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Abstract

The problems of determining minimum identifying, locating-dominating,
open locating-dominating or locating total-dominating codes in a graph
G are variations of the classical minimum dominating set problem in G
and are all known to be hard for general graphs. A typical line of attack
is therefore to determine the cardinality of minimum such codes in special
graphs. In this work we study the change of minimum such codes under
three operations in graphs: adding a universal vertex, taking the general-
ized corona of a graph, and taking the square of a graph. We apply these
operations to paths and cycles which allows us to provide minimum codes
in most of the resulting graph classes.

1 Introduction and preliminaries

Let G = (V,E) be a graph. The open neighborhood of a vertex u is the set
N(u) of all vertices of G adjacent to u, and N [u] = {u} ∪ N(u) is the closed
neighborhood of u. A subset C ⊆ V is dominating (resp. total-dominating) if
N [i] ∩ C (resp. N(i) ∩ C) are non-empty sets for all i ∈ V .

In this work we study four problems that have been actively studied during
the last decade, see e.g. the bibliography maintained by Lobstein [14].

∗This work was partially supported by grants PID-UNR ING539 (2017-2020), PID-UNR
ING629 (2018-2019) and PIP CONICET 2016-0410 (2017-2019).

1



A subset C ⊆ V is:

• an identifying code (ID) if it is a dominating set and N [i]∩C 6= N [j]∩C,
for i, j ∈ V [13].

• a locating-dominating set (LD) if it is a dominating set and N(i) ∩ C 6=
N(j) ∩ C, for i, j ∈ V − C [19].

• an open locating-dominating set (OLD) if it is a total-dominating set and
N(i) ∩ C 6= N(j) ∩ C, for i, j ∈ V [18].

• a locating total-dominating set (LTD) if it is a total-dominating set and
N(i) ∩ C 6= N(j) ∩ C, for i, j ∈ V − C [11].

Note that not every graph admits an identifying code, in fact, a graph G
admits an identifying code (or G is identifiable) if there are no true twins in
G, i.e., there is no pair of distinct vertices i, j ∈ V such that N [i] = N [j], see
[13]. Analogously, a graph G without isolated vertices admits a open locating-
dominating set if there are no false twins in G, i.e., there is no pair of distinct
vertices i, j ∈ V such that N(i) = N(j), see [18].

Given a graph G, for X ∈ {ID,LD,OLD,LTD}, the X-problem on G is
the problem of finding an X-set of minimum size of G. The size of such a set
is called the X-number of G and it is denoted by γX(G). From the definitions,
the following relations hold for any graph G (admitting an X-set):

γLD(G) ≤ γLTD(G) ≤ γOLD(G), (1)

and
γLD(G) ≤ γID(G).

Note that γID(G) and γOLD(G) are not comparable as the following examples
show:

Figure 1: (a, b) γID(P4) = 3 < 4 = γOLD(P4); (c, d) γID(G) = 4 > 3 =
γOLD(G)

Determining γID(G) is in general NP-hard [5] and even remains hard for
several graph classes where other in general hard problems are easy to solve,
including bipartite graphs [5] and two classes of chordal graphs, namely split
graphs and interval graphs [8]. The identifying code problem has been actively
studied during the last decade, where typical lines of attack are to determine
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minimum identifying codes of special graphs or to provide bounds for their size.
Closed formulas for the exact value of γID(G) have been found so far only for
restricted graph families (e.g. for paths and cycles [4], for stars [9], for complete
multipartite graphs [1] and some subclasses of split graphs [2]).

Also determining γLD(G) is in general NP-hard [5] and even remains hard
for bipartite graphs [5]. This result is extended to planar bipartite unit disk
graphs in [15]. Closed formulas for the exact value of γLD(G) have been found
so far for restricted graph families as e.g. paths [19], cycles [4], stars, complete
multipartite graphs and thin suns [3].

Determining γOLD(G) is in general NP-hard [18] and remains NP-hard for
perfect elimination bipartite graphs and APX-complete for chordal graphs with
maximum degree 4 [16]. Closed formulas for the exact value of γOLD(G) have
been found so far only for restricted graph families such as cliques and paths
[18].

Concerning the LTD-problem we observe that it is as hard as the OLD-
problem by just using the same arguments as in [18]. Bounds for the LTD-
number of trees are given in [11, 12]. In addition, the LTD-number in special
families of graphs, including cubic graphs and grid graphs, is investigated in
[12].

To apply polyhedral methods, a reformulation as set covering problem is
in order. For a 0/1-matrix M with n columns, the set covering polyhedron
is Q∗(M) = conv

{
x ∈ Zn

+ : Mx ≥ 1
}

and Q(M) =
{
x ∈ Rn

+ : Mx ≥ 1
}

is its
linear relaxation. By [3] and [2] such constraint systems MXx ≥ 1 with X ∈
{ID,LD}, respectively, are

MID(G) =

 N [G]
41[i, j]
42[i, j]

 MLD(G) =

 N [G]
41(i, j)
42[i, j]


where every row in matrix N [G] (resp. N(G)) is the characteristic vector of a
closed (resp. open) neighborhood of a vertex in G and 4k(i, j) (resp. 4k[i, j])
is the characteristic vector of a symmetric difference of open (resp. closed)
neighborhoods of vertices at distance k. It is not hard to verify that, if X ∈
{OLD,LTD}, we have:

MOLD(G) =

 N(G)
41(i, j)
42(i, j)

 MLTD(G) =

 N(G)
41(i, j)
42[i, j]


Observe that, when considering these problems as set covering problems, we

can delete from MX(G) the redundant (duplicated or dominated) rows.
The work is organized as follows: in Section 2, given a graph G, we study

the change of γX(G) with X ∈ {ID,LD,OLD,LTD} under the addition of a
universal vertex to G. Then we apply these results to calculate γX(G), with
X ∈ {ID,LD,OLD,LTD} when G is a fan or a wheel. In Section 3 we use the
polyhedral approach to find γX(G), with X ∈ {ID,LD,OLD,LTD} when G
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is the generalized corona of a graph. Finally, in Section 4, we study the same
numbers when G is the square of a path or cycle.

2 Graphs obtained from adding a universal ver-
tex

Let G = (V,E) be a connected graph and 0 /∈ V . We define the graph obtained
by adding a universal vertex G′ = (V ′, E′) as the graph such that V ′ = V ∪{0}
and E′ = E ∪ {0i, i ∈ V }.

Remark 1 Let G = (V,E) be a graph and 0 /∈ V .

1. G′ has true twins iff G has true twins or a universal vertex (i.e. a vertex
i such that N [i] = V ).

2. G′ has false twins iff G also has.

Theorem 2 Let X ∈ {ID,LD,OLD,LTD} and G = (V,E) be a connected
graph admitting an X-set. Then

γX(G) ≤ γX(G′) ≤ γX(G) + 1.

Moreover, γX(G′) = γX(G) if and only if there is a minimum X-set C such
that for all i ∈ V , C * N [i] when X ∈ {ID,LD} or C * N(i) when X ∈
{OLD,LTD}.

Proof Let C ′ be an X-set of minimum size of G′, i.e., γX(G′) = |C ′|.
If 0 /∈ C ′ then C ′ is an X-set of G and γX(G) ≤ |C ′| = γX(G′).
If 0 ∈ C ′, as 0 ∈ N [i] for all i ∈ V , 0 does not identify the vertices in

V . On the other hand, as C ′ is minimal, then there exists j ∈ V such that
N [j] ∩ C ′ = {0}. Moreover j is the only vertex with this property since C ′ is
an X-set of G′. Since G is connected, there exists k ∈ N(j) ∩ V then we define
C = C ′ − {0} ∪ {k}. It holds that C is an X-set of G such that |C| = |C ′|.
Therefore, γX(G) ≤ |C| = |C ′| = γX(G′)

Assume that for every X-set of minimum size of G, C, there is iC ∈ V such
that C ⊆ N [iC ]. Clearly C is not an X-set of G′. But if X = ID then there
is j /∈ N [iC ] and C ∪ {j} is an ID-set of G′. If X ∈ {LD,OLD,LTD} then
C ∪ {0} is an X-set of G′. In any case γX(G′) ≤ γX(G) + 1.

Now, assume that there is an X-set C of minimum size of G such that for
all i ∈ V , C * N [i] when X ∈ {ID,LD} or C * N(i) when X ∈ {OLD,LTD}.
We will prove that C is an X-set of G′.

As N(0) ∩ C = C 6= ∅ then C total-dominates or dominates the vertices in
V ′.

On the other hand, we suppose thatN [0]∩C = N [i]∩C (orN(0)∩C = N(i)∩
C) for some i ∈ V if C is an X-set with X ∈ {ID,LD} (or X ∈ {OLD,LTD})
then C ⊆ N [i] ∩ C (resp. C ⊆ N(i) ∩ C) and this contradicts the assumption
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on C. Then, N [0] ∩C 6= N [i] ∩C (N(0) ∩C 6= N(i) ∩C ) for all i ∈ V , i.e., C
is an X-set of G′ with X ∈ {ID,LD,OLD,LTD}.

Therefore, γX(G′) ≤ |C| = γX(G).
Finally, assume that for every minimum X-set C of G there exists i ∈ V

such that C ⊆ N [i] if X ∈ {ID,LD} (C ⊆ N(i) if X ∈ {OLD,LTD}). Let
D be a minimum X-code of G′ such that |D| = γX(G). It is clear that 0 ∈ D.
Hence there is a unique k ∈ V such that N [k] ∩D = {0}. Let j ∈ N(k) and let
D′ = D− {0} ∪ {j}. It is easy to check that D′ is an X-set of G′ of cardinality
γX(G) not containing vertex 0. Hence D′ is an X-set of G of cardinality γX(G),
then from assumption there exists h ∈ V such that D′ ⊆ N [h], but this contra-
dicts the fact thatD′ is anX-set ofG′ since vertices 0 and h are not separated. �

Let Fn (resp. Wn) denote the fan (resp. wheel) of n + 1 vertices, i.e., Fn

(resp. Wn) is the graph obtained by adding a universal vertex to the path Pn

(resp. cycle Cn).
For X ∈ {ID,LD,OLD,LTD}, γX(Pn) has already been calculated, see

the following table.

X γX(Pn)
ID dn+1

2 e [4]
LD d 2n

5 e [4]
OLD 4k + r for n = 6k + r, r ∈ {0, 1, 2, 3, 4}, 4k + 4 for n = 6k + 5 [18]
LTD bn

2 c+ bn
4 c − d

n
4 e [11]

Table 1: γX(Pn)

Now, in the case of cycles, γID(Cn), γLD(Cn) and γLTD(Cn) are known.
The value of γOLD(Cn) is provided in the following result.

Lemma 3 For n ≥ 3, γOLD(Cn) = d 2n
3 e.

Proof (Sketch) In [18] it is proved that γOLD(Cn) ≥ d 2n
3 e. The bound is tight

as we can show, if n = 3k + r with r = 0, 1, 2, the sets

• {3i− 2, 3i− 1 : 0 ≤ i ≤ k} if r = 0,
• {3i− 2, 3i− 1 : 0 ≤ i ≤ k} ∪ {n− 1} if r = 1,
• {3i− 2, 3i− 1 : 0 ≤ i ≤ k} ∪ {n− 1, n− 2} if r = 2,

are OLD-sets of Cn of cardinality d 2n
3 e. �

We summarize the results for cycles in the following table:
For n ≥ 4 and X ∈ {ID,LD,OLD,LTD}, from Theorem 2 we have

γX(Pn) ≤ γX(Fn) and γX(Cn) ≤ γX(Wn). If n = 4, X-sets of minimum
size (the black vertices) are depicted in the figure below.

For W4 and W5, X-sets of minimum size are shown in Fig. 3 and 4.
As a consequence of Theorem 2, we obtain:
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X γX(Cn)
ID γID(Cn) = n

2 if n is even and n+1
2 + 1 if n ≥ 7 is odd [10]

LD d 2n
5 e [4]

OLD d 2n
3 e Lemma 3

LTD bn
2 c+ bn

4 c − d
n
4 e [6]

Table 2: γX(Cn)

Figure 2: Minimum X-sets for P4 and F4

Corollary 4 For X ∈ {ID,LD,OLD,LTD} we have γX(Fn) = γX(Pn) and
γX(Wn) = γX(Cn), n ≥ 6.

Proof If n ≥ 5, at least one vertex in each of the sets {1, 2} and {n − 1, n}
must belong to an X-set of Pn. Then, from Theorem 2, γX(Fn) = γX(Pn).

Now, as n ≥ 6, it is immediate to observe that no minimum X-set is con-
tained in N [i] (N(i)) when X ∈ {ID,LD} (when X ∈ {OLD,LTD}), then
again from Theorem 2, γX(Wn) = γX(Cn). �

Observe that by combining the results in Corollary 4 and Tables 1 and
2, we compute the exact value of a minimum X-set of a fan or a wheel for
X ∈ {ID,LD,OLD,LTD}.

3 Generalized corona of a graph

Let G = (V,E) be a graph and k ∈ Z|V |+ . The k-corona of G, denoted by Gk is
the graph obtained by adding ki pendant vertices to each i ∈ V .

As the pendant vertices are false twins if ki ≥ 2 for some i ∈ V , the graph
Gk does not admit an OLD-set. But in the case ki = 1 for all i ∈ V the only
OLD-set of Gk is V . We now study the remaining problems.

Theorem 5 Let Gk be the k-corona of a graph G where k ∈ Z|V |+ is a vector
with k = (k1, k2, . . . , k|V |), ki ≥ 2 for all i ∈ {1, 2, . . . , |V |}. Then, γID(Gk) =
γLD(Gk) = γLTD(Gk) = k1 + · · ·+ k|V |.

Proof Let V = {v1, . . . , v|V |} and for each vi ∈ V , Pi = {p1
i , . . . , p

ki
i } the set of

the pendent vertices of vi with ki ≥ 3 for all i ∈ {1, . . . , |V |}.
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Figure 3: Minimum X-sets for C4 and W4

Figure 4: Minimum X-sets for C5 and W5

Clearly, N [pj
i ] = {pj

i , vi} and 42[pj
i , p

k
i ] = {pj

i , p
k
i }. Hence, the rows corre-

sponding to the sets N [vi] = Pi∪{vi}∪NG(vi), 41[vi, vj ] = Pi∪Pj ∪ (NG(vi)4
NG(vj)),41[vi, p

j
i ] = (Pi−{pj

i})∪NG(vi),42[vi, p
k
j ] = Pi∪(NG[vi]−{vj})∪{pk

j }
and 42[vi, vj ] ⊇ Pi ∪ {vi} ∪ Pj ∪ {vj} are redundant. Thus MID(Gk) exactly
contains all 2-element subsets of Vi for each i ∈ {1, 2, . . . , |V |} and then

MID(Gk) =


R2

k1+1 0 · · · 0
0 R2

k2+1 · · · 0
...

...
. . .

...
0 0 · · · R2

|V |+1

 ,

where R2
j denotes the matrix whose rows are all the vectors in {0, 1}j with

exactly two 1’s. It is known that the covering number of R2
j is j − 1 (see [17]).

Hence, γID(Gk) = k1 + · · ·+ k|V |.

Now, observe that, N [pj
i ] = {pj

i , vi} and 42[pj
i , p

k
i ] = {pj

i , p
k
i }. Hence, the

rows corresponding to the sets N [vi] = Pi∪{vi}∪NG(vi),41(vi, vj) = Pi∪{vi}∪
Pj ∪{vj}, 41(vi, p

j
i ) ⊇ {pj

i , vi}, 42[vi, p
k
j ] ⊇ Pi∪{vi} and 42[vi, vj ] ⊇ Pi∪{vi}

are redundant. So, MLD(Gk) = MID(Gk) and hence γID(Gk) = γLD(Gk).
Finally, to study γLTD(Gk) observe that the symmetric differences are anal-

7



ogous to the LD-problem, then they are all dominated except from 42[pj
i , p

k
i ] =

{pj
i , p

k
i } and N(vi) = Pi ∪NG(vi) is dominated by 42[pj

i , p
k
i ] too. On the other

hand, N(pj
i ) = {vi} are not dominated for i ∈ {1, . . . , |V |}. Thus,

MLTD(Gk) =


In 0 · · · 0
0 R2

k1
· · · 0

...
...

. . .
...

0 0 · · · R2
|V |

 .

Therefore, we obtain that γID(Gk) = γLD(Gk) = γLTD(Gk) = k1+· · ·+k|V |. �

4 Square of paths and cycles

The square of a graph G = (V,E) is the graph G2 = (V,E′) where E′ =
E ∪ {ij : dist(i, j) = 2}. In this section we will analyze the X-sets, for X ∈
{ID,LD,OLD,LTD} in the case G = Pn and G = Cn.

Firstly, it is easy to check that γID(P 2
5 ) = γID(P 2

6 ) = 4 and γID(P 2
7 ) = 5.

Theorem 6 For P 2
n with n ≥ 8 we have that γID(P 2

n) =
⌈

n+1
2

⌉
.

Proof (Sketch) We know that γID(P 2
n) ≥

⌈
n+1

2

⌉
for every n ≥ 5 [4]. We can

show that the set {5} ∪ {2i : 1 ≤ i ≤
⌊

n
2

⌋
} is an identifying code of P 2

n and has
cardinality

⌈
n+1

2

⌉
. �

Now, ifX = LD orX = LTD, it can be checked that γLD(P 2
4 ) = γLTD(P 2

4 ) =
γLD(P 2

5 ) = γLTD(P 2
5 ) = 2 and γLD(P 2

6 ) = γLTD(P 2
6 ) = 3.

Remark 7 Combining relation (1) with the lower bound for γLD(P 2
n) in [4],

we have that for every n ≥ 1

γLTD(P 2
n) ≥ γLD(P 2

n) ≥
⌈
n+ 1

3

⌉
.

Theorem 8 For P 2
n with n ≥ 7 we have that⌈
n+ 1

3

⌉
≤ γLTD(P 2

n) ≤
⌈
n+ 1

3

⌉
+ 1.

Moreover, the lower bound is attained if n = 6k.

Proof (Sketch) For n ≥ 7, let n = 6k + r, with k ≥ 1 and r ∈ {0, 1, . . . , 5}.
We can show that

• {4} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 0

is an LTD-set of P 2
n of cardinality dn+1

3 e, and that
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• {4, n} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 1,
• {4, n− 1} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 2,
• {4, n− 1, n} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 3,
• {4, n− 3, n− 1} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 4,
• {4, n− 2, n} ∪ {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} for r = 5,

are LTD-sets of P 2
n of cardinality dn+1

3 e+ 1. �

As a consequence of Remark 7 and the above result, we have:

Corollary 9 For P 2
n with n ≥ 7 we have that⌈
n+ 1

3

⌉
≤ γLD(P 2

n) ≤
⌈
n+ 1

3

⌉
+ 1.

Moreover, the lower bound is attained if n = 6k or n = 6k + 3.

Proof If n ≥ 7, let n = 6k + r, with k ≥ 1 and r ∈ {0, 1, . . . , 5}. We only need
to observe that if r = 3, the set {3, 4, 5, n} ∪ {6h + 3, 6h + 5, 1 ≤ h ≤ k − 1} is
an LD-sets of P 2

n of cardinality dn+1
3 e. �

Finally, it is not hard to check that γOLD(P 2
5 ) = 3 and γOLD(P 2

n) = 4 when
n = 6, 7, 8, 9.

Theorem 10 For P 2
n with n ≥ 10, n = 10k + r with r ∈ {0, . . . , 9} we have

that

γOLD(P 2
n) ≤


4k + 1 if r = 0, 1
4k + 2 if r = 2, 3
4k + 3 if r = 4, 5
4k + 4 if r = 6, 7, 8, 9

Proof (Sketch) Let n = 10k + r with k ≥ 1 and r ∈ {0, . . . , 9}. We can show
that

• {2i : 1 ≤ i ≤ k} − {10i : 1 ≤ i ≤ k − 1} when r ∈ {0, . . . , 7},
• {2i : 1 ≤ i ≤ k} − {10i : 1 ≤ i ≤ k} when r = 8, 9

are OLD-sets with cardinality 4k+ 1 +
⌊

r
2

⌋
in the first case and 4k+

⌊
r
2

⌋
in the

second case. �

Finally, computational evidence encourages us to conjecture that Thm. 10
in fact gives the exact values for γOLD(P 2

n).
In a similar way, we will study now the squares of cycles. Note that C2

n

equals a clique when n ≤ 5 so that no ID-codes exist and γX(C2
n) is known

for X ∈ {LD,OLD,LTD}. If X = ID, γID(C2
n) = n

2 if n is even and, if n
is odd, γID(C2

n) = n+1
2 if n = 5k, 5k + 2, 5k + 3 and γID(C2

n) = n+1
2 + 1 if

n = 5k + 1, 5k + 4 (see [7]).
If X = LD, and n = 6k + r, k ≥ 1, r = 0, 1, . . . 5, γLD(C2

n) =
⌈

n
3

⌉
+ 1 if

r = 3 and γLD(C2
n) =

⌈
n
3

⌉
otherwise (see [7]). If X = LTD, it can be checked

that γLTD(C2
6 ) = 3.
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Theorem 11 For C2
n with n ≥ 7, we have that⌈n

3

⌉
≤ γLTD(C2

n) ≤
⌈n

3

⌉
+ 1.

Moreover, the lower bound is attained if n = 6k, 6k + 1, 6k + 2, 6k + 4.

Proof If n ≥ 7, let n = 6k + r, with k ≥ 1 and r ∈ {0, 1, . . . , 5}. It is not hard
to check that:

• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} if r = 0,
• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {n− 1} if r = 1, 2, and
• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {n− 3, n− 1} if r = 4,

are LTD-sets of C2
n of cardinality dn

3 e, and

• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {n− 1, n} if r = 3,
• {6i+ 3, 6i+ 5 : 0 ≤ i ≤ k − 1} ∪ {4, n− 2, n} if r = 5,

are LTD-sets of C2
n of cardinality dn

3 e+ 1, but not necessarily minimum. �

If X = OLD, it can be easily seen that C2
6 has false twins and, thus, no

OLD-set and that γOLD(C2
7 ), γOLD(C2

8 ) = 4 holds. Moreover, we can show:

Theorem 12 For C2
n with n ≥ 9, we have that⌈n

3

⌉
≤ γLTD(C2

n) ≤ γOLD(C2
n) ≤

⌈
n− 2

2

⌉
+ 1.

Proof (Sketch) From the general relation (1) and the lower bound for γLTD(C2
n)

given in Thm. 11, we conclude the lower bound for γOLD(C2
n). The upper bound

is true as we can show that

• {2i− 1 : 1 ≤ i < k} ∪ {2k − 2} if n = 2k + 1,
• {2i− 1 : 1 ≤ i ≤ k} if n = 2k + 2

form OLD-codes of size k in C2
n. �

Note that this implies γLTD(C2
n) = γOLD(C2

n) for 9 ≤ n ≤ 11. For 12 ≤
n ≤ 15, we know that the upper bound is tight and conjecture this also for all
n ≥ 16.

To conclude, we showed that adding a universal vertex changes the studied
X-numbers by at most one (but remain the same in the case of paths and cycles),
whereas taking the square of a graph can result in very different X-numbers.
Moreover, the studied X-numbers of generalized coronas of a graph depend in
most cases only on the corona, but not on the graph.
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