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cUniversité Clermont Auvergne (LIMOS UMR CNRS 6158), Aubi`ere, France

Abstract

The identifying code problem is a newly emerging search problem, challenging both from a the-
oretical and a computational point of view, even for specialgraphs like bipartite graphs. Hence,
a typical line of attack for this problem is to determine minimum identifying codes of special
graphs or to provide bounds for their size.

In this work we study the associated polyhedra and present some general results on their
combinatorial structure. We demonstrate how the polyhedral approach can be applied to find
minimum identifying codes for special graphs, and discuss further lines of research in order to
obtain strong lower bounds stemming from linear relaxations of the identifying code polyhedron,
enhanced by suitable cutting planes to be used in a B&C framework.

Key words: identifying code polyhedron, identifying code clutter, odd hypercycles

1. Introduction

Many search problems as, e.g., fault detection in networks,fire detection in buildings, or
performing group tests, can be modeled by so-called identifying codes in graphs [19].

Consider a graphG = (V,E) with a set of nodesV = {1, . . . , |V|} and a set of edgesE. Given
a nodei ∈ V let denote byN[i] = {i} ∪N(i) the closed neighborhood ofi, i.e., the nodei together
with all its neighbors. A subsetC ⊆ V is dominating(resp.separating) if N[i]∩C are non-empty
(resp. distinct) sets for alli ∈ V. An identifying codeof G is a node subset which is dominating
and separating, see Fig. 1 for illustration.

(b) (c)(a) (d)

Figure 1: A graph, where the subset of black nodes forms (a) a dominating (but not separating) set, (b) a separating (but
not dominating) set, and (c), (d) minimum identifying codes.
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Not every graphG admits an identifying code or isidentifiable: this holds if and only if there
are no true twins inG, i.e., there is no pair of distinct nodesi, j ∈ V with N[i] = N[ j] [19]. On the
other hand, for every identifiable graph, its whole node set trivially forms an identifying code.

The identifying code numberγID(G) of a graphG is the minimum cardinality of any identi-
fying code ofG. DeterminingγID(G) is in general NP-hard [11]. From a combinatorial point of
view, the problem has been actively studied during the last decade. Typical lines of attack are
to determine minimum identifying codes of special graphs orto provide bounds for their size.
Closed formulas for the exact value ofγID(G) have been found so far only for restricted graph
families (e.g. for paths and cycles by [10] and for stars by [17]). A linear time algorithm to
determineγID(G) if G is a tree was provided by [7], but for many other graph classeswhere
several other in general hard problems are easy to solve, it turned out that the identifying code
problem remains hard. This includes bipartite graphs [11] and two classes of chordal graphs,
namely split graphs and interval graphs [13]. This motivates the study of bounds forγID(G).
For instance, a canonical lower bound is⌈log(n + 1)⌉ ≤ γID(G) for general graphsG of order
n by [19]. The trivial upper boundγID(G) ≤ n has been improved for connected graphsG to
γID(G) ≤ n− 1 by [17] (with stars being examples where this bound is tight) and for line graphs
to γID(L(G)) ≤ 2|V(G)| − 5 by [14].

As polyhedral methods have been already proved to be successful for several NP-hard com-
binatorial optimization problems, our aim is to apply such techniques to the identifying code
problem. For that, a reformulation as set covering problem is in order. For a 0/1-matrix M
with n columns, the set covering polyhedron isQ∗(M) = conv

{

x ∈ Zn
+ : Mx ≥ 1

}

andQ(M) =
{

x ∈ Rn
+ : Mx ≥ 1

}

is its linear relaxation. Acoverof M is a 0/1-vectorx such thatMx ≥ 1, and
thecovering numberτ(M) equals min1T x, x ∈ Q∗(M) (see Section 2 for more details).

We obtain such a constraint systemMx ≥ 1 for the identifying code problem as follows.
Domination clearly requires that any identifying codeC intersects the closed neighborhoodN[i]
of each nodei ∈ V. Separation means that no two intersectionsC∩N[i] andC∩N[ j] are equal or,
equivalently, thatC intersects each symmetric differenceN[i] △ N[ j] for distinct nodesi, j ∈ V.

From now on givenS ⊆ {1, . . . ,n} by x(S) we mean
∑

i∈S xi . Hence, the following constraints
encode the domination and separation requirements:

min1T x
x(N[ j]) ≥ 1 ∀ j ∈ V (domination)

x(N[ j] △ N[k]) ≥ 1 ∀ j, k ∈ V, j , k (separation)
x ∈ {0,1}|V|

Let MID(G) be the resultingidentifying code matrixof G, i.e., the matrix having as rows the
incidence vectors of the closed neighborhoods of the nodes of G and their pairwise symmetric
differences. Accordingly, we define theidentifying code polyhedron of Gas

PID(G) = Q∗(MID(G)) = conv
{

x ∈ Z|V|+ : MID(G) x ≥ 1
}

.

It is clear from the definition that a graph is identifiable if and only if none of the symmet-
ric differences results in a zero-row ofMID(G), and thatγID(G) equals the covering number
τ(MID(G)) = min1T x, x ∈ PID(G).

Our aim is to apply the polyhedral approach to find minimum identifying codes.
We first provide some definitions and results related to covering polyhedra (Section 2), then

we focus on general properties of the identifying code polyhedronPID(G) and introduce the
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canonical linear relaxation (Section 3). Afterwards, we discuss several lines to apply polyhe-
dral techniques. In Section 4, we present cases whereMID(G) falls into a class of matrices for
which the set covering polyhedron is known and we, thus, immediately can obtain a complete
description ofPID(G) and the exact value ofγID(G).

Furthermore, we present cases where a complete descriptionof PID(G) involves many and
complicated facets, but where we can identify facet-defining substructures (related to minors of
MID(G)) that allow us to derive the full rank inequalityx(V) ≥ τ(MID(G)) = γID(G) and, thus,
the exact value ofγID(G) (Section 5).

This demonstrates how polyhedral techniques can be appliedin this context. We close with
a discussion on future lines of research, including how the here obtained results can be extended
to other classes of graphs.

Some of the results in this contribution appeared without proofs in [2, 4, 5, 6].

2. Properties of set covering polyhedra

We introduce definitions and basic concepts related to set covering polyhedra and provide
results which are crucial for the proofs in the subsequent sections.

2.1. Preliminaries
Given two vectorsx, y ∈ R

n, we say thatx ≤ y if xi ≤ yi for all i ∈ {1, . . . ,n}.
Let M ∈ {0,1}n×m. If x andy are two rows ofM andx ≤ y, we say thaty is redundant.
Remind that acoverof a matrixM is a vectorx ∈ {0,1}n such thatMx ≥ 1. A coverx of M

is minimal if there is no other covery of M such thaty ≤ x. The blocker ofM, denoted byb(M),
is the matrix whose rows are the minimal covers ofM. It is known thatb(b(M)) = M and, thus,
we can refer toQ∗(M) andQ(b(M)) as a blocking pair of polyhedra. Moreover,a is an extreme
point of Q(b(M)) if and only if aT x ≥ 1 is a facet defining inequality ofQ∗(M) (see [15]). In the
sequel we will refer to this property asblocking duality.

Given a matrixM and j ∈ {1, . . . ,n}, we introduce two matrix operations: the contraction of
j, denoted byM/ j, means that columnj is removed fromM as well as the resulting redundant
rows and hence, corresponds to settingx j = 0 in the constraintsMx ≥ 1. The deletion ofj,
denoted byM \ j means that columnj is removed fromM as well as all the rows with a 1 in
column j and this corresponds to settingx j = 1 in the constraintsMx ≥ 1.

The contraction of a setV1 of columns fromM is the matrixM/V1 obtained by contracting
all the columnsj ∈ V1 and the deletion of a setV2 of columns fromM is the matrixM \ V2

obtained by deleting columnsj ∈ V2.
Then, givenM andV1,V2 ⊆ {1, . . . ,n} disjoint, we will say thatM/V1 \ V2 is aminor of M

and this minor does not depend on the order of operations or elements in{1, . . . ,n}. It is clear
thatM is always a minor of itself and we will say that a minorM/V1\V2 is proper if V1∪V2 , ∅.
It is not hard to see thatb(M/ j) = b(M) \ j andb(M \ j) = b(M)/ j for every j ∈ {1, . . . ,n}.

Let U ⊆ {1, . . . ,n} be a subset of columns ofM andU = {1, . . . ,n} − U its complement. A
rank inequalityassociated with a minorM′ = M \ U is

∑

i∈U

xi ≥ τ(M
′). (1)

Remark 1. In [1], it is shown the following. If (1) is a facet of Q∗(M′), then it is also a facet of
Q∗(M). In addition, if the rank constraint associated with some minor induces a facet-defining
inequality of Q∗(M) then this inequality is also induced by a minor obtained by deletion only.
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2.2. Set covering polyhedra associated with q-roses

LetH = (V,E) be a hypergraph withE ⊆ 2V and letM(H) denote its incidence matrix, i.e.,
M(H) encodes row-wise the incidence vectors of the hyperedges in E. Givenn > q ≥ 2, let
R

q
n = (V,E) be the hypergraph whereV = {1, . . . ,n} andE contains allq-element subsets ofV.

Nobili and Sassano [20] called the incidence matrix ofRq
n thecomplete q-rose of order nand we

denote it byM(Rq
n). In [21] it is proved the following result.

Theorem 2 ([21]). For n > q ≥ 2, the inequality

n
∑

i=1

xi ≥ τ(M(Rq
n)) = n− q+ 1

is a facet defining inequality for Q∗(M(Rq
n)).

For the sake of completeness, we here present the unpublished proofs of the results in [6]
describing the set covering polyhedron ofq-roses of ordern. We start with the study of minors
of M(Rq

n). It can be easily observed that the following holds.

Remark 3. For n > q ≥ 2 and i ∈ {1, . . . ,n}

1. M(Rq
n) \ i = M(Rq

n−1).

2. M(Rq
n) /i = M(Rq−1

n−1).

In addition, the next result proves that the blocker of a completeq-rose is a completen−q+1-
rose.

Lemma 4. Let n> q ≥ 2, then b(M(Rq
n)) = M(Rn−q+1

n ).

Proof. From Theorem 2,τ(M(Rq
n)) = n−q+1. Letd be a 0/1-vector withn−q+1 entries at value

one. By definition every row ofM(Rq
n) hasn − q entries at value zero. It is easy to check that

M(Rq
n)d ≥ 1; i.e.,d is a minimum cover ofM(Rq

n). It follows thatM(Rn−q+1
n ) is a row submatrix

of b(M(Rq
n)). Let d′ be a 0/1-vector with more thann− q+ 1 entries at value one. It is clear that

there is a rowr in M(Rn−q+1
n ) such thatr ≤ d′. Henced′ is not a minimal cover ofM(Rq

n). Then,
the rows inM(Rn−q+1

n ) are the only minimal covers ofM(Rq
n), i.e.,b(M(Rq

n)) = M(Rn−q+1
n ).

Theorem 5. Let n> q ≥ 2. The pointx̄ is a fractional extreme point of Q(M(Rq
n)) if and only if

x̄i =

{ 1
q−s if i < Cs,

0 if i ∈ Cs,
(2)

where s∈ {0, . . . ,q− 2} and Cs ⊆ {1, . . . ,n}, with |Cs| = s.

Proof. Firstly consider ¯x = 1
q1, thens = 0 andCs = ∅. It is immediate thatM(Rq

n)x̄ = 1. In
order to prove that ¯x is an extreme point we need to findn linearly independent constraints of the
systemM(Rq

n)x ≥ 1.
Then, for everyi = 1, . . . ,q+ 1, we select a rowfi such that itsjth entry equals

( fi) j =

{

0 if j = q+ 2, . . . ,n or j = i
1 otherwise,
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and, for everyi = q+ 2, . . . ,n, we select a rowfi of M(Rq
n) such that itsjth entry equals

( fi) j =

{

1 if j = i
0 for every j ≥ q+ 2 but i , j.

The considered rows can be reordered in a matrixM in the following way

M =

(

J 0
A I

)

,

whereJ is the square matrix of orderq + 1 with all its entries at value one except for its main
diagonal that has all 0’s,I is the identity matrix of ordern− q− 1 andA is a (n− q− 1)× (q+ 1)
matrix withq− 1 ones per row.

Trivially J has rankq+1. It follows thatM has rankn and since ¯x satisfies the systemMx̄ = 1
it is an extreme point ofQ(M(Rq

n)).
It remains to prove that ifs= 0 thenx̄ = 1

q1 is the only fractional extreme point ofQ(M(Rq
n))

with no zero entries.
Let ȳ be a fractional extreme point ofQ(M(Rq

n)) with s= 0. Then then linearly independent
facet inducing inequalities that ¯y satisfies at equality are associated with a square row submatrix
M′ of M(Rq

n) with rankn. Observe that ifM′x = 1 has a unique solution then ¯y = x̄.
Now, considers ∈ {1, . . . ,q − 2} and an extreme point ¯x defined by (2). Observe that ¯x ∈

Q(M(Rq
n)) ∩ {x : xi = 0 for all i ∈ Cs}. From Remark 3.2 we have thatM(Rq

n) /Cs = M(Rq−s
n−s),

hence ¯x can be written as (¯z,0) wherez̄ = 1
q−s1 with z̄ ∈ Q(M(Rq−s

n−s)). As a consequence of the

cases= 0 already proved, ¯z is an extreme point ofQ(M(Rq−s
n−s)) and then ¯x is an extreme point of

Q(M(Rq
n)).

Conversely, let ¯x be an extreme point ofQ(M(Rq
n)) and suppose it has zero components. Let

Cs = {i : x̄i = 0}. Then, the point ¯z ∈ R
n−|Cs| such that ¯zi = x̄i , i ∈ {1, . . . ,n} − Cs is an

extreme point ofQ(M(Rq
n)/Cs). From Remark 3.2, ifs= |Cs| we have that ¯z is an extreme point

of Q(M(Rq−s
n−s)) with no zero components. Hence, ¯z= 1

q−|Cs|
1. Then we have,

x̄i =

{ 1
q−s if i < Cs

0 if i ∈ Cs.
(3)

As a consequence we have:

Theorem 6. Let n> q ≥ 2. An inequality
∑n

i=1 ai xi ≥ 1 with aj < {0,1} for some j∈ {1, . . . ,n} is
a facet-defining inequality for Q∗(b(M(Rq

n)) = Q∗(M(Rn−q+1
n ) if and only if

∑n
i=1 ai xi ≥ 1 can be

written as x(As) ≥ q− s for some As ⊆ {1, . . . ,n} where s∈ {0, . . . ,q− 2} and |As| = n− s.

Proof. Consider a facet-defining inequality ofQ∗(M(Rn−q+1
n )) of the form

∑n
i=1 ai xi ≥ 1 with

a j < {0,1} for some j ∈ {1, . . . ,n}. From Lemma 4,M(Rn−q+1
n ) = b(M(Rq

n)) and using blocking
duality it holds that the vectora ∈ Rn is a fractional extreme point ofQ(M(Rq

n)). From Theorem
5 it follows thatai =

1
q−s if i < Cs ⊆ {1, . . . ,n} andai = 0 otherwise. Using the same results the

converse is straightforward.
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3. General properties of identifying code polyhedra

In this section, we examine general properties of identifying code polyhedra concerning their
dimension and study which of the constraints defining the canonical linear relaxation define
facets. From the set covering formulation, it is clear that the inequalities

xi ≥ 0 for i ∈ V, (4)

x(N[i]) ≥ 1 for i ∈ V, (5)

x(N[i] △ N[ j]) ≥ 1 for i, j ∈ V, j , i (6)

are always valid forPID(G). The inequalities (4) are calledtrivial , we refer to the inequali-
ties (5) asclosed neighborhood inequalitiesand to the inequalities (6) assymmetric difference
inequalities.

Accordingly, the identifying code matrix is composed by

MID(G) =

(

N[G]
△[G]

)

,

encoding row-wise the closed neighborhoods of the nodes ofG (in N[G]) and their pairwise
symmetric differences (in△[G]).

A graphG is identifiable if and only ifPID(G) is non-empty. AsN[G] has no zero-row,G is
identifiable if and only if△[G] has no zero-row (i.e. if and only ifG has no true twins [19]).

We first address the question whenPID(G) is full-dimensional. It is known from Balas and
Ng [8] that a polyhedronQ∗(M) is full-dimensional if and only if the matrixM has at least two
ones per row.

For PID(G), this means thatG must not have isolated nodes (to ensure|N[i]| ≥ 2 for all
i ∈ V(G)) and that there are no two adjacent nodesi and j with N[i] = N[ j] ∪ {k} for some node
k (to ensure|N[i] △ N[ j]| ≥ 2 for all distincti, j ∈ V(G)).

Let V1(G) be the set of nodesk ∈ V(G) such that{k} = N[i] △ N[ j] for two different nodesi
and j in V(G). We immediately obtain:

Corollary 7. Let G be a graph without isolated nodes. Then, we have:

1. PID(G) is full-dimensional if and only if V1(G) = ∅.
2. The constraint xi ≥ 0 defines a facet of PID(G) if and only if i < V1(G).

In addition,MID(G) may contain rows which are redundant. We, therefore, definethe corre-
sponding clutter matrix, theidentifying code clutter matrix CID(G) of a graphG, obtained by re-
moving redundant rows fromMID(G). We clearly havePID(G) = conv{x ∈ Z|V|+ : CID(G) x ≥ 1}.
Moreover, in [8] it is proved that the only facet-defining inequalities of a set covering polyhedron
Q∗(A) with integer coefficients and right hand side equal to 1 are those of the systemAx ≥ 1.
Hence we have:

Theorem 8. All constraints from CID(G) x ≥ 1 define facets of PID(G).

We obtain a linear relaxation, thefractional identifying code polyhedron QID(G) of G, by
considering all vectors satisfying the above inequalities:

QID(G) =
{

x ∈ R|V|+ : CID(G) x ≥ 1
}

.
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We, therefore, propose to firstly determine the identifyingcode clutter matrixCID(G) and then
to study which further constraints have to be added toQID(G) to obtainPID(G).

In order to discuss which rows fromMID(G) remain inCID(G) it is convenient to consider
the hypergraph associated withCID(G).

We define theidentifying code hypergraph HID(G) to be the hypergraph whose incidence
matrix M(HID(G)) equalsCID(G). Clearly, every hyperedge ofHID(G) corresponds to the closed
neighborhood of a node inG or the symmetric difference of two nodes inG. But, sinceCID(G)
is a clutter matrix, there is no hyperedge inHID(G) that contains another hyperedge. Therefore
there is no hyperedge containing a node fromV1(G). In addition, we observe that ifi and j are
neither adjacent nor have a common neighbor, thenN[i] andN[ j] are disjoint, henceN[i]△N[ j] =
N[i]∪N[ j] follows and its characteristic vector is redundant inMID(G). This implies a symmetric
differenceN[i] △ N[ j] is a hyperedge ofHID(G) only if i and j are adjacent or have a common
neighbor.

4. Identifying code polyhedra of complete p-partite graphs

In this section, we consider completep-partite graphs and establish a connection to complete
2-roses of ordern, R2

n, already mentioned in Section 2.2.

4.1. Complete bipartite graphs

First we consider complete bipartite graphsKm,n with bipartition A = {1, . . . ,m} and B =
{m+ 1, . . . ,m+ n}. We begin with the case of starsK1,n, i.e., A = {1} andn ≥ 2. Note that
K1,2 = P3 and it is easy to see thatV1 = B is the unique minimum identifying code.

Lemma 9. For a star K1,n with n≥ 3, we have HID(K1,n) = K1+n and CID(K1,n) = M(R2
n+1).

Proof. For a starK1,n with n ≥ 3, we have that

• N[1] = {1} ∪ B,
• N[i] = {1, i} for all i ∈ B,
• N[1] △ N[i] = B− {i} for all i ∈ B,
• N[ j] △ N[k] = { j, k} for distinct j, k ∈ B.

This shows thatV1(K1,n) = ∅. After removing those sets whose characteristic vectors are re-
dundant, namelyN[1] = {1} ∪ B and N[1] △ N[i] = B − {i} for all i ∈ B, we obtain that
HID(K1,n) exactly contains all 2-element subsets ofA ∪ B and, thus, it induces a cliqueK1+n

andCID(K1,n) = M(R2
n+1) follows.

Then we deduce from Theorem 6:

Corollary 10. PID(K1,n) with n ≥ 3 is described by the inequalities x(C) ≥ |C| − 1 for all
nonempty subsets C⊆ {1, ...,n+ 1}.

The above inequalities yield, for|C| = 1, the trivial inequalitiesxi ≥ 0 and, for|C| = 2, the
closed neighborhood and symmetric difference inequalitiesxi + x j ≥ 1 with i , j describing
QID(K1,n). On the other hand,C = V yields the full rank facet which immediately implies
γID(K1,n) = |V| − 1 (and provides an alternative proof for the result given in [17]).

Observe that forK2,2, it is easy to see thatCID(K2,2) = M(R2
4). Therefore, Corollary 10 also

applies toPID(K2,2). For general complete bipartite graphsKm,n with m≥ 2,n ≥ 3, we obtain:
7



Lemma 11. For a complete bipartite graph Km,n with m≥ 2,n ≥ 3, we have HID(Km,n) = Km∪Kn

and

CID(Km,n) =

(

M(R2
m) 0

0 M(R2
n)

)

.

Proof. Let k, l ∈ A. Clearly, N[k] △ N[l] = {k, l}. Hence the rows corresponding to the sets
N[i] = {i} ∪ A, for i ∈ A, andN[i] △ N[ j] = (A∪ B) − {i, j} for i ∈ A and j ∈ B are redundant.
Symmetric considerations show that only symmetric differencesN[i] △ N[ j] remain wherei, j
come either both fromA or both fromB. Thus,HID(Km,n) exactly contains all 2-element subsets
of A and all 2-element subsets ofB.

Remark 12. It is known that the set of facet-defining inequalities of Q∗(M) when M is a block
matrix of the form

M =

(

M1 0
0 M2

)

is the union of the sets of facet-defining inequalities for Q∗(M1) and Q∗(M2).

As a consequence of Theorem 6, Lemma 11 and the above remark weconclude the following:

Corollary 13. PID(Km,n) is given by the inequalities

1. x(C) ≥ |C| − 1 for all nonempty C⊆ A,
2. x(C) ≥ |C| − 1 for all nonempty C⊆ B.

Moreover,γID(Km,n) = |V| − 2.

4.2. Complete p-partite graphs

The results above can be further generalized for completep-partite graphs. ConsiderKn1,...,np

= (U1, . . . ,Up,E) where eachUi = {vi1, . . . , vini } induces a nonempty stable set and all edges
betweenUi andU j , i , j are present. We use|Ui | = ni for i = 1, . . . , p, |V| = n and assume
n1 ≤ n2 ≤ . . . ≤ np as well asp ≥ 3.

Firstly note thatKn1,...,np is not identifiable ifn2 = 1 (because in this case,U1 = {v11} and
U2 = {v21} holds andv11 andv21 become true twins).

For illustration in Figure 2, complete 3-partite and 4-partite graphs are depicted and the black
dots in each of them correspond to their minimum identifyingcodes.

Lemma 14. Let Kn1,n2,...,np be a complete p-partite graph with n1 = 1. Let r = |{i : ni = 2}| then

• if r = 0 we have:

CID(K1,n2,...,np) =



























0 M(R2
n2

)
...

. . .
. . .

...

0 0 M(R2
np

)



























• if 1 ≤ r < p− 1 we have:

CID(K1,n2,...,np) =





































0 I2r 0 . . . 0
0 0 M(R2

nr+2
)

...
. . .

. . .
...

0 . . . 0 M(R2
np

)
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Figure 2: (a) A complete 3-partite graph withn1 = 2, n2 = 3 andn3 = 4, (b) A complete 4-partite graph withn1 = 1,
n2 = n3 = 2 andn4 = 3.

• if r = p− 1, CID(K1,n2,...,np) = (0 I2r ).

Proof. Let G = Kn1,n2,...,np be a completep-partite graph withn1 = 1. If r = |{i : ni = 2}| and
1 ≤ r < p− 1, we have the following closed neighborhoods:

• N[v11] = V,
• N[vi1] = V − {vi2} andN[vi2] = V − {vi1} for i = 2, . . . , r + 1,
• N[vi j ] = (V − Ui) ∪ {vi j } for i = r + 2, . . . , p

Hence,N[v11] △ N[vi1] = {vi2} andN[v11] △ N[vi2] = {vi1} for all i = 2, . . . , r + 1 shows that
U2∪ . . .∪Ur ⊆ V1(G). All closed neighborhoods contain at least one node fromV1(G) and, thus,
all its characteristic vectors are redundant. Moreover, all the characteristic vectors associated
with the symmetric differences distinct fromN[vi j ] △ N[vik] = {vi j , vik} for i = r + 2, . . . , p are
redundant:

• N[v11] △ N[vi j ] = Ui − {vi j } for i = r + 2, . . . , p containsN[vi j ] △ N[vik] (by ni ≥ 3),

• N[vi1] △ N[vi2] andN[vil ] △ N[v jk] for all i, j = 2, . . . , r + 1, as well asN[vil ] △ N[v jk] for
i = 2, . . . , r + 1, j = r + 2, . . . , p intersectV1(G).

Thus, there is no hyperedge inHID(G) containingv11. The nodes fromU2∪ . . .∪Ur form V1(G)
(leading to an identity matrix inCID(G)), and eachUi with i = r + 2, . . . , p induces a 2-rose of
orderni in CID(G).

The proofs of the remaining cases are particular situationsof the proof above (ifr = 0, then
the submatrixI2r disappears, ifr = p − 1, then all the submatricesM(R2

nr+i
) disappear) and the

lemma follows.

As a consequence of Theorem 6, Remark 12 and Lemma 14, we obtain:

Theorem 15. Let G= Kn1,n2,...,np be a complete p-partite graph with n1 = 1. Let r = |{i : ni = 2}|
and consider the following inequalities:

(1) x(v11) ≥ 0 and x(vi j ) ≥ 0 for all vi j ∈ Ui , i = r + 2, . . . , p,
(2) x(vi j ) ≥ 1 for all vi j ∈ Ui , i = 2, . . . , r + 1,
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(3) x(V′) ≥ |V′| − 1 for all nonempty subsets V′ ⊆ Ui for i = r + 2, . . . , p.

Then PID(G) is given by the inequalities

• (1) and (3) if r= 0,

• (1), (2) and (3) if1 ≤ r < p− 1,

• (1) and (2) if r= p− 1.

MoreoverγID(G) = n− p+ r.

Using similar arguments as in the proof of Lemma 14, we obtain:

Lemma 16. For a complete p-partite graph Kn1,n2,...,np with ni = 2 for i = 1, . . . , r and ni ≥ 3 for
i = r + 1, . . . , p, we have:

CID(Kn1,n2,...,np) =





































M(R2
2r ) 0 . . . 0

0 M(R2
nr+1

) 0
...

. . .
...

0 . . . 0 M(R2
np

)





































Theorem 6, Remark 12 and Lemma 16 imply:

Theorem 17. For a complete p-partite graph G= Kn1,n2,...,np with ni = 2 for all i = 1, . . . , r, and
ni ≥ 3 for i = r + 1, . . . , p, PID(G) is given by the inequalities

1. x(v) ≥ 0 for all v ∈ V,
2. x(V′) ≥ |V′| − 1 for all nonempty subsets V′ ⊆ U1 ∪ . . . ∪ Ur ,
3. x(V′) ≥ |V′| − 1 for all nonempty subsets V′ ⊆ Ui for i = r + 1, . . . , p.

MoreoverγID(G) = n− p+ r − 1.

Remark 18. Note that any 2-rose minor in CID(G) corresponds to a clique in HID(G). Lemma
9 shows that the identifying code hypergraph of stars is a clique, and Corollary 10 implies that
cliques form facet-defining substructers. In particular, every set of pairwise false twins in a
graph gives rise to a clique in HID(G) since for non-adjacent nodes i and j with N(i) = N( j), we
have N[i] △N[ j] = {i, j} (see complete multi-partite graphs for examples). Hence, each set V′ of
pairwise false twins in a graph G leads to a facet x(V′) ≥ |V′| − 1 of PID(G).

5. Identifying code polyhedra of suns

In this section, we discuss hypercycles as further relevantsubstructers inHID(G) that can
lead to valid or facet-defining inequalities ofPID(G).

LetH = (V,E) be a hypergraph withE ⊆ 2V. A hypercycleC = (V′,E′) of lengthm is a
hypergraph defined by an alternating sequencei1E1i2 . . . imEmi1 of m nodes andm hyperedges
with {i j , i j+1} ∈ Ei , im+1 = i1. It is an induced hypergraphof H if M(C) is a deletion minor
of M(H), i.e., if it is obtained by removing the columns outsideV′ and the rows with a 1-entry
outsideV′. The result in Remark 1 can be restated as follows:
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Lemma 19. LetH ′ = (V′,E′) be an induced hypergraph ofH = (V,E). The inequality x(V′) ≥
τ(M(H ′)) is valid for Q∗(M(H)). Moreover if it is a facet of Q∗(M(H ′)) then it is also a facet of
Q∗(M(H)).

In the sequel, we consider three families of suns and study hypercycles in their identifying
code hypergraphs in order to determine minimum identifyingcodes.

It will turn out that the corresponding identifying code clutters are related to different circu-
lant matrices. Acirculant matrixis a square matrix where each row vector is shifted one element
to the right relative to the preceding row. We denote byCk

n the circulant matrix in{0,1}n×n having
as first row the vector starting withk 1-entries and having 0-entries otherwise. In contrary to the
case ofq-roses, the covering polyhedron of general circulant matrices has not yet been described,
except for some special cases (see [1] and [12] for further references).

A sun is a graphG = (C ∪ S,E) whose node set can be partitioned intoS andC, where
S = {s1, . . . , sn} is a stable set andC = {c1, . . . , cn} is a (not necessarily chordless) cycle.

Here, we focus our consideration on three cases:
• n-sunsMn whereC induces a hole andsi is adjacent to exactlyci andci+1 for all 1 ≤ i ≤ n,
• complete sunsSn whereC induces a clique andsi is adjacent to exactlyci andci+1 for all

1 ≤ i ≤ n and
• co-sunsSn (the complements of complete sunsSn)

(indices are taken modulon), see Figure 3 for examples. By definition, we immediately see that
all such suns withn ≥ 3 are identifiable.

(a) (b) (c)

Figure 3: Three examples of suns (a) the 5-sunM5, (b) the complete sunS5 and (c) its complement, the co-sunS5.

5.1. n-suns
We start our considerations withn-suns. Note thatγID(M3) = 3 is easy to see.

Theorem 20. For an n-sun Mn = (C ∪ S,E) with n≥ 4, we have

CID(Mn) =

(

I I
Cw I

)

.

where Cw is the circulant matrix whose first row is(0,1,0, . . . ,0). Moreover, HID(Mn) = C2n and
CID(Mn) = C2

2n.

Proof. The neighborhood matrix ofMn can be written as

N[Mn] =

(

C2
n I

C3
n C2

n

)

because we have thatN[si ] = {si , ci , ci+1} and N[ci ] = {ci−1, ci , ci+1, si−1, si}. Clearly, N[ci ]
containsN[si ] for all i ≤ n. To find△[Mn], we consider the following cases:
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• We haveN[si ]△N[ci ]= {si , ci , ci+1}△{ci−1, ci , ci+1, si−1, si}= {ci−1, si−1} andN[si−1]△N[ci ] =
{ci+1, si}, which is clearly contained inN[u] for everyu ∈ Mn.

• Considerci , c j ∈ C. If ci andc j are adjacent nodes, say, ifj = i + 1 holds, then since
n ≥ 4, N[ci ]△N[ci+1] = {ci−1, ci , ci+1, si−1, si}△{ci , ci+1, ci+2, si , si+1} = {ci−1, ci+2, si−1, si+1}

follows. As N[si ] △ N[ci ] = {ci−1, si−1} ⊆ N[ci ] △ N[ci+1] the characteristic vector of
N[ci ] △ N[ci+1] is redundant. Ifci and c j are not adjacent nodes thenN[ci ] △ N[c j ] is
redundant since it contains{si , ci} = N[si+1] △ N[ci+1].

• Let si , sj ∈ S. If si andsj have a common neighbor, say,ci+1 and j = i + 1 holds, then
N[si ]△N[si+1] = {si , ci , ci+1}△{si+1, ci+1, ci+2} = {si , si+1, ci , ci+2}. Due toN[si+1]△N[ci+1] =
{si , ci} ⊆ N[si ] △N[si+1], the characteristic vector ofN[si ] △N[si+1] is redundant. Ifsi and
sj have no common neighbor thenN[si ] △ N[sj ] is redundant sinceN[si ] and N[sj ] are
disjoint sets.

Since all rows ofCID(Mn) have exactly two 1-entries, it is clear thatHID(Mn) is a graph. It is a
cycle sinceN[si ] △ N[ci ] = {ci−1, si−1} andN[si−2] △ N[ci−1] = {ci , si−1} share the nodesi−1, and
N[si−2] △N[ci−1] andN[si+1] △N[ci+1] = {si , ci} share nodeci . Accordingly, its incidence matrix
CID(Mn) can be re-arranged asC2

2n (by ordering the columns asc1, s1, c2, s2, . . . , cn, sn and the
rows asN[c2] △ N[s2],N[c1] △ N[sn],N[c3] △ N[s3],N[c2] △ N[s1], . . . ,N[c1] △ N[s1],N[cn] △
N[sn−1]).

Hence,HID(Mn) is an even (hyper)cycle andτ(Mn) = n clearly holds. In addition,C2
2n is one

of the few circulant matrices whereQ∗(C2
2n) is known [12], and we conclude:

Corollary 21. For Mn = (C ∪ S,E) with n ≥ 4, PID(Mn) coincides with its linear relaxation
Q(CID(Mn)) andγID(Mn) = n.

5.2. Complete suns

Let us now consider a complete sunSn = (C ∪ S,E) with n ≥ 4. In contrary ton-suns, the
identifying code clutters of complete suns have a much more complex structure [3], involving
different combinations of circulant matrices, where some submatrices occur for alln ≥ 4, others
not (depending on the parity ofn and the size of the graph). Accordingly, the description of
PID(Sn) requires many and complex facets. However, an analysis ofCID(Sn) shows thatS is an
identifying code andγID(Sn) ≤ |S| = n. In [3] we conjectured that this bound is tight. In order
to prove the conjecture, we rely on the following result:

Lemma 22. Let Sn = (C ∪ S,E) be a complete sun whith n≥ 4. The hyperedges N[si ],N[si+1],
and N[si ]△N[si+1] form a hypercycle in HID(Sn) that induces a rank facet x({ci , ci+1, ci+2, si , si+1})
≥ 2 of PID(Sn).

Proof. Consider the following hyperedges fromHID(Sn): the neighborhoodsN[si ] = {ci , ci+1, si},
N[si+1] = {ci+1, ci+2, si+1} and their symmetric differenceN[si ] △ N[si+1] = {ci , ci+2, si , si+1}.

They form, for alln ≥ 4, a hypercycle of length 3 with support{ci , ci+1, ci+2, si , si+1}. It is
clear that this hypercycle is obtained by deletion of the columns inV − {ci , ci+1, ci+2, si , si+1} in
CID(Sn). As x({ci , ci+1, ci+2, si , si+1}) ≥ 2 for n ≥ 4 is a facet of this deletion minor, it is also a
facet ofPID(Sn) by Lemma 19.

Theorem 23. For a complete sun Sn = (C ∪ S,E) with n ≥ 4, the stable set S is a minimum
identifying code and, thus,γID(Sn) = n.
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Proof. Let us firstly observe that the stable setS is an identifying code inSn: indeed,N[si ]∩S =
{si} andN[ci ] ∩ S = {si−1, si} holds fori = 1, . . . ,n, thus each node is dominated and separated.

In order to show thatS is a minimum identifying code inSn, we consider an arbitrary iden-
tifying codeI in Sn with I , S and show that|I | ≥ n.

Observe thatI contains nodes from bothC andS: we can neither haveI ⊂ S (otherwiseI
does not dominate any node inS − I ) nor we can haveI ⊆ C (otherwiseI does not separate any
two nodes inC).

In order to show|I | ≥ n, we provide arguments implying|I ∩ C| ≥ |S − I |. Note thatS − I
cannot contain 3 consecutive nodessi−1, si , si+1 (otherwiseI ∩N[ci ] = I ∩C = I ∩N[ci+1] holds).
Hence,S − I can be partitioned into blocks containing either a single node or two consecutive
nodes fromS, where no two blocks are consecutive. Suppose thatS− I consists ofp blocksA j of
cardinality 1 andq blocksBk with two consecutive nodes each and consequentlyp+2q = |S− I |.

For each blockA j = {si}, it clearly follows|I∩{ci+1, ci}| ≥ 1 from the inequalityx({si , ci+1, ci})
≥ 1 associated to the hyperedgeN[si ] in HID(Sn).

For each blockBk = {si , si+1}, we have by Lemma 22 thatN[si ],N[si+1], and N[si ] △
N[si+1] form a hypercycle with rank facetx({ci , ci+1, ci+2, si , si+1}) ≥ 2, which clearly implies
|I ∩ {ci , ci+1, ci+2}| ≥ 2.

In addition, if si andsj belong to different blocks ofS − I , then the sets of their neighbors in
C are disjoint. This finally shows|I ∩C| ≥ p+ 2q and implies|I | ≥ n.

5.3. Co-suns

Finally, let us consider co-sunsSn = (C ∪ S,E), whereC is a clique andS is a stable
set. Note thatS3 = M3 and S4 = S4 holds. Also the identifying code clutters of co-suns
have a complex structure [4], involving different combinations of circulant matrices, where some
submatrices occur for alln ≥ 4, others not (depending on the parity ofn and the size of the
graph). Accordingly, the description ofPID(Sn) requires many and complex facets, too. An
analysis ofCID(Sn) shows thatS is an identifying code andγID(Sn) ≤ |S| = n holds. However,
this bound is tight only forn = 5,6. Hence, in the sequel, we will consider the cases whenn ≥ 7.

Remark 24. From the definition ofSn, we obtain the following hyperedges of HID(Sn):

(1) N[si ] = (C − {ci , ci−1}) ∪ {si},
(2) N[si ] △ N[sj ] = {ci−1, ci , c j−i , c j , si , sj}, in particular N[si ] △ N[si+1] = {ci−1, ci+1, si , si+1},
(3) N[ci ] △ N[c j ] = {si , si+1, sj , sj+1}, in particular N[ci ] △ N[ci+1] = {si , si+2}.

Theorem 25. The identifying code number ofSn with n≥ 7 is n− 1.

Proof. Let us show thatI ∗ = {c1, c3, s2, s3} ∪
n−1
⋃

i=5
si is an identifying code. Indeed, all nodes in

C ∪ S are separated and dominated since we have that:
N[ci ] ∩ I ∗ = I ∗ − {si+1} with i = 1 or i = 4.
N[ci ] ∩ I ∗ = I ∗ − {si} with i = 3 or i = n− 1.
N[ci ] ∩ I ∗ = I ∗ − {si , si+1} with i = 2 or i ∈ {5, . . . ,n− 2}.
N[cn] ∩ I ∗ = I ∗.
N[s1] ∩ I ∗ = {c3}.
N[s2] ∩ I ∗ = {s2, c3}.
N[s3] ∩ I ∗ = {s3, c1}.
N[s4] ∩ I ∗ = {c1}.
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N[si ] ∩ I ∗ = {si , c1, c3} with i = 5,6, . . . ,n− 1.
N[sn] ∩ I ∗ = {c1, c3}.

Also we can observe that|I ∗| = n− 1, henceγID(Sn) ≤ n− 1 follows. LetI be an identifying
code ofSn, we will show that|I | ≥ n− 1.

Claim 1: There cannot be3 consecutive nodes in S− I . Suppose thatsi < I holds. Then we have
by Remark 24(3) that{si−2, si+2} ⊆ I and{si−1, si+1} ∩ I , ∅. ⋄

Claim 2: There is at most one pair of consecutive nodes in S− I. Suppose that{si , si+1, sj , sj+1} ⊂

S − I with | j − i − 1| ≥ 2. Then, according to Remark 24(3)I cannot be an identifying code.⋄

As a consequence of Claim 1 and Claim 2, the setS − I can be partitioned asS − I =
B∪ A1 ∪ . . . ∪ At with t < n whereB is a block of either none or 2 consecutive nodes ofS and
eachAi is a block having exactly one node ofS. We next study the possible gaps between two
consecutive blocksA j andA j+1.

Claim 3: Between Aj and Aj+1, there are at least two nodes from I∩ S , for all 1 ≤ j < t.
Suppose to the contrary that we haveA j = {si}, si+1 ∈ I ∩ S andA j+1 = {si+2} for some j with
1 ≤ j < t. By Remark 24(3), the symmetric differenceN[ci ] △ N[ci+1] = {si , si+2} is a hyper-
edge ofHID(Sn) and thus|{si , si+2} ∩ I | ≥ 1 must hold, a contratiction to the assumption that
A j ∪ A j+1 = {si , si+2} ⊆ S − I . ⋄

Thus, for the setSA = A1 ∪ . . . ∪ At we have that ifA j = {si} thenA j+1 = {sk} with |i − k| ≥ 3
for all 1 ≤ j < t (indices forsi are taken modulon).

Claim 4: From|SA| = t we obtain|I ∩C| ≥ t − 1. Let SA = {z1, z2, . . . , zt}. W.l.o.g. assume that
z1 = s1 andzj = sm for somem≥ 4. According to Remark 24(2) there isw1 ∈ {c1, cm−1, cm, cn}∩I
that separatesz1 from zj . If w1 ∈ {c1, cn} thenw1 separatesz1 from zi for all i ∈ {2, . . . , t} (an
analogous conclusion follows ifw1 ∈ {cm, cm−1}). Sincew1 ∈ N[zi ] for all i ∈ {2, . . . , t} then there
is another node inI that separateszi from zj for i, j , 1. Let us callw2 ∈ (C − {w1}) ∩ I the node
that separatesz2 from zi for all i ∈ {3, . . . , t}. Applying this reasoning it is clear thatI hast − 1
different nodes inC that separate the nodes inS′. Hence|I ∩C| ≥ t − 1. ⋄

If B = ∅ then|I ∩ S| = n− t. From Claim 4 it holds that|I ∩C| ≥ t − 1 and then|I | ≥ n− 1.
It is left to treat the case ifB , ∅ and thus|S ∩ I | = n − t − 2 holds. W.l.o.g. assume that

B = {s1, s2}. By Remark 24(2){c2, cn} ∩ I , ∅. Let us assume thatc2 ∈ I (the same argument
can be applied tocn ∈ I ). As c2 ∈ N[x] for every x ∈ {s1} ∪ SA thenI has other nodes inC that
separate them. Using Claim 4 withS′ = {s1}∪SA we obtain that|I | = |I ∩S|+ |I ∩(C−{c2})|+1 ≥
n− t − 2+ t + 1 = n− 1.

6. Concluding remarks

The identifying code problem is hard in general and challenging both from a theoretical and
a computational point of view, even for special graphs like bipartite graphs [11] and split graphs
[13]. Hence, a typical line of attack is to determine minimumidentifying codes of special graphs
(as paths [9, 16], stars [17] and cycles [9, 16]), or to provide lower and upper bounds [14, 17, 19].
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In this paper, we demonstrated how polyhedral techniques can help to find identifying codes
of minimum size. For that, we rely on a reformulation of the identifying code problem in terms
of a set covering problem in a suitable hypergraphHID(G) and study the identifying code polyhe-
dronPID(G) = Q∗(CID(G)) as covering polyhedron associated with its incidence matrix CID(G).

We provided some general properties of the identifying codepolyhedronPID(G) and its
canonical linear relaxation (Section 3). Afterwards, we discussed several lines to apply poly-
hedral techniques to the identifying code problem. In any case, the first step is to determine
HID(G) and its incidence matrixCID(G).

If CID(G) falls into a class of matricesM for which the set covering polyhedronQ∗(M) is
already known, then we immediately obtain a complete description of PID(G) and can deduce
the exact value ofγID(G). This turned out to be the case for starsK1,n (whereCID(K1,n) equals
a 2-roseR2

n+1) and for general complete multipartite graphsG (whereCID(G) is composed by
blocks of 2-roses). Moreover, the identifying code clutterof n-sunsMn turned out to equal
the circulant matrixC2

2n which impliedPID(Mn) = QID(Mn). In all these cases, we obtained a
complete description ofPID(G) and a closed formula for the exact value ofγID(G).

A matrix M is ideal if Q∗(M) = Q(M). Hence, we can conclude from our result onn-suns:

Corollary 26. The identifying code clutters of n-suns Mn are ideal for all n≥ 3.

A way to evaluate how far a nonideal matrix is from being idealconsists in classifying the
inequalties that have to be added toQ(M) in order to obtainQ∗(M). In [1], a matrixM is called
rank-idealif Q∗(M) is described by rank constraints only. Thus, the results inSection 4 imply:

Corollary 27. The identifying code clutters of complete multipartite graphs G are rank-ideal
since rank constraints associated with cliques in HID(G) suffice to describe PID(G).

In general, we cannot expect identifying code clutters to be(rank-)ideal. Complete sunsSn

and their complements are examples of graphsG whereCID(G) is far from being rank-ideal.
However, an analysis ofCID(G) impliesγID(Sn) ≤ n and rised a conjecture in [3] that this bound
is tight. Here, we were able to verify this conjecture by combining polyhedral and combinato-
rial arguments. Finally, we provided a purely combinatorial proof for γID(Sn) ≤ n − 1 for all
complements of complete suns withn ≥ 7.

Note that the arguments and techniques applied to complete suns are rather general and have
the potential to be applied to all graphsG, even if their identifying code clutters are matrices
with a complex structure and a complete description ofPID(G) involves many and complicated
facets. In all such cases, an analysis ofCID(G) can provide, on the one hand, upper bounds for
γID(G) and, on the other hand, minors ofCID(G) (e.g. associated with cliques or odd hypercycles
in HID(G)) whose rank constraints strengthen the linear relaxationQID(G) and can be used to
obtain lower bounds forγID(G).

Future lines of our research include to identify more facet-defining substructures inHID(G)
(related to minors ofCID(G)) that allow us to strengthen the linear relaxationQID(G). Thereby,
our goal is to obtain either the identifying code of minimum size or strong lower bounds stem-
ming from linear relaxations of the identifying code polyhedron, enhanced by suitable cutting
planes. Recall that facets associated with deletion minorsof CID(G) remain facets inPID(G), so
according facets identified for special graphs are relevantfor every graph having such subgraphs.

Acknowledgments: We would like to thank the anonymous referees for their helpful com-
ments that improved the final presentation of these results.
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