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Polyhedra associated with identifying codes in graphs
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Abstract

The identifying code problem is a newly emerging search lprabchallenging both from a the-
oretical and a computational point of view, even for spegiaphs like bipartite graphs. Hence,
a typical line of attack for this problem is to determine minim identifying codes of special
graphs or to provide bounds for their size.

In this work we study the associated polyhedra and presene ggeneral results on their
combinatorial structure. We demonstrate how the polyHeafsproach can be applied to find
minimum identifying codes for special graphs, and discusthér lines of research in order to
obtain strong lower bounds stemming from linear relaxatioithe identifying code polyhedron,
enhanced by suitable cutting planes to be used in a B&C framew

Key words: identifying code polyhedron, identifying code cluttergddaypercycles

1. Introduction

Many search problems as, e.g., fault detection in netwdites detection in buildings, or
performing group tests, can be modeled by so-called idengjfcodes in graphs [19].

Consider a grapts = (V, E) with a set of node¥ = {1,...,|V|} and a set of edgds. Given
anode € V let denote byN[i] = {i} U N(i) the closed neighborhood ofi.e., the node together
with all its neighbors. A subsé&t C V is dominating(resp.separating if N[i] nC are non-empty
(resp. distinct) sets for alle V. An identifying codeof G is a node subset which is dominating
and separating, see Fig. 1 for illustration.
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Figure 1: A graph, where the subset of black nodes forms (ajrardding (but not separating) set, (b) a separating (but
not dominating) set, and (c), (d) minimum identifying codes.
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Not every graplG admits an identifying code or identifiable this holds if and only if there
are no true twins i, i.e., there is no pair of distinct nodigg € V with N[i] = N[j][19]. On the
other hand, for every identifiable graph, its whole noderdgatly forms an identifying code.

Theidentifying code numbey'®(G) of a graphG is the minimum cardinality of any identi-
fying code ofG. Determiningy'®(G) is in general NP-hard [11]. From a combinatorial point of
view, the problem has been actively studied during the lasade. Typical lines of attack are
to determine minimum identifying codes of special graphsogprovide bounds for their size.
Closed formulas for the exact value gf (G) have been found so far only for restricted graph
families (e.g. for paths and cycles by [10] and for stars bgj)[1 A linear time algorithm to
determiney'P(G) if G is a tree was provided by [7], but for many other graph classesre
several other in general hard problems are easy to solwagniéd out that the identifying code
problem remains hard. This includes bipartite graphs [ht] ®vo classes of chordal graphs,
namely split graphs and interval graphs [13]. This motisatee study of bounds foy'® (G).
For instance, a canonical lower boundlisg(n + 1)] < y'°(G) for general graph§& of order
n by [19]. The trivial upper boung'®(G) < n has been improved for connected gra@hto
¥'P(G) < n— 1 by [17] (with stars being examples where this bound is }Jightl for line graphs
to y'P(L(G)) < 2|V(G)| - 5 by [14].

As polyhedral methods have been already proved to be stictEssseveral NP-hard com-
binatorial optimization problems, our aim is to apply suebhniques to the identifying code
problem. For that, a reformulation as set covering problsrimiorder. For a Ql-matrix M
with n columns, the set covering polyhedronQ§(M) = conv{x e Z7 : Mx > 1} andQ(M) =
{xe R" : Mx > 1} is its linear relaxation. Aoverof M is a ¢ 1-vectorx such thatMx > 1, and
the covering number(M) equals mirl™x, x € Q*(M) (see Section 2 for more details).

We obtain such a constraint systévix > 1 for the identifying code problem as follows.
Domination clearly requires that any identifying cddéntersects the closed neighborhadsfl]
of each nodé € V. Separation means that no two intersecti@nsN[i] andCN N[ j] are equal or,
equivalently, thaC intersects each symmetrictidirenceN[i] A N[j] for distinct nodes, j € V.

From now on givers C {1,...,n} by X(S) we meanyi.s X. Hence, the following constraints
encode the domination and separation requirements:

min1"x
X(N[j) = 1VjeV (domination)
X(N[j]]aN[K]) > 1VjkeV,j#k (separation)
x e {0,V

Let M;p(G) be the resultingdentifying code matrixf G, i.e., the matrix having as rows the
incidence vectors of the closed neighborhoods of the nofi€sand their pairwise symmetric
differences. Accordingly, we define tlentifying code polyhedron of &s

Pin(G) = Q' (Mip(G)) = conv{x e 2l : Mip(G) x> 1.

It is clear from the definition that a graph is identifiable iifdeonly if none of the symmet-
ric differences results in a zero-row Mip(G), and thaty'®(G) equals the covering number
T(M|D(G)) = min 1TX, Xe P|D(G)

Our aim is to apply the polyhedral approach to find minimunmtdging codes.

We first provide some definitions and results related to doggrolyhedra (Section 2), then
we focus on general properties of the identifying code petybnP,5(G) and introduce the
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canonical linear relaxation (Section 3). Afterwards, wecdss several lines to apply polyhe-
dral techniques. In Section 4, we present cases Wiigs€G) falls into a class of matrices for

which the set covering polyhedron is known and we, thus, idiately can obtain a complete

description ofP,5(G) and the exact value of°(G).

Furthermore, we present cases where a complete descrgiti®p (G) involves many and
complicated facets, but where we can identify facet-degisinbstructures (related to minors of
Mp(G)) that allow us to derive the full rank inequaligfV) > 7(M,p(G)) = ¥'°(G) and, thus,
the exact value of'P(G) (Section 5).

This demonstrates how polyhedral techniques can be appligis context. We close with
a discussion on future lines of research, including how #re lobtained results can be extended
to other classes of graphs.

Some of the results in this contribution appeared withoabf¥in [2, 4, 5, 6].

2. Propertiesof set covering polyhedra

We introduce definitions and basic concepts related to setritmy polyhedra and provide
results which are crucial for the proofs in the subsequertiases.

2.1. Preliminaries

Given two vectors y € R", we say thak < yif x; <y, foralli € {1,...,n}.

Let M € {0, 1}™™M. If x andy are two rows ofM andx <y, we say thay is redundant

Remind that a&overof a matrixM is a vectorx € {0, 1}" such thatMx > 1. A coverx of M
is minimalif there is no other covey of M such that < x. The blocker oM, denoted byo(M),
is the matrix whose rows are the minimal coversvfIt is known thatb(b(M)) = M and, thus,
we can refer ta@Q*(M) andQ(b(M)) as a blocking pair of polyhedra. Moreoveris an extreme
point of Q(b(M)) if and only ifa”x > 1 is a facet defining inequality @*(M) (see [15]). In the
sequel we will refer to this property &$ocking duality

Given a matrixM andj € {1, ..., n}, we introduce two matrix operations: the contraction of
j, denoted byM/ j, means that columfis removed fromM as well as the resulting redundant
rows and hence, corresponds to settipg= O in the constraintdvx > 1. The deletion ofj,
denoted byM \ j means that columij is removed fromM as well as all the rows with a 1 in
columnj and this corresponds to setting= 1 in the constraintx > 1.

The contraction of a sat; of columns fromM is the matrixM/V; obtained by contracting
all the columnsj € V; and the deletion of a s&f, of columns fromM is the matrixM \ V,
obtained by deleting columnjse V.

Then, givenM andVy,V, C {1,...,n} disjoint, we will say thatM/V; \ V, is aminor of M
and this minor does not depend on the order of operationseanezits in1,...,n}. Itis clear
thatM is always a minor of itself and we will say that a mindyV, \ V, is properif V, UV, # 0.

It is not hard to see thd(M/j) = b(M) \ jandb(M \ j) = b(M)/] for everyj € {1,...,n}.

LetU C {1,...,n} be a subset of columns ® andU = {1,...,n} — U its complement. A

rank inequalityassociated with a mindvl’ = M \ U is

DXz T(M). 1)
ieU
Remark 1. In [1], itis shown the following. If (1) is a facet of ‘©QV’), then it is also a facet of
Q*(M). In addition, if the rank constraint associated with somaaniinduces a facet-defining
inequality of Q(M) then this inequality is also induced by a minor obtained btien only.
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2.2. Set covering polyhedra associated with g-roses

Let H = (V, &) be a hypergraph with ¢ 2V and letM (%) denote its incidence matrix, i.e.,
M(H) encodes row-wise the incidence vectors of the hyperedyé&s Givenn > q > 2, let
R = (V, &) be the hypergraph wheké = {1, ..., n} and& contains allg-element subsets of.
Nobili and Sassano [20] called the incidence matriRpthe complete g-rose of orderand we
denote it byM(RY). In [21] it is proved the following result.

Theorem 2 ([21]). For n > q > 2, the inequality
n
D%z T(MER)) =n-g+1
i=1

is a facet defining inequality for QM (RY)).

For the sake of completeness, we here present the unpublshefs of the results in [6]
describing the set covering polyhedronggfoses of orden. We start with the study of minors
of M(R?). It can be easily observed that the following holds.

Remark 3. Forn>qg>2andie{1,...,n}
1. MR\ i=MRL)).
2. M(RY) /i = M(R™D).

In addition, the next result proves that the blocker of a deteg-rose is a complete—q-+ 1-
rose.

Lemma4. Letn> q> 2, then fM(RY) = M(R}*1).

Proof. From Theorem 2;(M(RY)) = n—q+1. Letd be a ' 1-vector withn—g+1 entries at value
one. By definition every row oM(R?) hasn — q entries at value zero. It is easy to check that
M(RY)d > 1; i.e.,d is a minimum cover oM(RY). It follows thatM(Rf 1) is a row submatrix
of b(M(RY)). Letd’ be a Q1-vector with more than — q + 1 entries at value one. It is clear that
there is a row in M(R %) such that < d’. Henced’ is not a minimal cover oM(®RS). Then,
the rows inM(Rl 1) are the only minimal covers dfl(R?), i.e.,b(M(RY) = M(REF *). O

Theorem 5. Let n> g > 2. The pointX is a fractional extreme point of @ (R7)) if and only if
_ L ifigCs
- — q-s »

X { 0 ifieCs 2
where s€ {0,...,q—2}and G C {1,...,n}, with|C4 = s.

Proof. Firstly considerx = él, thens = 0 andCs = 0. It is immediate thaM(RDX = 1. In
order to prove that is an extreme point we need to findinearly independent constraints of the
systemM(R)x > 1.

Then, forevery = 1,...,q+ 1, we select a row; such that itgjth entry equals

£, = 0 ifj=gq+2,...,n0r j=i
(f); = 1 otherwise,
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and, for eveny = g+ 2,...,n, we select a rowf; of M(R}) such that itsith entry equals

(=1 Q=i
Yi7) 0 foreveryj>q+2buti# j.

The considered rows can be reordered in a madrix the following way

w-(310)

wherelJ is the square matrix of order+ 1 with all its entries at value one except for its main
diagonal that has all 0'4,is the identity matrix of orden—gq—1 andAisa(h—-q-1)x(q+1)
matrix withq — 1 ones per row.

Trivially J has ranlg+1. It follows thatM has rankn and sincex satisfies the systeix = 1
itis an extreme point oQ(M(RM)).

It remains to prove that i§ = 0 thenx = %1 is the only fractional extreme point 6(M(RY))
with no zero entries.

Lety be a fractional extreme point @(M(RY)) with s = 0. Then then linearly independent
facet inducing inequalities thatsatisfies at equality are associated with a square row sulmat
M’ of M(R?) with rankn. Observe that iM’x = 1 has a unique solution thgn= x.

Now, considers € {1,...,q— 2} and an extreme point defined by (2). Observe thate
QM(RY)) N {x: x = 0foralli € Cs). From Remark 3.2 we have thBt(RY) /Cs = M(RYY),
hencex can be written asz(0) wherez = q%31 with Z e Q(M(R9)). As a consequence of the
cases = 0 already provedz is an extreme point d(M(R/-2)) and thenxis an extreme point of
QM(R?).-

Conversely, lek be an extreme point d(M(RY)) and suppose it has zero components. Let
Cs = {i : X = 0}. Then, the poinz'e¢ R"l such thatz = X, i € {1,...,n} = Cs is an
extreme point ofY(M(R7)/Cs). From Remark 3.2, i = |C4| we have thazis an extreme point
of Q(M(R"2)) with no zero components. Hen@es —= 1. Then we have,

g-ICs|
_ L ifigCs
- _ ) o-s
X { 0 ifieCs &)
O

As a consequence we have:

Theorem 6. Letn> g > 2. Aninequality);'; ax > 1with a; ¢ {0, 1} for some je {1,...,n}is
a facet-defining inequality for @(M(RY) = Q*(M(Ry ") if and only if S, ax; > 1 can be
written as XAs) > q— s for some AC {1,...,n} where s€ {0,...,g— 2} and|A{ = n-s.

Proof. Consider a facet-defining inequality GI*(M(RE‘Q”)) of the form Y/, ax > 1 with

aj ¢ {0,1} for somej € {1,...,n}. From Lemma 4M(R] %) = b(M(®RY)) and using blocking
duality it holds that the vecta € R" is a fractional extreme point @(M(R7)). From Theorem

5 it follows thatg; = q%S ifi ¢ CsC{l,...,n} anda = 0 otherwise. Using the same results the
converse is straightforward. O



3. General properties of identifying code polyhedra

In this section, we examine general properties of idemtgyiode polyhedra concerning their
dimension and study which of the constraints defining theooal linear relaxation define
facets. From the set covering formulation, it is clear thatinequalities

x>0 forieV, 4)
X(N[i]) =1 forieV, (5)
X(N[i]aN[jD =1 fori,jeV, j#i (6)

are always valid foP,p(G). The inequalities (4) are calletivial, we refer to the inequali-
ties (5) asclosed neighborhood inequalitiesd to the inequalities (6) aymmetric dference
inequalities

Accordingly, the identifying code matrix is composed by

Mip(G) =( E[[g]] )

encoding row-wise the closed neighborhoods of the nod&s ¢h N[G]) and their pairwise
symmetric diferences (im[G]).

A graphG is identifiable if and only ifP,p (G) is non-empty. AN[G] has no zero-rowg is
identifiable if and only ifA[G] has no zero-row (i.e. if and only & has no true twins [19]).

We first address the question whEp, (G) is full-dimensional. It is known from Balas and
Ng [8] that a polyhedroi®)*(M) is full-dimensional if and only if the matri#l has at least two
ones per row.

For P,p(G), this means tha& must not have isolated nodes (to ens|Nf]| > 2 for all
i € V(G)) and that there are no two adjacent nodasd j with N[i] = N[]] U {k} for some node
k (to ensureN[i] o N[j]| > 2 for all distincti, j € V(G)).

Let V1(G) be the set of noddse V(G) such thatk} = N[i] A N[]] for two different nodes$
andj in V(G). We immediately obtain:

Corollary 7. Let G be a graph without isolated nodes. Then, we have:

1. Pip(G) is full-dimensional if and only if \G) = 0.
2. The constraint x> 0 defines a facet of B(G) if and only if i ¢ V1(G).

In addition,M,p (G) may contain rows which are redundant. We, therefore, défi@aeorre-
sponding clutter matrix, thiglentifying code clutter matrix (g (G) of a graphG, obtained by re-
moving redundant rows fromvl,(G). We clearly have® 5 (G) = conx € ZV': C\p(G) x > 1}.
Moreover, in [8] it is proved that the only facet-defining qualities of a set covering polyhedron
Q*(A) with integer coéicients and right hand side equal to 1 are those of the syStem 1.
Hence we have:

Theorem 8. All constraints from (5 (G) x > 1 define facets of B(G).

We obtain a linear relaxation, tHeactional identifying code polyhedron,G) of G, by
considering all vectors satisfying the above inequalities

Qin(G) = {xe RY": Cip(G) x = 1}.
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We, therefore, propose to firstly determine the identify@ogle clutter matrixC,p(G) and then
to study which further constraints have to be adde@i(G) to obtainP,p (G).

In order to discuss which rows froid,p (G) remain inC;p(G) it is convenient to consider
the hypergraph associated withp (G).

We define thadentifying code hypergraph H(G) to be the hypergraph whose incidence
matrix M(H,p (G)) equalsC,p (G). Clearly, every hyperedge &f,p(G) corresponds to the closed
neighborhood of a node i@ or the symmetric dierence of two nodes 6. But, sinceCp(G)
is a clutter matrix, there is no hyperedgeHip (G) that contains another hyperedge. Therefore
there is no hyperedge containing a node frén(G). In addition, we observe thatifand j are
neither adjacent nor have a common neighbor, tghandN[ j] are disjoint, henc@&l[i]aAN[]] =
N[iJUNT[ j] follows and its characteristic vector is redundanM, (G). This implies a symmetric
differenceN[i] o N[j] is a hyperedge oH,p(G) only if i and j are adjacent or have a common
neighbor.

4. Identifying code polyhedra of complete p-partite graphs

In this section, we consider complgtepartite graphs and establish a connection to complete
2-roses of orden, R2, already mentioned in Section 2.2.

4.1. Complete bipartite graphs

First we consider complete bipartite grapgRs, with bipartition A = {1,...,m} andB =
{m+1,...,m+ n}. We begin with the case of stak§ p, i.e., A = {1} andn > 2. Note that
Ki2 = Psanditis easy to see th¥j = B is the uniqgue minimum identifying code.

Lemma9. For a star K, with n> 3, we have kb (Kipn) = Ki.n and Gp(Kyn) = M(R§+1).

Proof. For a staiK; 5 with n > 3, we have that
N[1] = {1} U B,

N[i] = {1,i} foralli € B,

N[1] A N[i] = B-{i} for alli € B,

N[j] A N[K] = {], k} for distinct j, k € B.

This shows thav/;(Ky,) = 0. After removing those sets whose characteristic vect@ser
dundant, namelWN[1] = {1} U B and N[1] A N[i] = B - {i} for all i € B, we obtain that
Hp(K1n) exactly contains all 2-element subsetsfot) B and, thus, it induces a cliqu€.n
andCp (Kyn) = M(RZ, ) follows. O

Then we deduce from Theorem 6:

Corollary 10. P;p(Kyn) with n > 3 is described by the inequalitie{®) > |C| — 1 for all
nonempty subsets C{1,...,n+ 1}.

The above inequalities yield, f¢€| = 1, the trivial inequalitiesg > 0 and, for|C| = 2, the
closed neighborhood and symmetridteience inequalities; + x; > 1 with i # j describing
Qip(Kyn). On the other handC = V yields the full rank facet which immediately implies
¥'P(K1n) = [V] - 1 (and provides an alternative proof for the result givertif).

Observe that foKy, it is easy to see tha|p(Ky2) = M(Rﬁ). Therefore, Corollary 10 also
applies toP,p(Kz2). For general complete bipartite grapghs, with m > 2,n > 3, we obtain:
7



Lemma1l. For a complete bipartite graph i, with m> 2, n > 3, we have hb (Kmn) = KmUKp

and ")
[ M(Rg, 0

CID(Km,n) - ( 0 M(R%) .
Proof. Let k,| € A. Clearly, N[K] A N[I] = {k,I}. Hence the rows corresponding to the sets
N[i] = {i}U A, fori € A, andNJi] A N[j] = (AUB) - {i, j} fori € Aand] € B are redundant.
Symmetric considerations show that only symmetritedenceN[i] A N[j] remain wherd, |
come either both from or both fromB. Thus,H,p(Kmpn) exactly contains all 2-element subsets
of A and all 2-element subsets Bf O

Remark 12. Itis known that the set of facet-defining inequalities 6{NMD) when M is a block
matrix of the form
a-(% )

0 M,
is the union of the sets of facet-defining inequalities fofNQ) and Q' (M,).

As a consequence of Theorem 6, Lemma 11 and the above remadaglede the following:

Corollary 13. Pip(Kmp) is given by the inequalities

1. x(C) > |C| — 1 for all nonempty CcC A,
2. X(C) = |C| — 1 for all nonempty Cc B.

Moreover,y'® (Kmn) = [V] - 2.

4.2. Complete p-partite graphs
= (Uy,...,Up, E) where eaclJ; = {vi1,...,Vin,} induces a nonempty stable set and ai'l'lwedges
betweenU; andU; , i # j are present. We ug¥);| = nj fori = 1,...,p, [V| = nand assume
n<m<...<npaswellasp > 3.
U, = {v»1} holds and/n"éndvu become true twins).

For illustration in Figure 2, complete 3-partite and 4-fargraphs are depicted and the black
dots in each of them correspond to their minimum identifyéndes.

Lemma 14. Let K, n, D& @ complete p-partite graph with & 1. Letr = [{i : nj = 2}| then

1,2,

e ifr = Owe have:

0 M(R2)
Cio(Kin.np) = ¢ :
0 0 M(RY)
e if 1<r < p-1we have:
0 Iy 0 0
0 0 MR,
Cio(Kyn,,...np) = . . :
o ... 0 M(Rﬁp)
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(a) (b)

Figure 2: (a) A complete 3-partite graph with = 2, np = 3 andnz = 4, (b) A complete 4-partite graph withy = 1,
n; =nz =2andng = 3.

e ifr =p-1, Cp(Kin,,..n,) = (0 l2r).

Proof. Let G = Ky, n,...n, be @ completep-partite graph withny = 1. If r = [{i : iy = 2}] and
1<r<p- 1, we have the following closed neighborhoods:

e N[vii] =
e N[vi1] =V —{viz} andN[viz] =V —{vi1}fori=2,...,r +1,
.N[v.,]_(V Ui) U { vIJ forl_r+2 P
Hence,N[vi1] A N[vi1] = {vi2} andN[v11] A N[v.z] {vii} foralli = 2,...,r + 1 shows that

UoU...UU; € Vi(G). All closed neighborhoods contain at least one node e (®) and, thus,
all its characteristic vectors are redundant. Moreovérthal characteristic vectors associated
with the symmetric dferences distinct frofN[v;;] A N[vi] = {vij,vi} fori=r+2,...,pare
redundant:

o N[vii] AN[v;j] = Ui = {v;j} fori=r +2,..., pcontainsN[v;;] A N[vi] (by n; > 3),

. N[v,l] A N[vig] andN[vy] A N[vy] forall i, j=2,...,r +1, as well as\[v;] A N[vj] for
i=2,....,r+1,j=r+2...,pintersectV,(G).

Thus, there is no hyperedgelitip (G) containingvy;. The nodes frond, U... U U, form Vy(G)
(leading to an identity matrix i€, (G)), and eactJ; withi =r + 2,..., pinduces a 2-rose of
ordern; in C;p (G).

The proofs of the remaining cases are particular situatitise proof above (if = 0, then
the submatriX, disappears, if = p — 1, then all the submatricdﬂ(?%ﬁm) disappear) and the
lemma follows. O

As a consequence of Theorem 6, Remark 12 and Lemma 14, waobtai

Theorem 15. Let G= Kp,,..n, b€ a complete p-partite graph with & 1. Letr = [{i : nj = 2}
and consider the following inequalities:

(1) X(v11) = 0and Xv;j) > Oforallvij e U;,i=r+2,...,p,
(2) X(Vij)Z 1fora||vij elUp,i=2...,r+1,

9



(3) x(V’) = |V’| — 1 for all nonempty subsets’\& Uj fori=r+2,...,p.
Then Rp(G) is given by the inequalities
e (1)and (3)ifr=0,
e (1),(2and(3)ifLl<r<p-1,
e (and (2)ifr=p-1.
Moreovery'®(G) =n—-p+r.
Using similar arguments as in the proof of Lemma 14, we obtain

Lemma 16. For a complete p-partite graph Kn,
i=r+1,...,p, we have:

n, Withny = 2fori =1,....randn > 3for

M®RZ) 0 ... 0
00 ME®) O

CID(Knl,nz ,,,,, np) = : . :
0 . 0 M(Rﬁp)
Theorem 6, Remark 12 and Lemma 16 imply:

Theorem 17. For a complete p-partite graph G Ky, p,..n, Withn = 2foralli =1,...,r, and
n >3fori=r+1,...,p, Pp(G) is given by the inequalities

1. x(v) > OforallveV,
2. X(V’) = |V'| — 1 for all nonempty subsets’\ U; U ... U U,
3. x(V’) = |V’| — 1 for all nonempty subsets’\t U; fori =r +1,...,p.

Moreovery'®(G) =n—-p+r - 1.

Remark 18. Note that any 2-rose minor in|g(G) corresponds to a clique in |3(G). Lemma
9 shows that the identifying code hypergraph of stars is@uelj and Corollary 10 implies that
cliques form facet-defining substructers. In particulareey set of pairwise false twins in a
graph gives rise to a clique in |g(G) since for non-adjacent nodes i and j witiiN= N(j), we
have Ni] A N[j] = {i, j} (see complete multi-partite graphs for examples). Heraeh set V of
pairwise false twins in a graph G leads to a facév® > |V’| — 1 of P,p(G).

5. Identifying code polyhedra of suns

In this section, we discuss hypercycles as further relesahstructers irH,p (G) that can
lead to valid or facet-defining inequalities Bfp (G).

Let H = (V,&) be a hypergraph witls  2¥. A hypercycleC = (V’,&’) of lengthmis a
hypergraph defined by an alternating sequdnEgi- . ..imEmi; of m nodes andn hyperedges
with {ij,ij+1} € Ei, im1 = i1. Itis an induced hypergraplof # if M(C) is a deletion minor
of M(H), i.e., if it is obtained by removing the columns outsiMeand the rows with a 1-entry
outsideV’. The result in Remark 1 can be restated as follows:

10



Lemma19. LetH’ = (V’,&’) be an induced hypergraph &f = (V, &). The inequality /') >
T(M(H")) is valid for Q*(M(H)). Moreover if it is a facet of M(H")) then it is also a facet of
Q' (M(H)).

In the sequel, we consider three families of suns and stugegrgycles in their identifying
code hypergraphs in order to determine minimum identifyiades.

It will turn out that the corresponding identifying code ttrs are related to fierent circu-
lant matrices. Acirculant matrixis a square matrix where each row vector is shifted one elemen
to the right relative to the preceding row. We denotedfjyhe circulant matrix ir{0, 1}™" having
as first row the vector starting withl-entries and having 0-entries otherwise. In contrary ¢o th
case ofy-roses, the covering polyhedron of general circulant masrhas not yet been described,
except for some special cases (see [1] and [12] for furtHereaces).

A sunis a graphG = (C U S, E) whose node set can be partitioned i®@ndC, where
S={s,..., S} isastable setand = {cy, ..., C,} is a (not necessarily chordless) cycle.

Here, we focus our consideration on three cases:

e n-sunsM, whereC induces a hole ang is adjacent to exactlg; andc;,; forall 1 <i < n,

e complete sun§, whereC induces a clique ang is adjacent to exactlyg; andc;,; for all

l1<i<nand

e CO-suUnsS, (the complements of complete suByg

(indices are taken modulg, see Figure 3 for examples. By definition, we immediately thait
all such suns witm > 3 are identifiable.

@ (b) (©

Figure 3: Three examples of suns (a) the 5-5#; (b) the complete suSs and (c) its complement, the co-sBa.

5.1. n-suns
We start our considerations withsuns. Note thag,p(M3) = 3 is easy to see.

Theorem 20. For an n-sun M = (C U S, E) with n> 4, we have

[
CID(Mn) = ( Cw | )
where G, is the circulant matrix whose first row (8, 1, 0, . . ., 0). Moreover, Hp(M;) = Co, and
Cio(Mn) = C3..
Proof. The neighborhood matrix dfl, can be written as
N[M,] = cz |
"l

because we have th&i[s] = {s,c,Ci1) andN[c] = {Ci-1,Ci, Civ1,S-1, S}, Clearly, N[c]
containsN[s] for all i < n. To find A[M,], we consider the following cases:
11



o We haveN[s]aN[c] ={s:. G, Ci+1}A{Gi_1, Ci, Ci+1, S-1, S} =1{Ci_1, S—1} andN[si_1] AN[c] =
{Ci+1, S}, which is clearly contained iN[u] for everyu € M.

e Considerc,c; € C. If ¢; andc; are adjacent nodes, say,jif= i + 1 holds, then since
n>4,N[c] AN[Ga] = {G-1.GCi, Ci+1, S-1, S} A{Gi, Gis1, Civ2, S S} = {Gim1, Giv2, S-1, Siv1)
follows. As N[s] a N[c] = {ci-1,S-1} € N[c] 2 N[ci;1] the characteristic vector of
N[ci] A N[ci;1] is redundant. Ifc; andc; are not adjacent nodes thétjc] A N[c;] is
redundant since it contaifs, ¢} = N[S+1] A N[Ciy1].

e Lets,s; € S. If 5 ands; have a common neighbor, say,; andj = i + 1 holds, then
N[s]aN[si1] = {S,Ci, Ci+1}A{S+1. Gis1. Gis2) = {Si, Si41, Ci, Cir2}. Due toN[s;1]AN[Ci,1] =
{s,Ci} € N[s] A N[s.1], the characteristic vector ™[s] A N[s,1] is redundant. Ifs and
s; have no common neighbor théd{s] A N[s;] is redundant sinc&l[s] and N[s;] are
disjoint sets.

Since all rows ofC,p(M;) have exactly two 1-entries, it is clear thdip (M,) is a graph. Itis a
cycle sinceN[s] A N[¢i] = {c¢i_1, 51} andN[s_2] A N[ci_1] = {ci, S_1} share the nods_;, and
N[s_2] 2 N[ci_1] andN[s;1] 2 N[ci;1] = {S, ¢} share node;. Accordingly, its incidence matrix
Cip(Mp) can be re-arranged &5 (by ordering the columns as, s1,C2, S, ..., G, Sy and the
rows asN[cz] & N[sp], N[c1] & N[sq], N[cs] & N[ss], N[cz] & N[s1], ..., N[c1] A N[s1], N[cn] A
N[sn-1])- O

Hence H;p(M,) is an even (hyper)cycle andM,) = n clearly holds. In additionC:,jn is one
of the few circulant matrices whef@"* (an) is known [12], and we conclude:

Corollary 21. For M, = (C U S, E) with n > 4, P,p(M,) coincides with its linear relaxation
Q(Cip(Mn)) andyip(Mp) = n.

5.2. Complete suns

Let us now consider a complete sBp = (C U S, E) with n > 4. In contrary ton-suns, the
identifying code clutters of complete suns have a much moneptex structure [3], involving
different combinations of circulant matrices, where some stirea occur for alh > 4, others
not (depending on the parity of and the size of the graph). Accordingly, the description of
Pio(Sn) requires many and complex facets. However, an analyssg{(fS,) shows thasS is an
identifying code ang'P(S,) < |S| = n. In [3] we conjectured that this bound is tight. In order
to prove the conjecture, we rely on the following result:

Lemma22. Let S, = (CU S, E) be a complete sun whithxn 4. The hyperedges|N], N[S1],
and N's]AN[s.1] form a hypercycle in b (Sy) that induces arank face({c, Ci.1, Cis2, S» S+1})
> 2 of PID(Sn)-

Proof. Consider the following hyperedges frdtip (Sp): the neighborhoodN[s] = {ci, Ci+1, S},
N[S+1] = {Cis1, Cis2, S+1} and their symmetric dierenceN[s] A N[s.1] = {Ci, Ci+2, S, S}

They form, for alln > 4, a hypercycle of length 3 with suppdd, Ci;1, Cii2, S, S+1}- It is
clear that this hypercycle is obtained by deletion of theigois inV — {c, Ci;1, Cis2, S, S+1} in
Cip(Sn). As x({Ci, Ci+1,Cit2, S, S+1)) = 2 forn > 4 is a facet of this deletion minor, it is also a
facet of P;p(S,) by Lemma 19. O

Theorem 23. For a complete sun $= (C U S, E) with n > 4, the stable set S is a minimum
identifying code and, thus/®(S;) = n.
12



Proof. Let us firstly observe that the stable Sa6 an identifying code i18,: indeed N[S]NS =
{s}andN[c] NS = {s_1, 5} holds fori = 1,...,n, thus each node is dominated and separated.

In order to show tha$ is a minimum identifying code i$,, we consider an arbitrary iden-
tifying codel in Sp with | # S and show thafl| > n.

Observe that contains nodes from bot andS: we can neither have c S (otherwisel
does not dominate any node3+ I) nor we can havé C C (otherwisel does not separate any
two nodes irC).

In order to showl| > n, we provide arguments implying N C| > |S — I|. Note thatS — |
cannot contain 3 consecutive nodes, S, S+1 (otherwisel NN[c] = I NC = I N N[ci41] holds).
Hence,S — | can be partitioned into blocks containing either a singldenor two consecutive
nodes frons, where no two blocks are consecutive. SupposeShdtconsists of blocksA; of
cardinality 1 andy blocksBy with two consecutive nodes each and consequentl2q = |S—1|.

For each blocld; = {s}, it clearly follows|l N{ci,1, Gi}| > 1 from the inequalit,({s;, Ci+1, Gi})
> 1 associated to the hyperedygs] in Hip(Sp).

For each blockBx = {s,S:1}, we have by Lemma 22 thaf[s], N[s.1], and N[s] &
N[s.1] form a hypercycle with rank facet({c;, Cis1,Cii2, S, S+1}) = 2, which clearly implies
[I' N {Ci, Ciy1, Gy}l > 2.

In addition, if 5 ands; belong to diferent blocks o5 — |, then the sets of their neighbors in
C are disjoint. This finally showg N C| > p + 2q and impliegl| > n. O

5.3. Co-suns

Finally, let us consider co-sur, = (C U S,E), whereC is a clique andS is a stable
set. Note thaS; = M3 andS, = S, holds. Also the identifying code clutters of co-suns
have a complex structure [4], involvingftiérent combinations of circulant matrices, where some
submatrices occur for alt > 4, others not (depending on the parityofind the size of the
graph). Accordingly, the descnptlon &ip(S,) requires many and complex facets, too. An
analysis ofCp (S,,) shows thaS is an identifying code ang'®(S,) < |S| = n holds. However,
this bound is tight only fon = 5,6. Hence, in the sequel, we will consider the cases whery.

Remark 24. From the definition o8, we obtain the following hyperedges ofS,):

(1) N[s] =(C—{ci,ci-1}) U is},
(2) N[s] 2 N[sj] = {¢i-1,Ci, Cji, Cj, S, S}, in particular N[s] A N[s;11] = {Gi-1, Ci+1, S, S4a),
(3) N[c] a N[cj] = {s, S+1, Sj, S}, in particular N[¢i] A N[Ci11] = {S, S+2)-

Theorem 25. The identifying code number 8f, with n> 7is n— 1.

Proof. Let us show that* = {cy,C3, S, 3} U U s is an identifying code. Indeed, all nodes in

C U S are separated and dominated since We have that:
N[g] N I* = 1" = {s41} withi =21 ori = 4.
N[g] n1* =1* —{s} withi =3 ori=n-1.
N[c]nI*=1*—{s,s;1} withi=2orie{5,...,n—2}.
N[ca] N1 = 1.
N[si] N1 = {c
N[sz] N 1™ ={
{
{

*

3}
S, C3}.
N[ss] N 1" = {s3,C1}.
N[ss] N 1" = {ca}).
13



N[s]NnI* ={s,c1,c3} withi =5,6,...,n— 1.
N[s] N 1" = {cy, Ca}.

Also we can observe thit| = n— 1, hencey'®(S;) < n— 1 follows. Letl be an identifying
code ofS,,, we will show thatl| > n— 1.

Claim 1: There cannot b8 consecutive nodes in-Sl. Suppose tha ¢ | holds. Then we have
by Remark 24(3) thalts 2, 42} € | and{s_1, S} N1 #0. ¢

Claim 2: There is at most one pair of consecutive nodes+n.SSuppose thdts, Si.1, Sj, Sj+1} C
S—1lwith|j—i-1] > 2. Then, according to Remark 24(3tannot be an identifying code.

As a consequence of Claim 1 and Claim 2, theSet | can be partitioned aS - | =
BU A, U...UA witht < nwhereB is a block of either none or 2 consecutive nodeS @ind
eachA is a block having exactly one node §f We next study the possible gaps between two
consecutive blocké; andA, .

Claim 3: Between Aand A, there are at least two nodes frormIS, foralll < j < t.
Suppose to the contrary that we hakg= (s}, s.1 € | N S andAj,1 = {S.2} for somej with

1 < j < t. By Remark 24(3), the symmetricftBrenceN[c] A N[ci;1] = {S, S+2} iS a hyper-
edge ofH|D(§n) and thus|{s, s+2} N 1| > 1 must hold, a contratiction to the assumption that
Aj UA]+1= {S,S2}SS-1.0

Thus, for the seSa = A1 U ... U A, we have that ifA; = {s} thenAj,1 = {S} with i -k > 3
forall 1 < j <t (indices fors are taken modula).

Claim 4: From|Sa| = twe obtain|l NC| >t — 1. LetSa = {7, 2,...,z}. W.l.o.g. assume that
71 = sy andz; = s, for somem > 4. According to Remark 24(2) therews € {C1, Cm-1, Cm, Ca} NI
that separates, from z;. If wy € {c1,c,} thenw, separateg; from z for alli € {2,...,t} (an
analogous conclusion follows\f; € {Cm, Cm-1}). Sincew; € N[z] forall i € {2, ...,t} then there
is another node ih that separates from z; for i, j # 1. Let us callw, € (C — {w1}) N | the node
that separate®s from z for all i € {3,...,t}. Applying this reasoning it is clear thathast — 1
different nodes i€ that separate the nodes$h. Hencel NC| >t -1.¢

If B=0then|l N S| =n-t. From Claim 4 it holds that N C| >t - 1 and thenl| > n— 1.

It is left to treat the case B # @ and thu§S n 1| = n -t — 2 holds. W.l.o.g. assume that
B = {s1, $}. By Remark 24(2)cp,ch} N1 # 0. Let us assume thap € | (the same argument
can be applied to, € ). Asc, € N[X] for everyx € {s;} U Sa thenl has other nodes i@ that
separate them. Using Claim 4 wii = {s;}USa we obtain thail| = [INS|+|I N(C—{c2})|+1 >
n-t—-2+t+1=n-1. ]

6. Concluding remarks

The identifying code problem is hard in general and challempgoth from a theoretical and
a computational point of view, even for special graphs liggltite graphs [11] and split graphs
[13]. Hence, a typical line of attack is to determine minimigientifying codes of special graphs
(as paths [9, 16], stars [17] and cycles [9, 16]), or to preNa@ver and upper bounds [14, 17, 19].
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In this paper, we demonstrated how polyhedral techniquefehp to find identifying codes
of minimum size. For that, we rely on a reformulation of thentfying code problem in terms
of a set covering problem in a suitable hypergrépk(G) and study the identifying code polyhe-
dronP,p(G) = Q*(Cp(G)) as covering polyhedron associated with its incidenceaim@;p (G).

We provided some general properties of the identifying cpdihedronP,5(G) and its
canonical linear relaxation (Section 3). Afterwards, wecdssed several lines to apply poly-
hedral techniques to the identifying code problem. In argecdhe first step is to determine
Hp(G) and its incidence matri€,p (G).

If C,p(G) falls into a class of matricel! for which the set covering polyhedrdd*(M) is
already known, then we immediately obtain a complete desen of P,p(G) and can deduce
the exact value of'°(G). This turned out to be the case for stirs, (whereCip(Ky,) equals
a 2—roseR§+1) and for general complete multipartite gragbgwhereC,p(G) is composed by
blocks of 2-roses). Moreover, the identifying code clutém-sunsM, turned out to equal
the circulant matri>C§n which implied P,p(Mp) = Qip(My). In all these cases, we obtained a
complete description d?p(G) and a closed formula for the exact valueyt (G).

A matrix M isidealif Q*(M) = Q(M). Hence, we can conclude from our resultresuns:

Corollary 26. The identifying code clutters of n-suns, e ideal for all n> 3.

A way to evaluate how far a nonideal matrix is from being idsatsists in classifying the
inequalties that have to be addedQ@M) in order to obtairQ*(M). In [1], a matrixM is called
rank-idealif Q*(M) is described by rank constraints only. Thus, the resul&eiction 4 imply:

Corollary 27. The identifying code clutters of complete multipartite gra G are rank-ideal
since rank constraints associated with cliques i (&) syfice to describe B (G).

In general, we cannot expect identifying code clutters t¢rbpk-)ideal. Complete surg,
and their complements are examples of graphehereC,y(G) is far from being rank-ideal.
However, an analysis &p (G) impliesy'®(S,) < nand rised a conjecture in [3] that this bound
is tight. Here, we were able to verify this conjecture by cawny polyhedral and combinato-
rial arguments. Finally, we provided a purely combinatopiaof for '®(S,) < n - 1 for all
complements of complete suns witle 7.

Note that the arguments and techniques applied to complatease rather general and have
the potential to be applied to all grap@s even if their identifying code clutters are matrices
with a complex structure and a complete descriptioR@f(G) involves many and complicated
facets. In all such cases, an analysi€gf(G) can provide, on the one hand, upper bounds for
¥'®(G) and, on the other hand, minors®i, (G) (e.g. associated with cliques or odd hypercycles
in Hp(G)) whose rank constraints strengthen the linear relaxa@i@(G) and can be used to
obtain lower bounds foy'P (G).

Future lines of our research include to identify more fatefining substructures iH 5 (G)
(related to minors o€, (G)) that allow us to strengthen the linear relaxat@m (G). Thereby,
our goal is to obtain either the identifying code of minimuizesor strong lower bounds stem-
ming from linear relaxations of the identifying code polghen, enhanced by suitable cutting
planes. Recall that facets associated with deletion miofo@sp (G) remain facets iPp (G), so
according facets identified for special graphs are relefeairgvery graph having such subgraphs.

Acknowledgments: We would like to thank the anonymous referees for their hetlpdm-
ments that improved the final presentation of these results.
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