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RESOLUTION OF IMPLICIT TIME SCHEMES FOR THE NAVIER-STOKES

SYSTEM THROUGH A LEAST-SQUARES METHOD

JÉRÔME LEMOINE AND ARNAUD MÜNCH

Abstract. Implicit time schemes reduce the numerical resolution of the Navier-Stokes system

to multiple resolutions of steady Navier-Stokes equations. We analyze a least-squares method,

introduced by Glowinski in 1979, to solve the steady Navier-Stokes equation. Precisely, we

show that any minimizing sequences (constructed by gradient type methods) for a least-squares

functional converges strongly toward solutions, assuming the initial guess in an explicit ball

dependent of the time step and of the viscosity constant. The resulting method is faster and

more robust than the Newton method used to solve the weak variational formulation for the

Navier-Stokes system. Numerical experiments support our analysis.

Key Words. Steady Navier-Stokes system, Least-squares approach, Gradient method.

AMS subject classifications. 35Q30, 93E24.

1. Introduction - Motivation

Let Ω ⊂ Rd, d = 2 or d = 3 be a bounded connected open set whose boundary ∂Ω is Lipschitz.

We denote by V = {v ∈ D(Ω)d,∇ · v = 0}, H the closure of V in L2(Ω)d and V the closure of

V in H1(Ω)d. Let T > 0.

The Navier-Stokes system describes a viscous incompressible fluid flow in the bounded domain

Ω during the time interval (0, T ) submitted to the external force F . It reads as follows :

(1.1)


ut − ν∆u+ (u · ∇)u+∇p = F, ∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0, in Ω,

where u is the velocity of the fluid, p its pressure and ν is the viscosity constant assumed smaller

than one. We refer to [20]. This work is concerned with the numerical approximation of (1.1)

through time marching implicit schemes of the form

(1.2)



y0(·, 0) = u0 in Ω,

yn+1
θ − yn

θδt
− ν∆yn+1

θ + (yn+1
θ · ∇)yn+1

θ +∇πn+1
θ =

1

δt

∫ tn+1

tn

F (·, s)ds, n ≥ 0,

∇ · yn+1
θ = 0 in Ω, n ≥ 0,

yn+1
θ = 0 on ∂Ω, n ≥ 0,

yn+1 = θ−1(yn+1
θ − (1− θ)yn), n ≥ 0

where θ is a parameter in (0, 1] and where {tn}n=0...N , for a given N ∈ N, is a uniform dis-

cretization of the time interval (0, T ). δt = T/N is the time discretization step. The case θ = 1,

for which yn = ynθ for all n, corresponds to the backward Euler scheme studied for instance in
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[20, chapter 3, section 4]. It is proved there that the piecewise linear interpolation (in time) of

{yn}n∈[0,N ] weakly converges in L2(0, T,V ) toward a solution u of (1.1) as δt goes to zero. It

achieves a first order convergence with respect to δt. We also refer to [21] for a stability analysis

of the scheme in long time. The case θ = 1/2 corresponds to a Crank-Nicolson scheme and allows

to achieve a second order convergence. We refer to [18] and the references therein.

The determination of yn+1 from yn requires the resolution of a nonlinear partial differential

equation. Precisely, yn+1
θ together with the pressure πn+1

θ , solve the following problem: find

y ∈ V and π ∈ L2
0(Ω), solution of

(1.3)

{
α y − ν∆y + (y · ∇)y +∇π = f + α g, ∇ · y = 0 in Ω,

y = 0 on ∂Ω,

with

(1.4) α =
1

θδt
> 0, f =

1

δt

∫ tn+1

tn

F (·, s)ds, g = yn.

Recall that for any f ∈ H−1(Ω)d and g ∈ L2(Ω)d, there exists at least one (y, π) ∈ V × L2
0(Ω)

solution of (1.3). L2
0(Ω) stands for the space of functions in L2(Ω) with zero means. Moreover, if

‖g‖22 + α−1ν−1‖f‖2H−1(Ω)d is small enough, then the couple (y, π) is unique (see Proposition 2.2

for a more precise statement). Here and in the sequel, ‖ · ‖2 stands for the L2 norm ‖ · ‖L2(Ω)d .

The approximation of solutions of (1.3) can be performed using Newton’s type methods (see

for instance [17, Section 10.3]) for the weak formulation of (1.3); this consists in solving iteratively

the following variational problem : find y ∈ V solution of

(1.5)

F (y, z) :=

∫
Ω

α y · z + ν∇y · ∇z + (y∇)y · z

− < f, z >H−1(Ω)d×H1
0 (Ω)d −α

∫
Ω

g · z = 0, ∀z ∈ V .

Alternatively, we may also employ least-squares methods which consists in minimizing a qua-

dratic functional, which measure how an element y is close to the solution. Precisely, we define

the functional E : V → R+ by putting

(1.6) E(y) =
1

2

∫
Ω

α|v|2 + |∇v|2

where the corrector v, together with the pressure, is the unique solution in V × L2
0(Ω) of the

linear boundary value problem:

(1.7)

{
αv −∆v +∇π + (αy − ν∆y + (y · ∇)y − f − αg) = 0, ∇ · v = 0 in Ω,

v = 0 on ∂Ω.

Least-squares methods to solve nonlinear boundary value problems have been the subject

of intensive developments in the last decades, as they present several advantages, notably on

computational and stability viewpoints. We refer to the books [1, 7]. The minimization of the

functional E over V leads to a so-called H−1-least squares method. This method has been

introduced and numerically implemented in [2] to approximate the solutions of (1.1) through the

scheme (1.2) with θ = 1. However, there is no analysis nor mathematical justification of the

method in [2]. Let us mention [4, Chapter 4, Section 6] which studied later the use of a least-

squares strategy to solve a steady Navier-Stokes equation without incompressibility constraint.

The main reason of the present work is therefore to show that minimizing sequences for the so-

called error functional E do actually converge strongly to a solution of (1.3). This guaranties the

determination of yn+1 from yn, solution of (1.2) and therefore an approximation of the solution

of the unsteady Navier-Stokes equation (1.1).

The paper is organized as follows. In Section 2, we analyze a least-squares method for weak

solutions y of (1.3), under some conditions on g, f , α and ν. We show in particular the strong
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convergence of any minimizing sequence for E starting closed enough to a solution. The analysis

notably exhibits a descent direction Y1 (defined in (2.11)) for which the derivative of E is colinear

to E (see eq. 2.18). In Section 3, we apply the least-squares approach to compute recursively

the sequence {yn}n∈N defined by (1.2) and notably show that two consecutive elements of the

sequence are closed for the L2(Ω)d-norm as soon as δt is small enough. This suggests, in order

to calculate the element yn+1 from yn, to initialize the minimizing sequence of the least-squares

functional with the element yn (as done in [2]). In Section 4, we derive the conjugate gradient

algorithm commonly used for this kind of functional. The minimizing sequence is then construct

from the gradient of the functional with respect to the V -norm. We also consider minimizing

sequences defined from the element Y1 mentioned above and remark that the corresponding

algorithm leads to a generalization of the Newton algorithm, when used to solve directly the weak

variational formulation (1.5) associated to (1.3). Numerical experiments in Section 5 confirms

the efficiency of the method based on the element Y1, in particular for very small values of the

viscosity constant ν.

2. Analysis of a Least-squares method for a steady Navier-Stokes equation

We analyse in this section a least-squares method to solve the steady Navier-Stokes equation

1.3: we follow and improve [11] where the particular case α = 0 is addressed.

In the following, we repeatedly use the following classical estimates.

Lemma 2.1. Let any u, v ∈ V . If d = 2, then there exists a constant c = c(Ω) such that

(2.1)

∫
Ω

u · ∇v · u ≤ c‖u‖2‖∇v‖2‖∇u‖2.

If d = 3, then

(2.2)

∫
Ω

u · ∇v · u ≤ c‖u‖1/22 ‖∇v‖2‖∇u‖
3/2
2 .

Proof. For the estimate (2.2), see [20]. If, d = 2 and if u, v, w ∈ V , denoting ũ, ṽ and w̃ their

extension to 0 in R2, we have, see [3] and [19]

|
∫

Ω

u.∇v.w| = |
∫

Ω

ũ.∇ṽ.w̃| ≤ ‖ũ.∇ṽ‖H1(R2)‖w̃‖BMO(R2) ≤ c‖ũ‖2‖∇ṽ‖2‖w̃‖H1(R2)

≤ c‖u‖2‖∇v‖2‖w‖H1(Ω)2 ≤ c‖u‖2‖∇v‖2‖∇w‖2.

Taking w = u gives (2.1).

�

Let f ∈ H−1(Ω)d, g ∈ L2(Ω)d and α ∈ R?+. The weak formulation of (1.3) reads as follows:

find y ∈ V solution of

(2.3) α

∫
Ω

y ·w+ ν

∫
Ω

∇y ·∇w+

∫
Ω

y ·∇y ·w =< f,w >H−1(Ω)d×H1
0 (Ω)d +α

∫
Ω

g ·w, ∀w ∈ V .

The following results holds true:

Proposition 2.2. a) Assume Ω ⊂ Rd is bounded and Lipschitz. There exists a least one solution

y of (2.3) satisfying

(2.4) α‖y‖22 + ν‖∇y‖22 ≤
α

ν

(
ν‖g‖22 +

c0
α
‖f‖2H−1(Ω)d

)
where c0 > 0, only connected to the Poincaré constant, dependent on Ω. If moreover, Ω is C2

and f ∈ L2(Ω)d, then y ∈ H2(Ω)d ∩ V .
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b) Let us define Q(g, f, α, ν) as follows :

(2.5) Q(g, f, α, ν) =


1

ν3

(
ν‖g‖22 +

c0
α
‖f‖2H−1(Ω)2

)
, if d = 2,

α1/2

ν7/2

(
ν‖g‖22 +

c0
α
‖f‖2H−1(Ω)3

)
, if d = 3.

If Q(g, f, α, ν) is small enough, then the solution of (2.3) is unique.

Proof. The point a) is well-known and we refer to [13]. Let now y1 ∈ V and y2 ∈ V be two

solutions of (2.3). Set Y = y1 − y2. Then,

α

∫
Ω

Y · w + ν

∫
Ω

∇Y · ∇w +

∫
Ω

y2 · ∇Y · w +

∫
Ω

Y · ∇y1 · w = 0 ∀w ∈ V .

We now take w = Y and use that
∫

Ω
y2 · ∇Y · Y = 0. If d = 2, we get

α

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 = −
∫

Ω

Y · ∇y1 · Y ≤ c‖Y ‖2‖∇y1‖2‖∇Y ‖2

≤ α‖Y ‖22 +
c

α
‖∇Y ‖22‖∇y1‖22

leading to (ν − c
α‖∇y1‖22)‖∇Y ‖22 ≤ 0. Consequently, if ν‖g‖22 + c0

α ‖f‖
2
H−1(Ω)d < c1ν

3 for some

c1 > 0, then ‖∇Y ‖22 ≤ 0 and eventually Y = 0. On the other hand, if d = 3, we obtain

α

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 = −
∫

Ω

Y · ∇y1 · Y ≤ c‖Y ‖24‖∇y1‖2 ≤ c‖Y ‖
1
2
2 ‖∇Y ‖

3
2
2 ‖∇y1‖2

≤ α‖Y ‖22 +
c

α1/3
‖∇Y ‖22‖∇y1‖

4
3
2

leading to (ν − c
α1/3 ‖∇y1‖

4
3
2 )‖∇Y ‖22 ≤ 0. Consequently, if ν‖g‖22 + c0

α ‖f‖
2
H−1(Ω)d < c1ν

7/2α−1/2

for some c1 > 0, then ‖∇Y ‖22 ≤ 0 and again Y = 0. �

We now introduce our least-squares functional E : V → R+ as follows

(2.6) E(y) :=
1

2

∫
Ω

(α|v|2 + |∇v|2)

where the corrector v ∈ V is the unique solution of

(2.7)

α

∫
Ω

v · w +

∫
Ω

∇v · ∇w = −α
∫

Ω

y · w − ν
∫

Ω

∇y · ∇w −
∫

Ω

y · ∇y · w

+ < f,w >H−1(Ω)d×H1
0 (Ω)d +α

∫
Ω

g · w, ∀w ∈ V .

The infimum of E is equal to zero and is reached by a solution of (2.3). In this sense, the

functional E is a so-called error functional which measures, through the corrector variable v, the

deviation of the pair y from being a solution of the underlying equation (2.3).

Beyond this statement, we would like to argue why we believe it is a good idea to use a

(minimization) least-squares approach to approximate the solution of (2.3) by minimizing the

functional E. Our main result of this section is a follows:

Theorem 2.3. Assume that Q(g, f, α, ν) is small enough. There is a positive constant C, such

that if {yk}k>0 is a sequence in

B := {y ∈ V : ‖y‖H1
0 (Ω)d ≤ C}

with E′(yk)→ 0 as k →∞, then the whole sequence {yk}k∈N converges strongly as k →∞ in V

to a solution y of (2.3).

As in [11], we divide the proof in two main steps.
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(1) First, we use a typical a priori bound to show that leading the error functional E down

to zero implies strong convergence to the unique solution of (2.3).

(2) Next, we show that taking the derivative E′ to zero actually suffices to take E to zero.

Proposition 2.4. Assuming that Q(g, f, α, ν) is small enough and let y be a solution of (2.3).

For every y ∈ V , we have

(2.8) ‖y − y‖H1
0 (Ω)d ≤ 2 ν−1

√
E(y).

The control of the norm ‖y−y‖H1
0 (Ω)d is not uniform with respect to ν, in agreement with the

behavior of the solution of (1.3) (see notably (2.4)) as ν goes to zero. Moreover, this proposition

very clearly establishes that as we take down the error E to zero, we get closer, in the strong

norm, to the solution of the problem, and so, it justifies why a promising strategy to find good

approximations of the solution of problem (2.3) is to look for global minimizers of the extremal

problem:

(2.9) inf
y∈V

E(y).

Proof. The proof of Proposition 2.4 basically amounts to a typical a priori estimate which is

essentially the same that the proof of uniqueness in page 112 in [20]. For any y ∈ V , let v be

the corresponding corrector and let Y = y − y. We have

(2.10)

α

∫
Ω

Y ·w+ν

∫
Ω

∇Y ·∇w+

∫
Ω

y ·∇Y ·w+

∫
Ω

Y ·∇y ·w = −α
∫

Ω

v ·w−
∫

Ω

∇v ·∇w ∀w ∈ V .

For w = Y , this equality rewrites

α

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 = −
∫

Ω

Y · ∇y · Y − α
∫

Ω

v · Y −
∫

Ω

∇v · ∇Y.

Moreover, ∣∣∣ ∫
Ω

Y · ∇y · Y
∣∣∣ ≤ c‖Y ‖2‖∇y‖2‖∇Y ‖2 ≤ c

ν
‖Y ‖22‖∇y‖22 +

ν

4
‖∇Y ‖22,

if d = 2 and ∣∣∣ ∫
Ω

Y · ∇y · Y
∣∣∣ ≤ c‖Y ‖ 1

2
2 ‖∇y‖2‖∇Y ‖

3
2
2 ≤

c

ν3
‖Y ‖22‖∇y‖42 +

ν

4
‖∇Y ‖22,

if d = 3. Consequently, the inequalities∣∣∣α ∫
Ω

v · Y
∣∣∣ ≤ α

2

∫
Ω

|v|2 +
α

2

∫
Ω

|Y |2,
∣∣∣ ∫

Ω

∇v · ∇Y
∣∣∣ ≤ 1

ν

∫
Ω

|∇v|2 +
ν

4

∫
Ω

|∇Y |2

lead to the estimate

(α− c

ν
‖∇y‖22)

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 ≤ α
∫

Ω

|v|2 +
2

ν

∫
Ω

|∇v|2

if d = 2 and to the estimate

(α− c

ν3
‖∇y‖42)

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 ≤ α
∫

Ω

|v|2 +
2

ν

∫
Ω

|∇v|2

if d = 3.

Eventually, if d = 2 and if there exists c > 0 such that if ν‖g‖22 + c0
α ‖f‖

2
H−1(Ω)2 ≤ cν3, we

deduce that ∫
Ω

|∇Y |2 ≤ 2ν−1 max(1, 2ν−1)E(y).

If d = 3, the same conclusion holds true if there exists c > 0 such that if ν‖g‖22 + c0
α ‖f‖

2
H−1(Ω)3 ≤

cν7/2α−1/2. �



6 JÉRÔME LEMOINE AND ARNAUD MÜNCH

A practical way of taking a functional to its minimum is through some (clever) use of descent

directions, i.e. the use of its derivative. In doing so, the presence of local minima is always

something that may dramatically spoil the whole scheme. The unique structural property that

discards this possibility is the strict convexity of the functional. However, for non-linear equations

like (2.3), one cannot expect this property to hold for the functional E in (2.6). Nevertheless, we

insist in that for a descent strategy applied to our extremal problem (2.9), numerical procedures

cannot converge except to a global minimizer leading E down to zero. In doing so, thanks to

Proposition 2.4, we are establishing the strong convergence of approximations to the unique

solution of (2.3).

Indeed, we would like to show that the only critical points for E correspond to solutions of

(2.3). In such a case, the search for an element y solution of (2.3) is reduced to the minimization

of E, as indicated in the preceding paragraph.

For any y ∈ V , we now look for an element Y1 ∈ V solution of the following formulation

(2.11) α

∫
Ω

Y1 ·w+ν

∫
Ω

∇Y1 ·∇w+

∫
Ω

(y ·∇Y1 +Y1 ·∇y) ·w = −α
∫

Ω

v ·w−
∫

Ω

∇v ·∇w,∀w ∈ V

where v ∈ V is the corrector (associated to y) solution of (2.7). Y1 enjoys the following property.

Proposition 2.5. There exists c > 0 such that, for all y ∈ V satisfying 1
να‖∇y‖

2
2 < c if d = 2

and 1
ν3α‖∇y‖

4
2 < c if d = 3, there exists a unique solution Y1 of (2.11) associated to y. This

solution satisfies

‖Y1‖V ≤M
for some constant M > 0, independent of y.

Proof. We define the bilinear and continuous form a : V × V → R by

(2.12) a(Y,w) = α

∫
Ω

Y · w + ν

∫
Ω

∇Y · ∇w +

∫
Ω

(y · ∇Y + Y · ∇y) · w.

Let d = 2. Using similar computations than previously, we get that

(2.13) a(Y, Y ) ≥ (α− c

ν
‖∇y‖22)

∫
Ω

|Y |2 +
ν

2

∫
Ω

|∇Y |2, ∀Y ∈ V ,

for some constant c > 0. Lax-Milgram lemma leads to the existence and uniqueness of Y1

provided ‖∇y‖2 is small enough. Then, putting w = Y1 in (2.11) implies

α

∫
Ω

|Y1|2 +

∫
Ω

|∇Y1|2 = −
∫

Ω

Y1.∇y.Y1 − α
∫

Ω

v.Y1 −
∫

Ω

∇v.∇Y1

and therefore

(2.14) (α− c

ν
‖∇y‖22)

∫
Ω

|Y1|2 +
ν

2

∫
Ω

|∇Y1|2 ≤
α

2

∫
Ω

|v|2 +
1

ν

∫
Ω

|∇v|2

so that ‖Y1‖2V ≤ 2ν−2E(y). On the other hand, w = v in (2.7) leads to∫
Ω

α|v|2 + |∇v|2 =− α
∫

Ω

y · v − ν
∫

Ω

∇y · ∇v −
∫

Ω

y · ∇y · v + 〈f, v〉H−1(Ω)d×H1
0 (Ω)d + α

∫
Ω

g · v

≤α
4

∫
Ω

|v|2 + α

∫
Ω

|y|2 + ν2

∫
Ω

|∇y|2 +
1

4

∫
Ω

|∇v|2 +
1

4

∫
Ω

|∇v|2 + c1

(∫
Ω

|∇y|2
)2

+ c0‖f‖2H−1(Ω)2 +
1

4

∫
Ω

|∇v|2 +
α

4

∫
Ω

|v|2 + α

∫
Ω

|g|2

for some positive constant c1, and therefore, after some re-ordering,

α

∫
Ω

|v|2 +

∫
Ω

|∇v|2 ≤ 2α

∫
Ω

|y|2 + 2ν2

∫
Ω

|∇y|2 + c
(∫

Ω

|∇y|2
)2

+ 2c0‖f‖2H−1(Ω)2 + 2α

∫
Ω

|g|2

leading to

E(y) ≤
(
c2pα+ ν2 +

c

2
‖y‖2V

)
‖y‖2V + c0‖f‖2H−1(Ω)2 + α‖g‖22
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where cp is the Poincaré constant. This inequality coupled with (2.14) or (2.15) and the hypoth-

esis on the size of ‖∇y‖2 implies our statement. Precisely,

‖Y1‖2V ≤
(
c2pα+ ν2 +

c

2
να

)
ν−1α+ c0ν

−1‖f‖2H−1(Ω)2 + αν−1‖g‖22.

The case d = 3 for which (2.14) is replaced by

(2.15) (α− c

ν3
‖∇y‖42)

∫
Ω

|Y1|2 +
ν

2

∫
Ω

|∇Y1|2 ≤
α

2

∫
Ω

|v|2 +
1

ν

∫
Ω

|∇v|2

is similar. �

We are now in position to prove the following result

Proposition 2.6. There exists a positive constant C such that if {yk}k∈N is a sequence in B
defined by B = {y ∈ V : 1

να‖∇y‖
2
2 < C} if d = 2 and B = {y ∈ V : 1

ν3α‖∇y‖
4
2 < C} if d = 3

with E′(yk)→ 0 as k →∞, then E(yk)→ 0 as k →∞.

The condition on the size of y in this statement is coherent with our hypotheses because the

norm ‖y‖V of y in bounded in term of Q, assumed small: precisely, estimate (2.4) implies that

α‖y‖22 + ν‖∇y‖22 is bounded by αν2Q(g, f, α, ν) if d = 2 and by α1/2ν5/2Q(g, f, α, ν) if d = 3.

Proof. The error functional E is differentiable as functional defined on the Hilbert space V ,

because the operator y → v taking each y ∈ V into its associated corrector v, as stated above

is a differentiable operation. Indeed, E′(y) can always be identified with an element of V itself.

For any Y ∈ V , we have

(2.16) E′(y) · Y =

∫
Ω

α v · V +∇v · ∇V

where V ∈ V is the unique solution of

(2.17) α

∫
Ω

V ·w+

∫
Ω

∇V ·∇w = −α
∫

Ω

Y ·w−ν
∫

Ω

∇Y ·∇w−
∫

Ω

(y ·∇Y +Y ·∇y) ·w,∀w ∈ V .

In particular, taking Y = Y1 defined by (2.11), we easily check that

(2.18) E′(y) · Y1 =

∫
Ω

α|v|2 + |∇v|2 = 2E(y), ∀y ∈ V .

Let now, for any k ∈ N, Y1,k be the solution of (2.11) associated to yk. The previous equality

writes E′(yk) · Y1,k = 2E(yk) and implies our statement, since from Proposition 2.5, Y1,k is

uniformly bounded in V . �

Eventually, Theorem 2.3 follows from Proposition 2.4 and Proposition 2.6 with B = (να)1/2BV (0, c)

if d = 2 and B = (ν3α)1/4BV (0, c) if d = 3.

Theorem 2.3 is a general convergence result that do not take into account the particular

method to produce such sequence {yk}(k∈N) with E′(yk) → 0. In practice, however, one would

typically use a gradient method to calculate iteratively such sequences. The following lemma

ensures that a gradient method for the functional E in (3.1) will always converge to the solution of

(2.3), provided the initial guess y0 of the minimizing sequence is sufficiently close to the solution

y of (2.3).

Proposition 2.7. Assume that Q(g, f, α, ν) is small enough. There is a known, specific positive

constant C = C(‖y‖V , α, ν) such that if ‖y0 − y‖V < C, then a gradient based method for E

starting from y0 will always converge to y.
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Proof. Let (yk)k∈N a minimizing sequence for E based on the gradient E′, i.e. (yk+1 − yk, w) =

−λE′(yk) · w, for all w ∈ V and λ > 0. We note by gk the element of V defined by (gk, w)V =

E′(yk) · w for all w ∈ V , equivalently

(2.19) (gk, w)V = −
∫

Ω

αvk · w + ν∇vk · ∇w + (w · ∇yk + yk · ∇w) · vk,∀w ∈ V .

vk is the corrector associated to yk. In particular, we check that ‖gk‖V is uniformly bounded as

soon as yk is uniformly bounded.

We first check that the following equality holds true:

(2.20) ‖yk+1 − y‖2V − ‖yk − y‖2V = 2λE′(yk) · (y − yk) + λ2‖gk‖2V , ∀k ∈ N.

Indeed, we have

−λE′(yk) · (y − yk) = (yk+1 − yk, y − yk)

= −‖yk+1 − y‖2V + ‖yk − y‖2V + (yk+1 − y, yk+1 − yk)

= −‖yk+1 − y‖2V + ‖yk − y‖2V − λE′(yk) · (yk+1 − y)

= −‖yk+1 − y‖2V + ‖yk − y‖2V − λE′(yk) · (yk+1 − yk)− λE′(yk) · (yk − y)

and the equality (2.20) follows since the third term (in the right hand side) is

−λE′(yk) · (yk+1 − yk) = −λ(gk, yk+1 − yk) = λ2E′(yk) · gk = λ2‖gk‖2.

The strategy is then to show that the quantity E′(y0) · (y − y0) becomes non-positive, if the

initial guess y0 is sufficiently close, in a precise quantitative way, to the exact solution y. Taking

λ > 0 small enough, it will follows from (2.20), that if y0 belongs to the ball B of Proposition

2.6, then, recursively, every element of the sequence {yk}k∈N will stay in B.

Let y0 be an arbitrary field in V , and recall formula (2.19) for the derivative of E at y0,

applied to the difference Y = y − y0

E′(y0) · Y = −
∫

Ω

αv0 · Y + ν∇v0 · ∇Y + (Y · ∇y0 + y0 · ∇Y ) · v0

where v0 is the corrector associated with y0. On the other hand, using v0 as a test function in

(2.10) for y = y0 (which is the difference of the equations for y0 with its corrector v0 and for the

exact solution y), it is a matter of some careful algebra to arrive at

(2.21)
E′(y0) · Y =−

∫
Ω

α|v0|2 + |∇v0|2 +

∫
Ω

Y · ∇Y · v0 = −2E(y0) +

∫
Ω

Y · ∇Y · v0.

≤ −2E(y0) + c‖Y ‖2‖∇Y ‖2‖∇v0‖2

assuming d = 2 in the last line.We now take into account Proposition 2.4 so that ‖Y ‖2
H1

0 (Ω)2
≤

c2ν−2E(y0), for some constant c provided Q(g, f, α, ν) is small enough leading to the estimate

E′(y0) · Y ≤ −2E(y0) + cν−2E(y0)3/2,

for a certain known constant c independent of y0, α and ν. If we can ensure that the size of the

corrector v0 is such that
√
E(y0) < 2c−1ν2, whenever ‖Y ‖H1

0 (Ω)2 < c1 for some positive known

constant c1, then we would indeed have E′(y0) · Y < 0. This sign condition is informing us

that the flow of E is always pointing inwards in the ball determined BV (0, c1). If we take c1
even smaller if necessary to guarantee that ‖Y ‖H1

0 (Ω)2 < c1 implies y ∈ B where B is the ball,

centered at zero, in Proposition 2.6, then we would have that all integral curves starting under

the condition y0 ∈ BV (y, c1) will converge to y since in this ball there cannot be critical points

of E other than y itself, according to Theorem 2.3. It remains, hence, to quantify the continuity

of E at the solution y. To check this, we use again v0 as a test function in (2.10) and obtain

(2.22) α‖v0‖22 + ‖∇v0‖22 = α

∫
Ω

Y v0 + ν

∫
Ω

∇Y · ∇v0 +

∫
(y · ∇Y + Y · ∇y − Y · ∇Y ) · v0
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Since ∫
Y · ∇Y · v0 ≤ ‖Y ‖2‖∇Y ‖2‖∇v0‖2 ≤ c‖Y ‖2H1

0 (Ω)2‖∇v0‖2,

and ∫
y · ∇Y · v0 ≤ ‖y‖2‖∇Y ‖2‖∇v0‖2 ≤ ‖y‖2‖Y ‖V ‖∇v0‖2,

and ∫
Y · ∇y · v0 ≤ ‖Y ‖2‖∇y‖2‖∇v0‖2 ≤ c‖∇y‖2‖Y ‖V ‖∇v0‖2,

we find

(2.23)
√
E(y0) ≤ c

(
‖Y ‖V + ‖y‖2 + ‖∇y‖2

)
‖Y ‖V

for some c > 0 independent of y0, α and ν. Remark that this inequality is the reverse of (2.8).

We clearly see that we can make the left-hand side small by making the right-hand side small in

a quantified way. Precisely, we easily check that the inequality
√
E(y0) < 2c−1ν2 holds true as

soon as

‖y0 − y‖V ≤ c
(√
‖y‖2V + 4ν2 − ‖y‖V

)
where the constant c > 0 related to the Poincaré inequality depends only on Ω. Remark that√
‖y‖2V + 4ν2 − ‖y‖V ≤ 2ν.

The case d = 3 is similar. �

From a purely practical standpoint, however, checking “a posteriori” computed iterates yk
will tell us whether we are getting close to the unique solution y, because numbers E(yk) become

steadily and virtually zero, or they stay bounded away from zero.

Remark 2.8. Section 6, chapter IV of the book [4] introduces a least-squares method in order

to solve an Oseen type equation (without incompressibility constraint). The convergence of any

minimizing sequence toward a solution y is proved under the condition that the operator DF (y)

defined as follows

(2.24) DF (y) · w = cw − ν∆w + [(w · ∇)y + (y · ∇)w], ∀w ∈ V

(for some c > 0) is an isomorphism from V onto V ′. This property is actually necessary

to determine recursively in a unique way a (minimizing) sequence from its first element (see

(2.19)). The smallness assumption on Q(g, f, α, ν) is a sufficient condition for the operator

DF (y) (with c = α in (2.24)) to be an isomorphism. Moreover, it appears that this assumption

implies the uniqueness of y, the solution we are looking for. As far as we know, determine a

weaker condition ensuring that DF (y) is an isomorphism is an open question.

Remark 2.9. The error functional E in [2] is defined in a slightly different way, precisely

E(y) = 1
2

∫
Ω
α|v|2 + ν|∇v|2, making appear explicitly the parameter ν. The term

∫
Ω
∇v · ∇w in

(2.7) defining the corrector is then replaced by
∫

Ω
ν∇v · ∇w. Our analysis remains true in this

situation.

3. Application to the Implicit Euler Scheme

As done in [2], one may use the least-squares method analyzed in the previous section to

solve the implicit scheme given by (1.2). For simplicity, we take θ = 1 and write yn for ynθ .

According to the previous section, in order to compute yn+1 from yn, one may consider the

following extremal problem

(3.1) inf
y∈V

En(y), En(y) =
1

2

∫
Ω

α|v|2 + |∇v|2



10 JÉRÔME LEMOINE AND ARNAUD MÜNCH

where the corrector v ∈ V solves

(3.2)

α

∫
Ω

v · w +

∫
Ω

∇v · ∇w = −α
∫

Ω

y · w − ν
∫

Ω

∇y · ∇w −
∫

Ω

y · ∇y · w

+ < fn, w >H−1(Ω)d×H1
0 (Ω)d +α

∫
Ω

gn · w, ∀w ∈ V

where α, gn and fn are given by (1.4). The natural choice is to initialize the minimizing sequence,

says (yn+1
k )k∈N for En with the element gn = yn, i.e. yn+1

0 = yn. According to Proposition 2.7,

if yn+1 is close enough to yn for the V -norm, then the strong convergence of the minimizing

sequence (ynj )j∈N to yn+1 holds true. One main goal in this section is to check that two con-

secutive elements of the sequence yn defined by recurrence from the scheme (1.2) are close each

other as soon as δt, the time step, is small enough. Before to give such result in Theorem 3.3,

we state several intermediate results.

Proposition 3.1. Let d = 2 or d = 3, (fn)n∈N a sequence in H−1(Ω)d, α > 0 and y0 ∈ L2(Ω)d.

a) We define by recurrence for all n ∈ N, yn+1 ∈ V , as solution of

(3.3) α

∫
Ω

(yn+1 − yn) ·w + ν

∫
Ω

∇yn+1 · ∇w +

∫
Ω

yn+1 · ∇yn+1 ·w =< fn, w >H−1(Ω)d×H1
0 (Ω)d

for all w ∈ V . For all n ∈ N, yn+1 satisfies

(3.4) α‖yn+1‖22 + ν‖∇yn+1‖22 ≤
c0
ν
‖fn‖2H−1(Ω)d + α‖yn‖22

where c > 0 depends only on Ω and for all n ∈ N?:

(3.5) ‖yn‖22 +
ν

α

n∑
k=1

‖∇yk‖22 ≤
1

ν

(c0
α

n−1∑
k=0

‖fk‖2H−1(Ω)d + ν‖y0‖22
)
.

b) Let us define M(f, α, ν) as follows:

(3.6) M(f, α, ν) =


1

ν3

(
c0
α

n−1∑
k=0

‖fk‖2H−1(Ω)2 + ν‖y0‖22
)
, if d = 2,

α1/2

ν7/2

(
c0
α

n−1∑
k=0

‖fk‖2H−1(Ω)3 + ν‖y0‖22
)
, if d = 3.

If M(f, α, ν) is small enough, then the solution of (3.3) is unique.

Proof.

(a) The existence of yn+1 is given in Proposition 2.2. Taking w = yn+1 in (3.3) leads to

α

∫
Ω

|yn+1|2 +ν

∫
Ω

|∇yn+1|2 +

∫
Ω

yn+1 ·∇yn+1 ·yn+1 = 〈fn, yn+1〉H−1(Ω)d×H1
0 (Ω)d +α

∫
Ω

yn ·yn+1

and since
∫

Ω
yn+1 · ∇yn+1 · yn+1 = 0, we obtain

α

∫
Ω

|yn+1|2 + ν

∫
Ω

|∇yn+1|2 ≤
√
c0‖fn‖H−1(Ω)d‖∇yn+1‖2 + α‖yn‖2‖yn+1‖2

≤ c0
2ν
‖fn‖2H−1(Ω)d +

ν

2
‖∇yn+1‖22 +

α

2
‖yn‖22 +

α

2
‖yn+1‖22.

This shows (3.4). Summing in n easily gives (3.5).

(b) Let n ∈ N and let yn+1
1 , yn+1

2 ∈ V be two solutions of (3.3). Let Y = yn+1
1 − yn+1

2 . Then,

α

∫
Ω

Y · w + ν

∫
Ω

∇Y · ∇w +

∫
Ω

yn+1
2 · ∇Y · w +

∫
Ω

Y.∇yn+1
1 .w = 0 ∀w ∈ V .
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and then, for w = Y (using that
∫

Ω
yn+1

2 .∇Y.Y = 0) and for d = 2

α

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 = −
∫

Ω

Y.∇yn+1
1 .Y ≤ c‖Y ‖2‖∇Y ‖2‖∇yn+1

1 ‖2

≤ α‖Y ‖22 +
c

α
‖∇Y ‖22‖∇yn+1

1 ‖22.

It follows that (ν − c
α‖∇y

n+1
1 ‖22)‖∇Y ‖22 ≤ 0. Moreover, in view of (3.5),

ν

α
‖∇yn+1

1 ‖22 ≤
1

ν

(c0
α

n∑
k=0

‖fk‖2H−1(Ω)2 + ν‖y0‖22
)
.

Therefore, if c0
α

∑n
k=0 ‖fk‖2H−1(Ω)2 + ν‖y0‖22 < c1ν

3 for some constant c1 > 0, then ‖∇Y ‖22 ≤ 0.

Similarly, if d = 3, we can write

α

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 = −
∫

Ω

Y.∇yn+1
1 .Y ≤ c‖Y ‖

1
2
2 ‖∇Y ‖

3
2
2 ‖∇y

n+1
1 ‖2

≤ α‖Y ‖22 +
c

α1/3
‖∇Y ‖22‖∇yn+1

1 ‖
4
3
2

leading to (ν− c
α1/3 ‖∇yn+1

1 ‖
4
3
2 )‖∇Y ‖22 ≤ 0. Arguing as before, if c0α

∑n
k=0 ‖fk‖2H−1(Ω)3 +ν‖y0‖22 <

c1α
− 1

2 ν
7
2 for some c1 > 0, then ‖∇Y ‖22 ≤ 0. �

Proposition 3.2. Assume hypotheses of Proposition 3.3. Assume moreover that Ω is C2, that

(fn)n is a sequence in L2(Ω)d and that ∇y0 ∈ L2(Ω)d.

a) Suppose d = 2. If, for all n ∈ N, ν−2(c0α
−1
∑n
k=0 ‖fk‖2H−1(Ω)2 + ν‖y0‖22) is small enough,

then there exists at least one solution yn+1 ∈ H2(Ω)d ∩ V of (3.3) satisfying

(3.7)

∫
Ω

|∇yn+1|2 +
ν

4α

n+1∑
k=1

∫
Ω

|∆yk|2 ≤ 1

ν

( 1

α

n∑
k=0

‖fk‖22 + ν‖∇y0‖22
)
.

b) Suppose d = 3. If ν−2(α−1
∑n−1
k=0 ‖fk‖22 + ν‖∇y0‖22) is small enough, then the conclusion

of a) holds true as well.

c) Suppose d = 2 and that (αν5)−1(c0α
−1
∑n
k=0 ‖fk‖2H−1(Ω)2 + ν‖y0‖22)

(
α−1

∑n−1
k=0 ‖fk‖22 +

ν‖∇y0‖22
)

is small enough. Then, the solution of (3.3) is unique.

In the case d = 3, the same conclusion holds true if the quantity ν−5/2α−1/2
(
α−1

∑n−1
k=0 ‖fk‖22+

ν‖∇y0‖22
)

is small enough.

Proof. From Proposition 2.2, we know that for all n ∈ N∗, yn ∈ H2(Ω)2 ∩ V . Let now P be the

operator of projection from L2(Ω)d into H. Taking w = P∆yn+1 in (3.3) leads to :

(3.8)

α

∫
Ω

|∇yn+1|2+ν

∫
Ω

|P∆yn+1|2 = −
∫

Ω

fnP∆yn+1+

∫
Ω

yn+1.∇yn+1.P∆yn+1+α

∫
Ω

∇yn∇yn+1.

Recall that∫
Ω

fnP∆yn+1 ≤ 1

2ν
‖fn‖22 +

ν

2
‖P∆yn+1‖22, α

∫
Ω

∇yn · ∇yn+1 ≤ α

2

∫
Ω

|∇yn|2 +
α

2

∫
Ω

|∇yn+1|2.

a) Assume first that d = 2. We can write∣∣∣ ∫
Ω

yn+1.∇yn+1.P∆yn+1
∣∣∣ ≤ ‖yn+1‖∞‖∇yn+1‖2‖P∆yn+1‖2.

We now use (see [19, chapter 5]) that there exist three constants c1, c2 and c3 such that

‖∆yn+1‖2 ≤ c1‖P∆yn+1‖2, ‖yn+1‖∞ ≤ c2‖yn+1‖
1
2
2 ‖∆yn+1‖

1
2
2

and

‖∇yn+1‖2 ≤ c3‖yn+1‖
1
2
2 ‖∆yn+1‖

1
2
2 .
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This implies that (for c = c1c2c3)∣∣∣ ∫
Ω

yn+1 · ∇yn+1 · P∆yn+1
∣∣∣ ≤ c‖yn+1‖2‖P∆yn+1‖22.

Recalling (3.8), it results that

α

2

∫
Ω

|∇yn+1|2 +

(
ν

2
− c‖yn+1‖2

)∫
Ω

|P∆yn+1|2 ≤ 1

2ν
‖fn‖22 +

α

2

∫
Ω

|∇yn|2.

We deduce from (3.5), that if c0
α

∑n
k=0 ‖fk‖2H−1(Ω)2 + ν‖y0‖22 < c1ν

2 for some constant c1 > 0,

then ∫
Ω

|∇yn+1|2 +
ν

4α

∫
Ω

|P∆yn+1|2 ≤ 1

να
‖fn‖22 +

∫
Ω

|∇yn|2.

Summing then implies (3.7) for all n ∈ N.

b) We assume now that d = 3. Then,∣∣∣ ∫
Ω

yn+1.∇yn+1.P∆yn+1

∣∣∣ ≤ ‖yn+1‖3‖∇yn+1‖6‖P∆yn+1‖2.

Again, we use that there exist constants c1, c2 > 0 such that

‖∆yn+1‖2 ≤ c1‖P∆yn+1‖2, ‖∇yn+1‖6 ≤ c2‖∆yn+1‖2 ≤ c1c2‖P∆yn+1‖2
so that, for c = c1c2, we obtain∣∣∣ ∫

Ω

yn+1.∇yn+1.P∆yn+1

∣∣∣ ≤ c‖yn+1‖3‖P∆yn+1‖22.

Recalling (3.8), it results that

(3.9)
α

2

∫
Ω

|∇yn+1|2 +

(
ν

2
− c‖yn+1‖3

)∫
Ω

|P∆yn+1|2 ≤ 1

2ν
‖fn‖22 +

α

2

∫
Ω

|∇yn|2.

Assume that, for all n ∈ N∗, we have constructed by recurrence an element yn solution of (3.3)

such that

(3.10)
ν

4
− c‖yn‖3 > 0.

Then, for all n ∈ N

(3.11)

∫
Ω

|∇yn+1|2 +
ν

4α

∫
Ω

|P∆yn+1|2 ≤ 1

να
‖fn‖22 +

∫
Ω

|∇yn|2

and recursively, for all n ∈ N∗ :∫
Ω

|∇yn+1|2 +
ν

4α

n+1∑
k=1

∫
Ω

|P∆yk|2 ≤ 1

ν

( 1

α

n∑
k=0

‖fk‖22 + ν

∫
Ω

|∇y0|2
)
.

It remains to construct a sequence (yn)n∈N∗ solution of (3.3) and satisfying for all n ∈ N∗ the

property (3.10). Let n ∈ N fixed. Assume now, that we have constructed, for k ∈ {1, · · · , n} a

solution yk satisfying (3.3) and ν
4 − c‖y

k‖3 > 0 for c = c1c2 introduced above. Let y1 ∈ V and

let y2 ∈ H2(Ω)3 ∩ V be the unique solution of

α

∫
Ω

(y2 − yn).w + ν

∫
Ω

∇y2.∇w +

∫
Ω

y1.∇y2.w = 〈fn, w〉H−1(Ω)d×H1
0 (Ω)d ∀w ∈ V.

If y1 satisfies ν
4c ≥ ‖y

1‖3, then in view of (3.9),

α

2

∫
Ω

|∇y2|2+

(
ν

2
− c‖y1‖3

)∫
Ω

|P∆y2|2 ≤
1

2ν
‖fn‖22 +

α

2

∫
Ω

|∇yn|2

and consequently

α

2

∫
Ω

|∇y2|2 +
ν

4

∫
Ω

|P∆y2|2 ≤
1

2ν
‖fn‖22 +

α

2

∫
Ω

|∇yn|2.
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(3.11) then implies

(3.12)

∫
Ω

|∇y2|2 +
ν

2α

∫
Ω

|P∆y2|2 ≤
1

ν

( 1

α

n∑
k=0

‖fk‖22 + ν

∫
Ω

|∇y0|2
)
.

We now use that there exists a constant c1 > 0 such that, for all n ∈ N ‖y2‖3 ≤ c1‖∇y2‖2 to

obtain

‖y2‖23 ≤
c1
ν

( 1

α

n∑
k=0

‖fk‖22 + ν

∫
Ω

|∇y0|2
)
.

Consequently, if

c1

( 1

α

n∑
k=0

‖fk‖22 + ν

∫
Ω

|∇y0|2
)
≤ ν2

4c

then ν
4c ≥ ‖y2‖3.

We then introduce the application T : C → C, y1 7→ y2 where C is the closed convex set of V

defined by C = {y ∈ V , ν
4c ≥ ‖y‖3}. Let us check that T is continuous. Let y1 ∈ C et z1 ∈ C,

y2 = T (y1) et z2 = T (z1) so that

α

∫
Ω

(z2−y2).w+ν

∫
Ω

∇(z2−y2).∇w+

∫
Ω

y1.∇(y2−z2).w+

∫
Ω

(y1−z1).∇z2.w = 0 ∀w ∈ V .

and then, w = z2 − y2 :

α

∫
Ω

|z2 − y2|2 + ν

∫
Ω

|∇(z2 − y2)|2 ≤
∣∣∣ ∫

Ω

(y1 − z1).∇z2.(z2 − y2)
∣∣∣

≤ c‖∇(y1 − z1)‖2‖∇z2‖2‖z2 − y2‖3
≤ c‖∇(y1 − z1)‖2

using (3.12); this implies the continuity of T . On the other hand, since y2 ∈ H2(Ω)3, T is

relatively compact. The Schauder theorem allows to affirm that T has a fixe point y ∈ C, that

is, a solution yn+1 ∈ C of (3.3).

c) Let n ∈ N and let yn+1
1 , yn+1

2 ∈ V be two solutions of (3.3). Let Y = yn+1
1 − yn+1

2 . Then,

α

∫
Ω

Y.w + ν

∫
Ω

∇Y.∇w +

∫
Ω

yn+1
2 .∇Y.w +

∫
Ω

Y.∇yn+1
1 .w = 0 ∀w ∈ V

and in particular, for w = Y (since
∫

Ω
yn+1

2 .∇Y.Y = 0) and d = 2

α

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 = −
∫

Ω

Y.∇yn+1
1 .Y =

∫
Ω

Y.∇Y.yn+1
1 ≤ c‖yn+1

1 ‖∞‖∇Y ‖2‖Y ‖2

≤ c‖yn+1
1 ‖1/22 ‖P∆yn+1

1 ‖1/22 ‖∇Y ‖2‖Y ‖2

≤ α‖Y ‖22 +
c

α
‖yn+1

1 ‖2‖P∆yn+1
1 ‖2‖∇Y ‖22

leading to (
ν − c

α
‖yn+1

1 ‖2‖P∆yn+1
1 ‖2

)
‖∇Y ‖22 ≤ 0.

If

(3.13) ‖yn+1
1 ‖2‖P∆yn+1

1 ‖2 <
να

c
,

then Y = 0 and the solution is unique. But, from (3.5) and (3.7),

‖yn+1
1 ‖22‖P∆yn+1

1 ‖22 ≤
4α

ν3

(
c0
α

n∑
k=0

‖fk‖2H−1(Ω)2 + ν‖y0‖22
)(

1

α

n∑
k=0

‖fk‖22 + ν‖∇y0‖22
)
.

Therefore, if there exists a constant c1 such that ( c0α
∑n
k=0 ‖fk‖2H−1(Ω)2+ν‖y0‖22)( 1

α

∑n
k=0 ‖fk‖22+

ν‖∇y0‖22) < c1ν
5α, then (3.13) holds true.
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If d = 3, we have

α

∫
Ω

|Y |2 + ν

∫
Ω

|∇Y |2 = −
∫

Ω

Y.∇yn+1
1 .Y =

∫
Ω

Y.∇Y.yn+1
1 ≤ c‖yn+1

1 ‖∞‖∇Y ‖2‖Y ‖2

≤ c‖∇yn+1
1 ‖1/22 ‖P∆yn+1

1 ‖1/22 ‖∇Y ‖2‖Y ‖2

≤ α‖Y ‖22 +
c

α
‖∇yn+1

1 ‖2‖P∆yn+1
1 ‖2‖∇Y ‖22

and therefore (ν − c
α‖∇y

n+1
1 ‖2‖P∆yn+1

1 ‖2)‖∇Y ‖22 ≤ 0. Moreover, from (3.7),

‖∇yn+1
1 ‖2‖P∆yn+1

1 ‖2 ≤
2α1/2

ν3/2

(
1

α

n∑
k=0

‖fk‖22 + ν‖∇y0‖22
)
.

Therefore, if there exists a constant c > 0 such that 1
α

∑n
k=0 ‖fk‖22 +ν‖∇y0‖22 < cν5/2α1/2, then,

arguing as before, ‖∇Y ‖22 ≤ 0 and Y = 0. �

Proposition 3.2 then allows to obtain the following estimation of ‖yn+1 − yn‖2 in term of the

parameter α.

Theorem 3.3. We assume that Ω is C2, that (fn)n is a sequence in L2(Ω)d satisfies α−1
∑+∞
k=0 ‖fk‖2 <

+∞, that ∇y0 ∈ L2(Ω)d and that forall n ∈ N, yn+1 ∈ H2(Ω)d∩V is a solution of (3.3) satisfying

(3.7). Then, the sequence (yn)n satisfies

(3.14) ‖yn+1 − yn‖2 = O(α−1/2ν−3/4).

Proof. For all n ∈ N, w = yn+1 − yn in (3.3):

α‖yn+1−yn‖22+ν‖∇yn+1‖22 ≤
∣∣∣ ∫

Ω

yn+1.∇yn+1.(yn+1−yn)
∣∣∣+∣∣∣ ∫

Ω

fn.(yn+1−yn)
∣∣∣+ν∣∣∣ ∫

Ω

∇yn.∇yn+1
∣∣∣.

Moreover,∣∣∣ ∫
Ω

yn+1.∇yn+1.(yn+1−yn)
∣∣∣ ≤ c‖∇yn+1‖22‖∇(yn+1−yn)‖2 ≤ c‖∇yn+1‖22(‖∇yn+1‖2+‖∇yn)‖2),

∣∣∣ ∫
Ω

fn.(yn+1 − yn)
∣∣∣ ≤ 1

2α
‖fn‖2 +

α

2
‖yn+1 − yn‖22,

and

ν
∣∣∣ ∫

Ω

∇yn.∇yn+1
∣∣∣ ≤ ν

2
‖∇yn+1‖22 +

ν

2
‖∇yn‖22.

Therefore,

α‖yn+1 − yn‖22 + ν‖∇yn+1‖22 ≤ c‖∇yn+1‖22(‖∇yn+1‖2 + ‖∇yn‖2) +
1

α
‖fn‖2 + ν‖∇yn‖22.

But, from (3.7) we deduce that for all n ∈ N∫
Ω

|∇yn+1|2 ≤ 1

ν

( 1

α

+∞∑
k=0

‖fk‖22 + ν‖∇y0‖22
)

:=
C

ν

and thus, since ν < 1

α‖yn+1 − yn‖22 + ν‖∇yn+1‖22 ≤
2cC3/2

ν3/2
+ 2C ≤ C1

ν3/2

leading to ‖yn+1 − yn‖22 = O( 1
αν3/2 ) as announced. �

Therefore, if the time step discretization δt = 1/α is chosen small enough according to the

value of the viscosity constant, two consecutive elements of the sequence {yn}n∈N are close from

each other.

Eventually, a similar result may be obtained in the case θ ∈ (0, 1).
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4. Minimizing sequences for E - Gradient method and Newton

4.1. Conjugate gradient. The appropriate tool to produce minimizing sequence for the func-

tional E is gradient method. Among them, the Polak-Ribière version, commonly used, of the

conjugate gradient (CG for short in the sequel) algorithm (see [8]) have shown its efficiency in

the similar context analyzed in [15, 16, 14]. The CG algorithm reads as follows :

• Step 0: Initialization - Given any η > 0 and any y0 ∈ V , compute the residual y0 ∈ V

solution of

(y0, Y )V = E′(y0) · Y, ∀Y ∈ V .

If ‖y0‖V /‖y0‖V ≤ η take y = y0 as an approximation of a minimum of E. Otherwise,

set w0 = y0.

For k ≥ 0, assuming yk, yk, wk being known with yk and wk both different from zero,

compute yk+1, yk+1, and if necessary wk+1 as follows:

• Step 1: Steepest descent - Set yk+1 = yk − λkwk where λk ∈ R is the solution of the

one-dimensional minimization problem

(4.1) minimize E(yk − λwk) overλ ∈ R+.

Then, compute the residual yk+1 ∈ V from the relation

(4.2) (yk+1, w)V = E′(yk+1) · w, ∀w ∈ V ,

which rewrites as follows :

(4.3) α

∫
Ω

yk+1·w+

∫
Ω

∇yk+1·∇w = −
∫

Ω

αvk ·w+ν∇vk ·∇w+w·∇yk ·vk+yk ·∇w·vk, ∀w ∈ V .

• Step 2: Convergence testing and construction of the new descent direction -

If ‖yk+1‖V /‖y0‖V ≤ η take y = yk+1; otherwise compute

(4.4) γk =
(yk+1, yk+1 − yk)V

(yk, yk)V
, wk+1 = yk+1 + γkwk.

Then do k = k + 1, and return to step 1.

yk is the gradient associated to E(yk): it satisfies E′(yk)·yk = ‖yk‖2V for all k > 0. yk vanishes

when E′ (and so E) vanishes.

Remark 4.1. For any real λ and any yk, wk ∈ V we get the following expansion :

(4.5)

E(yk − λwk) = E(yk)− λ
∫

Ω

(αvkvk +∇vk · ∇vk)

+
λ2

2

∫
Ω

(α|vk|2 + |∇vk|2 + 2(αvkvk +∇vk · ∇vk))

− λ3

∫
Ω

αvkvk +∇vk · ∇vk +
λ4

2

∫
Ω

α|vk|2 + |∇vk|2

where vk, vk ∈ V and vk ∈ V solves respectively

(4.6)

α

∫
Ω

vk · w +

∫
Ω

∇vk · ∇w + α

∫
Ω

yk · w + ν

∫
Ω

∇yk · ∇w +

∫
Ω

yk · ∇yk · w

=< fn, w >H−1(Ω)d×H1
0 (Ω)d +α

∫
Ω

gn · w, ∀w ∈ V ,

(4.7)

α

∫
Ω

vk ·w+

∫
Ω

∇vk ·∇w+α

∫
Ω

wk ·w+ν

∫
Ω

∇wk ·∇w+

∫
Ω

wk ·∇yk ·w+yk ·∇wk ·w = 0, ∀w ∈ V ,
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and

(4.8) α

∫
Ω

vk · w +

∫
Ω

∇vk · ∇w +

∫
Ω

wk · ∇wk · w = 0, ∀w ∈ V .

2

Consequently, each iteration of the CG algorithm requires the resolution of four Stokes prob-

lems, namely (4.3), (4.6), (4.7) and (4.8). The incompressibility condition is taken into account

with a Lagrange multiplier. Remark that the matrix (to be invert) associated to those four

problems is the same and does not change from an iteration to the next one.

4.2. Gradient and Newton type method. Very interestingly, equality (2.18) shows that −Y1

given by the solution of (2.11) is a descent direction for the functional E. Remark also, in view

of (2.11), that the corrector V associated to Y1, given by (2.17) with Y = Y1, is nothing else than

the corrector v itself. Therefore, we can define an another minimizing sequence yk as follows:

(4.9)


y0 ∈ V ,

yk+1 = yk − λkY1,k, k > 0,

λk = argminλ∈R+E(yk − λY1,k)

where Y1,k solves the formulation

(4.10)

α

∫
Ω

Y1,k ·w+ν

∫
Ω

∇Y1,k ·∇w+

∫
Ω

(yk ·∇Y1,k+Y1,k ·∇yk)·w = −α
∫

Ω

vk ·w−
∫

Ω

∇vk ·∇w,∀w ∈ V

leading (see (2.18)) to E′(yk) · Y1,k = 2E(yk). The direction Y1,k vanishes when E vanishes.

Remark that the minimization of the real function λ→ E(yk − λY1,k) is easily performed as we

check from (4.5) that, for all λ ∈ R,

(4.11) E(yk − λY1,k) = (1− λ)2E(yk) + λ2(1− λ)

∫
Ω

αvkvk +∇vk∇vk +
λ4

2

∫
Ω

α|vk|2 + |∇vk|2

where vk ∈ V solves (4.6) and vk ∈ V solves

(4.12) α

∫
Ω

vk · w +

∫
Ω

∇vk · ∇w +

∫
Ω

Y1,k · ∇Y1,k · w = 0, ∀w ∈ V .

Remark 4.2. Contrary to the CG algorithm of section 4.1, the matrix (associated to the bilinear

form of (4.12)) to be invert varies here with k. To avoid this fact, one may replaced (4.9) by

(4.13)


y0 ∈ V ,

yk+1 = yk − λkỸ1,k, k > 0,

λk = argminλ∈R+E(yk − λỸ1,k)

where Ỹ1,k solves the formulation

(4.14)

α

∫
Ω

Ỹ1,k ·w+ν

∫
Ω

∇Ỹ1,k ·∇w+

∫
Ω

(y0 ·∇Ỹ1,k+Ỹ1,k ·∇y0)·w = −α
∫

Ω

vk ·w−
∫

Ω

∇vk ·∇w,∀w ∈ V .

It is interesting to note that the sequence {yk}(k>0) obtained from (4.9) if we fixe λk = 1 for

all k, i.e. {y0 ∈ V , yk+1 = yk − Y1,k, k ≥ 0}, is exactly the sequence associated to the Newton-

Raphson method to solve directly the weak formulation (1.5) of (1.3). Such algorithm reads as

follows :

(4.15)

{
y0 ∈ V ,

∂yF (yk, z) · (yk+1 − yk) = −F (yk, z), ∀z ∈ V , ∀k ≥ 0,

and converges to a solution y if ∂yF (y, z) is an isomorphism and Lipschitz-continuous with

respect to y in the closed ball containing y, see [4, Theorem 6.3]. Since both sequences defined
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by (4.9) and (4.15) coincides for λk = 1, Algorithm 4.9 can therefore be seen as an improvement

of the Newton algorithm with an order of convergence at least equal to 2 (in a neighborhood

of a solution). In view of (4.11), they share the same behavior as soon as the term ‖∇vk‖22
becomes small. Similarly, the algorithm (4.13) with λk = 1 coincides with the quasi Newton

algorithm. More precisely, the following proposition show how the minimization of the parameter

λk improves the robustness of the Newton method, usually used to solve (1.5).

Proposition 4.3. Let (yk)k∈N be the sequence defined by (4.9) with first element y0 and let y

be the solution of the Navier-Stokes equation. Assume that the sequence {yk}k is in the ball B
defined in Proposition 2.6. Then, the sequence (‖yk − y‖)k∈N converges to zero at least linearly.

Once ‖ym − y‖ ≤ c ν for some m, the convergence of the sequence (‖yk − y‖)k>m is quadratic.

Proof. According to (4.11), we have E(yk+1) = (1− λk)2E(yk) + λ2
k(1− λk)Ak + λ4

kBk with

(4.16)


Ak =

∫
Ω

αvk · vk +∇vk · ∇vk ≤
(
α‖vk‖22 + ‖∇vk‖22

)1/2(
α‖vk‖22 + ‖∇vk‖22

)1/2
,

Bk =
1

2

(
α‖vk‖22 + ‖∇vk‖22

)
.

Consequently |Ak| ≤ 2
√
E(yk)

√
Bk and then

(4.17)

E(yk+1) ≤ (1− λk)2E(yk) + 2λ2
k|1− λk|

√
E(yk)

√
Bk + λ4

kBk

≤
(
|1− λk|

√
E(yk) + λ2

k

√
Bk

)2

.

Moreover, from (4.12), if d = 2,

(4.18) 2Bk ≤ ‖Y1,k‖22‖∇Y1,k‖22.

The bound (2.14) implies that
∫

Ω
|∇Y1,k|2 ≤ 1

ν max(1, 2
ν )
∫

Ω
α|vk|2+|∇vk|2 = 2

ν max(1, 2
ν )E(yk)

so that

2Bk ≤ c0c2νE(yk)2, cν :=
2

ν
max(1,

2

ν
)

and then Ak ≤ c0cνE(yk)3/2 where c0 is the Poincaré constant. Estimate (4.17) then becomes

(4.19)
√
E(yk+1) ≤

√
E(yk)

(
|1− λk|+ λ2

k c̃ν
√
E(yk)

)
, c̃ν :=

√
c0/2cν = O(ν−2).

We introduce the polynomial p as follows :

p(λ) :=

(
|1− λ|+ λ2c̃ν

√
E(yk)

)
so that c̃ν

√
E(yk+1) ≤ p(λk)c̃ν

√
E(yk).

• Assume that c̃ν
√
E(yk) < 1 for some k. Then, writing that p(λk) ≤ p(1) = c̃ν

√
E(yk), we

obtain that (c̃ν
√
E(yk+1)) ≤ (c̃ν

√
E(yk))2. This implies that the sequence {c̃ν

√
E(ym)}(m≥k)

decreases to zero with a quadratic rate. In particular, if c̃ν
√
E(y0) ≤ 1 and if we fixe λk = 1

for all k ≥ 0 in (4.9), we recover the order two of convergence of Newton type methods. In

view of (2.8), c̃ν
√
E(y0) ≤ 1 this means that ‖y0 − y‖V is the order of c ν for some c > 0. If

c̃ν
√
E(y0) > 1, the convergence of the Newton method is not guarantees. On the other hand,

the decrease of {E(yk)}k together with the radius of convergence can be improved if the step

λk, not necessarily taken equal to one, is chosen at each iterate in order to minimize the value

of p(λk).

• Assume that c̃ν
√
E(yk) ≥ 1 for some k. In that case, p reaches a unique minimum for

λk = 1/(2c̃ν
√
E(yk)) ∈ (0, 1/2) for which p(λk) = 1− λk

2 ∈ (0, 1) leading to (in view of (4.19))

c̃ν
√
E(yk+1) ≤= p(λk)c̃ν

√
E(yk) =

(
1− 1

4c̃ν
√
E(yk)

)
c̃ν
√
E(yk).



18 JÉRÔME LEMOINE AND ARNAUD MÜNCH

This inequality implies that the sequence {c̃ν
√
E(yk)}k∈N strictly decreases and then that the

sequence {p(λk)}k∈N decreases as well. This implies that the sequence {c̃ν
√
E(yk)}k∈N decreases

to zero at least linearly. In view of the discussion above, once c̃ν
√
E(yk) is less than one, the

decrease is quadratic.

Consequently, the optimization of the parameter λk improves significantly the Newton al-

gorithm. Observe from (4.19) that the optimal λk goes to 1 as
√
E(yk) goes to zero. Our

experiments in Section 5 will confirm these properties. �

The convergence of the algorithm (4.9) is ensured as soon as the initial guess y0 such that yk
stays in the ball B for all k. In view of the definition of the sequence {yk}k∈N, we can write, for

all k > 0,

‖yk+1‖V ≤ ‖y0‖V +

k∑
m=0

|λm|‖Y1,m‖V .

Using that the optimal step λm is in (0, 1) and that ‖Y1,m‖V ≤ ν−1
√
E(ym) (see (2.14)), we

arrive at

‖yk+1‖V ≤ ‖y0‖V + ν−1
k∑

m=0

√
E(ym), ∀k ≥ 0.

But, {
√
E(ym)}m∈N is a decreasing sequence and

√
E(ym) ≤ p(λm)

√
E(ym−1) ≤ p(λ0)

√
E(ym−1) ≤

p(λ0)m
√
E(y0) so that

∑k
m=0

√
E(ym) ≤

√
E(y0)(1− pk+1(λ0))/(1− p(λ0)) and

‖yk+1‖V ≤ ‖y0‖V +
1

1− p(λ0)
ν−1

√
E(y0), ∀k ≥ 0.

For d = 2, B = {y ∈ V , ‖y‖2V ≤ cαν} for some c = c(Ω) > 0. Consequently, the sequence

{yk}k∈N remains in B if ν−1
√
E(y0) is of the order of αν, that is

√
E(y0) ≤ dαν3/2 for some

0 < d < c. In view of (2.23), a sufficient condition is given by

‖y0 − y‖V ≤ c
(√
‖y‖2V + 4αν3/2 − ‖y‖V

)
for some c > 0. Remark that

√
‖y‖2V + 4αν3/2 − ‖y‖V ≤ 2α1/2ν3/4. We can then complete

Proposition 4.4 as follows.

Corollary 4.4. Let (yk)k∈N be the sequence defined by (4.9) with first element y0 and let y be

the solution of the Navier-Stokes equation. Assume that
√
E(y0) ≤ O(αν3/2), then the sequence

converges to y as least linearly. If moreover,
√
E(y0) ≤ O(ν2), the convergence is quadratic.

Remark 4.5. In the scalar case, the optimization of the parameter associated to the Newton-

Raphson method is quite straightforward. Let f : R → R be a smooth enough function in the

neighborhood of α ∈ R such that f(α) = 0. For instance, the Householder method given in [9,

Section 4.4] to iteratively approximate α is as follows :

(4.20)


α0 ∈ R,

αn+1 = αn − λn
f(αn)

f ′(αn)
, λn = 1 +

f(αn)f ′′(αn)

2(f ′(αn))2
.

This Newton type method has an order of convergence equals to 3 (in a neighborhood of α). The

non constant step λn minimizes (at the second order) the functional λ→ f
(
αn−λf(αn)/f ′(αn)

)
and is closed to one if f(αn) is closed to 0 (i.e. αn close to α). An analogous optimization in the

variational case provided by the formulation F given in (1.5) is achieved through the introduction

of the functional E.
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5. Numerical illustrations

In the steady case for α = 0, we present numerical experiments, including very small values

of ν for two 2D examples. The first one is the well-known channel with a backward facing step.

The second one concernes a semi-disk geometry. In both case, the velocity of the fluid is imposed

on the boundary.

5.1. Steady case : Two dimensional channel with a backward facing step. We consider

in the steady and unsteady situation the celebrated test problem of a two-dimensional channel

with a backward facing step, described for instance in Section 45 of [6] (see also [10]). We use

exactly the geometry and boundary conditions from this reference. The geometry is depicted

Figure 1. Dirichlet conditions of the Poiseuille type are imposed on the entrant and sortant

sides Γ1 and Γ2 of the channel: we impose y = (4(H − x2)(x2 − h)/(H − h)2, 0) on Γ1 and

y = (4(H − h)x2(H − x2)/H2, 0) on Γ2, with h = 1, H = 3, l = 3 and L = 30. On the remaining

part ∂Ω \ (Γ1 ∪ Γ2), the fluid flow is imposed to zero. The external force f is zero.

Γ1
Γ2

x2

x1(l, 0) (L, 0)

(0, h)

(0, H)

Ω

Figure 1. A two-dimensional channel with a step.

Figure 2. A triangular mesh of the channel - 14 143 triangles and 7 360 vertices.

We consider the extremal problem (2.9) to solve the steady Navier-Stokes equation (1.3). For

simplicity, we take here α = 0. We compare the gradient algorithms described in the previous

section. The first one is the conjugate gradient algorithm coupled with the natural gradient

of E. The second one is based on the descent direction Y1, see (4.9) exhibited in the proof of

Proposition 2.6. In both cases, the initial guess is defined as the solution of the corresponding

Stokes problem and the scalar extremal problem (4.1) is performed with the Newton-Rasphon

method for real function.

The P1/P2 Taylor-Hood finite element, satisfying the Ladyzenskaia-Babushka-Brezzi condi-

tion, is employed. We start with a relatively large value of ν = 1/150. Table 1 reports the

evolution of the relative quantity ‖yk+1 − yk‖V /‖yk‖V with respect to the iterate k associated

to the algorithms (4.9), (4.13), (4.9) with fixed step λk = 1 and conjugate gradient algorithm

respectively. A regular mesh composed of 20 868 triangles and 10 792 vertices (similar to the

one depicted in Figure 2) is used. Table 2 reports the evolution of the norm of the corrector

‖vk‖V =
√

2E(yk), a upper bound of ‖y − yk‖V , according to Proposition 2.4. As expected in

view of the discussion in Section 4.2, the gradient algorithm (4.9) based on Y1,k is much faster

than the CG algorithm based on the natural gradient yk. This latter provides however a satisfac-

tory speed of convergence. Moreover, the optimal values for the optimal step λk are closed to one,

so that the Newton method provides a similar speed of convergence. As the norm of Y1,k goes to

zero with k, the last term in (4.11) gets small, and the optimal λk gets close to one. Remark as
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well that the algorithm (4.13), whose each iterates involves the same matrice to be invert, offers

an excellent speed of convergence. In term of CPU times, Algorithm (4.9) and (4.13) require

about 53 seconds and 108 seconds respectively and leads to the same approximation. We have

notably ‖∇ · y‖L2(Ω) = 1.59× 10−2 and ‖∇ · y‖L2(Ω)/|Ω| = 1.83× 10−4.

] iterate k (4.9) with λk = 1 (4.9) (4.13) CG

1 4.442× 10−1 3.798× 10−1 (0.8545) 3.796× 10−1 5.214× 10−2

2 1.959× 10−1 1.810× 10−1 (0.9573) 1.592× 10−1 4.195× 10−2

3 5.609× 10−2 4.045× 10−2 (0.9949) 4.375× 10−2 3.276× 10−2

4 3.986× 10−3 2.223× 10−3 (1.0006) 6.055× 10−3 2.946× 10−2

5 2.082× 10−5 5.719× 10−6 (0.9999) 6.808× 10−3 2.568× 10−2

6 5.912× 10−10 4.959× 10−11 (1) 9.899× 10−4 2.290× 10−2

7 4.881× 10−15 3.299× 10−15 (1) 9.009× 10−4 2.219× 10−2

8 − − 1.486× 10−4 2.024× 10−2

9 − − 9.553× 10−5 1.952× 10−2

10 − − 2.092× 10−5 1.819× 10−2

11 − − 1.396× 10−5 1.764× 10−2

12 − − 3.170× 10−6 1.723× 10−2

13 − − 1.839× 10−6 1.674× 10−2

14 − − 3.809× 10−7 1.657× 10−2

15 − − 1.987× 10−7 1.606× 10−2

26 − − 4.321× 10−13 1.120× 10−2

50 − − − 3.325× 10−3

100 − − − 1.756× 10−3

200 − − − 2.091× 10−5

Table 1. ν = 1/150; Evolution of ‖yk+1 − yk‖V /‖yk‖V with respect to k.

For smaller values of ν, the results are qualitatively different. Table 3 reports some norms

with respect to k for ν = 1/700. We observe, from the last column, that the Newton method for

which λk is fixed to one does not converge anymore. Actually, Newton’s method, when initialized

with the solution of the corresponding Stokes problem, diverges for ν ≤ 1/250. On the other

hand, the optimization of the step λk produces a very fast convergence of the sequence {yk}(k>0).

Observe here that the values for the optimal λk are not closed to one, during the first iterates.

We obtain notably ‖∇ · y‖L2(Ω)/|Ω| = 5.78 × 10−2. In agreement with Proposition 4.4, we also

clearly observe from Table 3 that the decrease of
√
E(yk) to zero is first linear and then becomes

quadratic.

The algorithm (4.13) is a bit more robust than the Newton one as it converges for all ν

satisfying ν ≥ 1/290 approximately. Finally, as discussed in [11], the CG algorithm converges

and produces similar numerical values: the convergence is however slower since about 350 iterates

are needed to achieve
√

2E(yk) of the order 10−3.

The algorithm (4.9) requires however the initial guess to be close enough to the solution.

Initialized with the solution of the corresponding Stokes problem, it diverges for ν ≤ 1/720. A

continuation method with respect to ν is then necessary in that case. Algorithm 4.9 is also robust

with respect to the mesh size: with a twice finer mesh composed of 84 707 triangles and 43 069

vertices, the convergence ‖yk+1 − yk‖ ≤ 10−12‖yk‖ is observed after k = 18 iterates (instead

of 14 for the previous coarser mesh) leading notably ‖∇ · y‖L2(Ω)/|Ω| = 3.91 × 10−2. Figure 3

depicts the streamlines of the convergent sequence yk in the cases ν = 1/150 and ν = 1/700. The

method allows to capture the shear layer developing in the flow behind the re-entrant corner.
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] iterate k (4.9) with λk = 1 (4.9) (4.13) CG

1 5.467× 10−2 5.467× 10−2 5.476× 10−2 5.467× 10−2

2 2.398× 10−2 2.224× 10−2 2.222× 10−2 3.701× 10−2

3 4.953× 10−3 4.601× 10−3 5.457× 10−3 2.917× 10−2

4 3.201× 10−4 1.565× 10−4 9.322× 10−4 2.492× 10−2

5 1.530× 10−6 5.437× 10−7 5.191× 10−4 2.201× 10−2

6 3.650× 10−11 4.227× 10−12 1.712× 10−4 1.995× 10−2

7 6.541× 10−16 2.541× 10−16 1.712× 10−4 1.840× 10−2

8 − − 7.852× 10−5 1.709× 10−2

9 − − 2.472× 10−5 1.603× 10−2

10 − − 8.953× 10−6 1.511× 10−2

11 − − 3.424× 10−6 1.433× 10−2

12 − − 1.205× 10−6 1.363× 10−2

13 − − 4.251× 10−7 1.301× 10−2

14 − − 1.366× 10−7 1.242× 10−2

15 − − 4.478× 10−8 1.187× 10−2

26 − − 1.599× 10−14 6.259× 10−3

50 − − − 2.673× 10−3

100 − − − 7.583× 10−4

200 − − − 1.551× 10−5

Table 2. ν = 1/150; Evolution of ‖vk‖V =
√

2E(yk) with respect to k.

] iterate k ‖yk+1 − yk‖V /‖yk‖V
√

2E(yk) λk
√

2E(yk) with λk = 1

1 7.153× 10−1 5.467× 10−2 0.727 5.467× 10−2

2 1.424× 10−4 2.791× 10−2 4.77× 10−5 3.452× 10−2

3 2.073× 10−1 2.791× 10−2 2.01× 10−2 8.089× 10−2

4 3.538× 10−1 2.737× 10−2 0.958 5.344× 10−2

5 9.138× 10−2 7.270× 10−3 4.81× 10−6 2.409

6 6.244× 10−2 2.622× 10−3 1.73× 10−3 6.115× 10−1

7 2.028× 10−2 1.078× 10−3 0.358 3.944

8 3.695× 10−3 2.610× 10−4 0.521 9.851× 101

9 7.522× 10−4 4.184× 10−5 1.098 8.186× 101

10 9.886× 10−6 6.014× 10−7 0.963 4.385× 104

11 3.872× 10−6 1.692× 10−7 1.032 1.093× 104

12 6.820× 10−11 4.404× 10−12 0.9983 3.169× 104

13 1.288× 10−10 2.880× 10−12 0.9999 1.576× 105

14 6.879× 10−15 3.263× 10−16 1. 4.068× 104

Table 3. ν = 1/700; Results for the algorithm (4.9).

5.2. Steady case: 2D semi-circular cavity. We now consider the 2D test discussed in [5].

The geometry is a semi-disk Ω = {(x1, x2) ∈ R2, x2
1 + x2

2 < 1/4, x2 ≤ 0} depicted on Figure 4.

The velocity is imposed to y = (g, 0) on Γ0 = {(x1, 0) ∈ R2, |x1| < 1/2} with g vanishing at

x1 = ±1/2 and close to one elsewhere: we take g(x1) = (1− e100(x1−1/2))(1− e−100(x1+1/2)). On

the rest Γ1 = {(x1, x2) ∈ R2, x2 < 0, x2
1 +x2

2 = 1/4} of the boundary the velocity is fixed to zero.

For a regular triangular mesh, composed of 79 628 triangles and 40 205 vertices, leading to

a mesh size h = 6.23 × 10−3, the Newton method (λk = 1) initialized with the corresponding

Stokes solution, converges up to ν−1 ≈ 500. On the other hand, the algorithm (4.9) using the
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Figure 3. Streamlines of the steady state solution at ν = 1/150 (top) and

ν = 1/700 (bottom); L = 30.

(−1
2, 0) (12, 0)

Γ0 : y = (1, 0)

Γ1 : y = (0, 0)

Figure 4. Semi-disk geometry.

optimal λk still converges up to ν−1 ≈ 910. Figures 5 depitcs the streamlines of steady state

solution corresponding to ν−1 = 500 and to ν−1 = i×103 for i = 1, · · · , 9. The figures are in very

good agreements with those depicted in [5]. The solution corresponding to ν−1 = 500 is obtained

from the sequence given (4.9) initialized with the Stokes solution. Seven iterates are necessary

to achieve
√

2E(y) ≈ 3.4× 10−17. The stopping criteria is ‖yk+1 − yk‖V ≤ 10−12‖yk‖V . Then,

the other solutions are obtained by a continuation method with respect to ν taking δν−1 = 500.

For instance, the solution corresponding to ν−1 = 5000 is obtained from the algorithm (4.9)

initialized with the steady solution corresponding to ν−1 = 4500. Table 4 reports the history of

the continuation method and highlights the efficiency of the algorithm (4.9): up to ν−1 = 9500,

few iterations achieve the convergence of the minimizing sequence {yk}k∈N. From ν−1 = 104,

with a finer mesh (for which the mesh size is h = 4.37× 10−3), δν is reduced to δν−1 = 100 and

leads to convergence beyond ν−1 = 15000. Table also reports the minimal value of the streamline

function ψ which compare very well with those of [5].

Eventually, we emphasize that the choice of error functional E considered in [2] (see remark

2.9) leads to similar results in term of robustness and convergence, in particular for small values

of ν.

5.3. Unsteady case. We did not discussed here numerical simulations for α > 0 and the implicit

scheme (1.2). We refer to [12] where numerical results are compared with those obtained from

a fully time-space least-squares approach. We only emphasize that when α is strictly positive,

and are fiortiori α large for a small discretization step δt, the algorithm (4.9) remains robust

and efficient. This is due to the fact that the α term in the cost E defined in (2.6) increases its

coercivity. Moreover, the size of the ball B of Proposition 2.6, appearing in the discussion of the

convergence of the sequence {yk}k∈N (see also Corollary 4.4) increases with α. Consequently,

choosing a large α allows to ensure the convergence of the method and the determination of yn+1

from yn.
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Figure 5. Streamlines of the steady state solution for ν−1 =

500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 and ν−1 = 9000.

6. Conclusions and perspectives

We have analyzed the so-called H−1-least-squares method introduced forty years ago in [2]

allowing to solve the steady nonlinear Navier-Stokes system, in the incompressible regime. We

show that any minimizing sequence starting closed enough to a solution converges strongly in V .

Moreover, the analysis make appear a descent direction for the error functional, different from the
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ν−1 ] it. ‖π‖L2(Ω) |y1|H1
0 (Ω) |y2|H1

0 (Ω) minΩψ minΩψ [5]

Stokes → 500 7 4.31× 10−2 4.462 2.489 −0.0766784 −
500→ 1000 7 4.07× 10−2 4.919 2.883 −0.0780642 −0.0779

1000→ 1500 6 0.0399 5.2966 3.15371 −0.0775772 −
1500→ 2000 6 0.0393087 5.61222 3.36132 −0.0766604 −0.0763

2000→ 2500 5 0.0388207 5.8849 3.53141 −0.0756008 −
2500→ 3000 5 0.0383734 6.12689 3.67571 −0.074476 −0.0742

3000→ 3500 5 0.0379483 6.34559 3.80097 −0.0733293 −
3500→ 4000 5 0.0375405 6.54581 3.91156 −0.0721912 −
4000→ 4500 6 0.0371478 6.73091 4.01047 −0.0710789 −
4500→ 5000 6 0.0367688 6.90338 4.09986 −0.0699992 −0.0700

5000→ 5500 6 0.0364024 7.06514 4.18132 −0.0689569 −
5500→ 6000 6 0.0360479 7.21768 4.25607 −0.0679526 −
6000→ 6500 6 0.0357043 7.3622 4.32506 −0.0669879 −
6500→ 7000 6 0.0353712 7.49966 4.38908 −0.0660596 −
7000→ 7500 5 0.0350479 7.63085 4.44875 −0.0651669 −
7500→ 8000 5 0.0347341 7.75643 4.5046 −0.0643104 −
8000→ 8500 6 0.0344295 7.87694 4.55705 −0.0634864 −
8500→ 9000 6 0.0341339 7.99287 4.60649 −0.0626943 −
9000→ 9500 11 0.0338468 8.10461 4.65324 −0.0619334 −
9500→ 10000 39 0.0335673 8.21355 4.6937 −0.061204 −
10000→ 10100 5 0.0335126 8.23472 4.70226 −0.061061 −
10100→ 10200 5 0.0334581 8.25574 4.71073 −0.0609195 −
10200→ 10300 5 0.033404 8.27663 4.71911 −0.0607786 −
10300→ 10400 5 0.0333502 8.29738 4.72741 −0.0606386 −
10400→ 10500 5 0.0332967 8.318 4.73563 −0.0605006 −
10500→ 10600 5 0.0332436 8.33848 4.74376 −0.0603624 −
Table 4. Continuation method with respect to ν for the solution of steady

Navier-Stokes associated to the semi-disk.

one related to the gradient, leading to a second order of convergence, in a neighborhood of any

solution. This minimizing sequence actually generalizes the sequence associated to the Newton

method for the variational weak formulation of the Navier-Stokes system. Numerical experiments

highlight the robustness of the method, even for small values of the viscosity coefficient. The least-

squares method can then be used to solve, step by step, standard implicit and unconditionally

stable scheme. The value of the time discretization parameter is adjusted according to the value

of the viscosity constant, in order to ensure the convergence toward yn+1, approximation of

the Navier-Stokes at time tn+1, of the above mentioned sequence, with yn as a first element.

We also emphasize that the least-squares approaches, employed here to treat the Navier-Stokes

nonlinearity, can be used to solve another nonlinear equations, as formally done in [16] for a

sublinear heat equation. Eventually, we may solve the unsteady Navier-Stokes system by a fully

L2(0, T,H−1(Ω)) least-squares approach. The underlying corrector solves an unsteady Stokes

equation; we refer to [12].
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