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Abstract. In this paper, we present Autofunk, a fast and scalable frame-
work designed at Michelin to automatically build formal models (Sym-
bolic Transition Systems) based on production messages gathered from
production systems themselves. Our approach combines model-driven
engineering with rule-based expert systems and human knowledge.
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1 Introduction

Michelin is a worldwide tire manufacturer which designs all its factories, pro-
duction systems, and software by itself. Like many other industrial companies,
Michelin follows the Computer Integrated Manufacturing approach, using com-
puters and software to control the entire manufacturing process. Michelin Level
2 applications are often deployed for 20 years, and are very important for its
business. Maintaining these software is inevitable, but due to their importance,
this is risky. That is why Michelin puts a lot of efforts in documenting how these
applications behave. Unfortunately, keeping such knowledge up to date is diffi-
cult, and it often implies under-specified or not documented legacy systems that
no one wants to maintain because of lack of understanding.

In this paper, we focus on this problem for legacy systems in an industrial
context. Model inference is a recent research field that addresses this issue. Mod-
els are here built from execution traces (i.e. sequences of observed actions of an
application). Several approaches have been proposed for different types of sys-
tems, usually GUI applications [4, 5, 3]. However, our experience shows that these
approaches are not tailored to support running production systems that are com-
plex and distributed over several devices. From the literature, we deduced the
following key observations:

— Model inference approaches learn approximate models capturing the be-
haviours of a system and more. In our context, we want exact models that
could be used for regression test case generation,

— Some approaches perform active testing on the systems to learn models.
Applying active testing on running systems is not possible since these must
not be disrupted,



— Production systems exchange thousands and thousands of messages a day.
Most of the model inference approaches cannot take such a huge amount of
information to build models.

That is why we have developed Autofunk, our fast and scalable framework
to infer both exact and formal models from production messages, using expert
systems and inference rules to emulate human knowledge, and transition systems
to embrace formal tools.

2 Framework

Production messages
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Fig. 1: Autofunk’s architecture

Figure 1 depicts the architecture of our framework. It contains five modules
(in grey in the figure), the first four modules aim at building models and the
last one (which will not be described in the paper) is used to generate test cases.
Autofunk is developed in Java and relies on Drools 3, a powerful Java rule-based
expert system engine which supports knowledge bases with facts given as Java
objects.

We consider Symbolic Transition Systems (STS) [2] as models for repre-
senting production system behaviours. STSs are state machines incorporating
actions, labelled on transitions, that show what can be observed on a system. In
addition, actions are tied to an explicit notion of data.

3 http://www.drools.org/



2.1 Production messages and traces

Autofunk takes production messages as input from a (running) system under
analysis Sua. A production message can be either a stimulus or a response,
owns a timestamp defined by a global clock, and contains variable data. These
messages are formatted no matter their initial source (e.g. a logging system in
our case), so that it is possible to use messages from different providers. We call
valued actions the resulting set of messages.

Some of these actions are not part of the functioning of the system (log-
ging information for instance), and thus must be removed. Filtering is achieved
by Drools expert system and a few inference rules given by a domain expert.
The remaining actions are sorted to produce an initial set of traces denoted
Traces(Sua).

2.2 Trace segmentation and STSs

We define a complete trace as a trace containing all actions expressing the path
taken by a product in a production system, from one of its entry points to
one of its exit points. In the trace set Traces(Sua), we do not want to keep
incomplete traces. Autofunk performs a statistical analysis on Traces(Sua) and
computes two ratios for the first and last valued actions of every trace in order
to automatically find the entry and exit points of Sua.

Traces(Sua) is then split into subsets ST}, one for each entry point of Sua.
Every trace set ST; will give birth to one model, describing all possible be-
haviours starting from its corresponding entry point. Here we obtain the set
ST = {STi,...,STn} such that each ST; C Traces(Sua).

Given a subset ST; in ST, a first STS denoted § is built by relying on the
LTS semantics [2] transformation applied in a backward manner. This model has
a tree structure and its traces are equivalent to those of STj;.

2.3 STS reduction

The previous model 8 is often too large, and thus cannot be beneficial as is.
Using such a model for testing purpose would lead to too many test cases for
instance. That is why Autofunk performs a reduction step, aiming at diminishing
the first model into a second one, denoted R(8) that will be more usable.

Most of the existing approaches propose two solutions. Models can directly
be inferred with high levels of abstraction but it implies not exact models. The
second solution is to apply a minimisation technique [1] which guarantees trace
equivalence, but it is costly and highly time consuming on large models. As a
result, we chose a simpler approach which consists in combining branches that
have the same sequences of actions so that we still obtain a model having a tree
structure. Autofunk generates a signature for each branch b, i.e. a hash (SHA1
algorithm) of the concatenation of the signatures of the actions of b. This gives
good results in terms of STS reduction and requires low processing time, even
with millions of actions.



3 Evaluation

We conducted several experiments with real sets of production messages, recorded
in one of Michelin’s factories. The most significant one ran with a month of data.
Autofunk handled 10 million production messages in 5 minutes to build two
models including around 1,600 branches (parsing step put aside). The frame-
work revealed 120,000 complete traces, which represents 78% of the initial trace
set, and reduced the models by 97%. More results can be found in [6].

4 Conclusion

We built a fast and scalable framework combining model inference, expert sys-
tems and statistical analyses to derive ST'Ss models based on production traces,
i.e. generating formal models from running production systems.

We focused on reducing the models while keeping them exact thanks to trace
equivalence preservation, and also because we considered complete branches only.
We would like to investigate partial branch concatenation to reduce generated
models because we believe that models could be even more reduced. However,
this would probably affect performance as partial branch concatenation is time
consuming, and we don’t want to sacrify speed.

This framework is part of a regression testing system we are working on.
In the future, we plan to work on passive testing by applying our framework
for different versions of a system and draw conclusions based on the generated
models. This will be part of a newer testing module.
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