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Abstract This paper tackles the problems of choosing security solutions and writ-
ing concrete security test cases for software, which are two tasks of the software life
cycle requiring time, expertise and experience. We propose in this paper a method,
based upon the notion of knowledge base, for helping developers devise more secure
applications from the threat modelling step up to the testing one. The first stage
of the approach consists of the acquisition and integration of publicly available se-
curity data into a data-store. This one is used to assist developers in the design of
Attack Defense Trees expressing the attacker possibilities to compromise an appli-
cation and the defenses that may be implemented. These defenses are given under
the form of security pattern combinations, a security pattern being a generic and
re-usable solution to design more secure applications. In the second stage, these
trees are used to guide developers in the test case generation. Test verdicts show
whether an application is vulnerable to the threats modelled by an ADTree and
whether the consequences of the chosen security patterns are observed from the
application (a consequence leading to some observable events partly showing that
a pattern is correctly implemented). We applied this approach to Web applications
and evaluated it on 24 participants. The results are very encouraging in terms of
the two criteria Comprehensibility and Effectiveness.

Keywords Security; Security patterns; Attack Defense Trees; Test case
generation.

1 Introduction

One of the main motivations for software security is to prevent attackers from ex-
ploiting application defects, in order to compromise the security of critical systems
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or to disclose and delete user data. But, is this motivation sufficient to counter-
balance the layers of complexity required to build secure applications? Software
developers must indeed be educated on a wide array of security concerns. They
must take security into consideration from the modelling step up to the validation
step of an application. Different kinds of expertise are then required, e.g., to repre-
sent threats, to select the most appropriate security solutions w.r.t. an application
context, to write tests in this context, etc. Besides, these tasks are time-consuming.

Several researchers, organisations or companies have published digitalised se-
curity bases, documents and papers, e.g., (OWASP, 2016; Mitre corporation, 2015;
del Pilar Salas-Zárate et al, 2015), to guide developers in designing and coding se-
cure applications. For instance, the CAPEC base makes publicly available around
1000 attack descriptions, including their goals, steps, techniques, the targeted vul-
nerabilities, etc. In another context, security pattern catalogues, e.g., (Slavin and
Niu, 2017; Yskout et al, 2015), list 176 re-usable solutions for helping developers
design more secure applications. This plethora of diverse documents makes devel-
opers drown in a sea of details because these documents take security at different
levels of the software life cycle and hence are presented with different viewpoints
(attackers, defenders, etc.), abstraction levels (security principles, attack steps, ex-
ploits, etc.) or contexts (system, network, etc.). Developers actually lack guidance
for choosing security solutions in these documents and for generating concrete
security test cases.

This work focuses on these issues and proposes an approach and a tool for
helping developers devise more secure applications from the threat modelling step
up to the testing one. The originality of the approach resides in the fact that it is
knowledge based. Indeed, the initial stage of the method consists of the acquisition
and integration of publicly available security documents into a data-store. This
knowledge base is then exploited to assist developers in the threat modelling stage,
in the choice of security solutions, and in the testing process. Our approach should
be suitable for several sort of applications, provided that enough documentation
is available to fill the data-store. We consider Web applications in the paper.

We introduced in (Salva and Regainia, 2017b) a method for building a data-
store integrating relationships among attacks, attack steps, techniques, security
principles and security patterns. Our first contribution is to complete this data-
store with new data and relations, e.g., test cases using the pattern “Given When
Then” (shortened GWT), so that the data-store can now be employed for testing.
The other contributions of the paper are summarised below.

– The approach assists a first team of engineers in the threat modelling stage,
which is a process consisting in identifying and describing the attacker goals
and capabilities, as well as identifying the potential threats of an application.
The approach guides developers in the generation of detailed Attack Defense
Trees (ADTrees (Kordy et al, 2012)), which express the attacker possibilities
to compromise an application. They also give the defenses that may be put in
place to prevent attacks with security patterns. We have chosen this tree model
because it offers the advantage of being easy to understand even for novices in
security.

– The second part of the approach assists a team of developers in the writing
of concrete security test cases. We assume that this team knows how the ap-
plication is implemented. A test suite is automatically extracted from a given
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ADTree and the data-store. The test suite is composed of GWT test case stubs
that are associated with generic procedures. These are fulfilled of comments or
blocs of code, which aim at helping developers write concrete test cases. Test
cases are used to experiment an application under test (shortened AUT), seen
as a black-box. The resulting test verdicts show whether the AUT is vulnerable
to the threats modelled by an ADTree.

– The test suite is a set composed of lists of ordered GWT test cases, a list
being devoted to check whether an AUT is vulnerable to an attack, which is
segmented into an ordered sequence of attack steps. This test suite organisation
is used to reduce the test costs with the deduction of some test verdicts under
certain conditions.

– The GWT test cases also aim to check whether security patterns are correctly
implemented in the AUT. As we consider that the application is a black-box,
we do not have access to its structure. We hence focus on the consequences
of security patterns. These consequences list the impacts of the observable
changes brought by the correct implementation of a security pattern. The ap-
proach helps developers write test cases to get test verdicts expressing whether
security pattern consequences are detected in the AUT behaviour.

The generated test cases could be selected in several testing types or levels.
After the completion of the GWT test cases, these can be executed to detect
security issues or to verify that an application complies with some standards, as
security patterns are useful to evaluate existing systems (Fernandez et al, 2008).
Hence, the test cases can be used in System or Operational testing. As soon as
some specific functions of an application are available, these test cases can certainly
help detect vulnerability, but they can also be executed to check whether security
patterns are implemented. Hence, the test cases can help cover both functional
and non-functional aspects of an application.

As a proof of concept, we have implemented a tool and generated a data-
store specialised to the context of Web applications (Web sites). We employed
them to evaluate on 24 human subjects the benefits of using our approach. This
evaluation shows encouraging results with regard to the two following criteria,
Comprehensibility and Effectiveness.

Paper organisation: Section 2 outlines the background of this work. We
introduce the notion of security pattern, the ADTree model, the related work
and our motivations. Section 3 presents the data-store architecture. Next, we give
an overview of the steps of the approach in Section 4. We describe them more
formally in the two next sections. The threat modelling stage is detailed in Section
5, the test case generation and execution are explained and defined in Section 6.
Subsequently, Section 7 provides an evaluation of the approach and the threats to
validity. We finally conclude in Section 8.

2 Background

2.1 Security Patterns

Security patterns provide guidelines for secure system design and evaluation (Yo-
der et al, 1998). Schumacher (2003) postulates that the security pattern intuitively
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Fig. 1 Class layout of the security pattern “Input Guard”.

relates countermeasures to threats and attacks (stated in the problem) in a given
context. Generally, security patterns are described with texts or schema (UML di-
agrams), and are characterised by a set of structural and behavioural properties.
Security patterns have to be selected in the design stage, integrated in application
models, and eventually implemented.

Several security pattern catalogues are available in the literature, e.g., (Slavin
and Niu, 2017; Yskout et al, 2015), themselves extracted from other papers. In
these documents, a security pattern is often characterised with its solutions called
intents, its interests called forces and the consequences of the pattern, which are ob-
servable events resulting from the good integration and implementation of the pat-
terns in the application. A security pattern may have different relationships with
other patterns. These relations may noticeably help combine patterns together
and not to devise unsound composite patterns. Yskout et al (2006) proposed the
following annotations between two patterns: “depend”, “benefit”, “impair” (the
functioning of the pattern can be obstructed by the implementation of a second
one), “alternative”, “conflict”.

As example, Figure 1 portrays the class diagram of the security pattern “Input
Guard” whose purpose is to check the validity of inputs. This security pattern
structures an application in such a way that the input validation logic is centralised
and decoupled from the functional logic of the application. It may benefit from
the security pattern “Output Guard” in order to protect the application from
disclosing information in case of failures. This pattern is also an alternative to the
pattern “Application Firewall”.

2.2 Attack Defense Trees (ADTrees)

ADTrees are graphical representations of possible measures an attacker might take
in order to compromise a system and the defenses that a defender may employ to
protect the system (Kordy et al, 2012). ADTrees have two different kinds of nodes:
attack nodes (red circles) and defense nodes (green squares). A node can be re-
fined with child nodes and can have one child of the opposite type (linked with
a dashed line). Node refinements can be disjunctive or conjunctive. The former is
recognisable by edges going from a node to its children. The latter is graphically
distinguishable by connecting these edges with an arc. We extend these two refine-
ments with the sequential conjunctive refinement of attack nodes, defined by the
same authors in (Jhawar et al, 2015). This operator expresses the execution order
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Fig. 2 ADTree example modelling two injection attacks

of child attack nodes. Graphically, a sequential conjunctive refinement is depicted
by connecting the edges, going from a node to its children, with an arrow.

For instance, the ADTree of Figure 2 illustrates the goal of an attacker to
supply untrusted inputs to an application. The root node is here detailed with a
disjunctive refinement connecting two child nodes labelled with IDs of the CAPEC
base: the node CAPEC-66 refers to “SQL Injection” and the node CAPEC-244
refers to “Cross-Site Scripting via Encoded URI Schemes”.

An ADTree T can be formulated with an algebraic expression called ADTerm
and denoted ι(T ). In short, the ADTerm syntax is composed of operators having
types given as exponents in {o, p} with o modelling an opponent and p a proponent.
∨s,∧s,−→∧ s, with s ∈ {o, p} respectively stand for the disjunctive refinement, the
conjunctive refinement and the sequential conjunctive refinement of a node. A last
operator c expresses counteractions (dashed lines in the graphical tree). cs(a, d)
intuitively means that there exists an action d (not of type s) that counteracts the
action a (of type s). The ADTree of Figure 2 can be represented with the ADTerm
∨p(CAPEC-66, CAPEC-244).

2.3 Related Work

A plethora of papers proposed methods for generating concrete test cases from
models to check the security of systems, protocols or applications. Among them,
several papers focused on models not to describe the implementation behaviour
but rather to express the attacker goals or the vulnerability causes of the system.
Such models are conceived during the threat modelling phase of the system (Torr,
2005), which is considered as a critical phase of the software life cycle since ”you
cannot build a secure system until you understand your threats!” (Howard and
LeBlanc, 2003). Schieferdecker et al (2012) presented a survey paper referencing
some approaches in this area. For instance, Xu et al (2012) proposed to test the
security of Web applications with models as Petri nets to describe attacks. Attack
scenarios are extracted from the Reachability graphs of the Petri nets. Then, test
cases written for the Selenium tool 1 are generated by means of a MIM (Model-
Implementation Mapping) description, which maps each Petri net place and tran-
sition to a block of code. Bozic et al (2014) proposed a security testing approach
associating UML state diagrams to represent attacks, and combinatorial testing
to generate input values used to make executable test cases derived from UML
models.

Other authors preferred focusing on trees (Attack trees, vulnerability Cause
Graphs, Security Activity Graphs and similar models) to represent the threats,
attacks or vulnerability causes that should be prevented in an application. From

1 http://www.seleniumhq.org/
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these models, test cases are then written to check whether attacks can be suc-
cessfully executed or whether vulnerabilities are detected in the implementation.
Morais et al (2009) introduced a security testing approach specialised for network
protocols. Attack scenarios are extracted from an Attack tree and are converted to
Attack patterns and UML specifications. From these, attack scripts are manually
written and are completed with the injection of (network) faults. In the security
testing method proposed by Marback et al (2009), data flow diagrams are con-
verted into Attack trees from which sequences are extracted. These sequences are
composed of events combined with parameters related to regular expressions as in
(Xu et al, 2012). These events are then replaced with blocks of code to produce test
cases. The work published in (El Ariss and Xu, 2011) provides a manual process
composed of eight steps. Given an Attack tree, these steps transform it into a State
chart model, which is iteratively completed and transformed before using a model-
based testing technique to generate test cases. In (Marback et al, 2013), test cases
are generated from Threat trees. The latter are previously completed with param-
eters associated to regular expressions to generate input values. Security scenarios
are extracted from the Threat trees and are manually converted to executable test
scripts. Shahmehri et al (2012) proposed a passive testing approach, which moni-
tors an AUT to detect vulnerabilities. The undesired vulnerabilities are modelled
with security goal models, which are specialised directed acyclic graphs showing
security goals, vulnerabilities and eventually mitigations. Detection conditions are
then semi-automatically extracted and given to a monitoring tool.

Besides security testing, some works tackled the verification or testing of secu-
rity patterns. Verification of patterns on models was studied in (Dong et al, 2010;
Hamid et al, 2012; Kobashi et al, 2015; Regaigna et al, 2016). In these papers,
security pattern goals or intents or structural properties are specified with UML
sequence diagrams (Dong et al, 2010) with OCL expressions (Hamid et al, 2012;
Kobashi et al, 2015) or with LTL properties (Regaigna et al, 2016) and are verified
with tools on UML models. But, these papers are out of the scope of this work,
which deals with security pattern testing. Surprisingly, we found only one paper
about this topic. Yoshizawa et al (2014) introduced a method for checking whether
the behavioural and structural properties of security patterns are detected in ap-
plication traces. Given a security pattern and a UML model of the application, two
test templates (OCL expressions) are written, one test Aspect template to specify
the pattern structure and another test template to describe its behaviour. Then,
developers build test cases by making these templates concrete with respect to
an application model (class and sequence diagrams). They have to provide input
values and write Selenium scripts. The application, which is instrumented with
debugging tools, is experimented with these test cases to return a set of traces
(method calls). Finally, the approach checks whether the OCL expressions given
in the test templates hold on the trace set.

2.4 Open Issues and Contributions

On the one hand, the writing of detailed threat models requires a lot of expert
knowledge and of documents. The referred papers neither guide developers in the
threat modelling phase nor provide security solutions. On the other hand, some
methods propose to generate test cases from (formal) specifications. These test



An Approach for Guiding Developers in... 7

cases are often abstract, they cannot be directly used to experiment an AUT.
Some methods tried to tackle this problem using a mapping technique. However,
this kind of technique is usually very limited in its capability to translate abstract
tests into concrete ones. Hence, most of the security testing approaches, especially
those taking threat models as inputs, rely on developers to write concrete test
cases. But, they do not give any recommendation on how to write and structure
executable tests or to make them reusable.

This work brings together the notions of security documents, threat modelling,
the writing of concrete test cases and their executions to help developers in these
tasks. Once he or she has given its initial test requirements with a first ADTree,
our approach semi-automatically completes it with attack steps, techniques and
defenses. Our approach assists developers in the test suite generation, by structur-
ing test cases and by completing them with comments or blocks of code. The test
case execution provides verdicts expressing whether the application is vulnerable
to the threats modelled in the ADTree or whether its behaviour includes the ob-
servable consequences of the security patterns. Hence, our approach is compatible
with and complementary to the method given in (Yoshizawa et al, 2014). We have
also taken into consideration several quality criteria to design this approach. In
particular, we emphasised Navigability and Comprehensibility, which are quality
criteria, given in (Alvi and Zulkernine, 2012; Yskout et al, 2015), respectively re-
lated to: the ability to direct a software designer among collaborative and related
patterns; the ease to understand patterns by both a novice and expert developer.
Furthermore, we have concentrated our efforts on several criteria given by Rojas
et al (2015). These authors studied the effects of using an automated test gen-
eration tool during development and evaluated some criteria on human subjects.
They concluded that the Readability of the test cases, the Integration of the test
generation approaches in the software life cycle and Education are the most im-
portant criteria to improve the Efficiency and Effectiveness of developers. These
two last criteria are used for evaluating our approach.

Prior to this paper, we proposed a semi-automatic data integration method in
(Salva and Regainia, 2017b) to extract security pattern classifications. Section 3.1
summarises the results of this work used in this paper, i.e., the first meta-model
version of the data-store. For this paper, we extend the data-store meta-model to
support the generation of concrete security test cases. We proposed a preliminary
version of this work in (Salva and Regainia, 2017a). The present paper is an
extended version, which provides an overview of the approach from the developer’s
viewpoint, details the ADTree generation, adds the inconclusive test verdict , and
includes additional evaluation results and examples. Besides, we consider in this
paper that the most concrete attacks are detailed with sequences of steps, and we
generate test suites composed of ordered lists of test cases (we always used sets in
the original paper). We take advantage of this sequential order of steps to propose
a test case model of execution based on real executions and implicit deductions.
This helps reduce test costs.

3 Data-store Architecture

Our approach is based on the notion of knowledge extracted from various available
resources, which are integrated into a data-store. We introduce in this section the
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data-store architecture we devised to later generate Attack Defense Trees and test
cases. We refer to (Salva and Regainia, 2017b) for the detailed description of the
manual or automatic steps required to build the first part of this data-store. Then,
we present an extension, which also integrates the notions of GWT test cases and
test architectures.

Fig. 3 Data-store meta-model

3.1 Data-store Meta-model for the ADTree Generation

We proposed in (Salva and Regainia, 2017b) a semi-automatic data integration
method to build a data store, which exposes relationships among attacks of the
CAPEC base, security principles and security patterns of the catalogue given in
(Yskout et al, 2015). Figure 3 exposes the meta-model used to structure this data-
store (white entities). The entities refer to security properties and the relations
encode associations among them.

This meta-model is the result of observations we made from the literature and
some security documents, e.g., the CAPEC base: we consider that an attack can
be documented with more concrete attacks, which can be segmented into ordered
steps; an attack step provides information about the target or puts an application
into a state, which are reused by a potential next step. Attack steps are performed
with techniques and can be prevented with countermeasures.

Security patterns are characterised with strong points, which are pattern fea-
tures extractable from their descriptions. The meta-model also captures the inter-
pattern relationships defined in Yskout et al (2006), e.g., ”depend” or ”conflict”.
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In both sides, countermeasures and strong points refer to the same notion of at-
tack prevention. But finding direct relations between countermeasures and strong
points is tedious as these properties have different purposes. To solve this issue,
we used a text mining and a clustering technique to group the countermeasures
that refer to the same security principles, which are desirable security properties.
To link clusters and strong points, we chose to focus on these security principles
as mediators. As exposed in Figure 3, we organise security principles into a hi-
erarchy, from the most abstract to the most concrete principles. We provide a
complete description of this hierarchy in (Salva and Regainia, 2017b). In short, we
collected and organised 66 security principles covering the security patterns of the
catalogue given in Yskout et al (2015). The hierarchy has four levels, the first one
being composed of elements labelled by the most abstract principles, e.g., “Access
control”, and the lower level exhibiting the most concrete principles, e.g., “File
authorization”.

3.2 Test Case Representation and Data-store Meta-model Update

We consider in this paper that a test case is a piece of code that lists stimuli
supplied to an AUT and responses checked by assertions assigning (local) verdicts.
To make test cases readable and re-usable, we use the behaviour driven approach
using the pattern “Given When Then” (shortened GWT) to break up test cases
into several sections:

– Given sections aim at putting the AUT into a known state;
– When sections trigger some actions (stimuli);
– Then sections are used to check whether the conditions of success of the test

case are met with assertions. In the paper, we consider two kinds of Then sec-
tions. We use Then sections to check if an AUT is vulnerable to an attack step
st. In this case, the Then section returns the verdict “Passst”. Otherwise, it
provides the verdict “Failst”. When a unexpected event occurs, we also assume
that “Inconclusivest” is returned. Furthermore, we consider other Then sec-
tions for testing the detection of pattern consequences in the AUT behaviour.
These Then sections return “Failsp” if a consequence of the security pattern
sp is not detected.

To later generate GWT test case stubs, we extend the data-store briefly men-
tioned before with new entities and relations. The additional entities are depicted
in grey in Figure 3. We now associate every attack step to one Given, When, and
Then section. Likewise, we map every security pattern consequence onto one Then
section. In addition, a test case section is linked to one procedure, which imple-
ments the test case section. A section or a procedure can be reused with several
attack steps or security patterns.

The meta-model of Figure 3 also reflects the fact that an attack step is asso-
ciated with one “Test architecture” and with one “Application context”. The for-
mer refers to textual paragraphs explaining the points of observation and control,
testers or tools required to execute the attack step on an AUT. An application
context refers to a family, e.g., Android applications, or Web sites. As a conse-
quence, a GWT test case section (and procedure) is classified according to one
application context and one attack step or pattern consequence.
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@When(”ˆspider the application”)
public void theApplicationIsSpidered() {
// Try one of the following techniques :
// 1. Spider web sites for all available links
// 2. Sniff network communications.
url = ”URL to be scanned”;
try { spider(url);} catch (InterruptedException e){e.printStackTrace();}
waitForSpiderToComplete();}

Fig. 4 An example of procedure related to a GWT test case section When.

In some specific application contexts, a procedure, composed of comments or
of blocks of code, can be reused with all the applications of the same context.
This is usually the case for procedures calling penetration testing tools. For in-
stance, Figure 4 illustrates a procedure calling the tool Zaproxy 2 to explore a
Web application through its URLs. This procedure needs to be completed as no
URL is provided. But it is generic in the sense that it can be reused with any Web
application. We call this kind of procedures Generic procedure and we propose to
store them into the data-store to ease the test case development. The data-store
must only contain generic procedures related to an Application context.

Definition 1 (Generic procedure) Let C be an application context. A generic
procedure is a block of code, related to a Given, When or Then test case section
that can be used with any application of the context C.

As a proof of concept, we have generated a data-store specialised for the Web
application context. The paper (Salva and Regainia, 2017b) details the steps that
perform the data acquisition and integration. The data-store includes information
about 215 attacks (209 attack steps, 448 techniques), 26 security patterns (43
consequences, 36 strong points), 66 security principles. We also generated 627
GWT test case sections (Given, When and Then sections) and 209 procedures.
The latter are composed of comments explaining: which techniques can be used to
execute an attack step, which observations reveal that the AUT is vulnerable, or
which observations indicate that a pattern consequence is not detected. Examples
of procedures are given in Figures 8 and 9. With the Web application context,
we observed that several procedures can be generic. We manually completed 32
procedures, which cover 43 attack steps. We used the testing framework Selenium
and the penetration testing tool ZAProxy, which covers varied Web vulnerabilities.
This data-store is available in (Regainia and Salva, 2017).

4 Approach Overview

We introduce in this section a motivating example that covers the main steps of our
approach from the developer’s viewpoint (the formal aspects are concealed here).
We have implemented the approach into a tool publicly available in (Regainia and
Salva, 2017), which consists of two main parts: a set of command lines allowing
to build the data-store, and a software program that semi-automatically generates
ADTrees and GWT test cases. This tool only supports Web applications (websites)

2 https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project
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Fig. 5 Threat modelling and test case generation

at the moment. This is why we consider the AUT is here a Web application whose
behaviour is captured by means of its HTTP messages.

As illustrated in Figure 5, the purpose of this approach is twofold. During the
requirement analysis, it aims at guiding developers through the elaboration of a
threat model (left side of the figure). Then, it helps generate and execute test
suites to check whether the AUT is vulnerable to attacks and whether security
pattern consequences are detected in the AUT behaviour (right side of the figure).

4.1 Threat Modelling Stage

The threat modelling is split up into four steps.
Step 1: the developer establishes a first raw ADTree T0 whose root node represents
the attacker goal and child nodes its refinement. We restrict the relations between
nodes to disjunctive and conjunctive refinements here. The tool ADTool, proposed
by Kordy et al (2013), can be used to edit this ADTree. An ADTree example is
given in Figure 2 and is taken back in Figure 5. The ADTree T0 is often incomplete,
hence implementing a secure application or deriving test cases from it remains a
tedious task.
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Fig. 6 ADTree of the Attack CAPEC-66

Step 2: the approach generates an ADTree for every attack node labelled with
a CAPEC attack in T0. This new ADTree subdivides the CAPEC attack into
sub-attacks and so forth. The lowest attack steps are linked to techniques (at-
tack leaves) and to defense nodes expressing security pattern combinations. Every
ADTree can be edited with the tool ADTool. For instance, Figure 6 depicts the
ADTree of the attack CAPEC-66, which was exported from ADTool. Every attack
step has a defense node expressing pattern combinations. The attack leaves are
techniques. The attack step 1.1, which relates to the application exploration or
“spidering” can be countered with a combination of two security patterns “Audit
Interceptor” and “Security Logger”.

Step 3: the developer edits the generated ADTrees. He or she can remove some at-
tack nodes and has to select a combination of security patterns for each attack step
node in such a way that a defense node only has conjunctive refinements. These
conjunctive refinements represent the security pattern sets that have to be inte-
grated and implemented in the application. The generated ADTrees are designed
to guide him or her in this step. Indeed, patterns are combined with classical logic
operations. Besides, ADTrees provide inter-pattern relationships revealing the con-
flicting or dependent patterns. During these editions, we believe that a novice in
security is educated on attacks and security patterns, as an ADTree gives the
attack functioning and the related defenses.

If we take back the example of ADTree given in Figure 6, the step 2.1 can
be countered with the patterns “Secure Logger”, “Input Guard” and “Output
Guard”. The last two patterns may be replaced by “Application Firewall”.

Step 4: the tool automatically completes the ADTree T0 with the generated ones
and yields one final ADTree denoted Tf .
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@capec66
Feature: CAPEC−66: SQL Injection
#2. Experiment
Scenario: Step2.1 Determine user−controllable input susceptible to injection
Given prepare to Determine user−controllable input susceptible to injection
When Try to Determine user−controllable input susceptible to injection
# assertion for attack step success
Then Assert the success of Determine user−controllable input susceptible to injection
#assertions for security pattern testing (observable pattern consequences)
Then Assert the consequences of the pattern Input guard
Then Assert the consequences of the pattern Output guard
Then Assert the consequences of the pattern Secure logger

Fig. 7 An example of Feature file

4.2 Test Case Generation and Execution

Step 5: for every attack step labelled in Tf , the approach automatically generates
a GWT test case stub, which is composed of two parts. A first file called feature
contains scenarios, themselves split up into GWT test case sections. The test case
sections still have a high level of abstraction, but they refer to procedures that
implement them. These are stored into a second file. Our tool generates GWT test
case stubs based up the Cucumber framework, which supports several languages.
At the moment, our tool generates test case stubs written with Java and Junit,
which are gathered into an Eclipse project.

Figure 7 lists the GWT test case generated for the attack step “2.1” illustrated
in the ADTree of Figure 6. Two kinds of Then sections are used. The first Then
section aims at testing whether the AUT has an interface susceptible to injection.
The last three Then sections test whether the consequences of the security patterns
“Input Guard”, “Output guard” and “Secure logger” are detected from the AUT
behaviour (HTTP messages with our example).
Step 6: the developer has to complete the procedures of the GWT test case stubs.
We believe that the separation of every test case into sections and the links to the
ADTree Tf (associations among steps, security patterns and procedures) make
this step easier.

In our context of Web applications, a procedure can be implemented by means
of a testing framework such as Selenium or can call penetration testing tools.
Figure 8 shows an example of complete procedure related to the GWT test case
section “When Try to Determine user-controllable input susceptible to injection”.
The comments correspond to the techniques given in the ADTree Tf , extracted
from the data-store. This procedure was completed to call the tool ZaProxy to
apply the second technique. The tool covers the application by means of the URLs
collected by the previous step Explore of the attack CAPEC-66. ZaProxy tries to
inject code and malicious inputs in all of the HTTP requests and analyses the
HTTP responses. If the application is vulnerable, alerts are received in the section
“Then Assert the success”. Figure 9 shows another example of procedure imple-
menting the section “Then Input Guard security pattern is present”. If “Input
Guard” is correctly implemented, the sending of erroneous inputs should bring
the application to a quiescent state (observed with the HTTP status 503, 408)
or the latter should return messages reporting that errors have been detected.
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@When(”Try to Determine user−controllable input susceptible to injection”)
public void trydetermineusercontrollableinputsusceptibletoinjection (){
// Try one of the following techniques :
//1. Use web browser to inject input through text fields or through HTTP GET

parameters.
//2. Use a web application debugging tool such as Tamper Data, TamperIE,

WebScarab,etc. to modify HTTP POST parameters, hidden fields, non−freeform
fields, etc.

//3. Use XML files to inject input.
//4. Use network−level packet injection tools such as netcat to inject input
//5. Use modified client (modified by reverse engineering) to inject input.
List<HarEntry> URLlist = j.getHistory();
for ( int i=0 ; i<URLlist.size(); i++ ) {
url = j.getHistory() .get( i ) .getRequest().getUrl() ;
j .scan(url) ;
int complete = 0;
int scanId = j.getLastScannerScanId();
while (complete < 100) {
complete = j.getScanProgress(scanId);
try {Thread.sleep(1000);} catch (InterruptedException e) { e.printStackTrace();} }}}

Fig. 8 The procedure related to the When section of Figure 7

@Then(”ˆInput Guard security pattern is present$”)
public void Input Guard security pattern is present() {
try{
//check that an erroneous input is not propagated
//Recept of empty outputs or outputs showing unauthorised accesses
//Recept of HTTP status showing incorrect, unauthorised accesses
assertThat(”Pass sp”,app.getdriver() .getPageSource(), anyOf(equals(””),

containsString( ”error”), containsString(”forbidden”),
containsString(”unauthorized”)));

//HTTP status(503, 408 for quiescent state, the others for Unauthorized accesses)
assertThat(”Pass sp”,con.getResponseCode(),anyOf(is(200),is(503),is(408), is (400),

is (401), is (403), is (405), is (409), is (500));
}catch(Exception e){ fail (”Inconclusive sp”)}}

Fig. 9 The procedure related to the last THEN section of Figure 7

Another possible consequence of the pattern is that the application may stop its
execution or crash (which can be observed with the HTTP status 500). However,
the fact of catching an unexpected exception leads to the inconclusive verdict.

Step 7: once, all the test cases are completed, the developer deploys a test archi-
tecture. The report generated in Step 4 helps him or her in this task. Thereafter,
the AUT is experimented with test cases. Several test verdicts are pulled out of the
test execution logs. These are defined in Section 6. Table 1 informally summarises
the meaning of some test verdicts and some corrections that may be followed in
case of failure.

5 Threat Modelling, Attack Defense Tree Generation

This section describes more formally the threat modelling phase depicted in Figure
5. We introduce a few definitions that we use to establish test verdicts.
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Table 1 Test verdict Summary and solutions

Vulnera-
ble(Tf )

Unsatc(
SP (Tf ))

Inconclu-
sive(Tf )

Corrective actions

False False False No issue detected
True False False At least one attack-defense scenario is successfully applied on the

application. Fix the pattern contextualisation or implementation.
Or the chosen patterns are inconvenient.

False True False Some pattern consequences are not detected from the AUT be-
haviour. Check the pattern implementations. A pattern may be
incorrectly implemented or another pattern conceals the conse-
quences of the former.

True True False The chosen security patterns are useless or incorrectly imple-
mented. Fix the security patterns, models and AUT .

T/F T/F True The test case execution crashed or returned unexpected excep-
tions. Check the test architecture, the application interfaces, or
the test case codes.

The developer firstly builds a first ADTree T0, which describes some combina-
tion of attacks that can be applied on the application to be developed and tested.
Different methods can be followed, e.g., DREAD (OWASP, 2016), to build this
threat model. As our data-store is framed upon the CAPEC base, we assume that
the ADTree T0 has leaves labelled by CAPEC attack identifiers. Otherwise, a se-
mantic alignment may be required to replace some attack labels by similar attack
identifiers available in the CAPEC base.

As stated previously, for every attack A labelled in T0, an ADTree T (A), is
generated from the data-store. This ADTree has the generic form given in Figure
10(a) and is achieved by means of the following steps:

1. the ADTree T (A) has a root attack node labelled by A. This root node is
linked to other attack nodes Ai with a disjunctive refinement if the attack has
sub-attacks. This step is repeated for every sub-attack;

2. for each attack Ai of the preceding tree, we collect all its steps from the data-
store. The node labelled by Ai is refined with a sequential conjunction of
attack nodes, one for each of its steps. We repeat this process if a step is itself
composed of steps. For each step st, the related techniques are extracted from
the data-store and are linked to the node labelled by st with a disjunctive
refinement;

3. for each step st, we extract the set of security patterns P that are counter-
measures of st. Given a couple of patterns (p1, p2) ∈ P , we illustrate their
relationships with new nodes and logic operations as follows. If we have:
– (p1 R p2) with R a relation in {depend, benefit}, we build three defense

nodes, one parent node labelled by p1 R p2 and two nodes labelled by p1,
p2 combined with this parent defense node by a conjunctive refinement;

– (p1 alternative p2), we build three defense nodes, one parent node labelled
by p1 alternative p2 and two nodes labelled by p1, p2, which are linked by
a disjunctive refinement to the parent node;

– (p1 R p2) with R a relation in {impair, conflict}, we would want to use
the xor operation. Unfortunately, the latter is not available with ADTrees.
Therefore, we use the sub-tree depicted in Figure 10(b) where the simulta-
neous use of p1 and p2 is modelled by an attack node labelled by (p1 R p2)
meaning that two conflicting security patterns used together constitute a
kind of attack;
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(a) Generic example of ADTree (b) Conflicting pattern
modelling with ADTree

Fig. 10 ADTree general forms

– p1 having no relation with any pattern p2 in P , we add one parent defense
node labelled with p1.

The parent defense nodes are combined to a defense node labelled by “Pattern
Composition” with a conjunctive refinement. This last defense node is linked
to the attack node labelled by st.

The developer can now edit every ADTree T (A). He or she also has to select
combinations of security patterns in such a way that the defense nodes linked
to attack nodes only have conjunctive refinements of nodes labelled by security
patterns. The resulting ADTrees are composed of attacks, having different levels
of abstraction: with regard to Step 2, a root attack node may be disjunctively
refined with other attacks and so on; we assume that only the most concrete
attacks are materialised by ordered sequences of steps. We call them concrete
attacks. We formulate in the next proposition that these nodes or sub-trees can
also be encoded with ADTerms:

Proposition 1 Given the ADTree T (A) achieved by the previous steps, the ADTerm
ι(T (A)) representing T (A) has one of these forms:

1. ca1, modelling a concrete attack;
2. ∨p(a1, . . . , an)(n > 1), with ai an attack having a form given either in 1) or

2).

We denote CA(T (A)) the set of concrete attacks labelled in an ADTree T (A). A
concrete attack of an ADTree T (A) is composed either of a sequential conjunction
of steps or of one step only. These steps may be disjunctively refined by techniques
and are linked to a defense node expressing a security pattern combination. In the
remainder of the paper, we define the ADTerm modelling a step node by a Basic
Attack Defence Step, shortened as BADStep. The GWT test cases actually come
from these BADSteps.

Proposition 2 (Concrete Attacks) Let T (A) be an ADTree. ca ∈ CA(T (A))
is expressed by an ADTerm having one of these forms:
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1. cp(st, sp);
2.
−→∧ p(st1, . . . , stn)(n>1) with sti having a form given either in 1) or 2).

Definition 2 (BADSteps) We define an ADTerm of the form cp(st, sp) as a
BADStep, where st is a step only refined with techniques and sp an ADTerm of
the form :

1. sp1, with sp1 a security pattern,
2. ∧o(sp1, . . . , spm) modelling the conjunction of the security patterns sp1, . . . ,
spm(m > 1).

defense(cp(st, sp)) =def {sp1} iff sp = sp1, or defense(cp(st, sp)) =def {sp1, . . . , spm}
iff sp = ∧o(sp1, . . . , spm).
BADStep(ca) denotes the set of BADSteps of the concrete attack ca.

In Step 4, every attack node A of the initial ADTree T0 is now automatically
replaced with the ADTree T (A). This step is achieved by substituting every term
A in the ADTerm ι(T0) by ι(T (A)). We denote ι(Tf ) the resulting ADTerm and
Tf the final ADTree. It depicts a logical breakdown of the options available to an
attacker and the defences, materialised with security patterns, which have to be in-
serted into the application model and then implemented. During this step, we also
build a report from the data-store giving the description of the test architectures
needed for executing the attacks on the AUT and observing its reactions.

6 Test Suite Generation and Test Execution

We are now ready to generate test suites and define test verdicts.
ADTrees have various semantics, allowing to carry out different security analy-

ses. We consider here that the semantics of an ADTree is interpreted with attack-
defense scenarios over concrete attacks. Intuitively, an attack-defense scenario is
a minimal combination of events leading to the root attack, minimal in the sense
that, if any event is omitted from the attack-defense scenario, then the root goal
will not be achieved. We extract attack-defense scenarios over the set of concrete
attacks (not on their BADSteps) to later build test suites that will check whether
concrete attacks are effective on the AUT. Informally speaking, as we do not un-
fold the concrete attacks (which are sequential conjunctions of BADSteps), of an
ADTrees Tf , the ADTerm ι(Tf) only includes conjunctive and disjunctive opera-
tors. The set of attack-defense scenarios of Tf can be hence extracted by means
of the disjunctive decomposition of ι(Tf):

Definition 3 (Attack-defense scenarios) Let Tf be an ADTree and ι(Tf ) be
its ADTerm. The set of attack-defense scenarios of Tf , denoted SC(Tf ) is the set
of clauses of the disjunctive normal form of ι(Tf ) over CA(Tf ).

An attack-defense scenario s of Sc(Tf ) is still an ADTerm. Its satisfiability
means that the main goal of the ADTree Tf is feasible by achieving the scenario
formulated by s. An attack-defense scenario s of an ADTree Tf is an ADTerm
composed of concrete attacks. CA(s) and BADStep(s) denote the set of concrete
attacks and BADSteps of s. These sets shall be used to build test suites composed
of lists of test cases. We also denote SP (s) and SP (Tf ) the security pattern sets
found in an attack-defense scenario s and in ι(Tf ).
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6.1 Test Suite Generation

Let s ∈ SC(Tf) be an attack-defense scenario, and ca be one of its concrete
attacks. Given a BADStep b = cp(st, sp) ∈ BADStep(ca), Step 5 of the approach
assembles, from the data-store, the GWT test case stub TC(b) composed of the
following sections:

1. the data-store provides, with the relations testG, testW and testT , one Given
section, one When section and one Then section, each related to one procedure.
This Then section aims to assert whether the AUT is vulnerable to the attack
step st;

2. for each security pattern sp of defense(b), the data-store provides a set of Then
sections associated to procedures. These Then sections aim to check whether
the consequences of each security pattern in defense(b) can be detected in the
AUT behaviour.

As the BADSteps of a concrete attack ca are sequentially ordered in the
ADTree Tf and its ADTerm, we gather the test cases derived from these BAD-
Steps in an ordered list denoted TS(ca). The final test suite TS, derived from an
ADTree Tf , is the set of test case lists obtained from the concrete attacks of Tf .
This is captured by the following definition:

Definition 4 (Test suites) Let Tf be an ADTree, s ∈ SC(Tf) and ca ∈ CA(s).
We denote TS(ca) the test suite of the concrete attack ca. TS(ca) is the ordered
list (T (b1), . . . , T (bn)) with bi(1 ≤ i ≤ n) ∈ BADStep(ca).

TS(s) =
⋃

ca∈CA(s)

TS(ca). The final test suite is denoted TS =
⋃

s∈SC(Tf )

TS(s).

6.2 Test Case Execution

Step 6 corresponds to the manual completion of the test case procedures by a
developer. After this step, we assume that the test cases are correctly developed
with assertions in Then sections as stated in Section 3.2: a Then section of a test
case TC(b) returns the verdict ”Passst” if an attack step st has been successfully
applied on the AUT and ”Failst” otherwise; a Then section returns ”Failsp”
if the consequence of the security pattern sp is not detected in the AUT be-
haviour; when TC(b) returns an unexpected exception or fault, we get the verdict
”Inconclusivest”.

The experimentation of the AUT with the test suite TS is carried out by Step
7. A test case TC(b) of TS, which aims at testing whether the AUT is vulnerable
to an attack step st, is composed of more than one Then section. Consequently,
its execution, denoted TC(b)||AUT , may provide different sets of verdicts, which
can be:

– {Passst} means the AUT is vulnerable to the attack step st although all the
consequences of the security patterns are detected;

– {Failst} means the AUT does not appear to be vulnerable to the attack step
st and that the consequences of the security patterns are detected;
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– {Passst, Failsp1 , ..., Failspk} reflects the fact that the AUT is vulnerable to the
attack step st and that the consequences of some security patterns sp1, . . . , spk
are not detected;

– {Failst, Failsp1, ..., Failspk} means the AUT does not appear to be vulnerable
to the attack step st but the consequences of the security patterns sp1, . . . , spk
are not detected;

– {Inconclusivest} or {Inconclusivest, Failsp1, ..., Failspk} reflects the fact that
some procedures of the test case TC(b) have not been executed due to various
problems, e.g., incomplete test architecture, network issues, etc.

Definition 5 (Test verdict sets) Let AUT be an application under test and Tf
an ADTree resulting from Step 4. Let also b = cp(st, sp) ∈ BADStep(ca) be a BAD-
Step of a concrete attack ca ∈ CA(Tf ), with defense(b) = {sp1, . . . , spm}(m>0).
F stands for the power set P({Failspi | spi ∈ defense(b)}) \ {}.

We define the following test verdict sets:

– V UL = {Passst};
– NV UL = {Failst};
– V UL/V IOLATE = {Passst} × F ;
– NV UL/V IOLATE = {Failst} × F ;
– INCONCLUSIV E = {Inconclusivest} ∪ {Inconclusivest} × F ;

The (local) test verdicts, which can be obtained from a test case, are defined
below:

Definition 6 (Local test verdict) Verdict(TC(b)||AUT ) denotes the test ver-
dict given by the test case TC(b). Verdict(TC(b)||AUT ) = V with V ∈ {V UL,
NV UL, V UL/V IOLATE,NV UL/V IOLATE, INCONCLUSIV E}.

We propose a specific test case model of execution in which a test verdict
Verdict(TC(b)||AUT ) is either the result of real test case execution TC(b)||AUT
or the result of an implicit deduction. Indeed, Step 5 of the approach generates a
test suite TS(ca) for any concrete attack ca found in the ADTree Tf . TS(ca) is
an ordered list of test cases (TC(b1), . . . , TC(bn)), one test case per step of the
attack ca. We can take advantage of these ordered steps to deduce test verdicts.
We assume that if the AUT is not vulnerable to a step bi, then the AUT is not
vulnerable to the next step bi+1, as bi does not provide the requirements, e.g., data
or application states, required by bi+1. Several attack bases, e.g., the CAPEC, are
structured in this way. More precisely, we postulate in the following proposition
that if we have two BADSteps bi, bi+1 with defense(bi) = defense(bi+1) such
that the verdict of TC(bi)||AUT expresses that the AUT is not vulnerable, then
we set the same test verdict for TC(bi+1)||AUT . However, if the defenses of the
two BADSteps are different, the test case TC(bi+1) is even so executed to check
whether the consequences of the patterns in defense(bi+1) are detected in the AUT
behaviour. We apply a similar reasoning with the test verdict INCONCLUSIVE.
If a test case TC(bi) provides an inconclusive verdict, then we somehow terminate
the execution of the test suite TS(ca). It results from these assumptions that the
test efforts may be reduced.

Proposition 3 Let ca ∈ CA(Tf ) be a concrete attack and TS(ca) = (TC(b1), . . . ,
TC(bn)) be a test suite.
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1. Verdict(TC(bi)||AUT )(0<i<n) ∈ {NV UL,NV UL/V IOLATE}, defense(bi) =
defense(bi+1) =⇒ Verdict(TC(bi+1)||AUT ) = Verdict(TC(bi)||AUT );

2. Verdict(TC(bi)||AUT )(0<i<n) = INCONCLUSIV E =⇒ Verdict(TC(bi+1)
||AUT ) = INCONCLUSIV E.

Subsequently, we define final test verdicts with regard to the ADTree Tf .
These verdicts are given with the predicates Vulnerable(Tf ), Unsatc(SP (Tf )) and
Inconclusive(Tf ) returning boolean values.

The predicate Vulnerable(ca) is firstly defined on a concrete attack ca to later
apply a substitution σ : CA(s) → {true, false} on an attack-defense scenario
s. This substitution is used to evaluate attack-defense scenarios. A scenario s
holds if the evaluation of applying the substitution σ to s (i.e. replacing every
concrete attack term ca with the evaluation of Vulnerable(ca)) returns true. When
a scenario of Tf holds, then the threat modelled by Tf can be achieved on the
AUT. This is defined with the predicate Vulnerable(Tf ). Unsatc(SP (Tf )) denotes
whether the security pattern consequences are detected in the AUT behaviour.

Definition 7 (Final test verdicts) Let AUT be an application under test, Tf
be an ADTree, s ∈ SC(Tf ) and ca ∈ CA(s).

1. Vulnerable(ca) =def true if ∃b ∈ BADStep(ca) : Verdict(TC(b)||AUT ) ∈
{V UL, V UL/V IOLATE}; otherwise, Vulnerable(ca) =def false;

2. σ : CA(s) → {true, false} is a substitution {ca1 → (Vulnerable(ca1), . . . ,
can → Vulnerable(can)};

3. Vulnerable(Tf ) =def true if ∃s ∈ SC(Tf ) : eval(sσ) returns true ; otherwise,
Vulnerable( Tf ) =def false;

4. Unsatc(SP (Tf )) =def true if ∃s ∈ SC(Tf ), b ∈ BADStep(s): Verdict(TC(b)||
AUT ) ∈ {V UL/V IOLATE,NV UL/V IOLATE}; otherwise, Unsatc(SP (Tf ))
=def false;

5. Inconclusive(Tf ) =def true if ∃s ∈ SC(Tf ), b ∈ BADStep(s): Verdict(TC(b)||
AUT ) = INCONCLUSIV E; otherwise, Inconclusive(Tf ) =def false.

6.3 Limitations

Our approach suffers from several limitations. We provide some of them below,
which could lead to future work:

– the current data-store is not exhaustive: it includes 215 attacks out of 569 (for
any kind of application) and 26 security patterns out of 176. It can be completed
with new attacks of the CAPEC base automatically. But the completion of the
data-store with new security patterns or test architectures is manually done at
the moment;

– several steps of the approach require manual interventions that are prone to
errors, e.g., the security pattern choice (Step 3) or the completion of the test
case procedures (Step 6). To better guide the writing of concrete test cases, the
data-store could integrate more data coming from other bases, e.g., Exploit-
db (Offensive Security, 2017), which is a well-known repository of exploits for
security experts;
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– the ADTree size is not taken into account by our approach, yet, when an attack
has a high level of abstraction, we observed that the ADTree size may be large
because it includes a set of sub-attacks themselves linked to several patterns.
The generation of large ADTrees is a strong limitation of our approach since
these ADTrees become unreadable, which contradicts our objectives;

– our approach checks neither the behavioural nor the structural properties of
security patterns, as it is performed in (Yoshizawa et al, 2014). These properties
are yet important to ensure that security patterns are well integrated in a
model and implemented. Both approaches could be combined. But, we believe
that the use of OCL expressions to model pattern properties, (as proposed in
(Yoshizawa et al, 2014)), will strongly affect Comprehensibility;

– it is well-known that the implementation of countermeasures sometimes causes
the introduction of new vulnerabilities. The same problem could occurs with
security patterns. This kind of side effect is not addressed in this paper.

7 Evaluation

We empirically studied two scenarios on 24 participants to assess whether develop-
ers can benefit of our approach. The duration of each scenario was set to at most
to one hour and half. The participants are third to fourth year computer science
undergraduate students, having good skills in the development and test of Web
applications. They have good knowledge about classical attacks and are used to
handle design patterns, but not security patterns.

The participants were given the task of choosing security pattern combina-
tions to prevent two attacks, CAPEC 244: Cross-Site Scripting via Encoded URI
Schemes, and CAPEC 66: SQL Injection, on two deliberately vulnerable Web sites,
RopeyTasks and The Bodgeit Store. We also asked the participants to write test
cases with the tool Selenium in order to: report that both Web sites are vulnerable
to the attacks, show that the application behaviours do not include at least one
consequence of the security patterns “Input Guard” and “Output Guard”.

In the first scenario, denoted Part 1, we supplied these documents to the stu-
dents: the CAPEC base, two concrete examples detailing how to manually perform
each attack along with the expected outcomes, and the security pattern catalogue
published with Yskout et al (2015), composed of 36 patterns. The participants
had to: read the intents and consequences of the patterns, follow our examples of
attacks and read the CAPEC base to write concrete test cases. In the second sce-
nario, denoted Part 2, we supplied additional documents for the two attacks: the
ADTrees of the two attacks (given in Step 2 of the approach) and the generated
GWT test case stubs (Step 5). Among the 28 Generic procedures we provided,
8 were composed of blocks of code and required few modifications. The others
included comments extracted from the CAPEC base and the security pattern cat-
alogue. At the end of each scenario, the students were invited to fill in a form
listing these questions:

– Q1: Was it difficult to choose security patterns?
– Q2: Was it difficult to use the CAPEC documentation (in Part 1) / our

ADTrees (in Part 2)?
– Q3: Was it difficult to use the security pattern documents (in Part 1) / our

ADTrees (in Part 2)?
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Fig. 11 Response rates for Q1 to Q3

– Q4: Was it easy to write test cases?
– Q5: How long did you take for writing test cases?
– Q6: How confident are you about your test cases?
– Q7: Provide your test cases (or suites).

With these questions, we evaluated our approach using three criteria:

– C1: Comprehensibility: does our method ease the choice of the security patterns
and the test case development?

– C2: Effectiveness: can the test cases detect defects?
– C3: Efficiency: does our method help reduce the time needed for writing tests?

7.1 Experiment Results

From the answers returned by the participants (available in (Regainia and Salva,
2017)), we extracted the following results. Firstly, Figure 11 illustrates the percent-
ages of answers to the questions Q1 to Q3. For these, we proposed this four-valued
scale: easy, fairly easy, difficult, very difficult. Similarly, we collected the answers
of Question Q4 (again on this four-valued scale). Figure 12 (left side) depicts the
distribution of the participant opinions.

Fig. 12 Response rates for Questions Q4 and Q6
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We measured the time required for the participants to write test cases. They
consumed between 15 and 70 minutes in Part 1, while they took between 20
minutes and 86 minutes in Part 2. On average, they spent 46 minutes in Part 1
and 60 minutes in Part 2. The levels of confidence of the participants are estimated
with Question Q6. The possible answers were for both scenarios: very sure, sure,
fairly sure, not sure. Figure 12 (right side) depicts the percentages of answers.

We finally analysed the test cases and evaluated their correctness with regard
to four aspects: 1&2: detection (with at least one test case) that both applications
are vulnerable to the attacks CAPEC 66 and CAPEC 244; 3&4: detection that
the application behaviours do not include the consequences of the patterns “Input
Guard” and “Output Guard”. As we considered this last aspect as difficult for
students, we expected at least one Then test case section for every pattern. Figure
13 presents the number of participants who meet these aspects.

Fig. 13 Test case correctness (Question Q7)

7.2 Result Interpretation

C1: Comprehensibility
Figure 11 shows that 33% of the participants estimated that the pattern choice

was easier with our ADTrees (Q1). In contrast, no participant found that the choice
was easy when using only the security pattern catalogue. The rate of ”Easy”
”Fairly Easy” increased by 70,8% between Part 1 and Part 2. With Question
Q2, 41,7% of the participants found ”Fairly easy” the use of the CAPEC base,
whereas 87,5% esteemed our ADTrees ”Easy” and ”Fairly Easy” to use. Similarly,
only 37,5% of the participants considered ”Easy” and ”Fairly easy” the reading of
the pattern catalogue. This rate reaches 87,5% with our ADTrees. Consequently,
Figure 11 shows that our generated ADTrees make the pattern choice easier and
that they are simpler to interpret than the security pattern catalogue.

Concerning test cases, Figure 12 shows that 66,7% of the participants found the
test case writing difficult in Part 1 against 41,7% in the second part. In contrast,
4,17% of them found the test case development ”very easy” in Part 1 against 12,5%
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in Part 2. In addition, one quarter of the students found the test writing easier
with our test case stubs. After discussion with the participants, it turned out that
the link of the test case sections with the attack steps of the ADTrees helped them
understand what to develop. Figure 12 shows that the average confidence level of
the participants about the accuracy of their test cases (Question Q6) increased by
20,83%.

As a whole, we conclude that the participants found their tasks easier with our
approach since the ADTrees and GWT test case stubs offer better readability.

C2: Effectiveness

Figure 13 depicts the results about the test case correctness. The columns
”SQLi” and ”XSS” provide the number of test cases allowing to reveal that both
attacks can be successfully executed on the applications. In Part 1, few participants
developed complete test cases. We indeed observed assertions were missing in most
of them. If we leave aside the assertions, the number of test cases running the
attacks rises to 14. The number of correct test cases strongly increases in Part 2,
by means of the comments found in the procedures, even though these texts were
also available in the CAPEC base given in Part 1. The columns ”Input Guard”
and ”Output Guard” give the number of Then sections (and procedures) allowing
to report that the consequences of these security patterns are not observed from
the application behaviours. This task was much more difficult for the participants
as they are not yet expert in security pattern. Hence, it is not surprising to see
that only one participant was able to write at least an assertion allowing to show
that an Input Guard consequence is not detected. The number of correct Then
sections rises to 14 in Part 2 by means of the comments found in the procedures,
which were derived from the security pattern descriptions also given in Part 1.
With the pattern ”Output guard”, the number of correct Then sections rises from
0 to 23 (almost all the participants) in Part 2.

Consequently, we conclude that the test case correctness strongly increases
with our approach, thanks to the amount of information (comments, blocks of
code) found in the procedures.

C3: Efficiency

This criterion addresses the participant efficiency in terms of time spent for
writing test cases. On average, the participants took 46 minutes for writing them
from scratch and 60 minutes with the use of our method. We have to admit that
we expected a different outcome. But, the additional time spent in Part 2 can be
explained when we alongside focus on Effectiveness and Comprehensibility. Indeed,
after discussion with the participants, we concluded that they spent more time for
interpreting the ADTrees or reading the comments in the procedures. This sup-
plement of information and this extra time made the participants more effective.
In the long run, we believe that the extra time spent when using our approach
should decrease. The interpretation of attacks with ADTrees should educate the
users, they should also be more confident on developing GWT test cases after a
while.
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7.3 Threat to Validity

This preliminary experimental evaluation is applied on Web applications only. This
is a threat to external validity, in the sense that the results about Comprehensi-
bility and Accuracy cannot be generalised to all software systems. This is why we
avoid drawing any general conclusion. But, we believe that this threat is somewhat
mitigated by our choice of application, as the Web application context is a rich field
in great demand in the software industry. Furthermore, this well-studied applica-
tion context helped us propose experimentations involving participants having the
adequate knowledge on testing and security.

This leads to the second threat to validity concerning the public. Our evaluation
was performed on students following a block release training. This sort of audience
is sometimes considered as a bias, as any strict process should help them improve
their work. But, we do not think that students bring a bias in security technique
evaluations. This is indeed confirmed in several studies, e.g. (Daun et al, 2017). We
believe that we would have achieved the same results with a group of developers
from the industry, as they often do not have any software security skills.

Another threat relates to the learning effect, which may happens between the
two stages of the evaluation: we applied the same approach to the same partici-
pants. We only replaced the Web application in Part 2 (to avoid another bias, we
took care to provide an application providing similar functionalities and exposing
the same vulnerabilities), and we completed the available security documents by
a list of ADTrees. We deliberately chose the apply the same approach in Part 1
and 2 to evaluate the difficulties encountered by the participants (Q1-4) and their
confidence on their work (Q6). It is indisputable that this kind of experiment may
influence our results. But, we believe that the amount of improvement revealed in
Part 2 cannot only be explained by a learning effect.

Finally, we provide more documents (ADTrees, test cases) in Part 2. This
makes the tasks easier but this might make developers less efficient as there is
more reading required. As stated before, we believe that the extra time required
when using our approach should decrease in the long run. This is why we avoid
drawing any conclusion on Efficiency in this paper.

8 Conclusion

Today’s developers have to know how to develop secure software and how to test
it. These two tasks are particularly time-consuming and difficult since a lot of
expertise is required. To help them in these tasks, we have proposed an approach
based on the notion of knowledge base. This paper brings two main contributions.
It helps developers in the writing of concrete security test cases and ADTrees. It
also checks whether an application is vulnerable to attack-defense scenarios and
whether security pattern consequences are detected in the application behaviour.
We conducted an evaluation on 24 participants, which suggests that our approach:
a) eases the security pattern choice and test case development; b) makes them more
effective on security testing.

We also mentioned several limitations, which lead to some immediate lines of
future work. Among them, we firstly plan to focus on the size of the ADTrees
generated by the threat modelling stage. Indeed, the larger the ADTrees, the
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more difficult are their interpretations, which enters in contradiction with the
basic objectives of this work. An ADTree reduction (or minimisation) could be a
first solution on this problem. But, reducing such trees remains a hard problem
as the node meaning must be taken into account in the node aggregating process.
We will also focus on the generation of test cases for checking whether security
pattern behavioural or structural properties hold in application behaviours. One
of the problems here is to assist developers, who are usually not expert in formal
modelling, to express these properties.
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