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Chapter 1
Model inference of Mobile Applications with
dynamic state abstraction

Sébastien Salva and Patrice Laurençot and Stassia R. Zafimiharisoa

Abstract We propose an automatic testing method of mobile applications, which
also learns formal models expressing navigational paths and application states. We
focus on the quality of the models to later perform analysis (verification or test case
generation). In this context, our algorithm infers formal and exact models that cap-
ture the events applied while testing, the content of the observed screens and the
application environment changes. A key feature of the algorithm is that it avoids the
state space explosion problem by dynamically constructing state equivalence classes
to slice the state space domain of an application in a finite manner and to explore
these equivalence classes. We implemented this algorithm on the tool MCrawlT
that was used for experimentations. The results show that MCrawlT achieves sig-
nificantly better code coverage than several available tools in a given time budget.

Key words: Model inference, Automatic testing, Android applications, State ab-
straction.

1.1 Introduction

Desktop, Web and more recently mobile applications are becoming increasingly
prevalent nowadays and a plethora are now developed for several heterogeneous
platforms. All these pieces of software need to be tested to assess the quality of
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their features in terms of functionalities e.g., conformance, security, performance,
etc. Manual testing is the most employed approach for testing them, but manual
testing is often error-prone and insufficient to achieve high code coverage. These
applications share a common feature that can be used for automatic testing: they
expose GUIs (Graphical User Interface) for user interaction which can be automati-
cally experimented and explored. Several works already deal with GUI applications
testing e.g., desktop applications [9], Web applications [3] or mobile ones [2]. These
approaches interact with applications in an attempt to detect bugs and eventually to
record models, but all with the same purpose: to obtain good code coverage quickly.

The work, proposed in this paper, falls under this automatic testing category and
tackles the testing of mobile applications but also, and above all the learning of
models. Our study of model inference techniques has revealed that they often leave
aside the notion of correctness of the learned models. This feature is not required
for just detecting bug, but is mandatory if models are later used for analysis. In-
deed, false models may easily lead to false positives. The quality of the model with
regards to its level of abstraction and the amount of information it captures is im-
portant as well. Indeed, the more data we collect, the more precise an analysis can
be done thereafter. Nevertheless, large amounts of data often lead to large models,
up to a state space explosion problem. Based on these observations, we propose an
algorithm that aims at learning exact models of mobile applications. We consider
the PLTS model (Parameterised Labelled Transition System) to capture the differ-
ent events made on GUIs. PLTS states also capture all the observed screen contents
and notifications about the modifications of the application environment. These no-
tifications signal system events e.g., local database modifications or remote server
calls. All this amount of data provide a rich expressiveness that is used while learn-
ing the model and that may be later considered for precise model analysis. To avoid
a state space explosion, our algorithm dynamically builds state equivalence classes
while testing. Each time a new state is discovered, it dynamically re-adjusts the state
equivalence relation and classes to limit the state set. These equivalence classes also
help recognise similar states that do not require to be explored. Like some available
tools [7, 8], our algorithm can also detect application crashes and create test cases
for replaying bugs.

We proceed as follows: Section 1.2 briefly presents some related work before in-
troducing an overview of our algorithm that we apply on a straightforward Android
application example in Section 1.3. We define the model, the state equivalence re-
lation, and we provide the model inference algorithm in Section 1.4. We give an
empirical evaluation on Android applications in Section 1.5 and conclude in Sec-
tion 1.6.

1.2 Related Work

Several papers dealing with automatic testing and model generation approaches of
black-box systems were issued in the last decade. Due to lack of room, we only
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present some of them relative to our work. Memon et al. [9] initially presented
GUI Ripper, a tool for scanning desktop applications. This tool produces event flow
graphs and trees showing the GUI execution behaviours. Only the click event can
be applied and GUI Ripper produces many false event sequences which may need
to be weeded out later. Furthermore, the actions provided in the generated models
are quite simple (no parameters). Mesbah et al. [10] proposed the tool Crawljax
specialised in Ajax applications. It produces state machine models to capture the
changes of DOM structures of the HTML documents by means of events (click,
mouseover,etc.). To avoid the state explosion problem, state abstractions must be
given manually to extract a model with a manageable size. Furthermore, the con-
catenation of identical states proposed in [10] is done in our work by minimisation.

Google’s Monkey [7] is a random testing tool that is considered as a reference in
many papers dealing with Android application automatic testing. However, it can-
not simulate complex workloads such as authentication, hence it offers light code
coverage in such situations. Dynodroid [8] is an extension of Monkey supporting
system events. No model is provided. Amalfitano et al. [1] proposed AndroidRip-
per, a crawler for crash testing and for regression test case generation. A simple
model, called GUI tree, depicts the observed screens. Then, paths of the tree not ter-
minated by a crash detection, are used to re-generate regression test cases. Yang et
al. proposed the tool Orbit [12] whose novelty lies in the static analysis of Android
application source code to infer the events that can be applied on screens. Then,
a classical crawling technique is employed to derive a tree labelled by events. to
generate approximate models. The algorithm is composed of a testing engine which
executes applications to check if event sequences meet the model under generation
until a counterexample is found. An active learning algorithm repeatedly asks the
testing engine observation sequences to infer and eventually regenerate the model
w.r.t. all the event and observation sequences.

To prevent from a state space explosion, the approaches [9, 10, 12] require state-
abstractions given by users and specified in a high level of abstraction. Choi et al. [4]
prefer using the approximate learning algorithm L∗. These choices are particularly
suitable for inferring models for comprehension aid, but these models often are over
approximations and given in a high level of abstraction, which may lead to many
false positives with test case generation. In this paper, we focus on the inference
of exact models. As in [10, 1], we consider the notion of state abstraction that we
formally define to limit the state space domain to be explored. But, our algorithm
also dynamically re-adjusts state equivalence classes to restrain the exploration and
constructs a state abstraction according to the content of the application.

1.3 Overview

In the following, we present an overview on our model inference algorithm. Before-
hand, we give some assumptions on mobile applications considered to design our
approach:
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Mobile application testing: we consider black-box applications which can be
exercised through screens. It is possible to dynamically inspect application states to
collect Widget properties. The set of UI events enabled on a screen should be col-
lected as well. If not, Widgets provide enough information (type, etc.) to determine
the set of events that may be triggered. Furthermore, any new screen can be ob-
served and inspected (including application crashes). The application environment
modifications (databases, network traffic, etc.) can be observed with probes,

Application reset: we assume that mobile applications and their environments
(database, remote servers or mocked servers, Operating Systems) can be reset,

Back mechanism availability: several operating systems or applications (Web
navigators, etc.) also propose a specialised mechanism, called the back mechanism
to let users going back to the previous state of an application by undoing its last
action. We do not consider that this mechanism is necessarily available and, if avail-
able, we assume that it does not always allow to go back to the previous state of
an application (wrong implementation, unreachable state, etc.). Most of the other
methods assume that the back mechanism always works as expected [1, 8], but this
is frequently not the case.

1.3.1 Terminology

Mobile applications depict screens which represent application states, the number of
states being potentially infinite. Screens are built by application components; here
we take back the notation used with Android applications, i.e. Activities. The later
display screens by instantiating Widgets (buttons, text fields, etc.) which are organ-
ised into a tree structure. They also declare the available events that may be triggered
by users (click, swipe, etc.). A Widget is characterised by a set of properties (colour,
text values, etc.). Hence, one Activity can depict several screens, composed of dif-
ferent Widgets or composed of the same Widgets but having different properties.

Figure 1.1 depicts the screens of an Android application example used through-
out the paper. This application converts colour formats from RGB to HSL (hue-
saturation-lightness) and vice-versa by means of two radio buttons r1 and r2. When
the button Convert is pressed, the value entered in the blank text field txt is con-
verted and the result appears in the red text field result. The chosen colour is also
displayed in a colour-box which is depicted at the screen bottom. This application
is composed of one Activity which can display an infinite number of screens com-
posed of different text fields values and colour-boxes.

1.3.2 Algorithm overview

Figure 1.2 introduces an overview of our algorithm which is composed of two parts.
The algorithm is framed on the task-pool paradigm (Figure 1.2(a)). Tasks are placed
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Fig. 1.1 Colour Converter Android application

Fig. 1.2 Overview of the Model inference algorithm

into the task-pool, implemented as an ordered list, and each can be executed in
parallel. A task Explore(q, p) corresponds to one screen to explore. A screen is
transcribed by the state q gathering all the Widget properties composing the screen
and p is a path allowing to reach q from the initial state q0. When there is no more
task to do, the exploration implicitly ends. The resulting model is then minimised to
be more readable.

The exploration of one state (Figure 1.2(b)) is done by the Explore procedure.
A set of test events (parameter values combined with an event set), which match
the current application state, is firstly generated. The current screen is experimented
with every test event to produce new screens. However, this step may lead to an
infinite set of states to explore. To avoid this well-known issue, the algorithm slices
the state space domain into a finite state equivalence class set by means of an equiv-
alence relation (defined in Section 1.4.1). A state which belongs to a previously
discovered equivalence class is marked as final otherwise it has to be explored. In-
tuitively, for every new built state q2 (step 2), the algorithm eventually readjusts the
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Fig. 1.3 PLTS generation example

state abstraction to limit the state set size (step 3). It scans the detected equivalence
classes and checks if some of them (three or more in the algorithm) are different only
on account of one Widget property. If so, it has detected a Widget property which
may lead to the construction of several equivalence classes and states to explore
(up to an infinite set of states). Consequently, it readjusts the equivalence relation,
classes and the model by masking this Widget property. This means that this prop-
erty is no more taken into account for the equivalence class computation. Therefore,
the new state q2 belongs automatically to an already discovered equivalence class
and so, it will not be explored. No new equivalence class is built either. Then, the
algorithm checks if new states have to be explored (step 4). Finally, the algorithm
tries to backtrack the application to go back to its previous state by undoing the pre-
vious action. If it doesn’t work, the application and its environment (OS, databases,
etc.) are reset and the previous path p is used to reach the state which is currently
under exploration.

Figure 1.3 illustrates with simplified graphs (no PLTSs) how the algorithm works
on the example of Figure 1.1. For simplicity, only three values are considered for
testing: colour red (rgb=255,0,0 or hsv=0,100,50), green and blue. We also assume
that these values are always used for testing in the same order. The equivalence
relation is: two states are equivalent if they have the same Widget properties, except
those related to text field values. These last properties are usually not considered
for conceiving state abstractions since these often lead to a large potentially infinite
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set of states. Furthermore, if a Widget property takes more than two values in the
different equivalence classes then the relation has to be re-adjusted.

1. Initially, we have a state q0 which corresponds to the beginning of the applica-
tion (Figure 1.1(a)) and the corresponding equivalence class [q0]. A list of test
events is generated from q0: the events click on the radio-buttons r1, r2 or on the
button conv are combined with the colour values that are injected into the blank
text field txt. The application is firstly experimented with the click on r1 and with
the red colour value. This produces a new screen and a state q0 1 which belongs
to the same equivalence class [q0] because only the text field txt is modified.
This new state is marked as final (in grey in Figure 1.3) and is not explored. The
application is backtracked to return to q0. With the other colours, we also reach
final states q0 2 and q0 3 which are marked as final because they belong to the
same equivalence class [q0].
Then, the radio-button r2 is clicked, with the red colour. We obtain a new state q1
(Figure 1.1(b)) and a new equivalence class [q1] since r2 is now enabled. There-
fore, we get a new task Explore(q1, p′). Once more, the application is back-
tracked. When using the other colour values, we obtain the states q1 1 and q1 2
that are marked as final since these belong to [q1]. No task is created.
When the conv button is clicked, a value appears in the text field result and a
colour is depicted in the colour-box (Figure 1.1(c)). We obtain a state q2, which
has to be explored, and a new equivalence class [q2]. Next, conv is clicked with
the green colour. The state q2 1 is built with a new equivalence class [q2 1]. This
state is not marked as final since the colour-box displays a new colour. This pro-
cess should continue for every colour and in particular with the blue one, which
produces the state q2 2. A state space explosion may happens here. But the algo-
rithm detects that three equivalence classes are different only on account of the
same property colourbox.colour. The algorithm readjusts the equivalence rela-
tion to limit the state set size. Intuitively, the equivalence relation becomes two
states are equivalent if they have the same Widget properties, except those related
to text field values and to the colourbox.colour property. Then, it updates states
and equivalence classes to match this new relation. As a consequence, [q2], [q2 1]
and q2 2] are now merged into [q2]. The new state q2 2 now belongs to an exist-
ing equivalence class and is hence marked as final. The first task Explore(q0, p)
is finished and we obtain the graph depicted in Figure 1.3a,

2. we assume that the task Explore(q1, q0
click r2,txt=red−−−−−−−−−→ q1) is picked out to ex-

plore q1. A list of test event, which is the same as previously is constructed.
From the state q1, when the button conv is clicked with the red colour value, a
new state q3 is added because the colour box appears. When conv is clicked with
other colour values and events we only obtain final states, since they belong to
previously discovered equivalence classes,

3. the same reasoning is followed on states q2, q2 1 and q3, but only final states are
added (no task). We obtain the PLTS of Figure 1.3b,

4. the task-pool is empty. The PLTS is finally minimised [6]. Here, the final states
are merged to one unique state as illustrated in Figure 1.3c.
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In this short example, we have shown that our algorithm avoids the state explo-
sion problem and ends once at least one state of all the detected equivalence classes
is explored. In the following, we describe formally the model, the equivalence rela-
tion, and the algorithm.

1.4 Model inference Algorithm

1.4.1 Mobile application modelling with PLTS

We use PLTSs as models for representing mobile applications. A PLTS is a kind
of state machine extended with variables and guards on transitions. Beforehand, we
assume that there exist a domain of values denoted D and a variable set X taking
values in D. The assignment of variables in Y ⊆ X to elements of D is denoted with
a mapping α : Y → D. We denote DY the assignment set over Y .

Definition 1 (PLTS). A PLTS (Parameterised Labelled Transition System) is a tuple
<V, I,Q,q0,Σ ,→> where:

• V ⊆ X is the finite set of variables, I ⊆ X is the finite set of parameters used with
actions,

• Q is the finite set of states, such that a state q ∈ Q is an assignment over DV , q0
is the initial state composed of the initial condition DV 0,

• Σ is the finite set of valued actions a(α) with α ⊆ DI ,
• →⊆Q×Σ×Q is the transition relation. A transition (q,a(α),q′) is also denoted

q
a(α)−−→ q′.

The behaviour of a PLTS P is characterised by its sequences of valued actions
starting from its initial state q0. These sequences are also called the traces of P:

Definition 2 (PLTS Traces). Let P =<V, I,Q,q0,Σ ,→> be a PLTS. Traces(P) =

Traces(q0) = {a1(α1)...an(αn) | ∃q1, ...qn,q0
a1(α1)−−−−→ q1...qn−1

an(αn)−−−−→ qn ∈ (→)∗}.

We model mobile application behaviours with PLTSs by encoding (UI) events
with actions. We also store the properties collected from screens (Widget properties)
and notifications about the application environment changes in states with variable
assignments:

UI events representation

We interact with mobile applications by means of events, e.g, a click on a button,
and by entering values into editable Widgets. We capture such events with PLTS
actions of the form event(α) with α = {widget := w,w1 := val1, ...,wn := valn} an
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assignment over DI ; the parameter widget denotes the Widget name on which is
applied the event and the remaining variables are assignments of Widget properties.
We denote the triggering of the back mechanism with the action back(α) with α an
empty assignment.

Application state representation

We specialise PLTS states to store the content of screens (Widget properties) in such
a way as to facilitate the construction of equivalence classes of states. We split the
set of Widget properties into two categories: we gathers in the set W the Widget
properties that indicate a strong application behaviour modification and that take
only few values e.g., Widget visibility, size, etc. The others that usually take a lot
of different values such as the properties about text field values, are placed into
W c. This separation affects the state representation: we denote wp the assignment
composed of properties in W , while the assignment wo is composed of the other
Widget properties. A PLTS state q is then a specific assignment of the form act ∪
wp ∪ wo ∪ env ∪ end where:

• act is an assignment returning an Activity name,
• (wp,wo) are two Widget property assignments. The union of wp and wo gives

all the property values of an application screen displayed by act.
• env is a boolean assignment indicating whether the application environment has

been modified,
• end is a boolean assignment marking a state as final or not.

For readability, a state q= act ∪ wp ∪ wo ∪ env ∪ end is denoted (act,wp,wo,
env,end). This state structure eases the definition of the state equivalence relation
given below:

Definition 3 (State equivalence relation). Let P =< V, I,Q,q0,Σ ,→> be a PLTS
and for i = (1,2) let qi = (acti,wpi,woi,envi,endi), be two states in Q. We say that
q1 is equivalent to q2, denoted q1 ∼ q2 iff act1 = act2, wp1 = wp2 and env1 = env2.
[q] denotes the equivalence class of equivalent states of q. Q/∼ stands for the set of
all equivalence classes in Q.

This definition gives a very adaptable state equivalence relation whose meaning
can be modified by altering the assignments wp. If we take back our example, one
can consider two states q1 � q2 which are different only because they do not in-
clude the same assignments of the Widget property colourbox.colour (act1 = act2,
env1 = env2, but wp1 6= wp2). We have two equivalence classes [q1], [q2]. The equiv-
alence relation is adaptable in the sense that wpi can be changed as follows: if we
consider that colourbox.colour takes too much values and implies to much different
equivalence classes, colourbox.colour can be shifted from wpi to woi(i = 1,2) in
states. We obtain wp1 = wp2, q1 ∼ q2 and only one equivalence class [q1]. Intu-
itively, our algorithm uses this adjustment process to dynamically reduce the equiv-
alence class domain and the state exploration according to the screen content.
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1.4.2 Model inference Algorithm

In this section, we describe more precisely the Explore procedure (second part of
the overview in Figure 1.2) whose pseudo code is given in Algorithm 1. Due to lack
of room, the task-pool management algorithm can be found in [11].

As stated above, this procedure aims at visiting one state to augment the PLTS
under construction, denoted P, with new transitions and states and to eventually
produce new tasks Explore(q, p) added to the task-pool. Its steps are explained
below:

• Test data generation and execution (lines 4-11): the current screen is analysed
to generate a set of events expressing how to complete Widgets with values and
to trigger an event. In short, our algorithm generates a set of events of the form
{event(α) | event is an event,α is an assignment}. It starts collecting the events
that may be applied on the different Widgets of the current screen. Then, it con-
structs assignments of the form w1 = v1∧ ...∧wn = vn, with (w1, ...,wn) the list
of editable Widget properties found on the screen and (v1, ...,vn), a list of test
values. Instead of only using random values, we propose to use several data sets:
a set User gathering values manually chosen such as logins and passwords, a set
RV composed of values well known for detecting bugs e.g., String values like
”&”, ””, or null, and of random values. A last set, denoted Fakedata, is com-
posed of fake user identities. Furthermore, we adopted a Pairwise technique [5]
to derive a set of assignment tuples over these data sets. Assuming that errors can
be revealed by modifying pairs of variables, this technique strongly reduces the
coverage of variable domains by constructing discrete combinations for pair of
parameters only. Then, each event(α) is applied on the current screen to produce
new ones (application crash included). Each screen is analysed to retrieve Wid-
get properties and the activity which produces this screen. Probes are requested
to detect if the application environment were modified. These data are formalised
by the state q2,

• Model readjustment: the Explore procedure now checks whether the re-adjustment
of P and of the state equivalence classes is required (lines 9-12). We denote
CW prop(Q/∼) the number of assignments of the same Widget property W prop
found in the set of equivalence classes Q/∼. CW prop(Q/∼m) = card({α =
(W prop := val) | [q] ∈ Q/∼,q = (act,wp,wo,env,end),α ∈ wp}). For each as-
signment α = (W prop := val) in wp2, we check how much values the Widget
property W prop takes in the equivalence classes: if W prop takes more than 2
values in Q/∼ (if card(CW prop)(Q/∼) > 2), then we re-adjust the state repre-
sentation. In every state q = (act,wp,wo,env,end) of Q∪{q2}, the assignments
of the form (W prop := val) are shifted from wp to wo (procedure Readjust in
Algorithm 1 line 11). The equivalence classes are also transformed in accordance
(procedure Readjust line 12),

• PLTS completion: a new transition q
event(α)−−−−−→ q2 is added to the PLTS P (lines 13-

20). q2 is marked as final if q2 belongs to an existing equivalence class. Otherwise
(line 17), q2 has the assignment (end := f alse) and a new task Explore(q2, p′)
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Algorithm 1: Explore Procedure
1 Procedure Explore(q, p);
2 Events = GenEvents, analyse the current screen to generate the set of events
{event(α) | event is an event,α is an assignment};

3 foreach event(α) ∈ Events do
4 Experiment event(α) on App→ new screen Inew;
5 Analyse Inew→ assignments act2, wp2, wo2;
6 Analyse the application environment→ env2;
7 q2 = (act2,wp2,wo2,env2,end := null);
8 foreach α = {W prop := val} ∈ wp2 do
9 if card(CW prop(Q/∼)∪{α})> 2 then

10 Read just(Q∪{q2},W prop);
11 Read just(Q/∼,W prop);

12 if Inew reflects a crash or there exists [q′] ∈ Q/∼ such that q2 ∈ [q′] then

13 {Add a transition q
event(α)−−−−→ q2 = (act2,wp2, wo2,env2,end := true) to→P;

14 } (in critical section)

15 else

16 {Add a transition t = q
event(α)−−−−→ q2 = (act2,wp2,wo2,env2,end := f alse) to→P;

17 Q/∼= Q/∼∪{[q2]};
18 Add the task (Explore(q2, p.t)) to the task-pool;
19 } (in critical section)

20 Backtrack(q2,q, p);

is added to the task pool. Since the algorithm is highly parallelisable, we use
critical sections to modify the PLTS P (which is shared among threads),

• Application backtracking: to apply the next event, the Explore procedure calls
the Backtrack one (line 21) to reach the previous screen and state q. Its algo-
rithm is given in Algorithm 2. Here the notion of application environment really
makes a difference to achieve an exact model: if the current state q2 has an as-
signment (env := f alse), its reflects the fact that the application environment has
not be modified, therefore the Backtrack procedure calls the back mechanism to
undo the most recent action (if available). We observe a new screen and check
whether it is equivalent to the previous screen stored in q (we compare their Wid-
get properties). Otherwise, the application and its environment are reset and we
re-execute the path p to reach the state q (Algorithm 2, line 7) (here, we assume
that the application is deterministic though).

1.4.3 PLTS minimisation

Our algorithm performs a minimisation on the first generated PLTS to achieve a
more readable model. We have chosen a bisimulation minimisation technique since
this one still preserves the functional behaviours represented in the original model
while reducing the state space domain. A detailed algorithm can be found in [6]. In
short, this algorithm constructs sets (blocks) of states that are bisimilar equivalent
(any action from one of them can be matched by the same action from the other and
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Algorithm 2: Backtrack procedure Algorithm
1 Procedure Backtrack(q2 = (act2,wp2,wo2,env2,end2),q = (act,wp,wo,env,end), p);

2 if env2 = (env := f alse) and the back mechanism is available then
3 Call the back mechanism→ screen INew;
4 Analyse Inew→ assignments rc′, wp′, wo′;
5 Analyse the application environment→ env′;
6 if act 6= act ′ or wp 6= wp′ or wo 6= wo′ or env 6= env′ then
7 Reset and Execute App by covering the actions of p;

8 else

9 Add a transition t = q2
back(α)−−−−→ q to→Tree;

10 else
11 Reset and Execute App by covering the actions of p;

the arrival states are again bisimilar). Figure 1.3c depicts the (simplified) minimised
PLTS of the application example. Here, final states are aggregated into one block of
states.

1.4.4 Algorithm correctness, complexity and termination

We express the correctness of our model inference method in term of trace equiva-
lence between the inferred PLTS and the traces of the application under test:

Proposition 1. Let P be a PLTS constructed with our model inference algorithm
from a deterministic mobile application App. We have Traces(P)⊆ Traces(App).

The proof is given in [11]. Intuitively, our algorithm constructs a PLTS P with
these steps:

1. Generation of PLTS: from a given state q, every new event applied on the appli-
cation is modelled with a unique transition whose arrival state q2 is new or final.
We do not merge states and hence we construct a PLTS P,

2. Correct use of the back mechanism: we call this mechanism with care: it is called
only if the environment of the application (databases, remote servers, etc.) were
not modified with the execution of the last action. Indeed, if we apply the back
mechanism even so, we necessarily reach a new state since the application envi-
ronment is modified. Secondly, we check if the state of the application obtained
after the call of the back mechanism is really the previous state of the application.
If one of these conditions is not met, we reset the application and its environment
and we re-execute the path p to reach the state q,

3. Minimisation with trace equivalence: we apply a bisimulation minimisation tech-
nique to produce a PTLS MP from P such that the two PLTS are bisimilar and
consequently trace equivalent as well.

Complexity and termination of the Algorithm: our algorithm builds at most
2 ∗ 2n equivalence classes, with n the number of Widget properties in W . In short,
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we can have two different (env := true, env := f alse) and mn different assignments
over W if m is the maximum number of values that any Widget property can take.
Nonetheless, when a property of W takes more than two values, our algorithm shifts
it from the assignment wp to wo in states. Furthermore, since we explore one state
per equivalence class, the algorithm ends and we have 2 ∗ 2n equivalence classes
and not final states. We also have at most nm transitions (Pairwise testing [5]) for
each. If N and M stand for the number of not final states and transitions, the whole
algorithm has a complexity proportional to O(M +N +MN +Mlog(N)). Indeed,
the Explore procedure covers every transition twice (one time to execute the event
and one time to go back to the previous state) and every not final state is processed
once. But, sometimes the back mechanism is not available. In this situation, the
application is reset to go back to a state q by executing the events of a path p at
worst composed of M transitions. In the worst case, this step is done for every state
with a complexity proportional to NM. Furthermore, the minimisation procedure
has a complexity proportional to O(Mlog(N)) [6].

1.5 Empirical Evaluation

We present here some experimentations on Android applications to answer on the
following questions: does the algorithm offer good code coverage in a reasonable
time delay? How are the models in terms of size and quality for analysis?

We have implemented our algorithm in a tool called MCrawlT (Mobile Crawler
Tool 1). It takes packaged applications or source projects and user data e.g., logins
and passwords required for the application execution. MCrawlT is based on the
testing framework Robotium 2 which retrieves the Widget properties of a screen and
simulates events.

To avoid any bias, we compare the effectiveness of MCrawlT with the following
available tools, Monkey [7] and Dynodroid [8], on applications taken as reference
in the papers [12, 9, 4, 8] and whose source code is available (30 applications). The
results of some other tools Orbit [12], Guitar [9] and Swifthand [4] are taken from
the papers. It is important to note that Monkey is taken as a reference in most of
the papers dealing with Android testing. Thereby, our results can be compared with
other studies related to Android testing.

Code coverage: Table 1.1 reports the percentages of code coverage obtained
with the different tools on 30 applications with a time budget of three hours. If
we do a side by side comparison of MCrawlT with the other tools, we observe
that Monkey provides better code coverage for 8 applications, SwiftHand for 2 and
Dynodroid for 5. In comparison to all the tools together, MCrawlT provides better
code coverage for 20 applications, the coverage difference being higher than 5%
with 13 applications. These results show that MCrawlT gives better code coverage

1 available here https://github.com/statops/mcrawlert.git
2 https://code.google.com/p/robotium/
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Applications Monkey Orbit Guitar MCrawlT SwiftHand Dynodroid
NotePad 60 82 88 crash
Tippy TipperV1 41 78 79 48
ToDoManager 71 75 71 81 34
OpenManager 29 63 65 crash
HelloAUT 71 86 51 96 76
TomDroid 46 70 76 42
ContactManager 53 91 71 68 28
Aardict 52 65 67 51
Musicnote 69 81 72.2 47
Explorer 58 74 74 crash
Myexpense 25 61 41.8 40
Anynemo 61 54 52.9 crash
Whohas 58 95 59.3 65
Mininote 42 26 34 39
Weight 51 34 62 56
Tippy TipperV2 49 74 68 12
Sanity 8 26 19.6 1
Nectdroid 70.7 54 68.6
Alogcat 66.6 66 67.2
ACal 14 46 23
Anycut 67 71 69.7
Mirrored 63 76 60
Jamendo 64 46 3.9
Netcounter 47 56 70
Multisms 65 73 77
Alarm 77 72 55
Bomber 79 75 70
Adsdroid 72 83 80
Aagtl 18 25 17
PasswordFor Android 58 61 58

Table 1.1 Code coverage (in %)

than the other tools and even offers good results against all the tools together on half
the applications with comparable execution times. Table 1.1 also reveals that the
obtained code coverage percentage is between 25% and 96%. We manually analysed
the 8 applications which yield the less good results with MCrawlT to identify the
underlying causes behind low coverage. This can be explained at least by these
ways:

• Specific functionalities and unreachable code: several applications are incom-
pletely covered either on account of unused code parts (libraries, packages, etc.)
that are not called, or on account of functionalities difficult to start automatically,

• Unsupported events: several applications e.g., Nectdroid, Multism, Acal or Alog-
cat chosen for experimentation with Dynodroid take UI events as inputs but also
system events such as Android broadcast messages. Our tool does not support
these events yet. Moreover, MCrawlT only supports the event list also supported
by the testing tool Robotium (viz. click and scroll). The long click is thus not
supported but is used in some applications (Mininote and Contactmanager). In
contrast, Orbit supports this event and therefore offers a better code coverage
with the application Contactmanager.

Quality and size of the models: Table 1.2 finally shows the number of states
obtained with MCrawlT, Orbit [12] and SwitHand [4] since they produce models
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Applications #PLTS states
(MCrawlT)

#states after
minimisation
(MCrawlT)

#states (Orbit) #states (Swift-
Hand)

NotePad 13 8 7
Tippy TipperV1 37 18 9
ToDoManager 6 2
OpenManager 31 12 20
HelloAUT 8 5 8
TomDroid 12 6 9
ContactManager 5 4 5
Sanity 31 24 78
Musicnote 41 23 46
Explorer 96 74 195
Myexpense 52 37 149
Anynemo 139 106 169
Whohas 36 11 97
Mininote 45 19 169
Tippy TipperV2 54 26 71
Weight 69 23 109

Table 1.2 Inferred model size

as well. Before minimisation, our tool generates larger and tacitly less comprehen-
sive models than those obtained with Orbit. In term of quality of the learned mod-
els, we do not produce extrapolated models and we believe that those generated by
MCrawlT offer more testing capabilities. Indeed, these models include states which
store all the observed Widget properties (colours, texts, etc.) and notifications about
the application environment changes. We have precisely chosen this feature to later
perform test case generation. For instance, with this amount of information, we can
construct test cases to apply events and to check the content of the resulting screen
but also if remote servers are called, etc. Both Orbit and SwiftHand only store UI
events. After minimisation, we obtain more compact and readable models whose
sizes are comparable to the sizes of the models obtained with Orbit. This tends to
show that our approach of producing larger but more detailed models that are after
minimised, only offer advantages for model inference. In addition, MCrawlT con-
structs storyboards from these minimized models by replacing states with screen-
shots of the application.

All these experimental results on real applications tend to show that our tool is
effective and can be used in practice since it produces equivalent or higher code
coverages than the other tools.

1.6 Conclusion

In this paper, we present an algorithm which infers PLTS models from mobile ap-
plications. It constructs PLTSs that capture events and all the Widget properties
extracted from the observed screens. Despite the huge amount of collected data,
we avoid the state space explosion problem by using an equivalence relation and
classes that are dynamically re-adjusted all along the algorithm execution with re-
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gards to the screen content. Our experimental results show that our algorithm offers
good code coverage quickly and can be used in practice. Furthermore, the gener-
ated models can be reused for precise model analysis. An immediate line of future
work would be to apply this kind of algorithm for security breach detection. The ex-
ploration could be specialised to target some specific application parts (login step,
etc.). Then, test cases could be automatically generated from test patterns to further
explore specific states with the purpose of improving detection.
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