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[1] The purpose of this article is inverse modeling of emissions at regional scale for
photochemical applications. The study is performed for the Ile-de-France region over a
two summers (1998 and 1999) period. This area represents an ideal framework since
concentrated anthropogenic emissions in the Paris region frequently lead to the formation
of urban plumes. The inversion method is based on Bayesian Monte Carlo analysis
applied to a regional-scale chemistry transport model, CHIMERE. This method consists in
performing a large number of successive simulations with the same model but with a
distinct set of model input parameters at each time. Then a posteriori weights are attributed
to individual Monte Carlo simulations by comparing them with observations from the
AIRPARIF network: urban NO and O3 concentrations and rural O3 concentrations around
the Paris area. For both NO and O3 measurements, observations used for constraining
Monte Carlo simulations are additionally averaged over the time period considered for
analysis. The observational constraints strongly reduce the a priori uncertainties in
anthropogenic NOx and volatile organic compounds (VOC) emissions: (1) The a
posteriori probability density function (pdf) for NOx emissions is not modified in its
average, but the standard deviation is decreased to around 20% (40% for the a priori one).
(2) VOC emissions are enhanced (+16%) in the a posteriori pdf’s with a standard
deviation around 30% (40% for the a priori one). Uncertainties in the simulated urban NO,
urban O3, and O3 production within the plume are reduced by a factor of 3.2, 2.4, and 1.7,
respectively.

Citation: Deguillaume, L., M. Beekmann, and L. Menut (2007), Bayesian Monte Carlo analysis applied to regional-scale inverse

emission modeling for reactive trace gases, J. Geophys. Res., 112, D02307, doi:10.1029/2006JD007518.

1. Introduction

[2] Air quality simulation and forecasting is a challenging
scientific and society-related problem due to the increasing
consciousness of health and environmental effects of photo-
oxidants and particles. Nitrogen oxides (NOx) and volatile
organic compounds (VOC) are, among others, very impor-
tant precursors of this pollution.
[3] During the last decade, modeling tools have been

increasingly developed allowing for a better description of
photochemical air pollution episodes, but also for multiyear
simulations. These models combine mathematical descrip-
tions of atmospheric physics and chemistry, accounting for
emissions, transport, photochemical reactions and deposition
and have been mostly used to assess the effect of proposed
control strategies for urban and regional pollution. In this
framework, the CHIMERE chemistry/transport model
(CTM) has been developed with two main objectives:
(1) to build realistic emission reduction scenario simulations

to better estimate how pollution can be reduced [e.g.,
Vautard et al., 2005]; (2) but also to forecast of air pollution
events several days in advance [Vautard et al., 2001] (http://
www.prevair.ineris.fr). However, uncertainties in model
input data and parameterizations need to be quantified in
order to obtain more robust modeled concentrations fields.
[4] Uncertainty in deterministic atmospheric transport

models is related to many factors: (1) uncertainties in input
parameters such as meteorological parameters, actinic
fluxes, quantum yields, rate constants, and, last but not
least, emissions of anthropogenic and biogenic volatile
organic compounds (VOC) and nitrogen oxides (NOx)
[Yang et al., 1997; Gao et al., 1996; Sistla et al., 1996;
Hanna et al., 1998; Bergin and Milford, 2000; Menut et al.,
2000; Hanna et al., 2001; Beekmann and Derognat, 2003];
(2) uncertainties in model physical and chemical processes
description such as the boundary layer height parametriza-
tion and resolution or the formulation of the chemical
mechanism [Kuhn et al., 1998].
[5] Moreover, all these modeling studies converge toward

an important statement: within a chemistry transport model,
emissions from the surface are crucial but also uncertain
input parameters, for which simulated concentrations are
very sensitive. The adjoint modeling version of the CHI-
MERE model makes it possible to systematically scan the
sensitivity of the pollutant concentrations compared to the
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various parameters of the model. In a study dealing with a
photochemical pollution episode during the ESQUIF
campaign emissions are shown to be among the most
determining parameter for the ozone production over
the Ile-de-France area [Menut, 2003]. From Monte Carlo
analysis systematically exploring the effect of model input
uncertainties on photochemical ozone build-up (PO3) in the
Ile-de-France region [Beekmann and Derognat, 2003], it is
also concluded that VOC and NOx emissions were about
the most uncertain and sensitive input parameters: 43–53 %
of the total uncertainty in PO3 were related to emission
uncertainty, 18–25 % to that in meteorological parameters
and 16–23 % to that in rate coefficients.
[6] Moreover, uncertainty in emissions is always rather

large, and difficult to estimate. Indeed, emission inven-
tories are built following a ‘‘bottom up’’ methodology.
Activity factors for different sectors are combined with
compound and activity specific emission factors. While
geographical locations of large point sources are known,
diffuse area emissions are in general estimated for
administrative districts and have to be distributed on
regular spatial grids used for modeling purposes. For
traffic emissions, spatialization relies on the knowledge
of the road network and traffic fluxes. Also the temporal
variability at seasonal, weekly or daily scale has to be
taken into account. All these different terms (activity
factor, emission factor spatial distribution, and temporal
variability) have specific uncertainties which may com-
bine to a large overall value [Schneider et al., 1997;
Friedrich, 1997; Kühlwein and Friedrich, 2000].
[7] Evaluation of emission inventories is in general

difficult as emitted pollutants undergo chemical transforma-
tion and are transported away from sources. Only for special
cases with concentrated emissions in an urban agglomera-
tion surrounded by rural areas with very low emissions,
specific evaluation experiments could be performed on the
basis of circular flights around the main source of emissions
(Slemr et al. [2002] for the Augsburg area, Vautard et al.
[2003b] for the Paris agglomeration).
[8] Inverse modeling of emissions from ground based

and satellite observations is a potentially powerful method
for evaluating and improving the emission inventories.
All techniques of inverse emission modeling are based on
the minimisation of a cost function which describes the
difference between a set of observations and the
corresponding simulations. This minimisation step is
achieved by varying emissions while starting with an a
priori guess of emissions. At regional scale, only a
limited number of studies have been performed: Some
applications have applied direct matrix inversion techni-
ques [Brown, 1993] to adjust emissions of low-reactive
species. Mulholland and Seinfeld [1995] and Chang et al.
[1996, 1997] have used a Kaman filter approach to
optimize isoprene and CO emissions. Kalman filtering
is a sequential method based on a linear relationship
between modification of constraints (observations) and
model parameters during the same time period [Hartley
and Prinn, 1993; Enting, 2002]. Variational assimilation
techniques vary initial conditions or model parameters as
emissions to obtain a better agreement of simulations and
observations over a given time window. The adjoint
model is used to solve the minimization problem [Elbern

et al., 1997; Elbern and Schmidt, 1999; Quélo et al.,
2005; Pison et al., 2006]. For example, Pison et al.
[2006] use the adjoint version of the CHIMERE chem-
istry transport model in order to retrieve NOx emissions
fluxes over the Ile-de-France region from NO surface
measurements. In a similar framework, Quélo et al.
[2005] optimized NOx emissions over the Lille region
(northern France) by using routine measurements of O3,
NO and NO2. Finally, Mendoza-Dominguez and Russell
[2000, 2001] use a hybrid modeling approach based upon
application of direct sensitivity analysis to a comprehen-
sive 3D air quality model linked to a receptor analysis
method. Their works lead to an optimization of VOC and
NOx sources during the 1992 Atlanta measurements.
However, all of these approaches make the hypothesis
of a perfect model with perfect model input parameters
other than emissions.
[9] In this paper, we use Bayesian Monte Carlo (BMC)

analysis [Brand and Small, 1995; Bergin and Milford, 2000;
Beekmann and Derognat, 2003] in order to retrieve anthro-
pogenic NOx and VOC emissions in the Ile de France
region. The particular strength of the BMC method is that it
allows estimating the uncertainty in a posteriori emissions
by taking into account both the uncertainty in model input
parameters and in constraining observations. In our frame-
work, a Monte Carlo analysis consists of performing a large
number of successive simulations with the same model but
with a distinct set of model input parameters sampled from
probability distributions reflecting the uncertainty in these
input parameters. Simulations which better fit observations
receive a larger weight; that is, in Bayesian terms they have
a larger conditional probability. Indeed, a likelihood func-
tion quantifies the probability of obtaining a given differ-
ence between model results and observations, while taking
into account a specified error in the observations.
[10] In the present work, we perform an inverse modeling

study of anthropogenic NOx and VOC emissions for the Ile-
de-France region by means of Bayesian Monte Carlo
(BMC) analysis. We use the regional-scale chemistry trans-
port model CHIMERE [Schmidt et al., 2001; Vautard et al.,
2001]. The Ile-de-France region represents an ideal frame-
work because concentrated anthropogenic emissions in the
Paris area frequently lead to the formation of urban plumes.
Moreover, observations for constraining Monte Carlo sim-
ulations are numerous in time and space, both from routine
measurements by the AIRPARIF air quality network or
from a dedicated campaign (the ESQUIF campaign in
1998 and 1999) [Menut et al., 2000; Vautard et al.,
2003a]. In this work, BMC analysis has been applied to
semiclimatologic period (summers 1998 and 1999) charac-
terized by frequent formation of ozone plumes over the Ile-
de-France basin.
[11] The paper is organized as follows: the CHIMERE

chemistry/transport model is briefly described in section 2.1
and the setup of Bayesian Monte Carlo analysis for this
study is presented in section 2.2. Results are shown in
section 3. Section 3.1 is devoted to overall results for
summers 1998 and 1999. Sections 3.2 and 3.3 analyse
differences between summers 1998 and 1999, between
particular months (July versus August) and the type of the
day (working days versus week end). Section 4 is devoted
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to a critical analysis of the results and conclusions are given
in section 5.

2. Setup of the Bayesian Monte Carlo Analysis to
the CHIMERE Chemistry/Transport Model

2.1. Model Description

[12] The chemistry/transport model used in this study is
the CHIMERE Eulerian multiscale model designed for
analysis of various air pollution episodes at regional and
continental scale [Vautard et al., 2001; Schmidt et al., 2001;
Bessagnet et al., 2004] as well as for routine forecasting air
pollution. Although the model enables modeling of gases
and aerosols, this paper focuses on gas phase processes
only. In the present study, the model calculates, given the
emissions, meteorological variables and lateral boundary
conditions, the concentration fields of several pollutants, on
a 6 � 6 km grid, over a domain of 150*150 km covering the
Ile-de-France region. This domain has a large central urban
area spreading over about 30 km. The continental-scale
version of CHIMERE provides boundary conditions for
several long-lived species (O3, NOy, VOC, CO, peroxides
etc.). In the vertical, the domain contains eight layers
defined using hybrid coordinates. The height of the first
layer is fixed at 50 m high and follows the orography and
the top of the upper layer is fixed by a constant pressure
level of 500 hPa.
[13] The CHIMERE transport chemistry simulations in

this paper are forced by first-guess meteorological fields
delivered by the European Centre for Medium-Range Fore-
casts (ECMWF) every 6 hours. Vertical diffusion is calcu-
lated using the parameterisation suggested by Troen and
Mahrt [1986].
[14] The anthropogenic emissions for the Ile-de-France

region and the year 1997 are prepared from several data
sources and are described in detail by Vautard et al.
[2003b]. NOx, VOC, CO and SO2 emissions were calcu-

lated for three types of days (weekday, Saturday and
Sunday) with a one hour temporal and a three kilometres
spatial resolution by the ‘‘Système Informatique de Modé-
lisation de la Pollution Atmosphérique à l’Echelle Région-
ale’’ (SIMPAR) [Vautard et al., 2003b]. Specific emissions
profiles were provided for more than one hundred individ-
ual VOCs and for different activity sectors by the University
of Stuttgart (Germany) [Friedrich, 1997]. The biogenic
emissions (isoprene and terpene, NO) inventory is described
by Derognat et al. [2003].
[15] The gas phase chemistry is described by the MEL-

CHIOR mechanism in a reduced version containing about
120 reactions and 40 compounds [Lattuati, 1997; Schmidt et
al., 2001]. Eight model compounds are considered for
alkanes, alkenes, aromatic and biogenic compounds with a
related reactivity weighted as proposed by Middleton et al.
[1990]. Photolysis rates are calculated using the tabulated
outputs from the TUV model from Madronich and Flocke
[1998] (tropospheric ultraviolet and visible model) and
therefore depend on altitude, zenithal angle and cloud cover.
Figure 1 represents the distribution of the daily maximum of
ozone over the Ile de France domain for the whole time
period (summers 1998 and 1999). In the urban area, daily
ozone maxima are lower because of titration with NO
emissions. Photochemical ozone build-up becomes apparent
at several kilometres downwind of the urban area, especially
in the southern direction. Rural stations from the AIRPARIF
network have been set up in these regions (see Figure 1).
[16] The reliability of the CHIMERE model over the Ile-

de-France region has been evaluated on the basis of long-
term routine air quality network measurements (O3, NOx)
and observations from the ESQUIF campaign [see Vautard
et al., 2001, 2003a]. A more detailed description of basic
features of earlier model versions can be found in the papers
from Schmidt et al. [2001] and Vautard et al. [2001].
Bessagnet et al. [2004] also presented important recent
updates (in particular the implementation of the aerosol

Figure 1. Distribution of the daily maximum of ozone in the nominal case averaged over the summers
1998 and 1999. Rural stations from the AIRPARIF network are indicated.
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module). A comprehensive scientific and technical docu-
mentation and the source codes are also available on the
web (see http://euler.lmd.polytechnique.fr/chimere/).

2.2. BMC Analysis

2.2.1. General Consideration
[17] The BMC analysis applied in this study is adapted

from the work of Bergin and Milford [2000] and has been
previously applied to the photochemical air quality model
CHIMERE by Beekmann and Derognat [2003]. In this last
work, the BMC analysis has been used for specific POIs
during the ESQUIF campaign whereas our study is led over
a semiclimatologic period.
[18] Monte Carlo methods allow an evaluation of the

global model uncertainty related to the whole set of input
variables or parameterizations used. These methods consist
in generating several hundreds of simulations with different
sets of model input parameters. These sets are randomly
selected from predefined probability density functions. In
standard Monte Carlo analysis, model results that match the
observations and those in poor agreement with them are
treated as equally probable. An extension of this method,
called ‘‘Bayesian Monte Carlo analysis’’, introduces a
forcing by the observations allowing estimating the proba-
bility of each Monte Carlo simulation from the agreement
between model output and observations [Dilks et al., 1992;
Brand and Small, 1995] (Figure 2).
[19] The Bayesian method consists in evaluating the

probability term p(OjYk) corresponding to the probability
to observe a vector of observations O given that the model
output Yk is the true value for the kth individual Monte
Carlo simulation. Assuming the observations to be unbiased
and to present a normally distributed error e and for the case
of N independent observations Oj, elements of a vector of
observation O, the agreement function p(OjYk) can be
evaluated as following:

p OjYkð Þ ¼ �j¼1;N
1ffiffiffiffiffiffi
2�

p 1

�e; j
� exp �0:5

Oj � Yk; j

�e; j

� �2 ! !
ð1Þ

For mathematical details of the derivation of this function,
see Bergin and Milford [2000], and Beekmann and
Derognat [2003].
[20] In equation (1), the difference between simulations

and observations is weighted by uncertainties se,j in
observations, which have to be estimated (see section 2.2.4).
The error e stems both from a purely experimental error and
from the fact that point measurements are not necessarily
representative for simulated averages over a model grid cell
[Bergin and Milford, 2000]. In other words, point measure-
ments can be considered as individual samples from a
distribution of hypothetical measurements filling out the
whole grid cell.
[21] Equation (1) allows obtaining a posteriori probability

distributions of predictive model parameters from the ensem-
ble of Monte Carlo simulations, by weighting each value
by the probability p(OjYk). Also for each model input
variable e, such as emissions, a distribution of their a
posteriori probability can be obtained by weighting each
value from the a priori distribution by p(OjYk):

p e1 � e � e2ð Þ ¼ 1

C

Ze2
e1

p O Ykjð Þ 	 de ð2Þ

The probability p(e1 � e � e2) to find a value e between e1
and e2 is given by integrating p(OjYk) over all Monte Carlo
simulations with emissions between e1 and e2 (C represents
a normalization factor).
[22] In this work, all perturbative factors applied in BMC

analysis are averaged over the whole model domain and
time period of the simulations. As a consequence, rather
than hourly emissions for each grid cell, area and time
averaged corrective factors for emissions are obtained in
this work, together with their uncertainty estimate. This
limitation to spatial average correction factors is necessary
because observations are available only at several tenths
of sites within the domain, and they have to be further
averaged to obtain spatially representative values (see
section 2.2.3). The limitation to temporally averaged
correction factors (for summers 1998 and 1999 or subsets

Figure 2. Principle of the Bayesian Monte Carlo Analysis.
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of this period) is motivated by the fact that in this way
the measurement representativity error is reduced (see
section 2.2.4).
[23] The results of BMC analysis are presented in two

different ways. First, we will show how a posteriori prob-
ability density functions (called pdf’s afterward) have been
modified with respect to a priori pdf’s by using the
measurement constraint. Secondly, results are presented as
cumulative probability density functions (cpdf’s). The term
cpdf(X) indicates the probability that a given model predic-
tion Xk stays below the limit X. Xk can represent any model
output variables, for example the ozone level at a particular
grid point, but also model input parameters as emissions.
2.2.2. Attribution of the ‘‘A Priori’’ Probability Density
Functions for Input Parameters
[24] A tricky problem for the setup of Monte Carlo

analysis is related to the choice of a priori pdf’s for the
input model parameters, i.e., for emissions, rate coefficients
of chemical reactions and photolysis frequencies, and for
meteorological parameters. The most natural form, for pdf’s
containing only positive values, is the lognormal distribu-
tion which was considered for all the input parameters
except for wind speed and temperature. Indeed, lognormal
pdf’s best represent uncertainties for positively defined
entities which are affected by many independent stochastic
processes, varying over a large range. The choice of
uncertainty ranges (Table 1) bas been guided by specific
uncertainty assessment studies and expert judgements. A
detailed description of the determination of a priori pdf’s is

given by Beekmann and Derognat [2003]. In this section,
only features which are the most important in the context of
the given study are mentioned.
[25] Regarding anthropogenic emissions, studies on the

uncertainty propagation of uncertainties in emission models
[Kühlwein and Friedrich, 2000], specific experiments on
the estimation of emissions from observations in the Ile-de-
France region [Vautard et al., 2003b] and in the South of
Germany [Kühlwein et al., 2002; Mannschreck et al., 2002]
were considered in order to estimate their one sigma
uncertainty range at 40%.
[26] On the basis of the sensitivity analysis performed by

Menut [2003], only the uncertainties in the most sensitive
reactions for ozone and nitrogen chemistry were included in
the Monte Carlo experiment. The uncertainties from the
compilations of Atkinson et al. [1997] and DeMore et al.
[1997] were used. They indicate values for uncertainties
ranging from 10 to 30%. Uncertainties in meteorological
variables are derived from the random differences between
observations and meteorological analyses for two POIs of
the ESQUIF campaign [Menut et al., 2000; Vautard et al.,
2003a]. For example, uncertainty in the boundary layer
height is set to 40%, corresponding to the important differ-
ences noted between heights estimated from meteorological
data (by calculating vertical profiles of the Richardson
number) and used for CHIMERE simulations and derived
from lidar profiles (aerosol backscatter signal).
[27] In the present study, we only focus on model

uncertainties specifically related to dynamical and chemical
processes within the Paris urban area plume. As a conse-
quence, we have chosen not to perform an uncertainty
analysis for the continental model domain of for the
boundary conditions passed form the continental model to
the regional nested model.
2.2.3. Measurement Constraints
[28] In order to be useful for inverse modeling purposes,

the observations used for constraining Monte Carlo simu-
lations must contain a maximum of information on anthro-
pogenic NOx and VOC emissions emitted in the Paris area
and its suburbs. For this, measurements of NO containing
direct information on NOx emissions and ozone measure-
ments, containing indirect information especially on VOC
emissions via the ozone photochemical production process,
were used. Moreover, the observations must ideally take
place at a certain distance from the emission sources in
order to get rid of their spatial heterogeneity. Lastly,
measurements must allow evaluating the background con-
centrations of pollutants in order to identify the part related
to sources.
[29] In this study for the summers 1998 and 1999

period, the observations available for constraining Monte
Carlo simulations are routine measurements from the
AIRPARIF air quality network. The observation vector
O in equation (1) is built from three different types of
observations: (1) ground based NO measurements within
the urban area (Paris and near suburbs), (2) ground based
O3 measurements at the same places, (3) ground based O3

measurements around the Paris area (rural sites), either
located within the pollution plume or indicating back-
ground conditions, as a function of the wind direction.
[30] NO concentrations at these six background urban

sites within Paris and its near suburbs during morning

Table 1. Uncertainty Range Adopted for Model Input Parameters

Parameters 1 s Uncertainty

Emissions
Anthropogenic VOC ±40%
Anthropogenic NOx ±40%
Biogenic VOC ±50%

Rate Constants
NO + O3 ±10%
NO2 + OH ±10%
NO + HO2 ±10%
NO + RO2 ±30%
HO2 + HO2 ±10%
RO2 + HO2 ±30%
RH + OH ±10%
CH3COO2 + NO ±20%
CH3COO2 + NO2 ±20%
PAN + M ±30%

Photolysis Frequencies and Radiation
Actinic fluxes ±10%
J(O3 ! 2 OH) ±30%
J(NO2 ! NO + O3) ±20%
J(CH2O ! CO + 2 HO2) ±40%
J(CH3COCO ! . . .) ±50%
J(unsaturated carbonyl ! . . .) ±40%

Meteorological Parameters
Zonal wind speed ±1 m/s
Meridional wind speed ±1 m/s
Mixing layer height ±40%
Temperature ±1.5 K
Relative humidity ±20%
Vertical mixing coefficient ±50%

Others
Deposition velocity ±25
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(03:00–09:00 UTC) (Figure 3) were combined to give an
average urban morning mean value. The use of an
average morning mean value (1) minimizes measurement
errors since NO concentrations are most elevated during
this time (because of the traffic-related morning emission
maximum combined to weak vertical mixing), and (2) is
more robust than hourly values with respect to model
errors in the temporal representation of the planetary
boundary layer height. Urban NO measurements are
closely related to NO sources and therefore are a direct
forcing for NOx emissions.
[31] Second, surface ozone measurements are averaged

over the same six background urban sites, but this time
during afternoon hours (12:00–16:00 UTC). The afternoon
values are affected by photochemical ozone build-up and
thus contain information on ozone precursor emissions
(VOC, NOx). For both urban NO and O3 measurements,
observations used for constraining Monte Carlo simulations
are additionally averaged over the time period considered
for analysis (summers 1998 + 1999 or subsets):

OBS NO;O3ð Þ ¼ 1

Nd 	 Ns 	 Nh
XNd
k¼1

XNs
j¼1

XNh
i¼1

obs i; j; kð Þ
 !

ð3Þ

with Nd = number of days, Ns = number of stations,
Nh = number of hours and obs(i,j,k) = hourly observations
from the AIRPARIF network. The same procedure was
followed for simulations, taking averages over the grid cells
and dates corresponding to the measurement sites.
[32] The third constraint is linked to O3 measurements at

six rural AIRPARIF stations. It consists in determining a
daily ozone build-up within the Ile-de-France region from
the difference between plume and background ozone con-
centrations. First, for each day, and both for simulations and
observations, we extract the daily O3 maximum. Then, we
take the average of the two largest values which are
considered as representative for the O3 plume and the
average of the lowest tree values which represents the O3

background value. In order to take into account errors in the
simulated location of the plume (caused by errors in the
wind direction), the procedure is performed independently
for simulations and observations. However, only days for
which the ozone maximum is observed and simulated at the
same or a neighbouring station are retained for further
analysis (i.e., days with wind direction errors larger than
about 90� are discarded). A second condition is set up in
order to assure that only strong enough plumes are consid-
ered: the difference between the O3 daily maxima both in

Figure 3. Locations of urban and rural background sites of the AIRPARIF network used for the model
constraints (tree symbol: rural stations; circle: urban stations).
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the plume and in the background must exceed 10 ppb both
in simulations and observations. As a consequence of this
procedure, the number of selected days will slightly differ
for each Monte Carlo simulation.
2.2.4. Estimation of the Uncertainty on Observations
[33] The solution of equation (1) requires the knowledge

of uncertainty in observations. Different sources contribute
to uncertainties se,1, se,2, se,3 in observations O1, O2, O3 in
equation (1). In a general way, this uncertainty stems both
from instrumental errors and a lack of horizontal and
vertical representativity of point measurements with respect
to model grid cells. Thus variances related to instrumental
error si

2, to the horizontal representativity sh
2 and to the

vertical representativity sv
2 are combined to an overall

uncertainty:

s2 ¼ s2
i þ s2

h þ s2
v ð4Þ

All terms in equation (4) represent logarithmic uncertainties,
and the subscript j for different types of observations has
been omitted for simplicity. From these different sources on
observation uncertainties, we estimated 1 s logarithmic total
uncertainties for the different time periods we considered
summarizing in Table 2. Note that the uncertainties always
refer to the temporal averages over these different time
periods.
[34] For observations in the urban area, instrumental

uncertainties are dominating over uncertainties due to
representativity problems. Their values varies from 3 to
4 ppb (see the ESQUIF report, 2002 at http://esquif.lmd.
polytechnique.fr/) for NO and O3 measurements, and are
relatively independent from the measured concentrations.
Uncertainty in horizontal representativity was assessed by
simply calculating the standard deviation of the average of
O3 and NO values form the six urban surface sites. Besides,
both for urban O3 and NO observations, a correction was
applied to take into account the fact that measurements were
performed at around 3 m height whereas simulations are
representative for a layer between ground and 50 m height.

The corrective term was determined by comparison between
observations at the first floor of the Eiffel tower (around
50 m height) with measurements performed near ground.
[35] Uncertainty in O3 production within the plume is

composed both by uncertainties in plume and in background
ozone concentration. For both of it, we therefore calculate
instrumental and horizontal representativity uncertainties
following equation (4). Variances related to errors on the
spatial maximum of O3 and background O3 are combined to
an overall uncertainty:

s2 ¼ s2
max þ s2

back ð5Þ

2.2.5. Practical Setup of the BMC Experiment
[36] First, 500 Monte Carlo simulations were performed

by using the simple random sampling technique [Hanna et
al., 1998]. For this, different model input parameter sets are
generated by simultaneous and randomly varying all input
parameters according to their probability density functions.
With each of these 500 individual parameter data sets, 500
simulations were performed for July and August 1998 and
1999. Second, a posteriori weights were calculated for each
Monte Carlo simulation, using equation (1), individually for
each observational constraint (N = 1) and for the cumulative
constraint (N = 3). These weights are then applied to model
input and output. As said before, equation (1) is either
applied to average observations and simulations for the
summer 1998 and 1999 period or to subsets (1998 versus
1999, July versus August, working days versus weekend).
As we will seen for these different periods, meteorological
conditions were different and thus also the information that
could be driven from observations. Finally, sensitivity tests
with altered pdf’s and alters observation uncertainties were
performed in order to evaluate the effect of these character-
istics on the a posteriori pdf’s of anthropogenic emissions.

3. Results

3.1. Semiclimatologic Period of Summers (1998 + 1999)

[37] In this section, a posteriori pdf’s for anthropogenic
emissions will be given for the whole summer 1998 and
1999 period. Figure 4 represents the normalized a priori and
a posteriori pdf’s for the domain constant variations of NOx
and VOC emissions and also for the VOC/NOx emission
ratio. Moreover, changes in the averages and in the standard
deviation of the a posteriori pdf’s by comparison with the a
priori ones are shown (Table 3a). Standard deviations are
useful parameters only if distributions are not far from
Gaussian. Although no objective analysis was applied in
this work to assess this point, it can be stated from visual
inspection of Figure 4, that a posteriori pdf’s are close to
lognormal with a tendency to suppress values far away from
the means.
[38] For the summer 1998 and 1999 period, NOx emis-

sions remain nearly unchanged in the a posteriori pdf
compared to a priori one, the average correction factor
being 1.00. VOC emissions are enhanced (+16%) in the a
posteriori pdf, leading also to a stronger VOC/NOx emis-
sion ratio (+16%). The 1s standard deviations in the a
posteriori pdf’s are 22% for NOx emissions, 31% for VOC
emissions, and 33% for the VOC/NOx emission ratio,
respectively. These values allow appreciating the uncertainty

Table 2. One s Logarithmic Errors for Measurement Constraints

and for Different Time Periods

Measurement constraints Period 1 s Logarithmic errors

O3
plume � O3

background 1998 0.235
1999 0.291

1998 + 1999 0.266
July 1998 + 1999 0.299

August 1998 + 1999 0.239
working days 0.262

weekend 1998 + 1999 0.278
Urban NO 1998 0.331

1999 0.319
1998 + 1999 0.308

July 1998 + 1999 0.357
August 1998 + 1999 0.314

Working days 0.287
Weekend 1998 + 1999 0.491

Urban O3 1998 0.149
1999 0.112

1998 + 1999 0.137
July 1998 + 1999 0.132

August 1998 + 1999 0.144
Working days 0.137

Weekend 1998 + 1999 0.131
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in inverted emissions, or, more exactly, in the correction
factors applied with respect to a priori emissions far from
significant at the 2s level. Nevertheless, Table 3a also
shows that the BMC method was very successful in
reducing the variance in the emission uncertainty, by nearly
70 % for NOx emissions, by nearly 40% for VOC emissions
and again by nearly 70% for the VOC/NOx emission ratio.
We recall that these values are relative to the a priori fixed
emission uncertainties of 40 % for NOx and VOC and 56 %
for the VOC/NOx ratio (at 1s level).
[39] Next, we analyse how a modification in emissions

and eventually other input parameters in the a posteriori
pdf’s leads to better agreement between simulations and
observations (50th percentiles in the cpdf’s). Figure 5
represents the cumulative probability density functions
(cpdf’s) of urban NO, urban O3 and O3 production within
the plume. These three values are calculated as described for
the set-up of the agreement function (section 2.2.3). The
cpdf’s not constrained by observations extend over a large
range of values. For example, for urban NO, the model
allows for very strong NO formation for a number of input
parameter sets. When the constraints are taken into account,
it appears that the uncertainty in urban NO is reduced by a
factor 3.2 in term of the uncertainty range spanned by the
10th and 90th percentiles. For urban NO, the constraint is
stronger on the 90th percentiles than on the 10th percentiles
so that the cpdf’s become more point symmetrical (Figure 5).
For urban O3 and O3 production within the plume, this

factor is about 2.4 and 1.7, respectively, the constraints
being lower for the 90th percentiles than for the 10th
percentiles. Moreover, these two distributions are shifted
to larger values.
[40] We next analyze to what extend the observational

constraints improve the agreement between simulations and
observations. Table 3b represents concentrations of urban
NO, urban O3 and O3 production for the reference simula-
tion, for the 50th percentiles in the model output cpdf’s
from constrained and unconstrained Monte Carlo simula-
tions and from observations. We notice that the simulation
of urban NO is already good in the reference simulation.
Correspondingly, the constraint applied to Monte Carlo
simulations does not strongly modify 50th percentiles of
urban NO. This also explains the fact that NOx emissions
remain unchanged in the a posteriori pdf.
[41] Regarding urban O3, the measurement constraint

leads to higher modeled than observed concentrations
(44.35 versus 42.58 ppb), overcorrecting to some extent
an initial underestimation. Furthermore, the reference CHI-
MERE model also underestimates O3 production within the
plume by a factor of 1.7 compared to observations. When
applying the constraint, about half of the difference is
removed (Table 3b). This ‘‘correction’’ is mainly due to
higher VOC/NOx emission ratios by increasing VOC emis-
sions in the a posteriori distribution, leading to a higher
photochemical production of O3. A complete agreement
between constraint simulations and observations cannot be
expected because of the uncertainty in observations which is
taken into account in the agreement function and which
allows simulations being within about the 1s range of
observations to have a relatively large weight. Indeed,
differences between constraint simulations and observations
turn out to be always smaller that the 1s uncertainties in
observations in this study (for the summer 1998 and 1999
period and for subsets).

3.2. Differences Between Summers 1998 and 1999

[42] Table 4a and Figure 6 summarize how a posteriori
pdf’s for anthropogenic emissions have been modified
when applying the measurement constraint separately for

Figure 4. Normalized probability density functions (pdf’s) for model input emissions (NOx and volatile
organic compounds (VOC)) for summers 1998 + 1999. The a priori pdf is represented by the grey
histogram; the a posteriori pdf for total constraint is represented by the black histogram. The x axis shows
the logarithmic relative variation for input emissions; that is, ±0.3 corresponds to a factor 1.35 increase or
decrease.

Table 3a. Modification in A Posteriori Input Parameter Distribu-

tions With Respect to the A Priori Ones for Total Constraint and for

Summers 1998 + 1999a

Input Parameters

Total Constraint

ave(x) and s(x) (%) D(var) (%)

NOx emissions 0 ± 22 �69
VOC emissions 16 ± 31 �38
EVOC/ENOx 16 ± 33 �66

aAve(x) and s(x) are the average and the standard deviation, respectively;
D(var) corresponds to the variance modification between a priori and a
posteriori estimates.
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summer 1998 and 1999. A posteriori pdf’s for NOx
emissions in 1998 and 1999 are rather similar. However,
VOC emissions are more enhanced in summer 1998 than
in summer 1999 (26% versus 9%). Consequently, also the
VOC/NOx emission ratio is larger for summer 1998 than
for summer 1999.
[43] In order to better understand differences between

the two summers, we present separate results for each
year (Table 4b). We will also distinguish the specific role
of different constraints (urban NO and O3, plume O3).
For both summers 1998 and 1999, urban NO is most
efficient to constrain NOx emissions, their variance being
reduced by about 60%: indeed, urban NO directly con-
tains information on NOx sources within Paris and its
near suburbs. For VOC emissions, the most restricting
constraint is the O3 production within the plume over the
Ile-de-France region. The uncertainty reduction is stronger
for summer 1998 than for summer 1999 (Table 4b).
Moreover, for summer 1998, the need to correct O3

production within the plume is larger than for summer
1999 (Table 5): 50th percentiles in the model output
cpdf’s from unconstrained Monte Carlo simulations show
a factor 1.9 underestimation with respect to the observed
value in 1998, but only a factor 1.5 underestimation in
1999 (leading in fact to the stronger VOC emission
enhancement in 1998 than in 1999). The reason for the
different behaviour in 1998 and 1999 is not clear. For
example, fewer, but more severe pollution episodes were
encountered in summer 1998 than in summer 1999. A
different intensity of the events could possibly induce
different model behaviour, and different biases in model
input parameters other than VOC emissions. These uncer-
tainties in model input parameters other than emissions
are taken into account in the set-up of the study and
contribute to the uncertainty ranges given for a posteriori

emissions, about 30% for VOC emissions (1s). In light
of this value, differences between the 1998 and 1999
corrections are not considered as significant.
[44] Table 5 gives a general overview, how different

constraints change output 50th percentiles cpdf’s. As can
be expected, a particular constraint (i.e., urban NO)
pushes cpdf’s for the same type of output variable closer
to the observed value. However, different constraints can
act in different directions: for example, in summer 1998,
the ‘‘O3 plume’’ constraint alone leads to a strong
overestimation of urban O3 (Table 5). Application of all
constraints (‘‘total constraint’’) leads to a compromise
between individual constraints.

3.3. Stratification Following the Day Type (Working
Days Versus Weekend; July Versus August)

[45] In the following, we report results for different
subsets of the two summer period with potentially differ-
ent emissions correction factors: first, we differentiate
between week days and weekend days, second between
the July and August period (August being a traditional
holiday month). Table 6 summarizes corrections on emis-
sions pointing out that for all subsets, emission correc-
tions and their uncertainty ranges are rather similar. Thus
we conclude that the temporal variability (on a day to
day and month to month level) is well represented in the
initial AIRPARIF cadastre.

4. Discussion

4.1. Other Adjustments of Input Parameters

[46] In the present work, we focus our attention to the
modification of emissions through application of con-
straints. However, it is expected the other input parameters
are modified by the constraints as well. In particular, errors

Table 3b. Agreement Between Simulations and Observations Under Total Constraint and for the Whole Time

Period

Reference Simulation

P50

ObservationsWithout Constraint Total Constraint

Urban NO, ppb 12.6 13.1 13.4 12.8
Urban O3, ppb 40.6 41.7 44.3 42.6
DO3, plume, pbb 10.1 11.5 15.7 19.5

Figure 5. Cumulative probability density functions (cpdf’s) for urban NO, urban O3, and O3 production
within the plume (dotted line: no constraint; continuous line: total constraint).
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in the simulation of horizontal and vertical transport
(corresponding to uncertainties in the wind speed, the
vertical mixing coefficient and the planetary boundary layer
height) are expected to strongly affect simulations and thus
to be ‘‘corrected’’ by the observational constraint.
[47] The strongest modification in an input parameter

occurred for the vertical mixing coefficient, which decreases
by around 20% in summer 1998 with a variance reduction
around 42%. For all other parameters and the year 1999, all
adjustments are below 10%. Thus on the whole, adjust-
ments in emissions appear to be the most ‘‘efficient’’ way
for the system to better fit the observations.

4.2. Sensitivity to the Analysis Scheme

[48] We next identify critical points in the BMC analysis.
Sensitivity experiments are performed to test how they
affect results. A first uncertainty arises from the somewhat
subjective choice of pdf’s for the input parameters. Sensi-
tivity experiments with altered pdf’s are performed for key
input parameters: NOx and VOC emissions. In a first
sensitivity experiment, the whole analysis is repeated but
with an increased lognormal 1s uncertainty in anthropo-
genic NOx emission of 44% instead of 40% (experiment 1).
In a second sensitivity experiment, we modify the pdf’s of
VOC emission in the same way (44% instead of 40%)
(experiment 2). Another critical point is the uncertainty in
observations used in the agreement function. To test the
effect of that uncertainty on BMC analysis, we assume a
relative increase in uncertainties in urban NO, urban O3 and
O3 production within the plume of 10% (experiment 3). The
value of 10% is completely arbitrary and is only chosen to

have a common basis for comparison. This type of experi-
ments does not require new simulations but only the
recalculation of the weights attributed to each Monte Carlo
simulation.
[49] Table 7 summarizes changes in a posteriori pdf’s

related to a priori ones for the three different sensitivity
experiments. For NOx emissions, a change in the a priori
uncertainty range has no effect on the a posteriori uncer-
tainty, whereas a change in the observation uncertainty has
at least a small effect. On the contrary, for VOC emissions,
the value of the a priori uncertainty has a much stronger
influence on the a posteriori uncertainty, whereas the
uncertainties in observations only have a small influence.
A larger a priori uncertainty also leads to a somewhat larger
positive adjustment. In the light of this discussion, results
for NOx emissions appear more robust, because they are
less dependent on the somewhat arbitrarily chosen values
for a priori uncertainties.

4.3. Comparison With Related Studies

[50] We now compare results obtained in this study with
results obtained from three other studies, all relative to the
assessment of uncertainty in emission cadastres in the Ile de
France region. In their BMC study, Beekmann and Derognat
[2003] also derived correction factors for NOx and VOC
emissions in the Ile-de-France region, but their study was
restricted to three polluted days, for which well documented
airborne O3, NOx, NOy and VOC observations within the
plume and in the background air were available from the
ESQUIF campaign. For NOx emissions, they found a large
scatter in results for individual days varying between �21%

Table 4b. Modification in A Posteriori Input Parameter Distributions With Respect to the A Priori Ones for Each Constraint and for

Summers 1998, 1999, and 1998 + 1999a

Input Parameters Constraints Summer 1998 Summer 1999 Summer 1998 + 1999

ave(x) and s(x), % D(var), % ave(x) and s(x), % D(var), % ave(x) and s(x), % D(var), %

NOx emissions urban NO 2 ± 25 �58 2 ± 26 �57 2 ± 25 �59
urban O3 �4 ± 34 �26 �12 ± 35 �24 �6 ± 34 �26
O3 plume �3 ± 35 �22 �4 ± 37 �14 �4 ± 35 �20

total constraint 1 ± 21 �70 �1 ± 23 �65 0 ± 22 �69
VOC emissions urban NO �1 ± 37 �10 �2 ± 37 �11 �2 ± 37 �11

urban O3 �2 ± 36 �15 0 ± 37 �12 �1 ± 37 �14
O3 plume 30 ± 30 �39 17 ± 34 �26 23 ± 32 �31

total constraint 26 ± 30 �39 9 ± 32 �34 16 ± 31 �37
EVOC/ENOx urban NO �3 ± 45 �36 �3 ± 45 �35 �3 ± 45 �36

urban O3 1 ± 47 �30 11 ± 47 �30 5 ± 47 �31
O3 plume 33 ± 48 �25 21 ± 49 �24 26 ± 48 �25

total constraint 25 ± 31 �70 10 ± 35 �60 16 ± 33 �66
aAve(x) and s(x) are the average and the standard deviation, respectively; D(var) corresponds to the variance modification between a priori and a

posteriori estimates.

Table 4a. Modification in A Posteriori Input Parameter Distributions With Respect to the A Priori Ones for

Total Constraint and for Summers 1998 and 1999a

Input Parameters Summer 1998 Summer 1999

ave(x) and s(x) (%) D(var) (%) ave(x) and s(x) (%) D(var) (%)

NOx emissions 2 ± 21 �70 �1 ± 23 �65
VOC emissions 26 ± 30 �39 9 ± 32 �34
EVOC/ENOx 25 ± 31 �70 10 ± 35 �60

aAve(x) and s(x) are the average and the standard deviation, respectively; D(var) corresponds to the variance modification
between a priori and a posteriori estimates.
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and +30%, making it impossible to state about a possible
bias in average NOx emissions. The present study removes
this uncertainty in analysing a much larger 4 months period
and in stating on the absence of a bias. For VOC emissions
the Beekmann and Derognat [2003] BMC study yielded
corrections between �8 and +5%, which are fully within the
1s variability of the a posteriori distribution found in the
present study (+16% ± 31%).
[51] In another study assessing the same Ile-de-France

emission cadastre [Vautard et al., 2003b], airborne plume
and background NOy and VOC observations obtained
during the ESQUIF campaign were used to derive emission

correction factors from direct comparison of simulations
and observations. Within the statistical uncertainty range of
±35% for NOx and ±40% for VOC emissions (at 2s level),
no bias in Ile-de-France VOC and NOx emissions was
found, in line with results from our study. Again, our study
uses a much larger data set (124 days compared to 7 days in
the Vautard et al. [2003b] study), making the statistical error
a priori negligible with respect to the systematic error in our
study.
[52] In a third study, a complementary inversion method-

ology was developed and applied to the Ile-de-France
region for the same summers 1998–1999 period. The

Figure 6. Normalized probability density functions (pdf’s) for model input emissions (NOx and VOC)
for summers 1998 and 1999. The a priori pdf is represented in the grey histogram; the a posteriori pdf for
total constraint is represented by the black histogram.

Table 5. Agreement Between Simulations and Observations Under Each Constraint and for Summers 1998, 1999, and 1998 + 1999

Reference Simulation

P50

ObservationsWithout constraint Urban NO Urban O3 O3 plume Total constraint

Summer 1998
Urban NO, ppb 13 13.6 13.7 12.4 14.7 15.1 13.3
Urban O3, ppb 41.1 41.1 41.6 41.6 48.4 44.1 40.4
DO3, plume, pbb 10.2 11.1 11.6 10.7 18.5 16.9 20.8

Summer 1999
Urban NO, ppb 12.2 12.5 12.5 9.3 12.2 12.5 12.1
Urban O3, ppb 40.3 41.6 44.5 43.4 44.6 44 43.7
DO3, plume, pbb 9.9 12.1 12.8 12.5 16 16 18.1

Summer 1998 + 1999
Urban NO, ppb 12.6 13.1 13.2 11.5 13.4 13.4 12.8
Urban O3, ppb 40.6 41.7 41.5 42.3 46.4 44.3 42.6
DO3, plume, ppb 10.1 11.5 12.2 11.6 17 15.7 19.5
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method is based on the adjoint model of the CHIMERE
model. It was first developed and validated using academic
cases [Pison et al., 2006]. During this phase, it was found
that only NO surface observations represented the best
constraint and allowed to invert spatially aggregated NOx
emission fluxes with an hourly time frequency Finally, the
methodology was applied over the whole summers of 1998
and 1999 (124 days), as in our study (I. Pison et al.,
Inversion of surface NOx anthropogenic emissions fluxes
in the Paris area during the ESQUIF campaign, submitted to
Journal of Geophysical Research, 2006.). The method
yields very low average adjustment of NOx emissions
(some percent) for the Ile-de-France region, in line with
results from our study. Second, intense NOx emissions in
the centre of the area are most frequently decreased whereas
less intense periurban emissions are increased. For the three
types of days (weekday, Saturday and ‘‘Sunday or holi-
day’’), the differences between optimized and first-guess
profiles are less than 15%, again in line with results from
our study.

5. Conclusions

[53] We have applied a Bayesian Monte Carlo (BMC)
uncertainty analysis to a semiclimatologic period over the
Ile-de-France region where photochemical smog formation
is often observed [Vautard et al., 2001]. The study aims at
inverting anthropogenic NOx and VOC emissions in the Ile-

de-France region. For cumulative summers (1998 + 1999),
this technique allows obtaining better estimation of NOx
and VOC emissions compared to the AIRPARIF a priori
ones: (1) The a posteriori pdf for NOx emissions has a
nearly unchanged average compared to the a priori one, but
a reduced standard deviation (around 20% compared to 40%
for the a priori one). (2) VOC emissions are enhanced
(+16%) in the a posteriori pdf with a standard deviation
around 30% (compared to 30%). These results imply a
stronger VOC/NOx ratio (+16%). Those results show the
absence of any significant bias in the AIRPARIF emission
cadastre. Sensitivity tests with modifications in the BMC
method (varying uncertainty range for input parameters and
for uncertainty on observations) confirm that the results are
more robust for NOx emissions, because they less depend
on the choice of their a priori uncertainty.
[54] For future BMC studies, several directions could be

taken. First, this type of analysis could be performed over
other well documented areas such as the Berre-Marseille
region. Measurements performed during the ESCOMPTE
campaign [Cros et al., 2004] in the Marseille area and
routine data from the AIRMARAIX network could be used
for constraining Monte Carlo simulations. However, this
area is characterized by complex pollutant circulation due to
topography and sea breeze phenomena [Taghavi et al.,
2004]. Another possibility could be to apply this method
to the continental scale such as over the northwestern
Europe [Vautard et al., 2005; Konovalov et al., 2006].
Konovalov et al. [2006] performed original inverse model-
ing studies using satellite measurements for optimizing
spatial distribution of seasonally averaged NOx emissions.
BMC analysis could help to better assess the impact of
model uncertainty on the inversion of continental-scale
NOx emissions.

[55] Acknowledgment. We gratefully acknowledge Pascal Bleuyard
for his computer support as well as his input and patience.
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