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RESOLUTION OF IMPLICIT TIME SCHEMES FOR THE NAVER-STOKES
SYSTEM THROUGH A LEAST-SQUARES METHOD

JEROME LEMOINE AND ARNAUD MUNCH

ABSTRACT. Implicit time schemes reduce the numerical resolution of the Navier-Stokes system
to multiple resolutions of steady Navier-Stokes equations. We analyze a least-squares method,
introduced by Glowinski in 1979, to solve the steady Navier-Stokes equation. Precisely, we
show that any minimizing sequences (constructed by gradient type methods) for a least-squares
functional converges strongly toward solutions, assuming the initial guess in an explicit ball
dependent of the time step and of the viscosity constant. The resulting method is faster and
more robust than the Newton method used to solve the weak variational formulation for the
Navier-Stokes. Numerical experiments support our analysis.

Key Words. Steady Navier-Stokes system, Least-squares approach, Gradient method.
AMS subject classifications. 35Q30, 93E24.

1. INTRODUCTION - MOTIVATION

Let Q ¢ R%, d =2 or d = 3 be a bounded connected open set whose boundary 9 is Lipschitz.
We denote by V = {v € D(Q)¢,V -v =0}, H the closure of V in L?(2)¢ and V the closure of
V in H'(Q)4. Let T > 0.

The Navier-Stokes system describes a viscous incompressible fluid flow in the bounded domain
) during the time interval (0,T") submitted to the external force F. It reads as follows :

u—vAu+ (u-Viu+Vp=F, V-u=0 in Qx(0,7),
(1.1) u=0 on 00 x(0,7),
u(-,0) =wup, in .
where wu is the velocity of the fluid, p its pressure and v is the viscosity constant assumed smaller
than one. We refer to [19]. This work concerns the numerical approximation of (1.1)) through
the time marching implicit schemes of the form
y°(-,0) =ug in Q,
yn+1 . yn 1 tn+1
T Ayt (V)Y Vgt = —/ F(-,s)ds, n=>0,
6ot ot J,
Voyytt=0 in Q n>0,
ng =0 on 09, n>0,

y" =0y - (1= 0)y"), n>0

n

where 6 is a parameter in (0,1] and where {¢,}n—0..n, for a given N € N, is a uniform dis-
cretization of the time interval (0,7"). ¢t = T'/N is the time discretization step. The case § = 1,
for which y" = yg for all n, corresponds to the backward Euler scheme studied for instance in
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2 JEROME LEMOINE AND ARNAUD MUNCH

[19, chapter 3, section 4]. It is proved there that the piecewise linear interpolation (in time) of
{¥" tnepo, N7 weakly converges in L?(0,T,V) toward a solution u of (1.1) as ot goes to zero. It
achieves a first order convergence with respect to dt. We also refer to [20] for a stability analysis
of the scheme in long time. The case § = 1/2 corresponds to a Crank-Nicolson scheme and allows
to achieve a second order convergence. We refer to [17] and the references therein.

The determination of y™*! from y™ requires the resolution of a nonlinear partial differential

n+1
0

equation. Precisely, yg"'l together with the pressure 7, ", solve the following problem: find

y €V and 7 € L3(), solution of

ay—vAy+ (y-Viy+Vr=f+ag, V-y=0 in Q,
(13) {y:O on 0f2,
with
1 IR
(1.4) a:@>0, f—&/tn F(-,8)ds, g=y".

Recall that for any f € H=1(Q)? and g € L?(Q)?, there exists at least one (y,7) € V x LE(Q)
solution of (1.3). L3(€2) stands for the space of functions in L?(£2) with zero means. Moreover, if
lgll3 +a vt ”leQLI*l(Q)d is small enough, then the couple (y,7) is unique (see Proposition
for a more precise statement). Here and in the sequel, | - [|2 stands for the L norm || - || ,2(q)a-
The approximation of solutions of ((1.3)) can be performed using Newton’s type methods (see
for instance [16], Section 10.3]) for the weak formulation of ([1.3)); this consists in solving iteratively
the following variational problem : find y € V solution of
(1.5)
F(y,z) = / ay-z+vVy -Vz+ (yV)y - 2— < f,2 >p-1@)ixmi (@) —a/ g-z.=0, VzeV.
Q Q
Alternatively, we may also employ least-squares methods which consists in minimizing a qua-
dratic functional, which measure how an element ¥ is close to the solution. Precisely, we define
the functional F : V — RT by putting

(1.6) E(y) = %/Qa|v|2 + |Vol?

where the corrector v, together with the pressure, is the unique solution in V' x L2(€2) of the
linear boundary value problem:

{av—Av+V7r+(ay—uAy+(y-V)y—f—ozg):O, V-v=0 in

1.
(17) v=0 on OJf.

Least-squares methods to solve non linear boundary value problems have been the subject
of intensive developments in the last decades, as they present several advantages, notably on
computational and stability viewpoints. We refer to the books [Il [6]. The minimization of the
functional E over V leads to a so-called H ~!-method. This method has been introduced and
numerically implemented in [2] to approximate the solutions of through the scheme (1.2)
with = 1. However, there is no analysis nor mathematical justification of the method in [2].
Let us mention [3, Chapter 4, Section 6] which study later the use of a least-squares strategy to
solve a steady Navier-Stokes equation without incompressibility constraint. The main reason of
the present work is therefore to show that minimizing sequences for the so-called error functional
FE do actually converge strongly to a solution of . This guaranties the determination of
y"*! from y", solution of (1.2)) and therefore an approximation of the solution of the unsteady
Navier-Stokes equation (L.1).

The paper is organized as follows. In Section [2] we analyze a least-squares method for weak
solutions y of , under some conditions on g, f, « and v. We show in particular the strong
convergence of any minimizing sequence for E starting closed enough to a solution. The analysis
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notably exhibits a descent direction Y; (defined in (2.11))) for which the derivative of E is colinear
to E (see eq. . In Section 3, we apply the least-squares approach to compute recursively
the sequence {y™},en defined by and notably show that two consecutive elements of the
sequence are closed for the L?(Q)%-norm as soon as 6t is small enough. This suggests, in order
to calculate the element y™*! from y™, to initialize the minimizing sequence of the least-squares
functional with the element y™ (as done in [2]). In Section 4l we derive the conjugate gradient
algorithm commonly used for this kind of functional. The minimizing sequence is then construct
from the gradient of the functional with respect to the V-norm. We also consider minimizing
sequences defined from the element Y; mentioned above and remark that the corresponding
method leads to a generalization of the Newton method, when used to solve directly the weak
variational formulation (see (1.5))) associated to . Numerical experiments in Section |5 con-
firms the efficiency of the method based on the element Y7, notably for very small values of the
viscosity constant v.

2. ANALYSIS OF A LEAST-SQUARES METHOD FOR A STEADY NAVIER-STOKES EQUATION

We analyse in this section a least-squares method to solve the steady Navier-Stokes equation
we follow and improve [I0] where the particular case o = 0 is addressed.
In the following, we repeatedly use the following classical estimates (we refer to [19]).

Lemma 2.1. Let any u,v € V. If d = 2, then there exists a constant ¢ = ¢(§2) such that

(2.1) / w- Vo - u < clulla|| V|||Vl
Q

If d = 3, then

(2.2) /“ Vo - < dlfully? Vol Va3

Let f € H 1), g € L*(Q)? and o € R%. The weak formulation of (1.3) reads as follows:
find y € V solution of

(2.3) a/y~w+1// Vy-Vw+/y~Vy-w:< fiw >p-1Q)axmi(@)e —l—a/g-w, Yw e V.
Q Q Q Q
The following results holds true:

Proposition 2.2. a) Assume Q C R? is bounded and Lipschitz. There exists a least one solution

y of satisfying
« Co
(2.4) alll + 1315 < & (w113 + 1o o)

where cg > 0 denotes the Poincaré constant dependent on Q. If moreover,  is C? and f €
L2(Q)4, then y € H*(Q)4N V.
b) Let us define Q(g, f,a,v) as follows :

1 Co .
(el + 2N ). a2,
(25) At =3ty
oz (V6B N ). =3

If Q(g, f, a,v) is small enough, then the solution of s unique.

Proof. The point a) is well-known and we refer to [12]. Let now y; € V and y2 € V be two
solutions of (2.3]). Set Y =41 — y2. Then,

a/Y~w+1//VY-Vw+/y2-VY~w+/Y-Vyl-w:O Yw e V.
Q Q Q Q
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We now take w =Y and use that fQ yo - VY - Y =0. If d = 2, we get
o [P+ [ 19YP =~ [ V-V Y <Y 2| Vi 2|9V
Q Q Q
C
<alY|3+ aHVYH%llVleI%

leading to (v — £[|Vy13)[[VY[|3 < 0. Consequently, if v|g||3 + %”fH%I”(Q)d < ¢1v? for some
c1 > 0, then [|[VY]|3 < 0 and eventually Y = 0. On the other hand, if d = 3, we obtain

1 3
o [P+ [ 19YP== [V Vu-v <Y EITul < Y IBIVY 1Tl
Q Q Q

<allYE+ — | VYIBIVy]d
<af ||2+m|| 121V y1[3
4
leading to (v — =& [|Vy1[13)||VY[|3 < 0. Consequently, if v||g|3 + %||f||§{,1(9)d < e 2a—1/?
for some ¢; > 0, then |[VY||3 < 0 and again Y = 0. O

We now introduce our least-squares functional £ : V — RT as follows

(26) B5) =5 | (alof +VoP)

where the corrector v € V' is the unique solution of

a/v~w+/VU~Vw:—a/y~w71//Vy~wa/y~Vy~w
Q Q Q Q Q

(2.7)
+ < f,w > H-1(Q)dx H} (Q)4 —‘rOl/ g-w, YweV.
Q

The infimum of F is equal to zero and is reached by a solution of . In this sense, the
functional F is a so-called error functional which measures, through the corrector variable v, the
deviation of the pair y from being a solution of the underlying equation .

Beyond this statement, we would like to argue why we believe it is a good idea to use a
(minimization) least-squares approach to approximate the solution of by minimizing the
functional E. Our main result of this section is a follows:

Theorem 2.3. Assume that Q(g, f, o, v) is small enough. There is a positive constant C, such
that if {yx}r>o is a sequence in

B:={y eV :|yluae <C}

with E'(yr) — 0 as k — oo, then the whole sequence {yx }ren converges strongly as k — oo in V.

to a solution g of (2.3).

As in [I0], we divide the proof in two main steps.

(1) First, we use a typical a priori bound to show that leading the error functional E down
to zero implies strong convergence to the unique solution of (2.3).
(2) Next, we show that taking the derivative E’ to zero actually suffices to take F to zero.

Proposition 2.4. Assuming that Q(g, f,a,v) is small enough and let § be a solution of .
For every y € V', we have

(2.8) ly = Gl g ye < 207V E(@).
0

The control of the norm ||y —y|| g1 (q)s is not uniform with respect to v, in agreement with the
behavior of the solution of (see notably as v goes to zero. Moreover, this proposition
very clearly establishes that as we take down the error E to zero, we get closer, in the strong
norm, to the solution of the problem, and so, it justifies why a promising strategy to find good
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approximations of the solution of problem (2.3)) is to look for global minimizers of the extremal
problem:

(2.9) Jof E(y).

Proof. The proof of Proposition basically amounts to a typical a priori estimate which is
essentially the same that the proof of uniqueness in page 112 in [19]. For any y € V, let v be
the corresponding corrector and let Y = y — 3. We have

(2.10)

oz/Y-w—!—V/VY-Vw+/y-VY-w—F/Y-Vy-w:—a/v-w—/Vv-Vw Yw e V.
Q Q Q Q Q Q

For w =Y, this equality rewrites
a/|Y|2+u/|VY|2:_/Y.Vy-y_a/v.y—/w.vy.
Q Q Q Q Q

— _ C o 14
| [ ¥ V5| < eV Va9 Y < SIVIIVAE + I9VIE,

Moreover,

if d =2 and

- 5o 3 _ ¢ 24, Y 2
| [ ¥ 95-¥] < VI IOaIVY S < SIVIBIVAS + FIVYIE,

if d = 3. Consequently, the inequalities

‘a/u-y’§9/|u|2+3/|y|2, ‘/VU-VY‘§1/|V7)\2+E/|VY|2
Q 2 Ja 2 Jo Q Vo 4 Ja

lead to the estimate

2
(@=Z19) [ WP+ [19YP <a [joPs 2 [ v
v Q Q Q viJa

if d = 2 and to the estimate
2
(@=SIvgld) [ P+ [ 9P <a [ P2 [ v
v Q Q Q vJja
if d=3.

Eventually, if d = 2 and if there exists ¢ > 0 such that if v[|g[|3 + L[| ]| g < c?, we
deduce that

/ VY |? < 20 ' max(1,20 1) E(y).
Q

If d = 3, the same conclusion holds true if there exists ¢ > 0 such that if v||g||5 + < ||f\|%{,1(9)3 <
cv2a~1/2, O

A practical way of taking a functional to its minimum is through some (clever) use of descent
directions, i.e. the use of its derivative. In doing so, the presence of local minima is always
something that may dramatically spoil the whole scheme. The unique structural property that
discards this possibility is the strict convexity of the functional. However, for non-linear equations
like , one cannot expect this property to hold for the functional E in . Nevertheless, we
insist in that for a descent strategy applied to our extremal problem , numerical procedures
cannot converge except to a global minimizer leading F down to zero. In doing so, thanks to
Proposition [2.4] we are establishing the strong convergence of approximations to the unique
solution of (2.3).

Indeed, we would like to show that the only critical points for F correspond to solutions of
. In such a case, the search for an element y solution of is reduced to the minimization
of F, as indicated in the preceding paragraph.
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For any y € V, we now look for an element Y; € V solution of the following formulation
(2.11) a/ Yl-w—i—u/ VY1~Vw+/(y~VY1 +Y1-Vy)-w= —a/ v-w—/ Vov-Vw,Yw e V
Q Q Q Q Q
where v € V is the corrector (associated to y) solution of (2.7). Y7 enjoys the following property

Proposition 2.5. There exists ¢ > 0 such that, for ally € V' satisfying iHVyH% <cifd=2
and —+||Vy||3 < c if d = 3, there ewists a unique solution Yy of associated to y. This

v3a
solution satisfies

Yillv <M
for some constant M > 0, independent of y.

Proof. We define the bilinear and continuous form a: V x V — R by

(2.12) a(Y,w):a/QY~w—|—l//QVY-Vw+/Q(y-VY+Y~Vy)'w.
Let d = 2. Using similar computations than previously, we get that

(2.13) oY) 2 (= Sl [ VE+g [ 9YE wev,

for some constant ¢ > 0. Lax-Milgram lemma leads to the existence and uniqueness of Y;
provided ||[Vyl|2 is small enough. Then, putting w = Y; in (2.11) implies

a/ |Y1|2+/ \VYl\Qz—/Yl.Vy.Yl—a/v.Yl—/ Vu.VY;
Q Q Q Q Q
and therefore

c v o 1
(2.14) (a— SIvyl2) / yipP + 2 / P < / o2 + L / Vo2,
v Q 2 Jo 2 Ja v Ja

so that [|Y1]|3, < 2v72E(y). On the other hand, w = v in (2.7)) leads to

/a|v|2+|VU\2:—a/y-v—V/Vy-Vv—/y-Vy-U+(f,v}Hq(Q)dxHé(Q)d+a/gv
Q Q Q Q Q

o 2 2 2 9 1 9 1 2 2\ 2
Lo [P [ Vo4 [ Vel [ Vel e [ 19yP)
4 Q Q Q 4 Q 4 Q Q

1 «
+00Hf||§171(9)2 + Z/ Vol + Z/ El§ +04/ l9?
Q Q Q

for some positive constant ¢y, and therefore, after some re-ordering,

2
o [+ [ (9eP <20 [ e [ Vel [ 96R) + 2eol s e + 20 [ lof
Q Q Q Q Q Q

leading to

IN

C
B < (a0 + Sl ) Il + col -+ + ol

This inequality coupled with (2.14]) or (2.15) and the hypothesis on the size of |Vyl||2 implies
our statement. Precisely,

C
Wil < (c§a+ e Va)vla+601/1||ffq—1<m o gl

2
The case d = 3 for which (2.14]) is replaced by
c v «a 1
2.1 - — 3 [ PP+ Vi|? < = 242 2
(215) (= SIvold) [ P+ [P <G [ pes [ vl
is similar. d

We are now in position to prove the following result



H~'-LEAST-SQUARES METHODS FOR NAVIER-STOKES 7

Proposition 2.6. There exists a positive constant C such that if {yx}ren is a sequence in B
defined by B={y e V: L|Vy|3 <C}ifd=2and B={y €V : =-|Vyll3 < C} ifd =3
with E'(yr) — 0 as k — oo, then E(yx) — 0 as k — oo.

The condition on the size of y in this statement is coherent with our hypotheses because the
norm ||g|jv of ¥ in bounded in term of @), assumed small: precisely, estimate (2.4)) implies that
allyl|3 + v||Vyl|3 is bounded by av? Q(g, f, o, v) if d = 2 and by o*/?05/2Q(g, f,a,v) if d = 3.

Proof. The error functional FE is differentiable as functional defined on the Hilbert space V,
because the operator y — v taking each y € V into its associated corrector v, as stated above
is a differentiable operation. Indeed, E’(y) can always be identified with an element of V' itself.
For any Y € V', we have

(2.16) E’(y)-Y:/av-V+Vv-VV
Q
where V € V is the unique solution of
(2.17) a/ V-w+/ VV-Vw:—a/Y-w—y/ VY~Vw—/(y-VY—i—Y-Vy)-w,VwEV.
Q Q Q Q Q

In particular, taking Y = Y7 defined by (2.11)), we easily check that
(2.18) E'(y)-Y1= / alv]? +|Vo? = 2E(y), YyeV.

Q

Let now, for any k € N, Y7 ; be the solution of (2.11) associated to y,. The previous equality
writes E'(yr) - Y1x = 2E(yx) and implies our statement, since from Proposition Y1 is
uniformly bounded in V. O

Eventually, Theoremfollows from Propositionand Proposition[2.6\with B = (va)'/2By (0, c)
if d =2 and B = (v®a)/*By(0,c) if d = 3.

Theorem [2.3] is a general convergence result that do not take into account the particular
method to produce such sequence {yx}xen) with E'(yx) — 0. In practice, however, one would
typically use a gradient method to calculate iteratively such sequences. The following lemma
ensures that a gradient method for the functional E in will always converge to the solution of
, provided the initial guess yo of the minimizing sequence is sufficiently close to the solution

7 of .

Proposition 2.7. Assume that Q(g, f,a,v) is small enough. There is a known, specific positive
constant C' = C(||yllv, o, v) such that if ||yo — Yllv < C, then a gradient based method for E
starting from yo will always converge to .

Proof. Let (yr)ren @ minimizing sequence for E based on the gradient F’, i.e. (yr11 — Yy, w) =
—AE'(yg) - w, for all w € V and A > 0. We note by gj the element of V' defined by (gx, w)y =
E'(yx) - w for all w € V', equivalently

(2.19) (gk,w)y = —/ avy - w + vV - Vo + (w - Vyg + yk - Vw) - v, Yw € V.
Q

v is the corrector associated to yg. In particular, we check that ||gx ||y is uniformly bounded as
soon as ¥y is uniformly bounded.
We first check that the following equality holds true:

(2.20) lyks1 — Y = llye — Gl3 = 20E" (y) - (¥ — yr) + X?|lgkll3, Vk €N
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Indeed, we have
=AE'(yx) - (T — &) = (Yrt1 — Uk, T — Yn)
= —llyksr =TI + llyk — T + Wrt1r — T vks1 — vk)
= —llyrser = I% + lys =TI = AE (1) - (41— 9)
= —llyesr =I5 + lye =915 = AE (y) - (Y1 — yi) — NE () - (yx — 7)
and the equality (2.20) follows since the third term (in the right hand side) is

—AE'(yr) - (k1 — Uk) = =Mk Yrt1 — Yk) = NE (ye) - g1 = N[ ge |-

The strategy is then to show that the quantity E’(yo) - (¥ — yo) becomes non-positive, if the
initial guess yq is sufficiently close, in a precise quantitative way, to the exact solution y. Taking
A > 0 small enough, it will follows from , that if yo belongs to the ball B of Proposition
then, recursively, every element of the sequence {yj }ren will stay in B.

Let yo be an arbitrary field in V', and recall formula for the derivative of E at yj,
applied to the difference Y =7 — yq

E’(yo)-Y:—/Qavo-Y+VVUO-VY+(Y'Vyo—i-yo-VY)-vo

where vg is the corrector associated with yy. On the other hand, using vy as a test function in
(2.10]) for y = yo (which is the difference of the equations for yo with its corrector vg and for the
exact solution 7), it is a matter of some careful algebra to arrive at

E'(y)-Y :—/a|vo|2+ |V |? +/ Y - VY -vy = —2E(y) +/ Y - VY .
Q Q Q
< =2E(yo) + cllY |2 VY [l Vvoll2
assuming d = 2 in the last line.We now take into account Proposition so that [|Y[|2 <

Hg (Q)?
c2v2E(yy), for some constant ¢ provided Q(g, f, a, v) is small enough leading to the estimate

E'(yo) Y < —2E(yo) + cv 2B (yo)*/?,

(2.21)

for a certain known constant ¢ independent of gy, a and v. If we can ensure that the size of the
corrector vy is such that v/FE(yo) < 2¢'v?, whenever 1Y || z72 ()2 < e1 for some positive known
constant ¢, then we would indeed have E’(yp) - Y < 0. This sign condition is informing us
that the flow of F is always pointing inwards in the ball determined By (0,¢1). If we take ¢;
even smaller if necessary to guarantee that ||Y[|g1(q)2 < c1 implies y € B where B is the ball,
centered at zero, in Proposition then we would have that all integral curves starting under
the condition yo € By (7, 1) will converge to g since in this ball there cannot be critical points
of E other than 7 itself, according to Theorem [2.3] It remains, hence, to quantify the continuity
of E at the solution 3. To check this, we use again vy as a test function in and obtain

(2.22) oz||vo||§+|\V1}oH§=oz/Yvo—i—y/ VY.VUO+/(y~VY+Y-Vy—Y~VY)~v0
o Q

Since
[Y 9V 0 < Il VY el Tl < el g eV
and,
/?' VY v < [[g]2lIVY[l2][Vuollz < [[Fll2l[Y v [Vvoll2,
and
/Y Vg v < [[Y2(IVY[2[[Vooll2 < cl|VII(Y Iv[[Vvollz,
we find

(2.23) VE(yo) < c(IlYllv + [7ll2 + IVFlI2) [V Ilv
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for some ¢ > 0 independent of yg, @ and v. Remark that this inequality is the reverse of (2.8).
We clearly see that we can make the left-hand side small by making the right-hand side small in
a quantified way. Precisely, we easily check that the inequality \/F(yo) < 2¢~ 12?2 holds true as

soon as
lvo —Tllv < c(\/|y||%, 4t ||y||v)

where the constant ¢ > 0 related to the Poincaré inequality depends only on 2. Remark that

VIl +4v2 = [gllv < 2v.

The case d = 3 is similar. O

From a purely practical standpoint, however, checking “a posteriori” computed iterates y;
will tell us whether we are getting close to the unique solution 7, because numbers E(y) become
steadily and virtually zero, or they stay bounded away from zero.

Remark 2.8. Section 6, chapter IV of the book [3] introduces a least-squares method in order
to solve an Oseen type equation (without incompressibility constraint). The convergence of any
minimizing sequence toward a solution y is proved under the condition that the operator DF(y)

defined as follows
(2.24) DF(y) - w=cw—vAw+[(w-V)y+ (y-VIw], YweV

(for some ¢ > 0) is an isomorphism from V onto V'. This property is actually necessary
to determine recursively in a unique way a (minimizing) sequence from its first element (see
). The smallness assumption on Q(g, f,o,v) is a sufficient condition for the operator
DF(g) (with c =« in ) to be an isomorphism. Moreover, it appears that this assumption
implies the uniqueness of y, the solution we are looking for. As far as we know, determine a
weaker condition ensuring that DF () is an isomorphism is an open question.

Remark 2.9. The error functional E in [2] is defined in a slightly different way, precisely
E(y) = %fg alv]? + v|Vv|?, making appear explicitly the parameter v. The term fQ Vuv-Vw in
defining the corrector is then replaced by fﬂ vVou - Vw. Our analysis remains true in this
situation.

3. APPLICATION TO THE IMPLICIT EULER SCHEME

As done in [2], one may use the least-squares method analyzed in the previous section to
solve the implicit scheme given by . For simplicity, we take § = 1 and write y™ for yg.
According to the previous section, in order to compute y™' from y™, one may consider the
following extremal problem

1
1 inf £ E,(y) == 2 2
(31) B Bals) = [ abl+ V)

where the corrector v € V' solves

a/v~w+/Vv-Vw:—a/y~w—u/Vy-Vw—/y-Vy~w
Q Q Q Q Q

(3.2)
+ <M w>g-r)axm @) +a/ 9" w, YwevV
Q

where «, g" and f" are given by . The natural choice is to initialize the minimizing sequence,
says (yZ“)keN for E,, with the element g" = y™, i.e. ySH = y". According to Proposition
if y"*! is close enough to y™ for the V-norm, then the strong convergence of the minimizing
sequence (y?) jen to y™T! holds true. One main goal in this section is to check that two con-
secutive elements of the sequence y™ defined by recurrence from the scheme are close each
other as soon as dt, the time step, is small enough. Before to give such result in Theorem [3.3
we state several intermediate results.
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Proposition 3.1. Let d =2 ord =3, (f")nen a sequence in H=1(Q)¢, a > 0 and y° € L?(Q)<.
a) We define by recurrence for all n € N, y"tt € V', as solution of

(3.3) oz/ﬂ(y"Jrl —y")w+v

for allw € V. For alln € N, y"*! satisfies

co
(3.4) ally™ 3 + vl Vy TS < ;IIf"II?{—l(Q)d +ally" I3

vyt Vw +/ y VYT w =< 7w > e )a g ()

Q Q

where ¢ > 0 depends only on Q and for all n € N*:
n 1 n—1
(3.5) Iy 13 4+ = DIV I3 < = (2 D1 W e + v I°113).
k=1 k=0
b) Let us define M(f, o, v) as follows:

L (co = k2 012 ;
EZHJC [z t vy llz ), i d=2,

v3
k=0

al’? (e, n—1 Lo - .
g 2 e +oI°N3 ). i d=3.
k=0

If M(f,a,v) is small enough, then the solution of is unique.

(3.6) M(f,a,v) =

Proof.
(a) The existence of y"*! is given in Proposition Taking w = y,+1 in (3.3) leads to

a/ |y"+1|2+”/ |Vy”+1|2+/ y vyttt = <f”,y’”l)H—l(waH&(ﬂ)d+O‘/ y" ey
Q Q Q Q
and since [, y" Tt Vyrtynth =0
a / R / VY2 < @l s a5 + ally 2™
Co v «@ «@
< O s+ IR+ SR+ SR

This shows (3.4). Summing in n easily gives (3.5]).
(b) Let n € N and let 7",y € V' be two solutions of (3.3). Let Y = 37+ — y2!. Then,

a/Y~w+V/VY~Vw+/y;LH-VY~w+/Y.Vy’f+1.w:O Ywe V.
Q Q Q Q
and then, for w =Y (using that [, 3" .VY.Y = 0) and for d = 2
o [Py [ [9YE == [ YOy <Y [a VY 95 s
Q Q Q
Cc
<allY[E + SITYBIver B

It follows that (v — iHVy?HH%)HVYH% < 0. Moreover, in view of (3.5)),
v " 1 /co —
ZIVGIE < S (2D 1 s e + v I8°5)-
k=0

Therefore, if < %7 ||f’“||%,,1(9)2 +v|lyol|3 < c1v3 for some constant ¢; > 0, then [|[VY||2 < 0.
Similarly, if d = 3, we can write

1 3
o [ 1P+ [19YP == [vouriy <y BIvy v
Q Q Q

c

4
—IVYIRIVyr s

<alY[3+
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leading to (v ——75 ||Vy”+1||2 )IVY[]3 < 0. Arguing as before, if <37} ||fk||%{_1(m3+u||y0||§ <
cra v for some ¢; > 0, then ||[VY|2 < 0. O

Proposition 3.2. Assume hypotheses of Proposition . Assume moreover that ) is C?, that
(f™)n is a sequence in L?()% and that Vy° € L*(Q).

a) Suppose d = 2. If, for alln € N, v=2(coa™ Y7o [I/*1|%- a2 T VY1) is small enough
then there exists at least one solution y,+1 € HQ(Q)d NV of satisfying

(3.7) [ rev

n+1

Z/ AP < lef’“llerVIIVy 12).

b) Suppose d = 3. If v=2(a 00 15113 + v Vy°||2) is small enough, then the conclusion
of a) holds true as well.

¢) Suppose d = 2 and that (ar®) " (coa™" S5 | F*I3 1y + vIIv°l3) (@t S0 L5113 +
v||Vy°|3) is small enough. Then, the solution of is unique.

In the case d = 3, the same conclusion holds true if the quantity v=5/2a~1/? (Of1 Zz;é I1F*113+
v||Vy°|13) is small enough.

Proof. From Proposition we know that for all n € N*, y™ € H?(Q)2N V. Let now P be the
operator of projection from L?(Q)¢ into H. Taking w = PAy"*! in (3.3) leads to :
(3.8)

Ol/ |vyn+1|2+y/ |PAyn+l|2 — _/ fnPAyn+1+/ yn+1'vyn+l.PAyn+l+a VynvynJrl
Q Q Q Q Q
Recall that
1
[yt e SIPA i a [ vyt < S vy S [ ey

a) Assume first that d = 2. We can write
| [y < 9 e P
Q
We now use (see [I8, chapter 5]) that there exist three constants 1, c2 and ¢3 such that

1 1
18y™Hl2 < ea|PAY™Hl2, g™ oo < eally™ I3 125" 13

and ) .
VY o < eslly™HIZ [|Ay™ 3

This implies that (for ¢ = cjcacs)
| [t vy Ay < el o P Ay
Q

Recalling (3.8] 1 8)), it results that

v 1 o

VT (g ey ) [ IPAYTTE < I g )19

2 2v 2
We deduce from 1.| that if €Y7 ||fk||2 1)z + v|y°)13 < c1v? for some constant ¢; > 0,
then

v 1
Lrow i i [Py p < i [ ey

Summing then implies (3.7) for all n € N.

b) We assume now that d = 3. Then,

‘/yn+1-vyn+1-PAyn+1‘ < Yyt 1 311 VYn1ll6l PAYns1l|2-
0
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Again, we use that there exist constants cj,co > 0 such that
[Aynt1ll2 < crl|PAynsillz,  [1Vntills < collAynsalle < crcal| PAynia|l2
so that, for ¢ = cycy, we obtain
| [ 1 s P Ay < ellgnia o PR 3
Q

Recalling (3.8), it results that

39§ [ (§ el ) [ Par < i g [ e

Assume that, for all n € N*, we have constructed by recurrence an element y™ solution of ([3.3))
such that

1%
(3.10) 7~ cly*lls > 0.

Then, for all n € N

(311 Jrow i [ pag e < i [ ey

and recursively, for all n € N* :
n+1

J et g S [ eset < LI e [ 190,
k=0

It remains to construct a sequence (y™),en+ solution of and satisfying for all n € N* the
property . Let n € N fixed. Assume now, that we have constructed, for k € {1,--- ,n} a
solution 3" satisfying and 7 — c|ly*|ls > 0 for ¢ = cycy introduced above. Let y; € V and
let y2 € H?(Q)? NV be the unique solution of

a/ (y2 —y™)w+ 1// Vya.Vw +/ y1.Vyo.w = <fn,w>H—1(S2)d><Hé(Sz)d Yw e V.
Q Q Q

If yy satisfies 2% > ||ly' |5, then in view of (3.9)),

«@ 2, (V 2 Loz | @ n|2
a v_ PAy,? < — a
5 [ 19l (5 - clnll) [ 1PanP < S0+ 5 [ 190

and consequently
« v 1 o
- \V4 2 - PA 2 < n|2 7/ \V4 7L2-
5 [Vl [ PawE < S+ G [ 19

(3.11)) then implies

v 1/1 <&
3.12 Va2 + 2 [ [PAg? < = (= k|12 /v“)
(3.12) J vl g [ Pawl < (G [ )

We now use that there exists a constant ¢; > 0 such that, for all n € N ||yz||3 < ¢1||Vyall2 to

Il < < (- ZIIf’“IIerV/ vyP)

obtain

Consequently, if
2

cl(;§||fk||§+u/|Vy <o

then Z > [jy2][s.
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We then introduce the application T:C — C, y; — ys where C is the closed convex set of V'
defined by C' = {y € V, £ > |lyll3}. Let us check that T" is continuous. Let y; € C et z; € C,
yo =T (y1) et 20 = T(21) so that

Oé/(Zg—yg).w—FU/ V(zg—yg).Vw—i-/ yl.V(yQ—22).w+/(y1_21).V22.w:0 Yw e V.
Q Q Q Q
and then, w = 2o — ys :

o [ 1=l v [ VG- )P <] [ (00 - 22V 0 - 2)
Q Q Q

< c|[V(yr — 21) |2l V22(l2]l22 — y23
< c|[V(y1 — 21)ll2

using (3.12); this implies the continuity of 7. On the other hand, since y? € H?(Q)3, T is
relatively compact. The Schauder theorem allows to affirm that 7" has a fixe point y € C, that
is, a solution y" ! € C of (3.3).

¢) Let n € N and let ¢}, y2™ € V be two solutions of . Let Y =yt — 2 t!. Then,
a/QY.erV/QVY.Vw+/ y§‘+1.vy.w+/ Y.VyiTlw=0 YweV
and in particular, for w =Y (since [, yeTL.VY.Y =0) and d = 2
o [ By [ [9YE == [ yourty = [ vovyrt <yt VY IV,

0% 1/2 1/2
< ey I P AT VY (| Y )2

< allY[3+ Zllyi !l PAYT ] VY13
leading to
(u - |y1+1||2||PAy?“||z) I9YIE <.
If
(3.13) IIyl“IlzllPAy?*lH <=,

then Y = 0 and the solution is unique. But, from and ,

n Co 1 ~
I+ P < 55 (2 ankHH P ||2)( IR

k=0

Therefore, if there exists a constant ¢1 such that (<2 >0 || f*(|3, )2+V|\y 13)(2 > %o 5113+
v||Vy°|3) < e1vPa, then (3.13) holds true.
If d = 3, we have

a/ \Y|2+V/ VY2 = /Yvy”“. /Yvyy”“ < ey o [IVY |2V |2
Q Q
n 1/2 n 1/2
< | Vyrt PP AL VY (oYl
<allY|3+ 5||Vy?+l||2nmy?+1H2||VY||§

and therefore (v — £ Vy ™ ||o| PAy? ™ 2) [ VY']13 < 0. Moreover, from (3.7),
200 1/
1o P < 257 (2 Zl\fk|\2+V||Vy 1),

Therefore, if there exists a constant ¢ > 0 such that L 31 || f¥[13+v(|Vy°|3 < cv®/?al/?, then,
arguing as before, |[VY||3 <0 and Y = 0. O
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Proposition [3.2] then allows to obtain the following estimation of ||y"*! — ¢"||2 in term of the
parameter «.

Theorem 3.3. We assume that Q is C?, that (™), is a sequence in L?(Q)? satisfies ™' 312 o ¥ <
+o0, that Vy° € L2(Q)?, that v < 1 and that foralln € N, y,.1 € H*(Q)?NV isa solutzon of

satisfying (3.7). Then, the sequence (y™), satisfies
(3.14) ™ =yl = O(a™ 2%/,

Proof. For all n € N, w = y™*! — y™ in (3.3):

e A R T s

‘ / vy vy,
Q

Moreover,

‘ / yn—i-l.vyn-ﬁ—l.(yn—i-l _yn)
Q

‘/Qf”(y"“ —y")

14 14
| [ v ey < Doy g + SV,
Q

< VYNV =y < vy AV T VY ™)]2),

1 «
< n .+l o ny2
< 5a Il 2+ S lly y"l12,

and

Therefore,
1
ally™™ =y 5+ IV THE < e Ve BNV 2 + (VY ) + S [ ll2 + vV 5

But, from (3.7) we deduce that for all n € N

[vie< (s an’fnzwnw 13) =

and thus

260/2 Cl
A +2C < 32

leading to ||yt —y"||3 = O(ﬁ) as announced. O

ally™™ =y I3+ vI[Vy S <

Therefore, if the time step discretization 6t = 1/« is chosen small enough according to the
value of the viscosity constant, two consecutive elements of the sequence {y™},cn are close from
each other.

Eventually, as similar result may be obtained in the case 6 € (0, 1).

4. MINIMIZING SEQUENCES FOR F - GRADIENT METHOD AND NEWTON

4.1. Conjugate gradient. The appropriate tool to produce minimizing sequence for the func-
tional E' is gradient method. Among them, the Polak-Ribiere version, commonly used, of the
conjugate gradient (CG for short in the sequel) algorithm (see [7]) have shown its efficiency in
the similar context analyzed in [I4] [I5] I3]. The CG algorithm reads as follows :

o Step 0: Initialization - Given any n > 0 and any yo € V, compute the residual g, € V
solution of

o, Y)v = E'(y) Y, VY eV.

If [7ollv/llvollv < n take y = yo as an approximation of a minimum of E. Otherwise,
set wo = Y-

For k > 0, assuming yx, ¥;,, wi being known with 7, and wy both different from zero,
compute Yr11,Yp,1, and if necessary wy1 as follows:
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e Step 1: Steepest descent - Set yx41 = yr — A\pwy where A\ € R is the solution of the
one-dimensional minimization problem

(4.1) minimize E(yx — Awg) over A € RT.
Then, compute the residual 7, ,; € V from the relation

(4.2) Ui, W)V = E' (Y1) -w, Yw eV,
which rewrites as follows :

(4.3) a/@kﬂ-w—i—/ VY1-Vw = —/ avg w+vVug-Vw+w-Vyg v +yg-Vw-vg, Yw € V.
Q Q Q

o Step 2: Convergence testing and construction of the new descent direction -
I [Grpallv/IGollv <n take y = yr41; otherwise compute

Yrt1)Ukt1 — Up)v _
(4.4) Tk = H@k %k)v ) Wht1 = Ypq1 T VeWk-
b

Then do k = k + 1, and return to step 1.

Uy, is the gradient associated to E(yy): it satisfies E (yx) U = ||¥x||3 for all k > 0. 7, vanishes
when E’ (and so FE) vanishes.

Remark 4.1. For any real A\ and any yi, wy, € V we get the following expansion :

E(yk - )\wk) = E(yk) — )\/(Oé’l)k@k + Vg, - V@k)
Q

A2 _ _
(4.5) +5 / (a|Tg|* + | VTR + 2(qupby, + Vg - Vi)
Q

_ _ 24 _ _
—)\3/ avLUg + VU 'V@kﬁ-?/ a|@k|2+|V@k|2
Q Q

where vy, Ty, € V and Uy, € V solves respectively

a/vk~w+/Vvk'Veroz/ykarl//Vyk~Vw+/yk~Vyk~w
Q Q Q Q Q

(4.6)
=< fn7w>H71(Q)d><Hol(Q)d +O[/gn-’w’ Vw e V.
Q

(4.7)
a/@k"er/ VﬁkoVera/ wk~w+u/ Vwk~Vw+/ Wk Vyr-w+yr-Vwi-w =0, YweV.
Q Q Q Q Q

and
(4.8) a/ﬁ«w—k/Vﬁ«Vw—&-/wk-Vwk~w:O7 Ywe V.
Q Q Q
O

Consequently, each iteration of the CG algorithm requires the resolution of four Stokes prob-

lems, namely (4.3)), (4.6), (4.7) and (4.8). The incompressibility condition is taken into account
with a Lagrange multiplier. Remark that the matrix (to be invert) associated to those four

problems is the same and does not change from an iteration to the next one.
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4.2. Gradient and Newton type method. Very interestingly, equality shows that —Y)
given by the solution of is a descent direction for the functional E. Remark also, in view
of (2.11), that the corrector V associated to Y7, given by with Y = Y7, is nothing else than
the corrector v itself. Therefore, we can define an another minimizing sequence y; as follows:

Yo S Va
(4.9) Yk+1 =Y — MYk, k>0,
Ak = argminyer+ E(yr — AY1 1)

where Y] ;, solves the formulation
(4.10)

a/ Y1,k~w+u/ VYl’k-Vw—i-/(yk-VYl,k—i—YLthk)-w:—a/
Q Q Q Q

leading (see (2.18) to E'(yx) - Y1k = 2E(yr). The direction y; vanishes when E vanishes.
The minimization of the real function A\ = E(y; — AY1 ;) is easily performed as we check from

(4.5) that, for all A € R,

(@11) Bl = AVi) = (1= 0B + 220 =) [

vk-w—/ Voug-Vw,YVw e V
Q

_ _ 24 _ _
vt + Vo Vo + o5 / a|@k|2 + |V@k‘2
Q

where v* € V solves (4.6) and T € V solves
(4.12) oz/%k-w—&— Vo -Vw+ [ Y1,-VYi,-w=0, YweV.
Q Q Q
Remark 4.2. Contrary to the CG algorithm of sectz’on the matriz (associated to the bilinear
form of ) to be invert varies here with k. To avoid this fact, one may replaced @ by

Yo S V7
(4.13) ki1 = Yo — MYig, k>0,
A = argminyer+ E(yr — /\)717k)

where f’Lk solves the formulation
(4.14)

a/ )71,k~w+1// V)N/LKVer/(y0~V}717k+)717k~Vy0)~w:foz/ vk~w7/ Vo, -Vw,Yw € V.
Q Q Q Q Q

It is interesting to note that the sequence {yx}x>0) obtained from (4.9) if we fixe A, = 1 for
all k, i.e. {yo € V,yp+1 = yr — Y1k, k > 0}, is exactly the sequence associated to the Newton-
Raphson method to solve directly the weak formulation (1.5 of (L.3). Such algorithm reads as
follows :

Yo € V7
(4.15)
ayF(ylmZ) : (yk:+1 - yk) = _F(ysz)a VZ S Vv Vk Z 07

and converges to a solution ¥ if d,F(y, z) is an isomorphism and Lipschitz-continuous with
respect to y in the closed ball containing 7, see [3, Theorem 6.3]. Since both sequences defined
by and coincides for A = 1, Algorithm can therefore be seen as an improvement
of the Newton algorithm with an order of convergence at least equal to 2 (in a neighborhood
of a solution). In view of , they share the same behavior as soon as the term ||V$k||§
becomes small. Similarly, the algorithm with Ay = 1 coincides with the quasi Newton
algorithm. More precisely, the following proposition show how the minimization of the parameter
A improves the robustness of the Newton method, usually used to solve (|1.5)).

Proposition 4.3. Let (yx)ren be the sequence defined by @ with first element yo and let §
be the solution of the Navier-Stokes equation. Assume that the sequence {yx}r is in the ball B
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defined in Proposition [2.6 Then, the sequence ||yx — llken converges to zero at least linearly.
When ||lyx — Yllken < cv for some k, the convergence is quadratic.

Proof. According to (4.11)), we have E(yr11) = (1 — M\)2E(yx) + A2(1 — A\) Ag + \i By, with

Ay = [ audi+ VouvE, < (allorl + Vo) (ol Bl + 1 7503)
(4.16) e

By = 5 (ol + IV5l3),
Consequently |Ay| < 2v/E(yx)v/Br and then
E(yks1) < (1= M)’ E(ye) + 2021 = M| v/E(y)v/Br + AL By
2
< (1= VBT + /B )

Moreover, from (4.12)), if d = 2,
(4.18) 2By < |[Y1 k31 V Y1 k13-

(4.17)

The bound (2.14)) implies that [, [VY1[> < 2 max(1, 2) [, alog|?*+|Ve|* = 2 max(1, 2)E(yx)

so that

2 2
2B, < coc,%E(yk)Q, ¢, = —max(1, —)
v v

and then Ay < coc, E(yi)?/? where ¢ is the Poincaré constant. Estimate (4.17) then becomes

(419)  VE(yrs1) < VE(yr) (Il = M|+ AR (yk)>, ¢ = /co/2c, = O(™?).

We introduce the polynomial p as follows :

b i= (1= A+ X6, V/B) )

so that ¢,/ E(yk+1) < p(Ak)Cur/E(Yr+1)-

e Assume that ¢,/ E(yx) < 1 for some k. Then, writing that p(Ax) < p(1) = ¢,/ E(yx), we
obtain that (¢,/E(yk4+1)) < (Cor/E(yx))?. This implies that the sequence {¢,\/E(ym)}(m>r)
decreases to zero with a quadratic rate. In particular, if ¢,1/F(yo) < 1 and if we fixe Ay = 1
for all k > 0 in , we recover the order 2 of convergence well-known for the Newton type. In
view of , ¢/ E(yo) < 1 this means that ||yo — ||v is the order of cv for some ¢ > 0. If
¢/ E(yo) > 1, the convergence of the Newton method is not guarantees. On the other hand,
the decrease of {E(yx )} together with the radius of convergence can be improved if the step Ag,
not necessarily taken equal to one, is chosen at each iterate in order to reduce the value p(Ag).

e Assume that ¢,/E(yr) > 1 for some k. In that case, p reaches a unique minimum for

Ak = 1/(26,7/E(yx)) € (0,1/2) for which p(A\g) = 1 — 2= € (0,1) leading to (in view of (4.19))
_ _ 1 _
6V Eln) <= s /B = (1 = e/l
4CV E(yk)

This inequality implies that the sequence {¢,+/F(yr)}r strictly decreases and then that the
sequence {p(A\r)}r decreases as well. This implies that the sequence {¢,/E(yx)}r decreases
to zero at least linearly. In view of the discussion above, once ¢,/ E(yy) is less than one, the
decrease is quadratic.

Consequently, the optimization of the parameter Ay improves significantly the Newton al-
gorithm. Observe from that the optimal Ay goes to 1 as y/E(yr) goes to zero. Our
experiments in Section [5| will confirm these properties. O
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The convergence of the algorithm is ensured as soon as the initial guess gy such that y
stays in the ball B for all k. In view of the definition of the sequence {y}r, we can write, for all
k>0,

k
lyesallv < llyollv + D [Aml1Yimllv

m=0

Using that the optimal step A, is in (0, 1) and that || Y1 . |lv < v~ /E(ym) (see2.14), we arrive
at
k

lyisillv < llgollv +v7" Y~ VEQYm)-
m=0

But, {\/E(Ym)}m is a decreasing sequence and v/ E(ym) < p(Am)V EUm-1) < p(Ao) v/ E(ym-1) <
P(M)™v/E(yo) so that % _ v/E(ym) < /E(o)(1 = p*+1(X))/(1 = p(Ao)) and

1 _
lyerillv < llyollv + ——~—v " "VE(w), k> 0.
1 —p(Xo)

For d =2, B = {y € V,|ly|} < cav} for some ¢ = ¢(2) > 0. Consequently, the sequence {yy}
remains in B if v='y/E(yo) is of the order of av, that is /F(yo) < dar®/? for some 0 < d < c.
In view of ([2.23)), a sufficient condition is given by

lvo —Tllv < c<\/||y||2v il - ||y||v)

for some ¢ > 0. Remark that \/|[7]]3, + 4ar3/2 — |||y < 2a'/20%/4. We can then complete
Proposition [£.4] as follows:

Corollary 4.4. Let (yi)ren be the sequence defined by @ with first element yo and let j be the
solution of the Navier-Stokes equation. Assume that /E(yo) < O(a'/?v3/%), then the sequence
converges to 7 as least linearly. If moreover, \/E(yo) < O(v?), the convergence is quadratic.

Remark 4.5. In the scalar case, the optimization of the parameter associated to the Newton-
Raphson method is quite straightforward. Let f : R — R be a smooth enough function in the
neighborhood of o € R such that f(«a) = 0. For instance, the Householder method given in [8|
Section 4.4] to iteratively approzimate « is as follows :

a’ € R,
(4.20) fl@™)f"(a™)

2(f"(@m)?

This Newton type method has an order of convergence equals to 3 (in a neighborhood of o). The
non constant step A, minimizes (at the second order) the functional X — f(a™—Af(a™)/f'(a™))
and is closed to one if f(a™) is closed to 0 (i.e. o™ close to o). An analogous optimization in the
variational case provided by the formulation F given in 1s achieved through the introduction
of the functional E.

An=1+

5. NUMERICAL ILLUSTRATIONS

In the steady case for o = 0, we present numerical experiments, including very small values
of v for two 2D examples. The first one is the well-known channel with a backward facing step.
The second one concernes a semi-disk geometry. In both case, the velocity of the fluid is imposed
on the boundary.
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5.1. Steady case : Two dimensional channel with a backward facing step. We consider
in the steady and unsteady situation the celebrated test problem of a two-dimensional channel
with a backward facing step, described for instance in Section 45 of [5] (see also [9]). We use
exactly the geometry and boundary conditions from this reference. The geometry is depicted
Figure Dirichlet conditions of the Poiseuille type are imposed on the entrant and sortant
sides I'; and I's of the channel: we impose y = (4(H — x2)(z2 — h)/(H — h)?,0) on 'y and
y = (4(H — h)xo(H — x5)/H?,0) on 'y, with h =1, H = 3,1 = 3 and L = 30. On the remaining
part 90\ (I'y UTs), the fluid flow is imposed to zero. The external force f is zero.

T2
(0, H)
Iy
Iy
(0,h) Q
(1,0) (L,0) X1

FIGURE 1. A two-dimensional channel with a step.

FIGURE 2. A triangular mesh of the channel - 14 143 triangles and 7 360 vertices.

We consider the extremal problem to solve the steady Navier-Stokes equation . For
simplicity, we take here & = 0. We compare the gradient algorithms described in the previous
section. The first one is the conjugate gradient algorithm coupled with the natural gradient
of E. The second one is based on the descent direction Y7, see exhibited in the proof of
Proposition In both cases, the initial guess is defined as the solution of the corresponding
Stokes problem and the scalar extremal problem is performed with the Newton-Rasphon
method for real function.

The Py /Py Taylor-Hood finite element, satisfying the Ladyzenskaia-Babushka-Brezzi condi-
tion, is employed. We start with a relatively large value of v = 1/150. Table [1| reports the
evolution of the relative quantity ||yx+1 — yrllv/||yxllv with respect to the iterate k associated
to the algorithms , , with fixed step A\ = 1 and conjugate gradient algorithm
respectively. A regular mesh composed of 20 868 triangles and 10 792 vertices (similar to the
one depicted in Figure [2]) is used. Table [2| reports the evolution of the norm of the corrector
llvellv = v/2E(yx), a upper bound of ||y — yx||v, according to Proposition As expected in
view of the discussion in Section the gradient algorithm based on Y7 j is much faster
than the CG algorithm based on the natural gradient ;. This latter provides however a satisfac-
tory speed of convergence. Moreover, the optimal values for the optimal step Ay are closed to one,
so that the Newton method provides a similar speed of convergence. As the norm of Y7 j goes to
zero with k, the last term in gets small, and the optimal )\ gets close to one. Remark as
well that the algorithm 7 whose each iterates involves the same matrice to be invert, offers
an excellent speed of convergence. In term of CPU times, Algorithm and require
about 53 seconds and 108 seconds respectively and leads to the same approximation. We have
notably ||V -y r2q) = 1.59 x 1072 and ||V - y|| 12(0) /|2 = 1.83 x 107%.

For smaller values of v, the results are qualitatively different. Table [3| reports some norms
with respect to k for v = 1/700. We observe, from the last column, that the Newton method for
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¢ iterate k with A, = 1 (4.9) (4.13) CG
1 4.442 x 1071 | 3.798 x 1071 (0.8545) | 3.796 x 10~ | 5.214 x 1072
2 1.959 x 107! 1.810 x 107! (0.9573) | 1.592 x 107! | 4.195 x 1072
3 5.609 x 1072 | 4.045 x 1072 (0.9949) | 4.375 x 1072 | 3.276 x 1072
4 3.986 x 1073 | 2.223 x 1072 (1.0006) | 6.055 x 1072 | 2.946 x 102
5 2.082 x 107° | 5.719 x 1076 (0.9999) | 6.808 x 10~3 | 2.568 x 1072
6 5.912 x 10710 4.959 x 10711 (1) 9.899 x 10~* | 2.290 x 1072
7 4.881 x 1071° 3.299 x 1071 (1) 9.009 x 10=% | 2.219 x 1072
8 — - 1.486 x 10=* | 2.024 x 1072
9 — - 9.553 x 1075 | 1.952 x 102
10 — — 2.092 x 107° | 1.819 x 1072
11 - - 1.396 x 107> | 1.764 x 102
12 — — 3.170 x 1076 | 1.723 x 1072
13 - - 1.839 x 1076 | 1.674 x 1072
14 - - 3.809 x 1077 | 1.657 x 1072
15 - - 1.987 x 107 | 1.606 x 10~2
26 — - 4.321 x 10713 | 1.120 x 1072
50 — - — 3.325 x 1073
100 — — - 1.756 x 103
200 — — — 2.091 x 107°

TABLE 1. v = 1/150; Evolution of ||yx+1 — yxllv/||vkllv

with respect to k.

{ iterate k with A = 1 (4.9) (4.13) CG
1 5.467 x 1072 5.467 x 1072 | 5.476 x 10~2 | 5.467 x 10~2
2 2.398 x 102 2.224 x 1072 | 2.222 x 1072 | 3.701 x 10~2
3 4.953 x 1073 4.601 x 1073 | 5.457 x 1073 | 2.917 x 102
4 3.201 x 1074 1.565 x 107% | 9.322 x 10~% | 2.492 x 10~2
5 1.530 x 106 5.437 x 1077 | 5.191 x 10~* | 2.201 x 102
6 3.650 x 1011 4227 x 10712 | 1.712 x 10™* | 1.995 x 1072
7 6.541 x 10716 | 2.541 x 10716 | 1.712 x 10~* | 1.840 x 102
8 — - 7.852 x 107° | 1.709 x 102
9 — — 2.472 x 1075 | 1.603 x 102
10 — — 8.953 x 1076 | 1.511 x 10~2
11 — — 3.424 x 1076 | 1.433 x 1072
12 — - 1.205 x 107 | 1.363 x 10~2
13 — — 4.251 x 1077 | 1.301 x 102
14 — - 1.366 x 1077 | 1.242 x 10~2
15 — — 4.478 x 1078 | 1.187 x 1072
26 - - 1.599 x 10~ | 6.259 x 103
50 — — — 2.673 x 1073
100 — — — 7.583 x 1074
200 — — - 1.551 x 10>

TABLE 2. v = 1/150; Evolution of ||vk||v = v/2E(yx) with respect to k.

which Mg is fixed to one does not converge anymore. Actually, Newton’s method, when initialized
with the solution of the corresponding Stokes problem, diverges for v < 1/250. On the other
hand, the optimization of the step Ay produces a very fast convergence of the sequence {yx } (x>0)-
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Observe here that the values for the optimal A; are not closed to one, during the first iterates.
We obtain notably ||V - y||2(0)/|Q| = 5.78 x 1072, In agreement with Proposition we also
clearly observe from Tablethat the decrease of \/E(yx) to zero is first linear and then becomes
quadratic.

The algorithm is a bit more robust than the Newton one as it converges for all v
satisfying v > 1/290 approximately. Finally, as discussed in [I0], the CG algorithm converges
and produces similar numerical values: the convergence is however slower since about 350 iterates
are needed to achieve \/2E(yy) of the order 1075.

The algorithm requires however the initial guess to be close enough to the solution.
Initialized with the solution of the corresponding Stokes problem, it diverges for v < 1/720. A
continuation method with respect to v is then necessary in that case. Algorithm[£.9]is also robust
with respect to the mesh size: with a twice finer mesh composed of 84 707 triangles and 43 069
vertices, the convergence [|y*T! — y¥|| < 10712||y*|| is observed after k = 18 iterates (instead
of 14 for the previous coarser mesh) leading notably ||V - y[|12(q)/|] = 3.91 x 1072, Figure
depicts the streamlines of the convergent sequence yy, in the cases v = 1/150 and v = 1/700. The
method allows to capture the shear layer developing in the flow behind the re-entrant corner.

t iterate & | [lyrs1 — yrllv/llvllv | 2E(yx) Ak V2E(yr) with Ay =1
1 7.153 x 1071 5.467 x 102 0.727 5.467 x 10~2
2 1.424 x 10~* 2.791 x 1072 | 4.77 x 1075 3.452 x 1072
3 2.073 x 1071 2.791 x 1072 | 2.01 x 102 8.089 x 102
4 3.538 x 1071 2.737 x 1072 0.958 5.344 x 1072
5 9.138 x 1072 7.270 x 1073 | 4.81 x 1076 2.409
6 6.244 x 1072 2622 x 1073 | 1.73 x 103 6.115 x 1071
7 2.028 x 102 1.078 x 1073 0.358 3.944
8 3.695 x 1073 2.610 x 1074 0.521 9.851 x 10!
9 7.522 x 10~* 4.184 x 107° 1.098 8.186 x 10!
10 9.886 x 1076 6.014 x 10~7 0.963 4.385 x 10*
11 3.872 x 1076 1.692 x 107 1.032 1.093 x 10*
12 6.820 x 1011 4.404 x 1012 0.9983 3.169 x 104
13 1.288 x 1010 2.880 x 10~12 0.9999 1.576 x 10°
14 6.879 x 10~1° 3.263 x 10~16 1 4.068 x 10*

TABLE 3. v = 1/700; Results for the algorithm (4.9)).

FIGURE 3. Streamlines of the steady state solution at v = 1/150 (top) and
v =1/700 (bottom); L = 30.

5.2. Steady case: 2D semi-circular cavity. We now consider the 2D test discussed in [4].
The geometry is a semi-disk Q = {(z1,72) € R? 2% + 23 < 1/4,25 < 0} depicted on Figure
The velocity is imposed to y = (¢,0) on 'y = {(x1,0) € R?, |z1| < 1/2} with g vanishing at
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x1 = £1/2 and close to one elsewhere: we take g(x;) = (1 — e!00@1=1/2))(] — ¢=100(@1+1/2)) " On
the rest 'y = {(x1,22) € R?, 25 < 0,2% + 23 = 1/4} of the boundary the velocity is fixed to zero.

(—1,0) Ly:y=(1,0) (L,0)

—_

FIGURE 4. Semi-disk geometry.

For a regular triangular mesh, composed of 79628 triangles and 40205 vertices, leading to
a mesh size h = 6.23 x 1073, the Newton method (\; = 1) initialized with the corresponding
Stokes solution, converges up to v~! ~ 500. On the other hand, the algorithm using the
optimal A still converges up to v~ ~ 910. Figures |5| depitcs the streamlines of steady state
solution corresponding to »~! = 500 and to v~ = ix 103 for i = 1,--- ,9. The figures are in very
good agreements with those depicted in [4]. The solution corresponding to v~ = 500 is obtained
from the sequence given initialized with the Stokes solution. Seven iterates are necessary
to achieve \/2E(y) ~ 3.4 x 10717, The stopping criteria is ||yx+1 — yk|lv < 10712|lyx||v. Then,
the other solutions are obtained by a continuation method with respect to v taking §v~! = 500.
For instance, the solution corresponding to »~! = 5000 is obtained from the algorithm
initialized with the steady solution corresponding to »~! = 4500. Table [4] reports the history of
the continuation method and highlights the efficiency of the algorithm : up to v~ = 9500,
few iterations achieve the convergence of the minimizing sequence {yx}ren. From v~ = 104,
with a finer mesh (for which the mesh size is h = 4.37 x 1073), dv is reduced to 6v~! = 100 and
leads to convergence beyond v»~! = 15000. Table also reports the minimal value of the streamline
function ¢ which compare very well with those of [4].

Eventually, we emphasize that the choice of error functional E considered in [2] (see remark
leads to similar results in term of robustness and convergence, in particular for small values
of v.

5.3. Unsteady case. We did not discussed here numerical simulations for @ > 0 and the implicit
scheme ([L.2). We refer to [LI] where numerical results are compared with those obtained from
a fully time-space least-squares approach. We only emphasize that when « is strictly positive,
and are fiortiori « large for a small discretization step 6t, the algorithm remains robust
and efficient. This is due to the fact that the o term in the cost E defined in increases
its coercivity. Moreover, the size of the ball B of Proposition [2.6] appearing in the discussion of
the convergence of the sequence {y;} (see also Corollary increases with «. Consequently,
choosing a large a allows to ensure the convergence of the method and the determination of y"*!
from y".

6. CONCLUSIONS AND PERSPECTIVES

We have analyzed the so-called H ~!-least-squares method introduced forty years ago in [2]
allowing to solve the steady nonlinear Navier-Stokes system, in the incompressible regime. We
show that any minimizing sequence starting closed enough to a solution converges strongly in
V. Moreover, the analysis make appear a descent direction for the error functional, different
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FIGURE 5. Streamlines of the steady state solution for v =
500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 and v~ = 9000.

from the one related to the gradient, leading to a second order of convergence, in a neighborhood
of any solution. This minimizing sequence actually generalizes the sequence associated to the
Newton method for the variational weak formulation of the Navier-Stokes system. Numerical
experiments highlights the robustness of the method, even for small values of the viscosity co-
efficient. The least-squares method can then be used to solve, step by step, standard implicit
and unconditionally stable scheme. The value of the time discretization parameter is adjusted
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according to the value of the viscosity constant, in order to ensure the convergence toward y™*1!,
approximation of the Navier-Stokes at time ¢,,1, of the above mentioned sequence, with y™ as a
first element. We also emphasize that the least-squares approaches, employed here to treat the
Navier-Stokes nonlinearity, can be used to solve another nonlinear equations, as formally done
in [I5] for a sublinear heat equation. Eventually, we may solve the unsteady Navier-Stokes by
a fully L2(0,T, H='(Q)) least-squares approach. The underlying corrector solves an unsteady

JEROME LEMOINE AND ARNAUD MUNCH

v! fit. mllez Inilmie 9elme@  mingy  mingy [4]
Stokes — 500 7  4.31x1072 4.462 2.489 —0.0766784 —
500 — 1000 7 4.07 x 1072 4.919 2.883 —0.0780642  —0.0779
1000 — 1500 6 0.0399 5.2966 3.15371  —0.0775772 —
1500 — 2000 6 0.0393087 5.61222 3.36132 —0.0766604 —0.0763
2000 — 2500 5 0.0388207 5.8849 3.53141  —0.0756008 —
2500 — 3000 5 0.0383734 6.12689 3.67571 —0.074476 —0.0742
3000 — 3500 5 0.0379483 6.34559 3.80097 —0.0733293 —
3500 — 4000 5 0.0375405 6.54581 3.91156 —0.0721912 —
4000 — 4500 6 0.0371478 6.73091 4.01047 —0.0710789 —
4500 — 5000 6 0.0367688 6.90338 4.09986 —0.0699992 —0.0700
5000 — 5500 6 0.0364024 7.06514  4.18132 —0.0689569 —
5500 — 6000 6 0.0360479 7.21768  4.25607 —0.0679526 —
6000 — 6500 6 0.0357043 7.3622 4.32506 —0.0669879 —
6500 — 7000 6 0.0353712 7.49966 4.38908 —0.0660596 —
7000 — 7500 5 0.0350479 7.63085 4.44875 —0.0651669 —
7500 — 8000 5 0.0347341 7.75643 4.5046 —0.0643104 —
8000 — 8500 6 0.0344295 7.87694  4.55705 —0.0634864 —
8500 — 9000 6 0.0341339 7.99287  4.60649 —0.0626943 —
9000 — 9500 11 0.0338468 8.10461 4.65324 —0.0619334 —
9500 — 10000 39 0.0335673 8.21355 4.6937 —0.061204 —
10000 — 10100 5 0.0335126 8.23472  4.70226 —0.061061 —
10100 — 10200 5 0.0334581 8.25574  4.71073 —0.0609195 —
10200 — 10300 5 0.033404 8.27663 4.71911  —0.0607786 —
10300 — 10400 5 0.0333502 8.29738 4.72741 —0.0606386 —
10400 — 10500 5 0.0332967 8.318 4.73563 —0.0605006 —
10500 — 10600 5 0.0332436 8.33848  4.74376 —0.0603624 —

TABLE 4. Continuation method with respect to v for the solution of steady
Navier-Stokes associated to the semi-disk.

Stokes equation; we refer to [T1].
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