
HAL Id: hal-01987967
https://uca.hal.science/hal-01987967

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A physical model of the bidirectional reflectance of
vegetation canopies. Part 1 : Theory
M.M. Verstraete, Bernard Pinty, R. E. Dickinson

To cite this version:
M.M. Verstraete, Bernard Pinty, R. E. Dickinson. A physical model of the bidirectional reflectance
of vegetation canopies. Part 1 : Theory. Journal of Geophysical Research, 1990, 95 (D8), pp.11755.
�10.1029/JD095iD08p11755�. �hal-01987967�

https://uca.hal.science/hal-01987967
https://hal.archives-ouvertes.fr


JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. D8, PAGES 11,755-11,765, JULY 20, 1990 

A Physical Model of the Bidirectional Reflectance of Vegetation Canopies 
1. Theory 

MICHEL M. VERSTRAETE1 

Office for Interdisciplinary Earth Studies, University Corporation for Atmospheric Research, Boulder, Colorado 

BERNARD PINTY 2 AND ROBERT E. DICKINSON 

National Center for Atmospheric Research, Boulder, Colorado 

An analytical expression for the bidirectional reflectance field of a vegetation canopy is derived from 
physical and geometrical considerations of the transfer of radiation through a porous medium. The 
reflectance pattern is shown to depend explicitly on the optical properties of the scatterers (for 
example, leaves), and on the structural parameters of the canopy, such as the statistical distribution 
of the orientation of these scatterers, the leaf area density, the size of the scatterers and their 
interspacing. This theory provides a simple and accurate way to understand the anisotropy of the 
radiation field over a vegetated surface. It can be useful for modeling applications (for example, the 
albedo is a by-product which can be numerically estimated), as well as for extracting some of the 
structural and physical properties of the surface. These applications are discussed in the accompany- 
ing paper (Pinty et al., this issue). 

1. INTRODUCTION 

Vast amounts of satellite remote sensing data on the state 
and evolution of the surface of the Earth have been accu- 

mulated over the last decade. NASA's projected Earth 
Observing System (EOS) will significantly increase the size 
of this data base, not only with additional data, but also with 
improved spatial and temporal coverage, and enhanced 
spectral resolution [NASA, 1988]. These developments pro- 
vide unique opportunities for various scientific communities, 
but the potential utilization of these data to retrieve quanti- 
tative estimates of land surface properties is currently lim- 
ited by various drawbacks inherent to remote sensing tech- 
niques. One such limitation lies in our inadequate 
understanding of the physical processes governing the trans- 
fer of radiation at the surface of the Earth. This translates 

into a lack of physically based models to describe such 
processes and to invert these data into useful information. 

It is well known that natural continental surfaces (bare 
soils, vegetation canopies) reflect radiation quite anisotropi- 
cally. Satellite measurements therefore strongly depend on 
both the position of the Sun and the position of the observer 
relative to the Sun, hence the term "bidirectional reflec- 
tance." This bidirectional reflectance field, however, cannot 
be expressed as a function of the relative geometry of 
illumination and observation only (for example, the two 
zenith angles and a relative azimuth angle), because it is also 
dependent on the physical and the morphological properties 
of the observed surface. This fact alone is responsible for 
some of the major difficulties encountered in the process of 
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interpreting data from one satellite and, a fortiori, when 
trying to compare or combine measurements from the same 
ecosystem taken with different satellite sensors. 

A model of the bidirectional reflectance of natural surfaces 

is therefore clearly needed. Various approaches have been 
used in the past to represent the anisotropy of the surface, 
including raytracing and Monte Carlo techniques [e.g., 
Kimes and Kirchner, 1982; Ross and Marshak, 1988], geo- 
metrical optics [e.g., Suits, 1972; Otterman, 1983], empirical 
functions [e.g., Walthall et al., 1985], semiempirical func- 
tions [e.g., Kieffer et al., 1977; Pinty and Ramond, 1986], 
and analytical solutions of the radiative transfer equations 
[e.g., Hapke, 1981; Camillo, 1987]. Each of these ap- 
proaches exhibits specific advantages and disadvantages, 
depending on the particular applications for which they were 
designed. Ideally, what would be needed to extract pertinent 
information on land surfaces from satellite remote sensing 
data is a universal, accurate, and computationally cheap 
physically based model of the bidirectional reflectance of 
porous surfaces. 

The goal of this paper is to describe a physically based 
model for predicting the bidirectional reflectance field over a 
radiatively homogeneous scattering surface. Specifically, 
our theoretical development is designed to describe a homo- 
geneous full canopy composed of leaves. This model must be 
considered as the first necessary step toward a more realistic 
treatment of radiation scattering in this complex medium. 
The model is based on the scattering theory for a particulate 
media; it is kept as exact as reasonably possible, keeping in 
mind the necessary compromise between the need for an 
accurate description of the scattering process and for a 
simple analytical expression usable for the inversion of 
satellite remote sensing data. The application of this model 
to actual data sets is presented in a companion paper [Pinty 
et al., this issue]. 

This model follows the general approach developed by 
Hapke [1981, 1986]. Hapke's model was specifically de- 
signed to study planetary surfaces, using satellite bidirec- 
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tional measurements of their reflectance fields. Implicitly, 
his model is applicable to homogenous semi-infinite media 
composed of uniformly distributed scatterers, as is generally 
the case for soil surfaces. However, as a result of the 
availability of water on land, over 65% of the continental 
areas on Earth are covered by vegetation, and exhibit 
surfaces with radiative properties significantly different from 
bare soil cases. In the simplest case of a fully covering 
homogeneous canopy, the radiation is mainly reflected and 
absorbed by leaves which, for the purposes of modeling, can 
be considered flat surfaces. These surfaces, however, may 
be preferentially oriented (in zenith or azimuth angle), de- 
pending on the plant species, and it has been shown that the 
reflectance of the canopy is quite dependent on both the 
zenith angle of illumination and the statistical distribution of 
leaf orientation (see, e.g., Ross [1981], Dickinson [1983], and 
Verstraete [1987, 1988]). The theory described below is a 
generalization of Hapke's model to account for the specific 
structure of a canopy, that is, the orientation of the leaves, 
as well as the characteristics of their geometrical arrange- 
ment in the canopy. 

This paper also addresses another major theoretical point, 
namely, the mathematical expression of the combined trans- 
mission of the incoming and outgoing radiation. As will be 
seen shortly, the transmission of the scattered radiation in a 
porous medium is not independent of that of the incoming 
direct radiation: the two optical paths actually share a 
common volume, free of scatterers, near the scatterer that 
causes the reflection. Consequently, the optical depth along 
the combined path is reduced, and the total transmission 
becomes a function of the morphology of the medium. This 
effect results in an enhanced reflectance in the direction of 

illumination, and is known as the "hot spot" or the "oppo- 
sition effect." In practice, this increased reflectance ex- 
presses the total absence of apparent shadows to the sensor, 
when the direction of observation and the direction of 

illumination coincide, that is, when the source of radiation 
and the sensor are along the same optical path (see, e.g., 
Myneni et al. [1988]). This model therefore constitutes a 
direct attempt at providing a general analytical expression to 
relate some of the morphological properties of the canopy to 
the observed bidirectional reflectance field. Applications of 
this theory include the proper description of the reflectance 
(and in particular albedo) of a canopy of known physical and 
structural properties, as well as the capability to retrieve 
such information from remote sensing data. 

2. SINGLE SCATTERING OF DIRECT RADIATION 

IN PLANT CANOPIES 

Absorption of solar radiation by plant canopies and at the 
soil surface is of great interest to atmospheric modelers and 
climatologists, since it determines to a large extent the 
amount of solar energy effectively available for the climate 
system as a whole. This absorption of radiative energy at the 
surface of the Earth is also of concern to agronomists and 
biologists because it directly affects the physiology and 
productivity of plants. 

While the quantity of radiation actually absorbed in a 
given environment is difficult to estimate directly, the radi- 
ation scattered by the surface can be measured with standard 
instruments, either locally or remotely. Since the absorbed 
and the scattered components are directly related through 

the conservation of energy, it is customary to measure the 
scattered radiant energy and compute the absorption as a 
residual. It turns out, however, that many natural surfaces 
exhibit preferential directions for the reflection of solar 
radiation; in other words, the measured reflectance of such a 
surface depends not only on the nature and structure of the 
surface, or the intensity and position of the source of light, 
but also on the relative position of the observer. This 
represents a major inconvenience if the goal is to estimate 
the directional hemispherical reflectance (albedo) of the 
surface, since the reflectance must be measured and inte- 
grated over different viewing geometries. The bidirectional 
nature of the reflected radiation is an advantage, however, to 
the extent that it depends on (and therefore characterizes) 
the structure of the surface. This allows the retrieval of 

information on the surface by inversion of the measured 
reflectances in these viewing geometries. 

This paper will focus on the theoretical treatment of the 
single-scattering component of the transfer of radiation 
through a vegetation canopy. This is amply justified by the 
facts that this component contributes approximately 90% of 
the total scattered radiation in the visible spectral band (that 
is, with a wavelength shorter than 0.7 krm) and about 40% of 
the radiation scattered in the near-infrared region, and that 
the single scattering of direct solar radiation contains the 
most useful information on the canopy structure, to the 
extent that the effect of multiple scattering is to smooth out 
such features. The inversion of actual data in the accompa- 
nying paper does take multiple scattering into account, 
however, following the improved formulation suggested by 
Dickinson et al. [1990]. 

2.1. Downward Transmission of the Direct Incident 
Radiation 

We start by considering a horizontally homogeneous (but 
possibly vertically inhomogeneous) canopy of finite depth h 
above the ground. Let z denote the vertical coordinate, 
increasing upward from an origin at the bottom of the 
canopy. If 0• and &l are the zenith and azimuth angles of the 
Sun, respectively, and if/•l - cos 01, 

Tl(z) = exp --•j exp - kl(z)A(z) dz (1) 
is the transmission of direct solar radiation through the 
canopy layers above level z. Here, rl(z) is the optical 
thickness of the canopy above level z, A(z) is the leaf area 
density, in m 2 m -3, at level z in the canopy, and kl(z) is the 
extinction coefficient for direct radiation in this canopy: 

K l(Z) (COS O1)Z 
= = (2) 

g i cos 01 

where O l is the angle between the normal to a leaf and the 
direction of the Sun, and g l(z) = (cos O•)z is the average of 
the cosine of this angle over all leaves at level z, a value that 
can be computed if the leaf orientation distribution function 
is known [e.g., Verstraete, 1987]. This average value is 
sometimes denoted G(•) [e.g., Ross, 1981]. 

If J0 is the direct solar radiation flux available at the top of 
the canopy (z = h), in W m -2 on a surface pe•endicular to 
the direction of the Sun, in a given spectral band, then J = 
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J0 Ial is the direct solar radiation flux available at the top of 
the canopy, in W m -2, on a horizontal surface, and J Ti(Z ) 
is the direct solar radiation flux transmitted to level z without 

interception in the canopy [Verstraete, 1987, p. 10,991]. 
Following Hapke's [1986, pp. 268-269] derivation, we 

express the flux of direct solar radiation transmitted to level 
z - dz in this canopy as 

JTI(Z - dz) = Jol alTl(z) exp - dz 
- dz 

l = Joia • Ti(z) exp - (3) 

where 

dr•(z) = (cos ©•)zA(z) dz = •(lA(Z) dz (4) 
- dz 

where K 1 is the average cosine of the angle between the 
normal to the leaf and the direction of illumination (see (2)). 
The amount of direct solar radiation interacting for the first 
time with the canopy in the slab z to z - dz is therefore 

JT•(z) - JT•(z - dz) = Joia •T•(z) 1 - exp .... 

dri(z) 
• Joia iTi(z) • = JoTi(z) dri(z) (5) 

to the first order. 

2.2. Scattering of Radiation in the Direction 
of an Observer 

Consider now a directional light detector of size da, 
sensing the canopy through a small solid angle dfl (field of 
view). If it is located at a distance R from the canopy slab, 
and if its orientation is characterized by a zenith angle 02 and 
an azimuth angle •b2, this detector samples an elementary 
horizontal surface 

R2d• 
dA = • (6) 

on the canopy slab, where Ia2 = cos 02. The amount of light 
that illuminates the elementary volume dV = dAdz is given 
by 

JoT•(z)dr •(z)dA (7) 

Let to be the single-scattering albedo of the scatterers 
(mostly leaves), and P(g) the phase function of these scat- 
terers, assumed to be independent of leaf orientation. The 
phase angle g is the angle between the incoming and outgo- 
ing directions: 

cos g = cos 0• cos 02 + sin 0• sin 02 cos (4•- 4•2) (8) 

Then, if the sun flecks are assumed fiat, smooth and hori- 
zontal, that is, if we neglect the orientation of the intercept- 
ing leaf, 

toP(g) 
Jo T•(z)dv •(z)dA (9) 

4re 

is the density of radiation scattered with a phase angle g with 
respect to the direction of the Sun. The assumption of 
horizontal sun flecks is discussed below in section 2.3 and by 
Dickinson et al. [1990]. Furthermore, 

toP(g) da toP(g) dfl 
T•(z)dv•(z)dA = Jo T•(z)dr•(z) da Jo 4 ,r • 4 ,r 122 

(10) 

is the amount of light scattered at the phase angle g in the 
elementary volume dV of the sensor. Finally, if T2(z) is the 
transmission of the scattered radiation on the optical path 
from the elementary canopy volume dV to the detector, the 
amount of light reaching the detector is 

toP(g) dfl 
Jo TI(z)d•'I(Z)T2(z) da (11) 

4 ,r 122 

and the light reaching the detector from all slabs in the 
canopy, per unit area and per unit solid angle, is given by 

fo h toP(g) Jo TI(Z)T2(z) drl(Z) 
4•ria2 

toP(g) •0 h = Jo Ti(z)T2(z) dri(z) (12) 
4rria2 

The bidirectional reflectance of this canopy, illuminated 
from a direction (0•, •b•) by direct solar radiation, and 
observed from a direction (02, c32), is then obtained by 
normalizing this expression by the incoming radiant power 
J0: 

toP(g) •o h p(01, qb•; 02, qb2)- Ti(z)T2(z) dri(z) (13) 
4•ria2 

2.3. Upward Transmission of the Scattered Radiation 

For reasons that will be explained shortly, the transmis- 
sion of scattered radiation, in a direction (02, •b2) very far 
from the incoming direction (01, qbl), is described by an 
approximate expression similar to (1) for the incoming 
radiation: 

T2(z) • exp - --•2] exp - k2(z)A(z) dz (14) 
where •'2 is the approximate optical thickness along the 
return path, and k2(z) is the extinction coefficient appropriate 
for the emerging direction: 

2(z) (cos O2)z 
= = 

•2 cos 02 

where O2 is the angle between the normal to the leaf and the 
direction of observation. 

This expression is only approximate because when the 
direction of observation is exactly the same as the direction 
of illumination, the transmission T2(z) of the scattered light 
should be unity, since any direct solar radiation capable of 
penetrating down to level z before being scattered must 
obviously be able to exit the canopy without further inter- 
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action with it when it is scattered back exactly in the 
incoming direction. Moreover, direct solar radiation scat- 
tered back in directions characterized by small phase angles 
g, that is, close to its incoming path, has a high probability of 
escape from the canopy without further scattering by the 
vegetation. The transmission of the outgoing radiation is 
therefore not independent from the transmission of the 
incoming radiation. Reflectance is increased in the direction 
of illumination because no shadows are visible in that 

direction. This phenomenon is commonly observed on many 
porous surfaces such as soils and vegetation and is known as 
the "opposition effect" or "hot spot phenomenon." 

From this qualitative discussion, it follows that the oppo- 
sition effect is a direct consequence of the structure of the 
canopy, and, in particular, that its angular extent is related to 
the shape of the "holes" between the leaves, that is, on the 
distribution of scatterer-free regions in the canopy as seen 
from the direction of the Sun. 

Describing the transmission of direct solar radiation in a 
scattering medium as a negative exponential (such as in (1) 
and (14) above) is only a statistical statement that some 
diminishing fraction of the incoming photons will be able to 
penetrate further into the medium. Even though this law may 
be used to quantify the sunlit area as a function of depth in 
a canopy [e.g., Verstraete, 1987], it only describes the 
proportion of sun fleck area, not the number of sun flecks or 
their dimensions. Clearly, some additional parameter(s) on 
the canopy structure are needed to account for the hot spot, 
and they will of necessity be related to the geometry of the 
holes. Conversely, such parameter(s) will, in principle, 
permit the retrieval of information on the structure of plant 
canopies from an interpretation of the anisotropy of the 
reflectance field at small phase angles. 

In the remainder of this section we derive a general expres- 
sion of T2(z), for an arbitrary illumination and viewing geome- 
try. This is achieved by finding an expression for the optical 
thickness of the return path (from the scatterer to the top of the 
canopy), which takes the above observations into account. 

Consider a leaf of area at and of arbitrary orientation (0t, 
•bt), located at depth zt in the canopy, and partly illuminated 

ß 

by direct solar radiation. Let a] < at be the illuminated area 
cff thiq leaf. If •2 iq the angle hotween the normal tc• the leaf 
and the direction of observation, the illuminated area effec- 

. 

tively viewed by the observer is given by a] cos {92, the 
projection of the illuminated area in a plane perpendicular to 
the direction of viewing. Furthermore, the observer would 
see the same illuminated area if in fact the leaf was horizon- 

tal, but had its lit area equal to a[ cos •2/c0s 02. It is 
therefore possible to replace all partly lit leaves with arbi- 
trary orientation by equivalent (as far as the observer is 
concerned) horizontal leaves with a different illumination 
area, defined in such a way that the observer sees the same 
result. The following theory is therefore derived for horizon- 
tal leaves partially illuminated by the Sun. 

For the purpose of deriving an analytical expression for 
the optical thickness of the scattered radiation, we will 
further assume that the equivalent horizontal lit area is 
circular (we are interested in describing the amount of light 
scattered in the direction of the observer, not the shape of 
the sun flecks on the leaves). Let r be the radius of this small 
horizontal circular illuminated leaf area at level Zl in the 
canopy. The lit circle and the direction of illumination define 
a cylindrical volume øV• in the canopy (Figure 1). Similarly, 

the lit circle and the direction of observation define the cylin- 
drical volume øV 2 in this canopy. These two cylinders share a 
common base and have the same height (h - zt) inside the 
canopy; therefore they have the same total volume: 

øV• = øV2 = •rr2(h - Zl) (16) 
If the two directions of illumination and observation are 

identical, these two cylindrical volumes coincide. In all other 
cases, they intersect only over a finite height above the level 
of the scatterer, but since the two cylinders share the same 
lower base, they also necessarily always share some com- 
mon volume 

øV o = øV• Cl øV 2 (17) 

where f• designates the intersection of sets. The comple- 
ment, that is, the fraction of øV 2 not in common with øV• is 
(Figure 1)' 

øV c = øV 2\øV o (18) 

where the symbol \ designates the subtraction operation for 
sets. 

Volume øV•, defined by the incoming beam of direct solar 
radiation, is free of scatterers by definition. Consequently, 
as long as the radiation scattered by the leaf in the direction 
of the observer remains within the volume oV o common to 
both cylinders, the optical thickness is zero (transmissivity is 
one). The scattered radiation is, however, affected by the 
usual optical depth as soon as it leaves the comm6n volume 
and proceeds to the observer within the volume oV c. Strictly 
speaking, each photon reaching the leaf and scattered in the 
direction of the observer has its own path length within oV o 
and øV c, but we will assume that globally, the effective 
optical depth for all incoming direct solar radiation scattered 
toward the observer is a fraction of the optical depth that 
would be appropriate in the absence of additional informa- 
tion on the fractional path with zero optical depth, where the 
fraction is simply the relative proportion of the volume 
not in common with 

ß 2(z)- iiC2l I 2(z) (19) 
where ii•Vi[ stands for the actual volume occupied by the set 
øV. 

When the two directions coincide, the entire volume of the 
cylinders is shared, øV o = øV 2 and øV c = 0, hence the optical 
depth on the return path is •'2 = 0, and the transmission of 
the scattered radiation in the direction of illumination is T2(z) 
= 1. Conversely, when the two directions are very different, 
the common volume øV o is relatively small, and øV c • øV 2, so 
that the optical depth in this case reduces to the asymptotic 
value •2. Equation (14) for the transmission of the scattered 
radiation can therefore be rewritten 

- = (20) T2(z): exp -•2 / exp 
and we are left with the problem of evaluating the ratio 
II•rc II/•r2 II for arbitrary angular positions of the Sun ana the 
observer. 

2.4. Optical Thickness of the Scattered Radiation 
We now define a new vertical coordinate, called z', as the 

height in the canopy relative to the height of the scatterer: 
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(0• , c)i ) I (02 ,½2) 

' I 

ZT=h 

z=z.t 

z=O 

z•--h-z t 

z'--O(•=O) 

Fig. 1. Geometry of illumination and observation of a horizontal partially illuminated leaf. O is the center of a 
circular sun fleck on a horizontal leaf. OA defines the normal to the leaf, which is vertical in this case. OB and OC are 
the directions of illumination and observation, respectively, characterized by zenith angles 01 and 02. See text for 
additional details. 

z '= z- zt (21) 

where zt is the height of the leaf above an arbitrary base 
level, typically the ground. 

Consider a horizontal plane a small variable distance z' 
above the level Zl of the scatterer. This plane intersects the 
two cylinders described above and thereby defines two circles 
(Figure 2). In the general case where the illumination and 
observation directions are different, these circles intersect. As 
the height z' of this plane increases above the level of the 
scatterer, the area of intersection between the two circles 
diminishes, until the level z' - z• is reached where the two 
circles are tangent. For all levels above that, the two circles are 
disjoint. The volume common to both cylinders is defined by 
the integral of this common area over the vertical distance z•. 

Let alo(Z' ) be the area common to both circles at a height 
z' above the scatterer. It can be seen that 

•o(Z') = 2r2(a -sin a cos a) (22) 

where a - a(z') is the angle between the direction joining the 
two centers of the circles and the radius joining one center 
and the point at which the circles intersect (Figure 3). 
Obviously, a(z•) = 0 and alo(Z•) = 0 when the circles are 
tangent (or for all heights z' > z•), and a(0) = z'/2 and a/o(0) 
= z'r 2 when the two circles overlap. 

The angle a is a simple function of the relative altitude z' 
above the scatterer, once the illumination and viewing angles 
are specified. Referring again to Figure 1, it can be seen that in 
the triangle OAB, 7I• = z' tan 0•, in the triangle OAC, A----C = z' 
tan 02, and in the triangle ABC, B---C 2 = X-t• 2 + A----C 2 - 2AB A½ 
cos (•b• - •b2). From these equalities, it results that the distance 
d between the centers of the two circles is given by 

BC = d= z'[tan 2 0• + tan 2 02 

- 2 tan 0• tan 02 cos (•b• - qb2)] 1/2= z'G (23) 
where 

G = [tan 2 01 + tan 2 02- 2 tan 01 tan 02 cos (4•1 - 02)] 1/2 

(24) 

when these circles intersect, that is, for 0 -< z' -< zju. Clearly, 
if z' - z•u, the two circles are tangent and d = z•uG = 2 r, so 
that 

z,• = 2 r/G (25) 

Furthermore, for 0 -< z' -< z•u, that is, at all heights for which 
the two cylinders intersect, the distance between the two 
centers is also given by 

d = 2r cos a (26) 

Combining (23) and (26), it is possible to express a as a 
function of height: 

a(z') = cos -• (d/2r) = cos -• (z'G/2r) 

= cos -1 (z'/z•) = cos -• s r 0 -< z' -< z• (27) 

a(z') = 0 z' > 

where s r = z'/z• is a convenient nondimensional variable 
taking up values between 0 and 1 over the vertical interval in 
which the cylinders intersect. Equation (22) can now be 
rewritten 

.•/o(S r) = 2r2[cos -! •' - sin (cos -• sr)s r] 0--< s r --< 1 
(28) 

.•/o(S r) = 0 otherwise 

The volume To common to T1 and T2 but inside the 
canopy can then be expressed as 

f0 øVo = .•/o(Z') dz' (29) 

where z• = min (z•u, z[r, z• = h - Zl being the height of the 
top of the canopy above the scatterer, since we are inter- 
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2 

42 

z'-0 

i 2 

O<z'<z• 

Fig. 2. Top and side view of the intersection of the two cylinders representing the incoming and outgoing radiation 
beams, characterized by azimuth •bl and •b2. See text for additional details. 

ested only in the optical depths within the canopy. Through 
a suitable change of variables, this can equivalently be 
expressed as 

2/- 

alo(•) d• (30) 

where •, = min (1, •t), with •t = z•r/z• = (h - Zl)G/2r 
similarly defined as the level of the top of the canopy in the 
nondimensional variable •. Substituting (28) into (30), one 
obtains 

2r •0C, •o = '• 2r2[cos -• • - sin (cos -• 0•] d• (31) 

After some mathematical manipulations, this yields 

B C 

Fig. 3. Description of the angles and surface involved in the 
computation of the volume common to the two cylinders. Refer to 
Figures 1 and 2 for notations, and to the text for additional details. 

4r3 I ø[/' ø = '•- •, COS -1 •, 

sin3(cøs-1 •r*)•] - (1 -- •,2)1/2 _{_ -{- (32) 
3 

The notations can be simplified somewhat by introducing a 
new vertical coordinate y - h - zt, the depth of the leaf from 
the top of the canopy. We now have z• - y and •t - yG/2r. 
The complex expression (32) can be interpreted as follows. 
,-,, st, we note that as the •' ...... *: oo• ..... on direction (02, 4•2) tends 
toward the illumination direction (0•, 4•), 

lim •, = •r= 0 
2--)1 

lim G - 0 (33) 
2--)1 

lim •o = •rr2y = øg • = øg 2 
2-->1 

as it should. Second, if the two directions of illumination and 
observation are separate enough, the two cylinders intersect 
over a limited height only, and if the scatterer is deep enough 
in the canopy, the entire common volume •o should be 
within the canopy. These circumstances, which can be 
quantified as •r r = yG/2r -> 1, yield 

8r 3 
•o = • •', = 1 < •r r (34) 

3G 

Third, for leaf layers close enough from the top of the 
canopy, or for observation angles near the illumination 
angles, 
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Trr Trr- 

+ - sin3 COS-1 3 + 
(35) 

;*=;r = 
since the cylinders defined by the illumination and observa- 
tion directions intersect outside of the canopy in this case. 
These are the conditions leading to the observation of a hot 
spot, and it turns out that the common volume Y o, which 
controls the extent to which the transmission is unity on the 
return path, is simply a function of yG/2 r, which is nothing but 
a nondimensional shape factor, the ratio of the depth of the leaf 
from the top of the canopy to the diameter of sun flecks on the 
leaves. The shape of this hole is a function of the illumination 
and viewing geometry, and this variation is entirely contained 
in G. This important fact is the basis for the expectation to be 
able to retrieve canopy structure information from hot spot 
observations in reflectance data sets, although further compu- 
tations are needed before that result is achieved. 

Comparing (34) and (35), and looking back at Figure 1, it 
appears that the common volume inside the canopy Y o is the 
difference between the total volume common to Y1 and Y2, 
and the volume common to the two cylinders outside of the 
canopy. The expression 

IYrl [YrJ [ [Yr]2] cos-I - 1- 

i [ + • sin3 cos- 1 (36) 
in (35) is therefore the negative of the volume common to the 
two cylinders outside the canopy. 

Having computed the volume common to both cylinders, 
we now return to the problem of expressing the volume Y c 
(equation (18)) needed to calculate the actual optical thick- 
ness of the scattered radiation: 

4r 3 

øVc= rrr2y • [•', cos -1 •',- (1- •.2,)1/2 
+ • sin 3 (cos -1 •,) + •] (37) 

where •, = min (1, •r), as before. Using (19) and (16), the 
optical thickness is 

l 2 r2(z) = 1-• [•', cos -1 •', - (1 - •.2,)1/2 

+-} sin 3 (cos -1 ;,) + •]}•2(Z) (38) 
Again, in the special case where •r > 1, •, = 1 and these 

equations reduce to 

•/'c = 7rr2y • • 
8r 3 

3G 

ß 2(z) = I 4 ] •2(z) 3rr•r 

(39) 

and it is seen that the correction to •2 becomes negligible 
when •r tends to large values, that is, when the two 
directions are far from each other (G --> o•) or for deeper 
layers (y = (h - Zl)'-> o•). 

Substituting r2(z) back into (20) yields the value of the 
transmission for the radiation scattered off a single leaf. The 
reflectance observed by an instrument outside the canopy is 
of course the sum of the contributions of all leaves, so that a 
final vertical integral needs to be performedß 

3. BIDIRECTIONAL REFLECTANCE OF A CANOPY 

As seen in the previous section, the optical thickness on 
the return path takes on different expressions at different 
depths in the canopy. Accordingly, the vertical integral in 
(13) can be rewritten as follows: 

ooP(g) foh ß ...dy p(01, •bl, 02, •b2)- 4,r/x2 

.... dy + ' " dy = (p' + (40) 
4,r/x2 c 

where the first integral takes into account all canopy layers 
which contribute strongly to the hot spot (•, = •r < 1), while 
the second integral represents the contribution of deeper 
layers, for which the optical depth is always nonzero (•, = 1 
< •r)- The variable Yc is given by 

yc=min (h, z•)=min (h, 2•) (41) 
and represents a threshold level: All leaf layers between the 
top of the canopy and Y c contribute directly to the hot spot 
by having at least a fraction of the light reaching the observer 
with a transmission equal to one in the canopy, while deeper 
layers (Yc < Y < h) are such that the transmission of 
scattered radiation always has a nonzero optical depth over 
some fraction of the path. 

Using (38), the first contribution becomes 

p'(01, •bl; 02, •b2)- øøP(g) •oYCexp [-glAy ] 4*r/x2 /Xl J 

ß exp 1 rryG •r cos 
-1 

+ - sin 3 COS - 1 
3 

exp Ay 
4,r/x2 

1/2 

ß exp 1 rrG /.• 2 COS - 1 

(1-[•r]2) 1/2+•sin3 (cos-liar]) +2•]}}dY 
(42) 

where r I (z) = t<l Ay, drl = l( 1Ady, and •, = •r. The 
analytical evaluation of such an integral is quite complicated. 
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For instance, the integral of the exponential of a single 
cosine is a Bessel function, and none of the tables of 
integrals we have consulted give any indication on the form 
of integrals even remotely resembling the one above. Since 
the complication originates from the form of the optical 
thickness r2(z), it is reasonable to evaluate the relative 
contributions of the four terms in (38), but none of them is 
negligible with respect to the others in the range of values of 
•,. On the other hand, it turns out that 

2[ F(•',) = •'T •'* COS-I•'* (1 •-2,)1/2_• sin 3 (COS -1 •',) 2] +- 
3 3 

(43) 

is almost a linear function of •, over the range of interest (0 
< •, < 1), as can be seen from Figure 4. Since it is also 
desirable to have F(0) = 1 and F(1) = 4/3rr so that the optical 
thickness reaches exact values for extreme values of •, and 
connects smoothly with the case •, = 1 < •r, we have 
adopted the following parameterization: 

P(•,) = 1- 1- •, (44) 

which is also shown in Figure 4. This slight approximation 
seems justified by the high degree to which F(•,) is linear, 
and by the appreciable simplification it brings to the mathe- 
matical development. We now have 

r2(z)= {1- [1- (1-3-•)•,]}•2(z ) (45) 
Equation (42) can then be rewritten as follows: 

,oP(g) 
02, 4)2)- 

4yr/62 foYC exp [- tt lAy] 
/-62 .] 

Conceptually, the size of the sun flecks on the leaves 
diminishes with depth in the canopy. This presents a serious 
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Fig. 4. Comparison between the exact and approximate values of 
the optical thickness on the return path (F(•,) versus P(•,)). 

complication, however, and we are going to assume that the 
integrals in (40) can be evaluated with a constant value or r, 
representative of an average sun fleck. This point will be 
discussed further in the next section. Carrying out the 
integrals, the first contribution yields 

wP(g) foYC [ •clAy •c2Ay p .... exp 
4,r/62 /61 /62 

+ 1- 1-•-ff• • /621K1Ady 
wP(g) 

- ••A 
4•r/62 

ß exp - 1 - •--• 2r/62 y2 + 2 y dy 2/61 

toP(g) [•(3) 1/2 (b•) 4yr/62 t( 1A exp 

ß eft + 

0 

where 

(47) 

3-•) G•c2A •c 1A a = 1 - b - (48) 
2r/62 2/61 

The second integral is somewhat simpler. Using the optical 
thickness given by (39), 

p" - exp Ay 
4,r/62 yc /61/62 

(4 [2Ay_h ß exp 3•r •'T/62/K 1A dy 
t( 1A exp . • 

4•r/62 3rr G /62 (K1/62 + ti2/61)A 

[- Kl•2 + K2•i -]Yc 

/61/62 h 
(49) 

where •r has been replaced by its value yG/2r. 
Collecting all the terms and simplifying wherever possible, 

the expression for the bidirectional reflectance of a canopy 
for single scattering can be written as 

oo P ( g ) /(1/61 
P(01, qbl; 02, qb2)- 

K1/62 + K2/61 /61/62 

4rr •1/62 + /<2/61 

(3) 1/2 exp (b-•) 
b b 

+ exp . exp - 
G /62 / /61/62 

I K1/62+ K2/61 - exp Ah 
/61/62 

(5O) 



where all variables and parameters have been defined ear- 
lier. The bidirectional reflectance of a canopy is therefore 
given in terms of six physical quantities: w, the single- 
scattering albedo of the scattering particles (leaves); P(g), 
the phase function describing the angular distribution of the 
scattered photons after a first interaction; r, the radius of an 
average equivalent sun fleck, projected on an horizontal 
surface in such a way that the observer "sees" the same 
illuminated area; A, the leaf area density of the canopy, a 
measure of the density of leaf material; and the parameters 
K1 and K2, which describe the leaf orientation distribution for 
the illumination and viewing angles, respectively. 

The bidirectional reflectance of shallow or sparse canopies 
is complicated by the contribution of the underlying soil, 
with its own anisotropy. Only deep (so-called semi-infinite) 
canopies will be considered in the rest of this and the 
accompanying paper [Pinty et al., this issue] unless stated 
otherwise. In this case, the last term of (50) vanishes, and the 
contribution of the soil can be neglected. 

To account for multiple scattering in the canopy, a con- 
tribution that is important in the near-infrared spectral 
region, we followed the work of Dickinson et al. [1990]. 
Accordingly, the final expression for the bidirectional reflec- 
tance of a deep canopy is given by 

60 Kl• 1 
P(01, •1; 02, •2)= • 

4•r •l/X2 + 

ß [Pv(g)P(g) + H(• 1/• 1)H(•2/•2) - 1] 

where 

A •lg2 + •2gl 

Pv( g) = 2 •1• 2 
b b 

+ exp 
G 

t Kl•2 d- K2•l ß exp 

l+x 
H(x) = 

1 + (1 - w)mx 

(51) 

(52) 

The parameter a, used in Pv(g) to describe the hot spot, is 
directly proportional to the geometric factor G, which tends 
to zero when the phase angle g tends to zero. This does not 
cause any singularity in the expression, however, because 
the difference in error functions tends to zero faster than the 

exponential diverges. In fact, the expression Pv(g) varies 
between 2 and 1 for all values of the illumination and 

observation angles. 

4. DIscussioN 

From this derivation, it follows that the bidirectional 
reflectance of an homogeneous plant canopy can be de- 
scribed physically in terms of six optical and structural 
parameters. We now discuss some important points relative 
to the model and its physical interpretation. 

First of all, it is important to remember that the radiation 

reflected by a canopy (or any surface, for that matter) has 
only penetrated a finite depth below the surface. The infor- 
mation retrieved from inverting the reflectances, using this 
or any other model of the surface, can therefore only yield 
the optical and the structural parameters of the upper canopy 
layers which actually affect the transfer of this radiation. If 
the bulk of the solar radiation cannot penetrate deeper than 
some fraction of the height of the canopy stand, it will be 
impossible, as a matter of principle, to retrieve any informa- 
tion on the lower portions of this canopy from the reflec- 
tances measured above the canopy. It is therefore difficult to 
retrieve the leaf area index from remote measurements in the 

solar spectral band, since either the canopy is very deep, in 
which case only the properties of the top can be retrieved, or 
the canopy is thin enough that even the lower leaf layers 
affect the transfer of radiation, but then the contribution of 
the reflectance from the soil must also be taken into account. 

Another point to remember is that the canopy parameters 
A and r have been kept constant with height in the integrals 
(47) and (49). The assumption on A is consistent with the 
hypothesis of an homogeneous canopy; the one on r is more 
of a limitation and implies that the reflectance from a large 
number of sun flecks of different sizes is equivalent to the 
reflectance that would be observed if all the sun flecks had 

the same average size. 
Of course, the actual size and shape of the sun flecks are 

functions of depth in the canopy, and depend on the size and 
shape of the holes between the leaves. These, in turn, are 
determined by the relative positions of the leaves in the 
canopy. As the beam of direct solar radiation penetrates the 
canopy, it gets broken down into smaller beams by the upper 
leaf layers, and each one of those smaller beams gets thinner 
due to the incremental blocking of additional leaves. It 
would be interesting, therefore, to relate the theoretical r 
used in the previous section to measurable quantities of the 
canopy. One possible line of reasoning could be as follows. 

Leaving aside the question of the number of sun flecks at 
any particular depth in the canopy, let a(y) be the horizontal 
cross section of one of those solar beams, that is, the 
connected area that would be illuminated by direct solar 
radiation if a horizontal screen was placed at depth y in the 
canopy. As discussed in section 2.3 and by Verstraete 
[1987], this cross section a(y) decreases exponentially with 
depth y in the stand: 

a(y) = Ao exp (53) 
•l / 

where a0 is the area of the typical "hole" between the leaves 
at the top of the canopy. An estimate of the average value (a) 
of this area over a finite depth (Y t) can be defined as 

Y'a( y) dy aotx • 
(a) = = • (54) 

•0 yt K1AYt dy 

where Y t is the depth in the canopy after which a negligible 
fraction of the direct solar radiation is transmitted down- 

ward. From this expression, a typical radius of such an area 
can be estimated as 



11,764 VERSTRAETE ET AL ' CANOPY REFLECTANCE, 1 

(r> = [ rrt• 1Aytl L K 1 •Yt (55) 
where r 0 is the radius of the "hole" between the leaves at the 
top of the canopy. Note that both (a) and (r) depend 
explicitly on the nondimensional product Ayt, which is in 
fact a ratio of two distances' Y t is a typical distance of 
penetration of direct solar radiation in the canopy, while A is 
also the inverse of a typical distance between the leaves of a 
homogeneous canopy. 

The relation between the parameter r in the model above 
and the typical radius of the holes (r) is not simple, however, 
because the size of a sun fleck on a leaf cannot exceed the 

size of a leaf, by definition. To proceed further in this 
direction, one should adopt a particular model of canopy, to 
establish the nature of the relation between r, (r), and A. 
Clearly, as the number of leaves per unit volume or the size 
of the leaves increases, the typical dimension of the "holes" 
between the leaves must decrease. 

It is not so much the size of these voids that count, 
however, but rather their shape. Indeed, consider the fol- 
lowing thought experiments: Let a canopy be described by 
ni leaves per unit volume, and let al be the area of a leaf. 
Furthermore, let x•, x2, x3 be the spatial coordinates of the 
centers of these uniformly distributed leaves. If we compress 
the unit volume vertically in such a way that the horizontal 
coordinates of the leaves remain unchanged (xl = x• and x• 
= x2), and that the vertical coordinate is mapped into x• = 
•x 3 with • < 1, and if additional leaves are then added in this 
portion of the unit volume at the new leaf density, then the 
leaf area index is increased, the average horizontal distance 
between the leaves is unchanged, but the vertical distance of 
penetration of light Y t is reduced. This is expected to 
produce a broader hot spot peak. 

If, on the other hand, the compression is done horizontally 
(xl = •x•, x• = x2, and x• = x3), then the typical horizontal 
distance between the leaves is decreased, but the vertical 
distance between leaves is not affected. The hot spot pro- 
duced by such a canopy would be sharper. Finally, if the 
number of leaves remains the same, but their area increases, 
as is the case during the growing season, then both the 
penetration depth Y t and the average distance between the 
leaves change and the response of the hot spot will depend 
on the change in the shape of the voids between the leaves. 
An analogous experiment has been performed by Ross and 
Marshak [1988] using a Monte Carlo model, and their results 
are consistent with our qualitative predictions. 

As will be seen in the accompanying paper of Pinty et al. 
[this issue], (51) and (52) describe not only the general 
behavior of the bidirectional reflectance field of a canopy 
with arbitrary physical and morphological properties, but 
also correctly account for the hot spot phenomenon. It is 
important to realize that the genuine contribution of this new 
model lies in the proper accounting of the joint transmission 
of solar radiation in the canopy, both over the downward 
incoming path and over the upward outgoing path. Indeed, 
the quantitative description of the hot spot phenomenon 
derives directly from the correct accounting of this joint 
transmission over all possible angles of illumination and 
observations. 

Pinty et al. [this issue] describe in detail the application of 
this model to actual data sets and discuss the capability of 
the model to reproduce specific patterns in the data. 

NOTATION 

al Leaf area. 
ß 

a/ Illuminated leaf area. 
•/o Area common to the horizontal sections of W• and 

W 2 (equation (22)). 
d Distance between the centers of the cylinders W• 

and W2. 
da Size of the directional light detector (equation (10)). 
dA Elementary horizontal surface sampled by sensor 

(equation (8)). 
g Phase angle (equation (8)). 
G Geometric factor (equation 24)). 
h Height of the canopy above the ground. 

H Function to account for multiple scattering. 
J Direct solar radiation flux at the top of the canopy 

on a horizontal surface. 

J0 Direct solar radiation flux at the top of the canopy 
on a surface perpendicular to the direction of the 
Sun. 

P(g) Phase function of the scatterer. 
r Radius of the horizontal sun fleck. 

T• Transmission of the downward radiation. 
T2 Transmission of the upward radiation. 

W• Cylinder of incoming radiation. 
W2 Cylinder of outgoing radiation. 
W o Volume common to W• and W2 (equation (17)). 
W½ Part of W2 not in common with W• (equation (18)). 

y Vertical coordinate, from the top of canopy down. 
z Vertical coordinate, from the ground up. 

z' Vertical coordinate, from the scatterer up. 
a Angle of intersection (Figure 3). 
•' Nondimensional vertical coordinate (equation (27)). 

•', Minimum value of •' (equation (30)). 
•'r Height of the canopy in coordinate •'. 
0• Illumination zenith angle. 
02 Observation zenith angle. 
O• Angle between the leaf normal and the illumination 

direction. 

O2 Angle between the leaf normal and the observation 
direction. 

K• Average cosine of angle between leaf normal and 
illumination direction. 

K2 Average cosine of angle between leaf normal and 
observation direction. 

A Leaf area density. 
• Cosine of the solar zenith angle. 
•2 Cosine of the observation zenith angle. 

p Reflectance of the canopy. 
p' Hot spot contribution to the reflectance of the 

canopy. 

p" Contribution to the reflectance of the canopy far 
from the hot spot. 

r• Optical thickness along the illumination direction. 
r2 Optical thickness along the observation direction. 
•2 Asymptotic value of the optical thickness along the 

observation direction. 

•b • Solar azimuth angle. 
•b2 Observation azimuth angle. 
co Single-scattering albedo of the scatterers. 

df• Solid angle of the field of view. 
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