components display
screens by instantiating Widgets (buttons, text fields, etc.)
which are often organised into a tree structure. They also
declare the available (UI) events that may be triggered by
users (click, swipe, etc.). A Widget is characterised by a set
of properties (colour, text values, etc.). Hence, one Activity
can depicts several screens, composed of different Widgets
or composed of the same Widgets but having different
properties.

Figure 1 depicts some screen examples of the Ebay Mobile
application, which is available on the Google Play store
(https://play.google.com/store). This complex application in-
cludes 135 Activities and we only depict five of them in
Figure 1. The initial screen is loaded by the Activity eBay
(i0). A user may choose to search for an item by clicking
on the editable text field Widget. In this case, the Activity
RefineSearch is reached (i1). For instance, if the user enters
the keyword ”shoes”, the search result list is displayed in
the screen i2; the Activity RefineSearch is unchanged but
its content (Widgets) is. Then, three new Activities may
be reached: 1) an Activity called SegmentSearchResult (i3)
displays a result when one element of the proposed list in i2
is chosen, 2) a Scanner Activity is started when the text field
”Scan” is clicked (i4) and 3) a log-in process is performed
when the ”saved searches” item is selected (Activity SignIn,
i5). Now if we replace the value ”shoes” by any other String
value, one can easily deduce that this application can yield
a huge state number.

B. Assumptions

The purpose of our algorithm is to generate input events
in order to feed a Mobile application with respect to an
exploration strategy to achieve formal models and good code
coverage quickly. To design this approach, we had to assert
the following hypotheses:

(i0) (i1) (i2)

(i3) (i4) (i5)

Figure 1: Ebay Mobile Screen examples

Mobile application testing: we consider black box ap-
plications which can be exercised through screens. It is
possible to dynamically inspect the states of the running
application (to collect Widget properties). This assumption
holds with many recent GUI applications (Web applications,
Mobile applications, etc.). The set of user events enabled on
a screen should be collected as well. If not, Widgets provide
enough information (type, etc.) to determine the set of events
that may be triggered. Otherwise, our algorithm considers
them all for testing an application. Furthermore, any new
screen can be observed and inspected (including application
crashes),

Application reset: we assume that Mobile applications
and their environments (database, Operating System) can be
reset,

Back mechanism availability: several operating systems
or applications (Web navigators, etc.) also propose a spe-
cialised mechanism, called the back mechanism to let users
going back to the previous state of an application by undoing
the last event. We do not consider that this mechanism is
necessarily available and, if available, we assume that it
does not always allow to go back to the previous state of
an application (modified implementation, unreachable state,
etc.). Most of the other methods assume that the back
mechanism always works as expected, but this is frequently
not the case.

Figure 2: Algorithm overview

C. Exploration algorithm overview

Figure 3: Parallel exploration functioning

An overview of our algorithm is depicted in Figure 2. It is
framed upon the Ant Colony Optimisation (ACO) technique
to support the definition and the use of exploration strategies,
which can be applied with concurrent threads. With the ACO
technique, the optimal path search in a graph is performed by
simulating the behaviour of ants seeking a path between their
colony and a source of food: firstly, ants explore randomly
and lay down little by little pheromone trails that are finally
followed by other ants.

Ants are here modelled with threads that explore applica-

tion states having the highest pheromone amount, earlier put
down by other ants. This part is implemented, as described
in Figures 2(a) and 3 by using the task-pool paradigm associ-
ated with tasks of the form Explore(q, p) with q the state to
visit and p the path allowing to reach q from the initial state
q0 of the application. Intuitively, this path corresponds to a
trail previously constructed by ants. Initially, the first screen
of the application under test is modelled with an initial PLTS
state q0. The exploration of a screen, modelled with a PLTS
state q, is conveyed with a task Explore(q, p), which is
placed into the task-pool, implemented as an ordered list
in descending order. A thread picks out a task having the
highest pheromone amount, reaches the state q and starts
the exploration. Once the task-pool is empty, the application
exploration is over and a PLTS P is achieved. This one is
minimised to reduce the PLTS state set.

The execution of a task Explore(q, p) is achieved by
the Explore procedure, illustrated in Figure 2(b)). The latter
consists in generating a set of test events (parameter values
combined with an event set) w.r.t. the current application
state. Each test event is applied on the application to reach
a new screen. This one is interpreted and modelled as a new
state q2. However, this step may lead to infinite state space
domains and endless explorations. To avoid this issue, the
algorithm slices state space domains into finite equivalence
class sets by means of a relation defined upon the state
content (see Section IV). We have chosen to explore one
state per equivalence class to keep a reasonable model size
but this could be modified. The algorithm completes the
model with a transition q

q−→ 2 and finally tries to backtrack
the application to go back to its previous state by undoing the
previous action. If the back mechanism cannot be triggered,
the application is restarted from its initial state q0. Once the
state q is explored, the thread can explore a next state iff
it includes a pheromone amount higher than the one found
in q. Likewise, if the back mechanism cannot be applied,
the Explore procedure execution terminates here. The thread
continues its execution in Algorithm 1 by taking another task
in the task-pool.

Figure 4 illustrates how our algorithm works on the Ebay
Mobile application. We have chosen the DFS exploration
strategy whose implementation is detailed in Section V-B.
With this strategy, the deeper a state is in the model from the
initial state, the higher the pheromone amount is. In order to
show a comprehensive but yet concise illustration, we use
only two text field values ”shoes” and ”All shoes” to fill
the editable text fields found in screens. Furthermore, we
consider that the back mechanism is available and that the
state equivalence relation is: two states are similar if they
have the same Widget properties except those related to the
text field values. These last Widget properties are usually
not considered for conceiving state abstractions since these
often lead to a large and potentially infinite set of states.

1) initially, the first screen of the application (Fig-

Figure 4: Model inference progress on the Ebay application

ure 1(i0)) is inspected to derive a first task
Explore(q0, p0 = ∅). q0 is derived from the Widget
properties extracted from the screen. It also includes a
pheromone amount equal to 0. [q0] is the initial state
equivalence class. Then, the task Explore(q0, p0 = ∅)
is chosen by the algorithm. The outcome of this task
is depicted in Figure 4(a). A list of test events that
can be applied on the current screen is constructed:
intuitively, these events aims at clicking on the 2 but-
tons, the 2 images, or the text field home search text
found in the current screen. Some events are detailed
in Figure 5. When the test event a0 (click on the
Widget id/home) is executed, a new screen is observed.
The Widget properties are extracted to construct the
state q0 1. This state is marked as final (in grey in
the figure) since it has the same Widget properties as
q0, except for the text field values. In other words,
q0 1 belongs to the state equivalence class [q0]. The
transition q0 a0−→ q0 1 is added to the model. Then, we
call the back mechanism to go back to q0. This event
is illustrated with dashed transitions in Figure 4(a).
For the other test events, every time a new screen is
found, a new state and a new transition are added to

the model. These states include a pheromone amount
increased by one unit to meet the DFS strategy. For
each state, a new equivalence class is created, and a
new task is also put into the task-pool;

2) the algorithm now takes the next task having a state
with the highest pheromone amount. In this case,
the task Explore(q1, q0

clickhome search text−−−−−−−−−−−−−−−→ q1)
is picked out. q1 represents the ”RefineSearchAct”
Activity (Figure 1(i1)). This task gives the PLTS
of Figure 4(b) but to keep this figure readable, we
intentionally do not add the transitions which express
the calls of the back mechanism. As before, a list
of test events is generated. q1 is experimented with
these and new states, e.g., q6, q7, q8, are observed. For
instance, q6 is obtained by clicking on the Widget up
and by filling the editable Widget search text with the
value ”shoes”. q7 is reached in the same way but by
using the value ”All shoes”. The two states q6 and
q7 are obtained from the Activity ”RefineSearch” but
they differ from each other on the Widget listview
which is a container. In q6, listview has more items
than in q7, and consequently, they are not similar
and do not belong to the same equivalence class.

The events a8 1 or a8 2 (clik:widget=id/text2) lead
to the Scanner Activity (Figure 1 (i4)). The event
a8 1 is firstly executed. We observe a new state q8,
which has to be explored. The event a8 2 leads to the
same screen from which a state q8 1 is derived. q8 1
exactly includes the same Widget properties as q8 but
it belongs to the equivalence class [q8] and is then
marked as final. The new states discovered during this
step include a pheromone amount increased by one
unit;

3) the task Explore(q6, q0
clickhome search text−−−−−−−−−−−−−−−→

q1
clickup,search text=”shoes”−−−−−−−−−−−−−−−−−−−→ q6) is now chosen in

the task-pool. This state expresses the Activity of
Figure 1(i3). As in the previous steps, test events are
generated to experiment the current screen. For sake
of readability, we chose to only consider the event
a 10 with the container ”listview”, which stands for
”the click on the first item of listview”. When the
event a 10 is triggered, a new state q9 is found and
another equivalence class is created. In contrast, for
the other events, all the arrival states belong to an
existing equivalent class and are marked as final. We
obtain the model illustrated in Figure 4(c);

4) even though the algorithm should continue with the
task composed of the state q9, we assume here that the
task-pool is empty to keep the example concise. The
model of Figure 4(c) is finally minimised. All the final
states are merged to one unique state B1 as illustrated
in Figure 4(d). States q6 and q7 are aggregated into
B2 since the same behaviours can be observed from
both states. The minimisation process is detailed in
Section V.

In this example, we have shown that the algorithm discov-
ers trails into the applications by laying down pheromone
amounts. The generated models contain the events and
screens observed while testing. As described previously,
this algorithm works with one thread. But, the task-pool
paradigm is particularly suitable to run a group of threads
exploring states in parallel.

In the following, we describe the functionalities, the
model and equivalence relation definitions, succinctly sug-
gested previously. Algorithm 1, given in Section V, imple-
ments with details this overview.

IV. MOBILE APPLICATION MODELLING

In this section, we introduce a few definitions and nota-
tions to be used throughout the paper.

We use PLTS (Parameterised Labelled Transition System)
as models that we specialise to represent Mobile application
behaviours. The PLTS is a kind of automata model extended
with variable sets. The use of variables helps describe valued
actions composed of parameter values and to encode the
states of a system.

Before giving the model definition, we give some nota-
tions on variables. We assume that there exist a domain of
values denoted D and a variable set X taking values in D.
The assignment of variables in Y ⊆ X to elements of D is
denoted with a mapping α : Y → D. We denote DY the
assignment set over Y . Given two assignments α1 ∈ DY

and α2 ∈ DZ with Y ∩ Z = ∅, their union is defined as
α1∪α2(x) = α1(x) iff x ∈ Y, α2(x) iff x ∈ Z. An example
of assignment is α = {x := ”blue”, y := 1} ∈ Dx,y .

Definition 1 (PLTS) A PLTS (Parameterised Labelled
Transition System) is a tuple < V, I,Q, q0,Σ,→> where:
• V ⊆ X is the finite set of variables, I ⊆ X is the finite

set of parameters used with actions,
• Q is the finite set of states, such that a state q ∈ Q is

an assignment over DV ,
• q0 is the initial state,
• Σ is the finite set of valued actions a(α) with α ⊆ DI ,
• →⊆ Q×Σ×Q is the transition relation. A transition

(q, a(α), q′) is also denoted q
a(α)−−−→ q′.

Below, we adapt this generalised PLTS definition to ex-
press Mobile application properties, i.e., screens and events.

UI event representation: We interact with Mobile appli-
cations by means of events, e.g., a click, applied on Widgets.
Furthermore, editable Widgets are possibly completed before
triggering events. We capture these events with PLTS actions
of the form event(α) with α = {widget := w,w1 :=
val1, ..., wn := valn} an assignment over DI ; the parameter
widget denotes the Widget name on which the event is
applied, and the remaining variables are assignments on
Widget properties. We also denote the triggering of the
back mechanism with the action back(α) with α an empty
assignment.

Mobile application state representation: We concluded
from the literature that some Widget properties are con-
sidered as more important than others to encode Mobile
application states. These properties usually indicate a strong
application behaviour modification and take only a few
values to prevent from a state space explosion. We denote
WP the set of these Widget properties. It often gathers
properties related to the Widget visibility, size, position,
colour, etc. The properties that usually take a lot of different
values, e.g., the properties about text field values, are not
chosen to identify Mobile application states. Consequently,
in the remainder of the paper, we consider that WP is
composed of all Widget properties except those related to
text field values.

We specialise PLTS states to store the content of screens
(Widget properties) in such a way as to later facilitate the
construction of state equivalence classes. We define a PLTS
state q as a specific assignment of the form act ∪ wp ∪
wo ∪ end ∪ ph where:
• act is an assignment returning an Activity name,

• (wp,wo) are two sets of Widget property assignments.
The union of wp and wo gives all the Widget property
values found in an application screen displayed by act.
We keep in wp the Widget properties of WP that
indicate a strong application behaviour modification
and that take only a few values. The other property
assignments are placed into wo,

• end is a boolean assignment marking a state as final,
• ph is an assignment related to the exploration strategy,

which stores a pheromone amount.
For readability, a state q = act ∪ wp ∪ wo ∪ end ∪ ph

is denoted (act, wp,wo, end, ph).
This state structure greatly eases the definition of the

state equivalence relation given below. This one shall be
particularly useful to determine if a state belongs to an
existing equivalent class and requires to be explored or not.

Definition 2 (State equivalence relation) Let P =< V, I,
Q, q0,Σ,→> be a PLTS and for i = 1, 2 let qi =
(acti, wpi, woi, endi, phi), be a state in Q. We say that q1
is equivalent to q2, denoted q1 ∼ q2 iff act1 = act2 and
wp1 = wp2. [q] denotes the equivalence class of equivalent
states of q. Q/∼ is the set of equivalence classes in Q.

This definition, combined with our algorithm, gives a very
adaptable state equivalence relation which can be modified
according to the WP set. As stated previously, we consider
that WP is initially composed of all Widget properties
except those related to text field values. But if, for an
application, a Widget property takes a large number of values
in WP , this one can be removed from WP to obtain a
constricted set of equivalence classes and to achieve a finite
exploration.

Let us consider an application including advertising strips
that are continuously updated. We assume that the Wid-
get property related to the advertising display is denoted
w.content. This property takes a potentially infinite number
of values and may lead to the state space explosion problem
while generating the PLTS. Indeed, for an Activity act
which holds w.content, the exploration algorithm shall
reach several states qi = (act, wpi, woi, endi, phi)(i>1) that
are almost similar except that they contain in wpi different
assignments w.content := vali related to the different
advertisings. Each state qi involves a new equivalence class
[qi](i>1). The application exploration will likely not termi-
nate. The removal of the property w.content in WP fixes
this problem. In this case, the algorithm now constructs
different states qi = (act, wp,woi, endi, phi)(i>1) such that
the different assignments w.content := vali are now placed
into woi. But, the algorithm builds one equivalence class [q]
since the assignment wp is unchanged. Therefore, when the
algorithm reaches a state q2 = (act, wp,wo2, end2, ph2), q2
belongs to [q] and is thus marked as final. Only one state of
[q] is explored, hence, the exploration is finite.

Label Action
a0 click(widget:=id/home)
a1 click(widget:=id/home search text)
a2 click(widget:=id/button sign in)
a3 click(widget:=id/button register)
a4 click(widget:=id/rtmImageView)
a5 click(widget:=id/home settings)
a6 1 click(widget:=id/up, search src text:=”All shoes”)
a6 2 click(widget:=id/up, search src text:=”shoes”)
a7 1 click(widget:=id/search button, search src text:=”All shoes”)
a7 2 click(widget:=id/search button, search src text:=”shoes”)
a8 1 click(widget:=id/text1, search src text:=”All shoes”)
a8 2 click(widget:=id/text1, search src text:=”shoes”
a9 1 click(widget=id/text2, search src text:=”All shoes”)
a9 2 click(widget:=id/text2, search src text=”shoes”)
a10 1 click(widget:=”listview at position 1”, search src text:=”shoes”)

Figure 5: Actions and Guards of the PLTS

This example also shows that if WP is only composed of
discrete variables taking a finite number of values, then the
number of state equivalence classes in a PLTS is bounded.
This is captured by the following Proposition, which shall
be particularly useful to prove the termination of our algo-
rithms.

Proposition 3 Let P =< V, I,Q, q0,Σ,→> be a PLTS
modelling a Mobile application App. Let n be the number of
Widget properties of WP . If m is the maximum number of
values that any Widget property can take during the testing
of App, then card(Q/ ∼) ≤ mn.

Sketch of proof: all the screens of App are expressed with
states of the form q = (act, wp,wo, end, ph). At most, we
have mn different assignments wp. Two states q1, q2 are
equivalent iff act1 = act2 and wp1 = wp2 (Definition 2).
But if there is no equivalent state, we have at most mn

equivalence classes including one state.
The choice of the Widget properties to keep in WP is

left to users. Intuitively, the more a Widget property of WP
takes values, the larger the generated models is. We observed
that ignoring the Widget properties related to text field values
is mostly sufficient. But sometimes, the first exploration of
an application makes emerge some properties that need to
be removed to achieve a finite model in a reasonable time
delay.

Figures 4(c), 5, and 6 illustrate a PLTS example derived
from the Ebay Mobile application, after covering only 5%
of its Activities. We detail some PLTS states in a reduced
form in Figure 6: we give the Activity name, the numbers
of Widget properties (wp and wo), and the assignments
end and ph. The PLTS actions are given in Figure 5. For
instance, the state q0 represents the initial Activity eBay of
the application, which includes 2 buttons, 6 images, and 7
text fields . q1 is reached from q0 by executing the action
a1, i.e., by clicking on the home search text Widget.

State Activity #wp #wt end ph
q0 eBay 2b,2im 6t,1e false 0
q1 RefineSearchAct 2b,4im 3t,1e false 1
q2 SignAct 2b,4im 2t,1e false 1
q6 RefineSearchAct 2b,3im,40l e 3t,1e false 2
q6 1 RefineSearchAct 2b,3im,40l e 3t,1e true 2
q7 RefineSearchAct 2b,3im,105l e 3t,1e false 2
q7 1 RefineSearchAct 2b,3im,105l e 3t,1e true 2
b: button e: editable text field t: text field im: image
l e: # elements in the listview Widget

Figure 6: Summary of some states of the PLTS

V. AUTOMATIC TESTING AND MODEL INFERENCE WITH
ACO

In this section, we formally describe the algorithms
implemented in MCrawlT. We firstly detail the algorithm
considered in the overview. Then, we propose an extended
version, which aims at improving code coverage. We also
provide (time) complexity results.

A. Model inference Algorithm 1

Our solution is framed upon the PLTS formalism to infer
formal models. The combination of the PLTS state definition
with the state equivalence relation segments the potentially
infinite state space domain into a finite set of equivalence
classes and every class is visited once. Our algorithm is
also based upon the ACO technique to perform explorations
in parallel and to support different application strategies.
Algorithm 1 implements the initial part of this solution. The
ACO technique is implemented with the task-pool paradigm
where the tasks of the pool are executed in parallel on
condition that the tasks are independent. This is the case here
since several application instances can be experimented into
independent test environments (smartphones or emulators).
All the threads share the same PLTS P and the same task-
pool implemented as an ordered list in descending order. For
sake of readability, we assume that these shared resources
are protected against concurrent accesses.

Algorithm 1 takes a Mobile application App as input and
launches it to analyse its first screen and to initialise the first
state q0 = (act, wp,wo, end := false, ph0) of the PLTS P.
q0 is obviously not marked as final and includes a pheromone
amount related to the chosen strategy. This initial step is
carried out by one thread only. Afterwards, the interface
exploration begins: each available thread executes the loop
of Algorithm 1 (line 7): it picks out a task Explore(q, p),
which corresponds to the exploration of the state q, such that
q holds the highest pheromone amount. Before exploring q,
an instance of the application is launched in a re-initialised
test environment and q is reached from q0 by covering and
executing the actions of the PLTS path p. Once there is no
more task to perform, a second PLTS MP is computed with
a minimisation technique. This PLTS minimisation aims to
yield more compact and readable models for comprehension
aid.

Algorithm 1: Mobile application exploration V1
input : Application App
output: PLTS P, MP

// Initialisation performed by one thread only
1 Start the application App;
2 Analyse the current screen→ Activity act, the Widget property

lists wp, wt;
3 Initialise ph0 (depends on the chosen strategy);
4 Initialise PLTS P with q0 = (act, wp,wo, end := false, ph0);
5 Q/ ∼= {[q0]};
6 Add (Explore(q0, p = ∅)) to the task-pool;
// code executed in parallel, P, task-pool,

Q/∼ are shared
7 while the task pool is not empty do
8 Take a task (Explore(q, p)) such that

q = (act, wp,wt, end, ph) includes the highest pheromone
amount ph;

9 Reset and Execute app by covering the sequence of actions
of p;

10 Call Explore(q,p);

// code executed by one thread
11 MP:= Minimise(P);

One task, pulled from the task-pool, is now executed by
calling the Explore procedure, which somehow simulates
an ant exploring a state and laying down pheromones.
Initially, we added a stopping condition limiting the ex-
ecution time. This condition was used in the experiments
presented in Section VI. The GenEvents procedure is called
and generates test events used to feed the application. It
starts by analysing the current screen, extracts the editable
Widgets, and produces a set of assignments expressing how
completing these editable Widgets with values. Similarly,
the events that can be triggered on the Widgets are dy-
namically detected. We obtain a set Events composed of
event(α) with α an assignment of the form {widget :=
w,w1 := val1, ..., wn := valn}. Then, the exploration of
the current state q begins (line 6). The editable Widgets are
completed, and an event is triggered with respect to the test
event event(α). It results in a new screen Inew (line 7),
which is analysed to extract the assignments constituting
the state q2. The pheromone amount, which is laid down
in q2, is computed with the Ph Deposit procedure. This
one implements the exploration strategies. The algorithm
now checks whether this new screen and its corresponding
state q2 have to be explored. Naturally, if Inew reflects the
termination of the application (exception, crash), q2 must not
be explored. As stated previously, we have chosen to explore
one state for each equivalence class. Hence, if q2 belongs to
a previously discovered equivalence class [q′] in Q/∼ then
q2 is marked as final with the assignment end := true and
is not explored. Otherwise, q2 has to be explored and a new
task Explore(q2, p.t) is added to the task-pool (lines 14-
16). In both cases, a new transition carrying event(α) and
leading to q2 is added to the PLTS P. To apply the next input
event event(α), the application has to go back to its previous

state by undoing the previous interaction. This is done with
the Backtrack procedure (line 17) whose role is to undo
the most recent action. When the direct interface restoration
is not possible, the Backtrack procedure returns false and
Explore has to reset the application and to incrementally
replay the actions of the path p before experimenting the
state q.

Once the exploration of the state q is finished, the Explore
procedure now simulates an ant which pursues its trail. The
application exploration is indeed extended at the state q2, on
condition that q2 is directly reachable and that q2 contains
an assignment of the ph variable higher than the one found
in q (line 19). If there is no such state q2 or if the back
mechanism cannot be applied, then the Explore procedure
terminates. The current thread goes back to the task-pool,
and picks out a task previously built by any other thread (in
Algorithm 1).

Remark 4 MCrawlT supports both deterministic and non-
deterministic applications. For sake of readability, we have
concealed this feature in the previous algorithms in the line
”Reset and Execute App by covering the action sequence of
p”. Given a task Explore(q, p), when the path p is replayed
to reach the state q, MCrawlT continuously checks if the
arrival state is the one expected in the path p or a new state
q′(indeterministic case). If this is a new state, MCrawlT adds
a new transition leading to q′ and carries on the execution
of p.

The above algorithms rely upon some procedures that are
summarised below:

1) PLTS minimisation: We have chosen a bisimulation
minimisation technique [18] to make minimised PLTSs.
Given a PLTS P, this technique offers the strong advantage
to generate a minimised model MP, which is behavioural
equivalent to P. In short, this algorithm constructs the state
sets (blocks) that are bisimilar equivalent (every state can fire
the same actions and the arrival states have to be bisimilar
again). A detailed algorithm can be found in [18]. The time
complexity of this minimisation technique is also reasonable
(proportional to O(mlog(n)) with m the transition number
and n the state number).

Figures 4(d) and 7 depict the minimised PLTS obtained
with the Ebay Mobile application. Some locations are now
grouped into blocks. All the final states are bisimilar and
grouped into the block B1. Furthermore, the states q6 and
q7 are grouped into the Block B2 because the same action
sequences leading to bisimilar states can be executed from
both q6 and q7.

2) Test event generation : The Explore procedure calls
GenEvents, which constructs test events expressing how to
interact with screens. Since this part is already presented in
[1], we only briefly introduce it here.

Our algorithm generates a set of test events of the
form {event(α) | event is an event, α is an assignment}.

Procedure Explore
1 Procedure Explore(q, p);
2 if [processing time > T] then
3 stop;
4 Events = GenEvents, analyse the current screen to generate

the set of test events
5 {event(α) | event is a UI event, α is an assignment};
6 foreach event(α) ∈ Events do
7 Experiment event(α) on App→ new screen Inew;
8 Analyse Inew→ assignments act2, wp2, wo2;
9 ph2= Ph Deposit(q, act2, wp2, wo2);

10 q2 = (act2, wp2, wo2, end := null, ph2);
11 if Inew reflects a crash or there exists [q′] ∈ Q/ ∼ such that

q2 ∈ [q′] then

12 Add a transition q
event(α)−−−−−−→ q2 =

(act2, wp2, wo2, end := true, ph := 0) to→P;

13 else

14 Add a transition t = q
event(α)−−−−−−→ q2 =

(act2, wp2, wo2, end := false, ph2) to→P;
15 Q/ ∼= Q/ ∼ ∪{[q2]};
16 Add the task (Explore(q2, p.t)) to the task-pool;

17 if Backtrack(q, p)==false then
18 Reset and Execute App by covering the sequence of

actions p;

19 foreach q
event(α)−−−−−−→ q2 such that ph2 > ph and Explore(q2, p2)

in the task-pool) do
20 Experiment event(α) on App;
21 Take and Execute Explore(q2, p2);
22 if Backtrack(q, q2)==false then
23 End;

Block States
B2 q6, q7
B1 q0 1, q2 1, q2 2, q6 1, q6 2, q7 1, q7 2, q8 1

Figure 7: Blocks of states of the minimised PLTS

It starts collecting the events that may be applied on the
different Widgets of the current screen. Then, it constructs
assignments of the form {w1.value := v1, ..., wn.value :=
vn}, with (w1, ..., wn) the list of editable Widgets found on
the screen and (v1, ..., vn) a list of test values.

Instead of using random values, we propose to use
several data sets, which can be completed before starting
the exploration algorithm (the algorithm does not ask for
values) The first one, denoted User, is completed with
values provided by users. If required, this set should hold
the logins and passwords needed to access to the application
features relative to user accounts. This implies that the user
knows some features of the application. To reduce the test
event set, if a user value is devoted to some specific Widgets,
this value can be accompanied with Widget names.

The set RV is composed of values well known for
detecting bugs, e.g., String values like ”&”, ””, or null, com-
pleted with random values. A last set, denoted Fakedata, is
composed of fake user identities. An identity gathers a list of

Procedure Backtrack
1 Procedure Backtrack(q = (act, wp,wo, end, ph), q2);

2 if the back mechanism is available then
3 Call the back mechanism→ screen INew;
4 Analyse Inew→ assignments act′, wp′, wo′;
5 if act 6= act′ or wp 6= wp′ or wo 6= wo′ then
6 return false;

7 else

8 Add a transition t = q2
back(α)−−−−−→ q to→P ;

9 return true;

10 else
11 return false;

parameters (p1, ..., pm), such as (name, age, email, address,
gender), which are correlated together to form realistic
identities. Both User and RV sets are segmented per type
(String, Integer, etc.). During the analysis of the current
screen, we collect the types and names of the Widget proper-
ties. Then, we search for the largest subset of properties that
form an identity with respect to the parameters of Fakedata
(e.g., name, age, email, address, gender). We obtain a list
of Widget properties (w1, ..., wn) that we bind with a set
of value lists extracted from Fakedata. For instance, if
two Widgets called name and email are found, the fake
identities of Fakedata are parsed to remove the undesired
parameters and to return a set of identities composed only
of a name and an email. Each remaining Widget property is
associated to the set User∪RV . For instance, if an editable
Widget takes String values, we bind this Widget with the set
String(User∪RV). Now, given a list of Widget properties
(w1, ..., wn), we have a corresponding list of value sets
(V1, ..., Vn). It remains to generate a set of assignments
of the form α = {w1.value := v1, ..., wn.value := vn}.
Instead of computing the Cartesian product of (V1, ..., Vn),
we adopted a Pairwise technique [20] to build these as-
signments. Assuming that errors can be revealed by mod-
ifying pairs of variables, this technique strongly reduces
the coverage of variable domains by constructing discrete
combinations for pairs of parameters only.

Finally, every UI event event is associated to an assign-
ment α = {w1.value := v1, ..., wn.value := vn}, which
is added to the set Events and returned to the Explore
procedure.

3) Call of the back mechanism: Based upon preliminary
studies, we observed that the back mechanism does not
always allow to go back to the previous state of an appli-
cation. Actually, this mechanism is sometimes considered
as an event allowing to reach a new application state. As a
consequence, we always check whether the state, reached
after calling this mechanism, is the expected one. The
pseudo-code is given in the Backtrack procedure.

This procedure calls the back mechanism to undo the most
recent action if available and to go back to the state q (line

3). A new screen is observed, and Backtrack checks whether
this screen is equivalent to the expected one, modelled with
q (we compare their Widget properties). If we observe a
state different from q or if the back mechanism is not
available, Backtrack returns ”false” (line 6). On the contrary,
a transition q2

back(α)−−−−−→ q is added to P and the procedure
returns ”true” (line 9).

B. Exploration strategies
Different strategies can be applied to cover an appli-

cation. These are mainly implemented by means of the
Ph Deposit procedure which is called to return pheromone
amounts but also with the task-pool paradigm. Independently
of the chosen strategy, the threads, which are executed to
explore an application, always pick out the first task of the
task-pool composed of a state having the highest pheromone
amount. The task-pool is implemented as an ordered list in
descending order.

We succinctly present how to implement some of strategy
examples below:
• BFS strategy: the classical breadth-first search strategy

is the easiest one to put in practice. Indeed, our algo-
rithm is tacitly based upon it. Whenever a new state q2
is built, it is only needed to set its pheromone amount
to 0. In our algorithm, a state is tested in a breadth-wise
order and each new task Explore(q2, p2) composed
of a new state q2 to visit, is added to the task-pool.
The threads shall only take the tasks in the task-pool
in the same order as they have been submitted. As a
consequence, the PLTS P is conceived in breadth-first
order;

• DFS strategy: the depth-first search strategy can be
implemented as follows: the initial state q0 is initialised
with a pheromone amount equal to 0. Afterwards,
whenever a new state q2 is detected from another one q,
it is completed with the pheromone amount found in q
increased by 1. In this case, the next task Explore(q, p)
chosen by a thread shall be composed by the last
detected state. Tacitly, a DFS strategy is followed;

• Crash-driven strategy: the number of detected bugs
could also be considered in a strategy: when the number
of bugs detected from the states of a path p is higher
than the one detected from the states of another path
p′, it may be more interesting to continue to cover
the former for trying to detect the highest number of
application defects. We call this strategy crash-driven
exploration. This can be conducted by initialising the
pheromone amount to 0 in q0. Next, given a task
Explore(q, p), whenever a new state q2 is detected,
it is completed with a pheromone amount equal to the
number of bugs detected from all the states of the path
p;

• Semantics-driven strategy: this kind of strategy de-
notes an exploration guided by the recognition of the

meaning of some Widget properties (text field values,
etc.). Here, the pheromone deposit mainly depends
on the number of recognised Widget properties and
on their relevance. It is manifest that the semantic-
driven strategy domain can be tremendously vast. For
e-commerce applications, the login step and the term
”buy” are usually important. A strategy example could
be then conducted as follows: an authentication process
is detected when a text field Widget has the type
”passwdtype”. In this case, the pheromone amount
considered is set to 10, otherwise it is equal to 1. When
a Widget name is composed of the term ”buy”, the
pheromone amount added in a new state could be equal
to 5, etc.

Many other strategies could be defined to meet the user re-
quirements. Some of them could be defined to target specific
application states or features. Others could be conceived in
accordance with the intended usage of the inferred models.
For instance, if models are later used for generating security
test cases, the exploration strategy should be defined to cover
the most sensitive features of the application. Other criteria
could also be considered, e.g., the number of Widgets found
in screens. Furthermore, the previous strategies could also
be mixed together.

The PLTS of Figure 4(c) is built with a DFS strategy.
Our algorithm starts by visiting the state q0 which holds a
pheromone amount equal to 0. The actions a0 to a5 lead
to new screens and states q0 1, q1, ..., q5, which have a
pheromone amount equal to 1 and have to be explored.
Here, the state q1 is chosen since it is the first not final
state encountered during the exploration of q0 and has
the highest pheromone amount. From q1, the execution of
actions leads to new states, e.g., q6, q7, or q8. These states
have a pheromone amount equal to 2. The next state having
the highest pheromone amount is q6. Therefore, this one is
explored, and so on.

C. Code coverage enhancement, Exploration Algorithm 2

After the evaluation of the previous algorithm, we ob-
served that the code coverages obtained with some applica-
tions was lower than expected. After investigation, we dis-
covered that MCrawlT was actually unable to launch some
specific features of these applications. As a consequence,
several screens were not displayed and explored, which
explains low code coverages. For instance, a text editor can
delete a document if and only if a document is available.
At the moment, no testing tool is able to automatically
deduce such a scenario since it belongs to the logic of the
application.

To solve an aspect of this problem and to enhance code
coverage, we propose a straightforward and general solution
that tries to bypass the blocking features in order to deeper
explore an application. Intuitively, it is technically possible
with Mobile applications to directly instantiate any Activity

Algorithm 2: Mobile application exploration v2
input : Application App
output: PLTS {P1, ...,Pn}, {MP1, ...,MPn}
// initialisation performed by one thread only

1 Analyse App→ list of activities LAct = {act1, ..., actn}, list of
PLTSs {P1, ...,Pn} with act1 this root Activity of App;

2 EQ = ∅;
3 foreach Activity acti in LAct such that acti has not been

encountered do
4 Start the application App and Launch acti;
5 Analyse the current screen→Widget property lists wp, wo;
6 Initialise ph0;
7 Initialise PLTS Pi with

q0Pi
= (acti, wp, wo, end := false, ph0);

8 EQ = EQ ∪ {[q0Pi
]};

9 Add (Explore(q0Pi
, p = ∅),Pi) to the task-pool;

10 while the task-pool is not empty do
11 Take a task (Explore(q, p,Pi)) such that

q = (act, wp,wt, end, ph) includes the highest
pheromone amount ph;

12 Reset and Execute App by executing the sequence of
actions of p;

13 Explore(q, p,Pi);

// code executed by one thread
14 MPi:= Minimise(Pi);

instead of the initial ones. Doing this sometimes allows
to bypass a blocking Activity that cannot be automatically
tested. The pseudo-code of this solution is given in Algo-
rithm 2. The latter tries to directly launch every Activity of
an application instead of only considering the initial one to
infer models. We do not provide the details of the Explore
procedure since it only requires slightly modifications. For
an application App, this algorithm tries to instantiate each
Activity and builds a PTLS for each. We obtain the PLTS
set {P1, ...,Pn} and the respective set of minimised PLTS
{MP1, ...,MPn}. The algorithm starts by analysing App
and extracts its Activity list; act1 represents the initial
Activity of App. As in the previous algorithm version, a first
PLTS P1 is generated from the initial Activity act1 (line 1).
Then, each Activity acti is launched, and a corresponding
PLTS Pi is built (line 3). But the algorithm is designed
to inspect new states only, i.e., to prevent from exploring
several times a state early encountered during the generation
of another PLTS. To do so, the state equivalence classes
are now kept in the set EQ, which is used all along the
execution. Given a model Pi(i > 1) under construction, the
exploration of a state q is done in the Explore procedure if
and only if q has not been previously encountered in one of
the previous PLTSs. In other words, q is marked as final if
q belongs to an equivalence class of EQ.

With this algorithm, we switch the initial Activity to start
an application from different entry-points and to potentially
scan deeper an application. This process does not always
deliver the intended outcomes though, since an Activity,
which was not designed to be launched at the beginning
of the application, may crash. We show in Section VI that

this algorithm achieves better code coverage on 1/3 of the
experimented applications.

D. Algorithm complexities and termination

Both Algorithms 1 and 2 run in linear time. Theoretically,
for an application App, the number of states to visit may be
infinite. But our algorithm covers one state per equivalence
class. The number of equivalence classes is finite (Proposi-
tion 3), hence, the algorithm is finite. If we denote the num-
ber of states and transitions by N and M , Algorithm 1 has a
complexity proportional to O(M +N +MN +Mlog(N)).
Indeed, the Explore procedure covers every transition twice
(one time to execute an event and one time to go back
to the previous state), and every state is processed once.
Hence, the complexity should be proportional to O(M+N).
But, sometimes the back mechanism is not available. In this
situation, the application is reset and the event sequence of
a path p is executed from the initial state q0. This path is at
worst composed of M transitions and, in the worst case, this
step is done for every state with a complexity proportional
to NM . Furthermore, the minimisation technique has a
complexity proportional to O(Mlog(N)) [18].

More precisely, the number of states N is at most equal
to 2mn with m is the maximum number of values that any
Widget property can take during the testing of App, and n
the number of Widget properties in WP . Indeed, the number
of equivalence classes is bounded to mn (Proposition 3).
Additionally, a state has either an assignment end := true or
end := false (2 further possibilities). Regarding the number
of transitions M , it is finite and depends on the number of
test events executed on the application. If each state is at
most tested with e events and has k editable Widgets that
are iteratively fulfilled nb times with test values, then M is
equal to N ∗ e ∗ nb2 (nb2 is the maximum number of test
value tuples returned by the Pairwise technique [20]).

Algorithm 2 is designed as Algorithm 1 except that it
infers one model for each Activity of an application App.
The Activity number, denoted K is always finite, therefore
Algorithm 2 terminates as well. It complexity is proportional
to OK(M +N +MN +Mlog(N)).

VI. IMPLEMENTATION AND EVALUATION

A. Implementation for Android Applications

With the collaboration of the Openium company,
we have implemented our solution in a prototype
tool, called MCrawlT (Mobile Crawler Tool).
MCrawlT is publicly available in a GitHub repository
(https://github.com/statops/MCrawlerT), and is accompanied
with a detailed user guide. The tool is specialised
for Android applications: in short, these applications are
typically Mobile GUI applications built over a set of reusable
components. For instance, Activities are components that
display screens whereas Service components are used to
call remote servers.

As detailed in the above sections, MCrawlT infers models
from Android applications, it reports code coverage percent-
ages and execution times. Besides, it tries to detect bugs
with stress testing (use of values known for revealing bugs
such as unexpected values (wrong types), execution of large
random event flows on screens). It reports the detected bugs,
and generates test cases to replay them. Finally, it displays
lightweight or complete storyboards (graphs of screen shots)
to simplify the understanding of the application behaviours.
Figures 8 and 9 depict two storyboard examples derived from
the Ebay Mobile application with different execution times.

Figure 8: Ebay Mobile storyboard

Figure 9: Ebay Mobile storyboard 2

MCrawlT expects packaged Android applications or
source projects, a testing strategy and a delay for testing

1 p u b l i c c l a s s DFSSt ra t egy e x t e n d s A n t S t r a t e g y {

3 p u b l i c i n t ge tRank (S t a t e s t , S c e n a r i o D a t a p a t h) {
i f (s t != n u l l) {

5 S t a t e l a s t = p a t h . g e t (p a t h . s i z e −1)) ;
r e t u r n l a s t . ge tPh () +1 ;

7 }
e l s e r e t u r n d e f a u l t R a n k ;

9 } }

Figure 10: Implementation of the DFS strategy

(this delay can be set to some seconds up to several days).
A user may add some specific test data (login, password,
etc.) and prepare local and/or remote databases.

MCrawlT is composed by two main modules. MCrawlT-
Desktop corresponds to Algorithms 1, 2 and essentially
aims to construct PLTS and to manage the task-pool. The
second module, MCrawlTMobile, corresponds to the Explore
procedure. It is deployed on the smartphone side to exercise
application screens and to generate PLTS transitions. The
second module is implemented using the testing framework
Robotium [21]. Robotium is used to extract the Widget
properties found in screens. It also provides functionalities
for editing Widgets and simulating user events (click, scroll).
Additionally, we have extended the instrumentation package
of Android (InstrumentationTestRunner class) to detect and
observe application crashes, and periodically compute the
code coverage percentage by means of the tool Emma [22].
The communication between the modules is ensured by
the Android Debug Bridge (adb) tool, which is available
in the Android tool kit. MCrawlT can exercise applications
in parallel by launching several MCrawlerTMobile modules
on emulators or smartphones (Android versions from 2.3 to
4.2.2).

MCrawlT supports the strategies presented in Section
V-B and can be upgraded with additional ones. A strategy
is implemented in a Java class inherited from the class
”AntStrategy”, which must have a method public int ge-
tRank(State q, ScenarioData path). This one returns the
pheromone amount which is put down in a state q. Figure 10
illustrates the Java code used to implement the DFS strategy.

B. Limitations

The MCrawlT implementation has three main limitations:
• remote servers cannot be reset, so the tool violates an

assumption of the algorithm related to the application
environment reset. This limitation can be eliminated by
mocking remote servers. This can be done with the
SOAPUI framework [23];

• MCrawlT supports the following UI events: click and
scroll. This is a limitation imposed by Robotium. But
this tool is updated continuously, therefore, more events
should be available in the future;

• in the paper, we focus on UI events but Android
proposes a set of system events (sms calls, battery

notifications, etc.). We do not consider them yet as
inputs.

C. Empirical Evaluation

In this section, we evaluate MCrawlT on several real-
world Android applications. We chose to compare the effec-
tiveness of several recent tools in terms of execution time,
code coverage and crash detection. We tried executing the
following tools Monkey [11], Guitar [19], AndroidRipper
[7], SwiftHand [15] and Dynodroid [9]. The others are
not available. Unfortunately, we faced many difficulties to
use some of them. In summary, we do not know how
Guitar works with Mobile applications due to lack of
documentation; we were unable to launch AndroidRipper;
SwiftHand works well with the proposed examples but, for
new applications, source codes need to be instrumented
(with a lot of classes) and we do not know how to do this.

In this context, and to avoid any bias, we chose to apply
our tool, Monkey and Dynodroid on all the applications
whose source code is available and taken for experimentation
in the papers [7], [15], [9]. We have also taken the appli-
cations and experimental results found in [8] although the
corresponding tool Orbit is not available. This corresponds
to 30 applications. It is important to note that Monkey is
taken as a reference in most of the papers dealing with
Android testing. Thereby, our results can be compared with
other studies related to Android testing.

1) Code coverage and execution time: We compare here
the effectiveness, relating to code coverage and execution
time, of MCrawlT with the other recent Android testing
tools. Most of them explore these applications in an in-depth
manner. So, MCrawlT was executed only with this strategy
to carry out a fair comparison.

Figure 11 reports the percentages of code coverage ob-
tained with the different tools on 30 applications with a
time budget of three hours. If we do a side by side com-
parison of MCrawlT with the other tools, we observe that
MCrawlT provides better code coverage than Monkey for 23
applications, than SwiftHand for 29 applications, than Orbit
for 29 applications, and than Dynodroid for 24 applications.
In comparison to all the tools, MCrawlT provides better
code coverage with 20 applications, the coverage difference
being higher than 5% with 14 applications and higher than
10% with 10. This comparison is more explicitly given
in the radar chart of Figure 12, which depicts the code
coverage percentages obtained with Monkey, MCrawlT and
Dynodroid. When Monkey is confronted with all the other
tools, it offers better results for 5 applications and Dynodroid
for 3 applications.

Consequently, these results show that MCrawlT gives
better code coverage than each tool taken one by one and
overall offers good results against all the tools on half the
applications. Figure 12 clearly illustrates this claim.

Application Mon
key

Orbit Gui
tar

And.
Rip-
per

MC
rawlT

Swift
Hand

Dyno
droid

NotePad 60 82 88
TippyTipperV1 41 78 79 48
ToDoManager 71 75 71 81 34
OpenManager 29 63 65
HelloAUT 71 86 51 96 76
TomDroid 46 70 40 76 42
ContactManager 53 91 71 68 28
Aardict 52 65 27 67 51
Musicnote 69 81 72.2 47
Explorer 58 74 74
Myexpense 25 61 41.8 40
Anynemo 61 54 52.9
Whohas 58 95 59.3 65
Mininote 42 26 34 39
Weight 51 34 62 56
TippyTipperV2 49 74 68 12
Sanity 8 26 19.6 1
Nectdroid 70.7 54 68.6
Alogcat 66.6 66 67.2
ACal 14 46 23
Anycut 67 71 69.7
Mirrored 63 76 60
Jamendo 64 46 3.9
Netcounter 47 56 70
Multisms 65 73 77
Alarm 77 72 55
Bomber 79 75 70
Adsdroid 72 83 80
Aagtl 18 25 17
PasswordFor
Android

58 61 58

Figure 11: Code coverage comparison (in %)

Figure 12: Code coverage comparison (in %)

Figure 11 shows that the code coverage percentage ob-
tained with MCrawlT is between 25% and 96%. We manu-
ally analysed the 10 applications that provide the lower code
coverage percentages with MCrawlT to identify the causes
behind low coverage.

These can be explained as follows:
• specific functionalities and unreachable code: several

Figure 13: Code coverage comparison (in %)

applications are incompletely covered either on account
of unused code parts (libraries, packages, etc.) that are
not called by the application, or on account of function-
alities difficult to start automatically. For instance, at
least one stored audio file is required for OpenManager
before testing the functionalities related to the audio file
management,

• unsupported events: Several applications, e.g., Nect-
droid, Multism, Acal or Alogcat chosen for experimen-
tation with Dynodroid take UI events as inputs but also
system events such as broadcast messages from other
applications or from the Android system. Our tool does
not support these events yet. Moreover, MCrawlT only
supports the event list also supported by the testing
tool Robotium (click, scroll). The long click event does
not belong to this list but it is used in some applica-
tions (Mininote and Contactmanager). In contrast, Orbit
supports this event and therefore offers a better code
coverage with the application Contactmanager.

We also experimented the 30 Android applications with
the second version of our algorithm, which tries to infer
models for every Activity (Algorithm 2). We kept the same
time budget of three hours. The radar chart of Figure 13
gives the code coverage percentages obtained with Monkey
(for comparison purposes), MCrawlT Algorithm 1 and Al-
gorithm 2. It illustrates that our extended algorithm visibly
offers better code coverage. More precisely, 13 applications
are more covered and 8 have a code coverage increased by
10 %. With some applications the code coverage difference
become significant. For instance, we observe a code cov-
erage increased by 23 % with Jamento and by 30 % with
Weight. In comparison to all the tools, MCrawlT provides
now better code coverage with 25 applications.

Application Orbit Guitar Android
Ripper

MCrawlT Swift
Hand

NotePad 102 268
TippyTipperV1 198 251
ToDoManager 121 194 551
OpenManager 480 696
HelloAUT 156 117 106
TomDroid 340 529 235
Contact Man-
ager

125 194 233

Aardict 124 694 580
Musicnote 10696 10800
Explorer 10800 10800
Myexpense 10800 10800
Anynemo 10800 10800
Whohas 9260 10800
Mininote 8230 10800
TippyTipperV2 1556 10800
Weight 10800 10800
Sanity 10800 10800
Nectdroid 8120
AlogCat 10800
ACal 10800
Anycut 8037
Mirrored 6020
Jamendo 10800
Netcounter 10800
Multisms 10800
Alarm 10040
Bomber 4800
Adsdroid 10800
Aagtl 920
Password
ForAndroid

10800

Figure 14: Execution time (in seconds)

Regarding execution time, the evaluated tools work dif-
ferently. Monkey and Dynodroid take a number of events,
and perform fuzzy testing independently of the application
coverage. We set an event number sufficiently high so as
to let the tools perform testing during three hours or more
(more than 10,000 events for Monkey and more than 600
events for Dynodroid). The other tools explore applications
with a delay of three hours or until all the application
states are explored. Figure 14 reports the execution times
obtained with the second category of tools (in seconds)
on the same application list. These results reflect the fact
that MCrawlT is comparable to the others despite using
strategies, state equivalence classes and a state minimisation
technique. For small applications (first eight lines), we
obtain roughly similar time executions as Orbit, Guitar
and AndroidRipper. SwiftHand always need more than three
hours to explore applications, whereas 18 applications are
completely explored with MCrawlT in less time.

2) Crash detection: MCrawlT, Monkey, Dynodroid and
AndroidRipper also detect application crashes. Figure 15 re-
ports the 9 applications that crashed while testing with one of
third first tools. We also added the empirical results obtained
with AndroidRipper found in [7]. Figure 15 exposes genuine
bugs only. We manually ascertained test reports to eventually
remove false positives such as emulator misbehaving. We
kept only the Exceptions that cause the termination of
the applications such as NullPointerException. On the 30

Application MCrawlT Monkey Dynodroid Android
Ripper

WordPress 63 3 37
Notepad 5
TomDroid 7 1 14
Mirror 25 3
Mininote 2
Aagtl 1 2
PasswordForAndroid 1 1
Sanity 5 1 1
Aardict 2

Figure 15: Application crash detection

applications, MCrawlT revealed that 9 of them have bugs
and detected all the applications also found with Monkey
and Dynodroid. We deduce from these results that our
tool outperforms the others in automatic crash detection.
MCrawlT does stress testing like Monkey and Dynodroid but
it also uses values known for detecting bugs. This probably
explains the better performance.

3) Impact of the strategy choice and parallelism gain: To
illustrate the benefits of using different strategies, we applied
on the Ebay Mobile application, the DFS strategy exposed
in the previous section and a semantics-driven strategy. This
strategy aims to target the account management part of the
application and was applied by deposing a higher pheromone
amount in states including Widgets of type ”passwdtype” or
Widget properties composed of the terms ”account” or ”sign
in”.

For readability and comparison purposes, we illustrate in
Figure 16 a simplified graph showing the visited Activities
with the DFS strategy. The application is explored indepen-
dently of the meaning of the Widgets and the Activities.
Here, MCrawlT has mostly covered the ”Refine search”
feature of the Ebay Mobile application. Figure 17 illustrates
the simplified graph achieved after applying the second
one. Here, the Activity SignIn, allowing to log in to
user accounts, was firstly visited instead of the Activity
RefineSearch. Then, the second strategy has guided the
exploration on the Activity SavedSellerList, which allows
to manage the favourite seller list and on SellItem, which
shows the sold items. With the same time budget, the account
management part of the application has been explored with
the second strategy instead of the ”Refine search” feature.
As a consequence, since security vulnerabilities on the user
account management affect users and may lead to serious
consequences, this strategy makes the generated PLTS more
interesting to later analyse the security of the application.

The strategy choice also impacts the time required to
explore an application. Figure 18 shows the execution times
(in seconds) obtained with two strategies for completely
exploring 10 applications. MCrawlT were applied with a
DFS strategy (1 thread using 1 Android emulator), a BFS
(with 1 and 3 threads in parallel). These results show that
7 out of 10 applications are more rapidly covered with BFS
traversing. For instance, with toDoManager, using the BFS

Figure 16: Ebay Mobile simplified graph obtained with a
DFS strategy

Figure 17: Ebay Mobile simplified graph obtained with a
semantics-driven strategy

Application DFS(1) BFS(1) BFS(3)
NotePad 268 310 175
TippyTipperv1 251 210 110
ToDoManager 551 410 210
OpenManager 696 560 489
HelloAUT 106 216 201
TomDroid 235 256 196
ContactManager 233 216 135
Bomber 6120 4800 3100
Mirrored 6690 6020 4090
Nectdroid 10650 8120 5020

Figure 18: Execution time with different strategies (in sec-
onds)

strategy instead of the DFS one, reduces the exploration time
by 140 seconds because all of its Activities are directly
accessible from the initial one. Actually, when a user has
knowledge of the code structure or of how the Activities
are composed together, he can choose the most appropriate
strategy to speed up the exploration.

Figure 18 also shows that the parallelization of our
algorithm is effective. With three emulators, the execution
time is always reduced. For instance, the parallel exploration
of TippyTipperV1 is achieved with a time almost divided by
two.

All these experimental results on real applications tend
to show that our tool is effective and leads to substantial
improvements in the automatic testing of Mobile applica-
tions. Indeed, on the 30 applications taken for evaluation
in [7], [15], [9], MCrawlT gives better code coverage for
25 applications with the same time budget and detects
more bugs. Furthermore, different exploration strategies can
be applied to directly target the most relevant application
features.

VII. CONCLUSION

Automatic testing of GUI applications is an interesting
solution that complements other testing techniques, e.g.,
Model-based testing. This approach may be used to generate
partial models, which can be later completed or reused for
test case generation. This paper brings some original contri-
butions by proposing: 1) a formal model definition that helps
limit the application exploration by segmenting state space
domains into finite sets of equivalence classes, 2) the use of
exploration strategies to cover applications by applying the
ACO technique, 3) a code coverage enhancement method
which infers sets of models.

The evaluation of MCrawlT against other recent tools
shows that our approach can be used in practice. It automates
testing tasks that users usually consider tedious. Further-
more, it generates models and storyboards that can be used
for model analysis and comprehension aid. MCrawlT also
provides good code coverage quickly and detects more bugs
than those exposed by the other tools.

The initial purpose of this work was to generate partial
models given to an automatic security testing method for
Mobile applications. Based upon this framework, we intend
to design this security testing method by developing these
future research directions: 1) define an exploration strategy
in order to automatically detect the highest number of
security issues while the model generation, 2) devise or reuse
verification methods on inferred models to detect security
vulnerabilities, 3) generate test cases to extend the inferred
models from some specific states in an attempt to expose
further security vulnerabilities.

REFERENCES

[1] S. Salva and S. R. Zafimiharisoa, “Model reverse-engineering
of mobile applications with exploration strategies,” in The
Ninth International Conference on Software Engineering Ad-
vances, ICSEA 2014, Nice, France, 10 2014, pp. 396–403.

[2] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping:
Reverse engineering of graphical user interfaces for testing,”
in Proceedings of the 10th Working Conference on Reverse
Engineering, ser. WCRE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 260–269. [Online]. Available:
http://dl.acm.org/citation.cfm?id=950792.951350

[3] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling
Ajax-based web applications through dynamic analysis of
user interface state changes,” ACM Transactions on the Web
(TWEB), vol. 6, no. 1, pp. 1–30, 2012.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. Ernst, “Finding bugs in web applications using dynamic
test generation and explicit-state model checking,” Software
Engineering, IEEE Transactions on, vol. 36, no. 4, pp. 474–
494, 2010.

[5] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “Webmate:
a tool for testing web 2.0 applications,” in Proceedings of
the Workshop on JavaScript Tools, ser. JSTools ’12. New
York, NY, USA: ACM, 2012, pp. 11–15. [Online]. Available:
http://doi.acm.org/10.1145/2307720.2307722

[6] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393666

[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,
and A. M. Memon, “Using gui ripping for automated
testing of android applications,” in Proceedings of the
27th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2012. New York, NY,
USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[8] W. Yang, M. R. Prasad, and T. Xie, “A grey-
box approach for automated gui-model generation of
mobile applications,” in Proceedings of the 16th
international conference on Fundamental Approaches to
Software Engineering, ser. FASE’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 250–265. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37057-1 19

[9] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An
input generation system for android apps,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY,
USA: ACM, 2013, pp. 224–234. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491450

[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. Ta, and
A. Memon, “Mobiguitar – a tool for automated model-based
testing of mobile apps,” IEEE Software, vol. 99, no. PrePrints,
pp. 1–6, 2014.

[11] Google. Ui/application exerciser monkey. Accessed: 2015-03-
01. [Online]. Available: http://developer.android.com/tools/
help/monkey.html

[12] T. Azim and I. Neamtiu, “Targeted and depth-first exploration
for systematic testing of android apps,” in Proceedings
of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages
& Applications, ser. OOPSLA ’13. New York, NY,
USA: ACM, 2013, pp. 641–660. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509549

[13] D. Amalfitano, A. Fasolino, and P. Tramontana, “Reverse
engineering finite state machines from rich internet appli-
cations,” in Reverse Engineering, 2008. WCRE ’08. 15th
Working Conference on, Oct 2008, pp. 69–73.

[14] M. E. Joorabchi and A. Mesbah, “Reverse engineering
ios mobile applications,” in Proceedings of the 2012
19th Working Conference on Reverse Engineering, ser.
WCRE ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 177–186. [Online]. Available: http:
//dx.doi.org/10.1109/WCRE.2012.27

[15] W. Choi, G. Necula, and K. Sen, “Guided gui testing
of android apps with minimal restart and approximate
learning,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13.
New York, NY, USA: ACM, 2013, pp. 623–640. [Online].
Available: http://doi.acm.org/10.1145/2509136.2509552

[16] D. Angluin, “Learning regular sets from queries and
counterexamples,” Inf. Comput., vol. 75, no. 2, pp. 87–106,
Nov. 1987. [Online]. Available: http://dx.doi.org/10.1016/
0890-5401(87)90052-6

[17] D. Amalfitano, A. Fasolino, and P. Tramontana, “A gui
crawling-based technique for android mobile application test-
ing,” in Software Testing, Verification and Validation Work-
shops (ICSTW), 2011 IEEE Fourth International Conference
on, 2011, pp. 252–261.

[18] J.-C. Fernandez, “An implementation of an efficient algorithm
for bisimulation equivalence,” Science of Computer Program-
ming, vol. 13, pp. 13–219, 1989.

[19] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon,
“Guitar: an innovative tool for automated testing of
gui-driven software,” Automated Software Engineering,
vol. 21, no. 1, pp. 65–105, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10515-013-0128-9

[20] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction testing,”
in Proc. of the 25th International Conference on Software
Engineering, 2003, pp. 38–48.

[21] Robotium, user scenario testing for android. Accessed:
2015-03-01. [Online]. Available: http:/code.google.com/p/
robotium/

[22] Emma, a free java code coverage tool. Accessed: 2015-03-01.
[Online]. Available: http://emma.sourceforge.net

[23] Soapui. Accessed: 2015-03-01. [Online]. Available: http:
//www.soapui.org

