
HAL Id: hal-01984694
https://uca.hal.science/hal-01984694

Submitted on 14 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A catalogue associating security patterns and attack
steps to design secure applications

Sébastien Salva, Loukmen Regainia

To cite this version:
Sébastien Salva, Loukmen Regainia. A catalogue associating security patterns and attack steps to
design secure applications. Journal of Computer Security, 2019, 27 (1), pp.49-74. �10.3233/JCS-
171063�. �hal-01984694�

https://uca.hal.science/hal-01984694
https://hal.archives-ouvertes.fr


A catalogue associating security patterns
and attack steps to design secure

applications.

Sébastien SALVA a,1, Loukmen REGAINIA b

a University Clermont Auvergne, IUT of Clermont-Ferrand, LIMOS, FRANCE, E-mail:
sebastien.salva@uca.fr.

b University Clermont Auvergne, LIMOS, FRANCE, E-mail: loukmen.regainia@uca.fr.

Abstract. Design Patterns are now widely accepted and used in software engineer-
ing; they represent generic and reusable solutions to common problems in software
design. Security patterns are specialised patterns whose purpose is to help design
applications that should meet security requirements. The enthusiasm surrounding
security patterns has made emerge several catalogues listing up to 180 different pat-
terns at the moment. This growing number brings an increased difficulty in choos-
ing the most appropriate patterns for a given design problem. We propose a secu-
rity pattern classification to facilitate the security pattern choice and a classification
method based on data integration. The classification exposes relationships among
software attacks, security principles and security patterns. It expresses the pattern
combinations that are countermeasures to a given attack. This classification is semi-
automatically inferred by means of a data-store integrating disparate publicly avail-
able security data. The data-store is also used to generate Attack Defense Trees. In
our context, these illustrate, for a given attack, its sub-attacks, steps, techniques and
the related defenses given under the form of security pattern combinations. Such
trees make the pattern classification more readable even for beginners in security
patterns. Finally, we evaluate on human subjects the benefits of using a pattern clas-
sification established for Web applications, which covers 215 attacks, 66 security
principles and 26 security patterns.

Keywords. Attack, Security patterns, Classification, Security principles, Attack
Defense Tree

Introduction

The World Wide Web is continuously expanding with new unstructured or semi-
structured information, especially since the recent explosion of digitalisation of almost
everything e.g., music, books, encyclopaedia, documents, etc. In the domain of soft-
ware security, many documents, knowledge bases or papers are now publicly available
to help engineers develop secure applications. These numerous digitalised resources are
presented with different viewpoints (attackers, defenders, etc.), formats (text, database,

1Corresponding Author: University Clermont Auvergne, IUT of Clermonf-Ferrand LIMOS, F-63000
CLERMONT-FERRAND, FRANCE; E-mail: sebastien.salva@uca.fr.



etc.), abstraction levels (security principles, attack steps, exploits, etc.) or contexts (sys-
tem, network, etc.). Furthermore, these different documents are meaningful at different
stages of the software life cycle. For instance, the Exploit base [18] gathers scripts that
can be used to test whether an application is vulnerable. In another context, the notion of
security patterns, which is one of the topics of this paper, aims at providing guidelines
to help design secure systems [36,27,24,8]. Security patterns are defined as reusable ele-
ments to design secure applications, which will enable software architects and designers
to produce a system that meets their security requirements and that is maintainable and
extensible from the smallest to the largest systems [24]. Schumacher also postulates that
Security patterns relates countermeasures to threats and attacks in a given context [27].

This plethora of (often complex) documents makes increasingly harder for a de-
signer to select the appropriate solution in a given context. Indeed, they cannot be experts
in all fields and they usually lack guidance for conceiving secure software or systems.

Several authors recently focused on security patterns to better guide designers. Secu-
rity patterns were organised along the following categories: by security principles [37,2],
by application domains [5] (software, network, user, etc.), by vulnerabilities [3,1] or by
attacks [34,1]. Despite the benefits brought by these classifications, they suffer from sev-
eral limitations, which prevent their adoptions in the industry. Firstly, these classifica-
tions were manually devised, by comparing directly textual descriptions of different se-
curity concepts (patterns, principles, vulnerabilities, attacks, etc.). As these descriptions
are generic and have diverse abstraction levels, the categorisation of a pattern can only
be performed when there is an evident relationship with a security property. In addition,
as these classifications are not deterministic (no strict definition of the classification pro-
cess [2]), it becomes often delicate to upgrade them. Yskout et al. also reported that the
security pattern adoption is limited possibly due to a sub-optimal quality of the documen-
tation [38]. We indeed believe that security pattern classifications lack Navigability and
Comprehensibility, which are quality criteria, proposed in [2] and respectively related
to: the ability to direct a software designer among collaborative and related patterns; the
ease to understand patterns by both a novice and an expert developer.

From these observations, we propose in this paper a method for classifying secu-
rity patterns based on the concept of data integration, namely we combine security data
coming from different sources and provide an unified view on this data. To make this
classification navigable and comprehensible, we propose to automatically infer Attack
Defense Trees [13], which illustrate the security pattern combinations that can be used to
prevent an attack. More precisely, our contributions are as follows.

• We present a data-store meta-model and a data integration method consisting of
six steps, which extract data from various publicly accessible sources and store
relationships among attacks, security principles and security patterns. The method
breaks down security properties into sub-properties and associates them to achieve
a precise classification.

• Our security pattern classification is automatically derived from this data-store.
For an attack, the classification expresses the pattern combinations that can be in-
tegrated in the application model to later prevent the attack from being success-
fully carried out.

• We automatically generate Attack-Defence Trees (ADTrees) which aim at supple-
menting the classification with illustrations depicting, for a given attack, its (more
concrete) sub-attacks, steps and techniques along with defenses expressed with



security patterns. These ADTrees aim at improving the understanding of the pre-
vious classification. They can also be used as security requirement documents for
threat risk modelling.

As a proof of concept, we have generated a data-store and a security pattern classifi-
cation specialised to the Web application domain. The classification is composed of 215
CAPEC attacks, 26 security patterns and 66 security principles covering various security
aspects. We also provide a tool to generate ADTrees. This classification and the ADTree
generator are available in [21]. We employed them to evaluate, on 24 human subjects,
the benefits of using our pattern classification and ADTrees with regard to the following
criteria: Comprehensibility, Effectiveness and Accuracy.

The remainder of the paper is organised as follows. We present in Section 1 the re-
lated work and the motivations of our approach. Besides, we introduce some security no-
tions and data used throughout the paper. The method used to integrate security data and
to build a data-store, is given in Section 2. Section 3 shows how the pattern classification
and ADTrees are automatically extracted from the data-store. We list the quality criteria
met by the classification and discuss its limitations in Section 4. We evaluate the classifi-
cation and ADTrees in Section 5. We also discuss about the threats to the validity of the
evaluation. We finally conclude and give some perspectives for future work in Section 6.

1. Background

1.1. Related Work

Several security pattern catalogues are available in the literature [28,17,38], gathering a
total of 176 patterns. These growing catalogues make difficult the choice of the appro-
priate patterns for overcoming a security problem.

Many classifications were proposed in the literature to ease the pattern choice with
regard to a given context. The classifications proposed in [34,30,1,31] expose pattern
categories by focusing on the attacker side and attacks. This choice of categorisation
seems quite interesting and meaningful as attacks are more and more known and ex-
amined by software designers. Initially, Wiesauer et al. presented in [34] a short taxon-
omy of security design patterns made from links between attack textual descriptions and
security pattern purposes. Tondel et al. presented in [30] the combination of three for-
malisms of security modelling (misuse cases, attack trees and security activity models) in
order to give a more complete security modelling approach. In their method of building
attack trees, they linked some activities of attack trees with CAPEC attacks; they also
connected some activities of SAGs (security activity diagrams) with security patterns.
The relationships among security activities and security patterns are manually extracted
from documentation and are not explained. Shortly after, Alvi et al. presented a natural
classification scheme for security patterns putting together CAPEC attacks and security
patterns for the implementation phase of the software life cycle [1]. They analysed some
security pattern templates available in the literature and proposed an augmented template
composed of the essential elements needed for designers. They manually completed the
CAPEC attack documentation with a section named ”Relevant security patterns” com-
posed of some patterns [1]. After inspecting the CAPEC base, we observed that this sec-
tion is seldom available, which limits its use and interest. Uzunov et al. introduced in



[31] a classification of security threats and patterns specialised for distributed systems.
They proposed a library of threats and their relationships with security patterns in order
to reduce the expertise level required for the design of secure applications. They con-
sidered that their “threat patterns” are abstract enough to encompass security problems
related to the context of distributed systems.

In the papers [2,5], the authors discuss some limitations exposed by pattern classifi-
cations. Alvi et al. outlined 24 pattern classifications, including security pattern classifi-
cations, and established a comparative study to point out their positive and negative as-
pects [2]. They chose 29 classification attributes (purpose, abstraction levels, life-cycle,
etc.) and compared the classifications against a set of desirable quality criteria (Navi-
gability, Comprehensibility, Usefulness, etc.). They observed that several classifications
were built w.r.t. a unique classification attribute, which appears to be insufficient. They
indeed concluded that the use of multiple attributes enables the pattern selection in a
faster and more accurate manner. Bunke et al. presented a systematic literature review of
the papers dealing with security patterns between 1997 and 2012. In addition, they listed
a set of classification criteria and compared design pattern and security pattern classifica-
tions [5]. They finally proposed a classification based on the application domains of pat-
terns (software, network, user, etc.). Yskout et al. also reported that the security pattern
adoption is limited possibly due to a sub-optimal quality of the documentation [38].

After reviewing these classifications, we indeed believe that security pattern classi-
fications lack Navigability and Comprehensibility. We also observed these are all man-
ually conceived by interpreting different documents to find abstract relationships. Justi-
fying these classifications or extending them is often difficult. Furthermore, the relations
among patterns are often not given, yet we noticed that some patterns are compatible to-
gether and that others are conflicting. As a consequence, a designer may be still confused
about the pattern choice. As in [1], we propose a pattern classification expressing which
security patterns can be used to prevent an attack step from being successfully executed
on an application (and hence an attack, even though a step is more precise). Our classi-
fication proposes a more precise and accurate mapping between patterns and attacks. It
is more accurate in the sense that we translate the meaning of the patterns and attacks
into smaller properties, i.e., strong points, attack steps, techniques, and countermeasures.
We establish relations among these properties with respect to security principles, which
identify the meaning of these relations. In addition, the classification is completed with
the inter-pattern relationships found in [37]. This is why we claim that our classification
is more precise. Another contribution of this paper lies in the presentation of a classifica-
tion process based on data integration. This one includes six manual and automatic steps,
which offer the advantage of justifying the soundness of the pattern classification and
reduce the efforts required to add new patterns or attacks to the classification. Finally,
we complete the classification with ADTrees making the classification readable even for
novice in patterns or security.

We now compare this paper with some of our own previous work. Initially, we pro-
posed in [22] a security pattern classification grouping patterns according to the weak-
nesses that they can cure. That paper can be seen as a first step toward the approach
presented here. We indeed exploit the weaknesses listed in the CWE base [16] to cate-
gorise patterns. However, unlike the present paper, we did not focused on attacks or at-
tack trees. In [20], we have completed the previous method this time to organise security
patterns in relation to attacks. Attacks are collected from the CAPEC base as the first



step of the method developed in this paper. Then, attacks are associated to weaknesses,
themselves linked to patterns. The difference with the present paper firstly lies in the data
integration process. We do not consider weaknesses but other kinds of security proper-
ties. We indeed consider that an attack is composed of techniques and sequential steps,
which we associate to countermeasures. We semi-automatically groups them with a text
mining approach. The resulting clusters are finally associated to patterns. These rela-
tions are strictly modelled by a new meta-model presented in this paper, which structures
our data-store. We also generate ADTrees illustrating some relations of the meta-model,
in particular the sequences of attack steps. Furthermore, we present an experimentation
performed on 24 participants to estimate the benefits of using our classification.

1.2. Publicly Accessible Resources For The Data Integration

We present below the publicly accessible resources (documents, databases, research pa-
pers) we studied to devise a data-store for the security pattern classification generation.

1.2.1. Security pattern documents

We firstly recall that security patterns provide guidelines for secure system design and
evaluation [36,8]. Generally, they are presented textually or with schema, e.g., UML di-
agrams, and are characterised by a set of structural and behavioural properties. Schu-
macher defines more precisely security patterns as triples P := (C,P, S) where C is a
security context, P a security problem and S a security solution [27].

Several security pattern catalogues are available in the literature [28,17,38], them-
selves extracted from other papers. In these documents, a security pattern is usually char-
acterised with its solutions (a.k.a. intents), its interests called forces and the consequences
of applying the pattern to an application. The quality of a pattern and its classification
can be established by means of its strong points, which are sub-properties of the pat-
tern [10] related to its features. Strong points are manually extracted from the forces and
consequences of a security pattern, given in its description.

In addition, a security pattern can be documented to express its relationships with
other patterns. These properties may noticeably help combine patterns and not to devise
unsound composite patterns. Yskout et al. proposed the following annotations between
two patterns p1 and p2 [37]:

• ”depend” means that the implementation of p1 requires the implementation of p2;
• ”benefit” expresses that implementing p2 completes p1 with extra security func-

tionalities or decreases the development time. However, p1 can be correctly im-
plemented despite the absence of p2;

• ”impair” means that the functioning of p1 can be obstructed by the implementation
of p2;

• ”alternative” expresses that p2 is a different pattern fulfilling the same functional-
ity as p1;

• ”conflict” encodes the fact that if both p1 and p2 are implemented together then it
shall result in inconsistencies.

“Secure Logger” is a security pattern example whose primary objective is to store
application events in a centralised way so that it should be impossible to alter log files.
Figure 1 depicts a class diagram of this security pattern. This schema implies that “Secure



Figure 1. Class layout of the security pattern “Secure Logger”

Logger” provides a mean of decoupling the implementation details of the logger from
the remainder of the application. This corresponds to a strong point of the pattern. Its
strong points are summarised below:

1. logs sensitive information that should not be accessible to unauthorized users;
2. ensures the integrity of the logged data to determine if it was tampered with by

an intruder;
3. captures output at one level for normal operations and at other levels for greater

debugging in the event of a failure or an attack;
4. centralises control of logging in the system for management purposes;
5. code must be adaptable and extensible to protect against both current and future

threats;
6. performs all of the necessary security processing prior to the actual logging of

the data, which allows management of each function independently of the others
without the risk of impacting overall security.

This pattern can be implemented by means of two other security patterns [38]: “Au-
dit Interceptor” or “Secure Pipe”. The former may be used to collect the events that
are stored by “Secure Logger”. The latter may be used to guarantee that the data is not
tampered with in transit to a secure store.

1.2.2. The CAPEC base

The Common Attack Pattern Enumeration and Classification (CAPEC) is an open
database offering a catalogue of attacks in a comprehensive schema [15]. Attack patterns
are descriptions of common approaches that attackers might take to attack software or
systems. An attack pattern, which we refer here as documentation (to avoid the confusion
with security pattern), consists of several sections. The section “Related attack patterns”
shows interdependence among attacks having different levels of abstractions. The first
two levels (denoted Category and Meta pattern) give attack mechanisms, the last two
levels (Standard pattern and Detailed attack pattern) details attacks.

Different binary relations are given between two attacks. Among them, we noted:

• a is member of/child of b: when the attack a is a refinement of the attack b,
• a has member/parent of b: when the attack a is more abstract than b.

Besides, the attacks of the last two levels have specific paragraphs to describe other
properties, e.g., impact, prerequisites, severity, required attacker skills, etc. Another sec-
tion lists the security principles affected by the attack. But, we observed that those given
often have a high level of abstraction making their interpretation too abstract as well.



The section called “Attack Execution Flow” provides a sequence of steps that has to
be followed to successfully accomplish an attack. The first step is often called “Explore”;
it is often followed by the steps “Experiment” and “Exploit”, themselves composed of
sub-steps. All of these are sequential, which means that if a step cannot be achieved then
it is assumed that the attack cannot be applied. In other terms, it seems pointless to try
the next step. Every step is accompanied with a sub-section called “Security controls”,
which lays down some effective security controls that should be used to prevent or to
counter the attack step. Furthermore, the CAPEC base provides some techniques (or
combinations of techniques ) with each step. When one technique is successfully applied,
the step is satisfied.

1.2.3. Security principles

We briefly recall that a security principle is a desirable property, structure or behaviour
of software that aims at reducing the impact and the likelihood of a threat realisation
[32]. They represent an insight on the nature of close security tasks whose contexts are
not taken into consideration.

Numerous works focused on security principles since the last four decades. Saltzer
and Schroeder firstly proposed a set of eight best practices for system security [25],
which were widely expanded to form security principles [32,26,7,14]. Most of the papers
dealing with security principles reveal that a security principle has a level of abstraction;
it may be the realisation of other security principles, or has subordinate principles.

2. Data-store

We present in this section the meta-model of the data-store we devised to store relation-
ships among different security concepts. This data-store is then used to automatically
generate a security pattern classification providing the set of patterns that can be used as
countermeasures against a given attack (in reference to the security pattern definition of
Schumacher [27]). Then, we present the data integration steps.

2.1. Data-store Meta-model

Figure 2. Metamodel 1 of the data-store



Figure 3. Metamodel 2 of the data-store

Instead of finding some direct relations among attack and security patterns by read-
ing documents, we chose to decompose the security concepts available in these docu-
ments into more detailed properties, which can be interconnected in an explicit manner.

We surveyed the literature and some attack bases [15,16,19] to list relationships
among security properties. This study has confirmed to us the importance of the follow-
ing associations: an attack can be documented with more concrete attacks, which can be
themselves segmented into steps. These steps can be performed with techniques and can
be prevented with countermeasures. All these properties and associations are modelled
with entities in the meta-model of Figure 2. Taking another viewpoint, an attack also ex-
ploits a weakness, which may be composed of several more concrete weaknesses. Some
actions can be applied to reduce the impact of these weaknesses. We call them mitiga-
tions here to underline the fact that these actions differ from the countermeasures used to
neutralise an attack. These other associations are modelled in the meta-model of Figure
3.

Security patterns can be characterised with strong points, which are criteria of soft-
ware engineering quality partially deduced from the section consequences in the pattern
descriptions. In the context of security patterns, these correspond to desirable security
properties. Besides, a security pattern can have relations with others patterns. Figures 2
and 3 depict these properties and relations with entities in the same way.

Countermeasures, mitigations and strong points refer to the notion of attack preven-
tion. But directly finding relations among them is still a laborious task as these proper-
ties, which have diverse purposes, are explained with different keywords. To solve this
issue, we have chosen to focus on security principles as mediators. Indeed, as introduced
by Wassermann et al. in [33], security patterns are classifiable w.r.t. security principles.
Here again, we consider that security principles are organised into a hierarchy, which
shows the materialisation of a principle with more concrete ones. A principle hierarchy
offers a lot of flexibility to reach the same abstraction level among strong points, prin-
ciples, countermeasures and mitigations. Countermeasures and mitigations are often de-
tailed security properties. We observed that gathering them into groups (clusters) often
reduces the efforts required to find connections with security principles. But the cluster
granularity, i.e., the size of the groups has to be correctly chosen not to set wrong asso-
ciations. These last security properties and associations are identically modelled in the
meta-models of Figures 2 and 3.

Both meta-models could be used to structure our data-store. We have chosen to
focus on the first meta-model because it offers the possibility to store more details about
attacks (decomposed into steps, techniques and related to countermeasures). A designer



can follow how an attack is sequentially performed. As attack steps are associated to
security principles and finally to security patterns, he or she also can obtain and select
the list of patterns that are required to counter every attack step, one after the other.
Hence, the relations among attacks, steps, principles and patterns offer a refinement in
the pattern choice that the second meta-model does not provide.

Now that we have a data-store meta-model, the next section shows how the data
integration is performed in order to extract a security pattern classification and ADTrees.

2.2. Data integration and consolidation steps

Security data are integrated into the data-store with six steps, which aim at establishing
the different relations depicted in Figure 2. Steps 1 to 5 give birth to databases, and Step
6 consolidates them so that every entity of the meta-model is related to the others as
expected. The steps 1 and 6 are automatically done with tools whereas the remaining
ones require some manual interventions to supervise the digitalisation of key concepts or
texts.

We implemented these steps and applied them to the Web application context as a
proof of concept. The tools and databases are available in [21]. The implementation is
mostly based upon the tool Talend, 2 an ELT (Extraction, Load, Transform) tool, which
allows an automated processing of data independently from the type of its source or
destination. We considered data coming from different sources: the CAPEC base, several
papers dealing with security principles [25,32,26,7,14] and the pattern catalogue given
in [38]. We provide some quantitative results related to these data with each step. But
other kinds of context could be dealt with as long as enough documentation is available.

We also illustrate these steps with the attack “CAPEC-34: HTTP Response Split-
ting”, which refers to a maliciously HTTP request that causes the production of two sep-
arate responses instead of one by a vulnerable web server. The target, i.e., the client, may
interpret the second response and display maliciously-crafted contents.

2.2.1. Step 1: Extraction of attacks, steps, techniques and security controls

We have chosen to focus on the CAPEC base to extract information about security attacks
because this appeared to be the most complete base with the largest number of attacks
accompanied with a lot of details (steps, techniques, risks, security controls, etc.)

We extracted attacks of the CAPEC base and organised them into a single tree that
describes a hierarchy of attacks from the most abstract to the most concrete ones so that,
we can get all the sub-attacks of a given attack. To reach that purpose, we rely on the
relationships among attack descriptions found in the CAPEC section “Related Attack
Patterns”. More precisely, by scrutinising all the CAPEC documents, it becomes possible
to develop a hierarchical tree whose root node is unlabelled and connected to the attacks
of the type “Category”. These nodes may also be parent of attacks that belong to the type
“Meta Attack pattern” and so on. The leaves are the most concrete attacks of the type
“Detailed attack pattern”. Then, for every attack, we collected from the CAPEC base
(Section “Attack Execution Flow”) its steps, which may be composed of more concrete
sub-steps, and for each step, the corresponding techniques and security controls, the latter
referring to countermeasures.

2https://talend.com/



This data extraction was automatically performed and yields a database DB1. From
the CAPEC database Version 2.8, we automatically extracted these elements for the Web
application context and collected 215 attacks, 209 steps, 448 techniques and 217 counter-
measures, knowing that attacks can share steps, attack techniques and countermeasures.

The attack CAPEC-34 has no sub-attacks as it belongs to the section “Detailed At-
tack” of the CAPEC base. The realisation of the attack is done after following three main
steps called Explore, Experiment, Exploit. The third one is itself composed of two steps.
Three techniques are listed to achieve the first step; the other steps are linked to two
techniques each. Any of the available technique can be used to accomplish the related
step.

2.2.2. Step 2: Countermeasure hierarchical clustering

The countermeasure number grows quickly while reading the attacks of the CAPEC
base. Many of them have a close meaning though, which can be explained by the number
of different contributors that added them. We hence group these countermeasures into
families to later associate them with security principles.

We semi-automated this process by applying a hierarchical clustering technique of
documents. We firstly used the tool KHcoder 3 to measure similarities among counter-
measure descriptions. KHcoder is a free tool, referred by numerous works, which per-
forms quantitative content analysis (text mining). We applied KHcoder as follows:

1. the tool POS Tagger (included in KHcoder) is called to sort the keywords found in
the countermeasure descriptions (log, input, credentials, etc.) by their frequencies
and types (noun, verb, adverb, etc.);

2. from the frequencies, weights are computed and scaled with the Jaccard co-
efficient to measure distances (a.k.a. dissimilarities) among countermeasures.
The distance between two countermeasures a, b is defined by 0 ≤ da,b =
q+r/p+q+r ≤ 1, where p is the number of keywords occurring in a and b, q is
the number of keywords occurring in a and not in b and r is the number keywords
occurring in b and not in a. The more two countermeasure descriptions have com-
mon keywords, the more their distance is short. At the end of this step, we obtain
a distance matrix containing distances between pairs of countermeasures.

Afterwards, we chose to apply the method Ward, an agglomerative hierarchical clus-
tering method [35], to semi-automatically make a hierarchy of countermeasure clusters.
Ward offers the possibility to merge groups, piece by piece, instead of providing large
clusters. In our case, this second solution would tend to build clusters covering too much
disparate countermeasures, which would be later associated with too much security prin-
ciples. Instead, Ward successively constructs levels of clusters, a level somehow express-
ing a level of abstraction. Its algorithm is summarised in Algorithm 1. At the beginning,
Ward takes a distance matrix, here previously computed by KHcoder. Every counter-
measure is encompassed into a new cluster. The algorithm merges every pair of clusters
having the closest distance into a new cluster and so forth. Every time a new cluster is
created, the algorithm updates the distance matrix. The distance between two clusters is
calculated with the formula 4A,B = nAnB/nA + nB ‖ ~mA − ~mB ‖2, where nA is
the number of the elements of the cluster A and ~mA is the gravity center of the cluster

3http://khc.sourceforge.net/en/



Figure 4. Hierarchical clustering of 23 countermeasures into 4 clusters using KH Coder

A, which represents the mean of the distances among the elements of the cluster A. At
the end of the algorithm, all the clusters are grouped into one big cluster.

Algorithm 1: Hierarchical clustering
Require: distance matrix;

repeat
Find the closest pair of clusters;
Merge them;
Compute the gravity center of the new cluster;
Update the distance matrix;

until There is one cluster

Finally, the level to consider in the cluster organisation (and implicitly the number
of clusters to keep) is selected manually, as the choice of the number of clusters is su-
pervised in the domain of natural languages [29]. The level can be selected with a den-
drogram. Figure 4 illustrates an example of dendrogram, obtained with 23 countermea-
sures. At the lowest level, the dendrogram shows all the countermeasures and its top
level represents one final cluster. The choice of the number of clusters to keep comes
down to draw an horizontal line in the dendrogram and to enumerate the number of cut
vertical lines. There are two basic criteria to consider when inserting the line: a low cut
is divisive, i.e., it may place two similar countermeasures in different clusters; a high
cut is agglomerative, i.e., it may put in the same cluster two unrelated countermeasures.
Therefore, in order to get a coherent clustering, the most suitable level has to be chosen
after some iterations by checking whether the countermeasures obtained in the clusters
refer to the same security principle or set of principles. In this example, we obtained four
clusters.

The resulting clusters are stored into the database DB2. The 217 countermeasures
collected in Step 2, are aggregated into 21 clusters.



2.2.3. Step 3: Security patterns and strong points integration

We manually collected security patterns and their strong points from the catalogue given
in [38]. Strong points are seldom explicitly provided, and have to be deduced from the
pattern descriptions, more precisely from their forces and intents. Then, we manually
established two relations among patterns and strong points:

1. the first one is a many-to-many relation between security patterns and strong
points, each pattern being characterised by a set of strong points, which can be
shared with other patterns;

2. the second relation defines inter-pattern connections based upon the annota-
tions ”depend”, ”benefit”, ”impair” or ”alternative” [37]. With P a set of
patterns, this relation is defined as a mapping from P 2 to the annotation
set {”depend”, ”benefit”, ”impair”, ”alternative”} that provides annotations
for pairs of patterns.

These data and relations, which provide connections among security patterns and
strong points, are encoded into the database DB3. For the Web application domain, we
have gathered 26 security patterns and 36 strong points.

2.2.4. Step 4: Security principle integration

We collected 66 security principles related to Web applications from the papers [25,32,
26,7,14]. Then, we organised them into a hierarchy, from the most abstract to the most
concrete principles. This principle organisation gives a complete hierarchical view on
security mechanisms, which are required to counter an attack and provided by security
patterns at the same time. As principles are hierarchically organised, we can link a strong
point and a countermeasure cluster through this principle organisation even if they do
not exactly have the same level of abstraction. For instance, consider a strong point and
a cluster that are linked to two principles being at two different levels of the hierarchy.
As a principle is a child of the second one, it is possible to find an association between
the strong point and the cluster.

The resulting hierarchy is certainly not exhaustive but covers the security patterns
dealt with in the catalogue given in [38]. Figure 5 depicts the security principle hierarchy,
which is stored in the database DB4. There are four levels, the first one being composed
of elements labelled by the most abstract principles, e.g., “Access control”, and the lower
level exhibiting the most concrete principles, e.g., “File authorization”.

2.2.5. Step 5: Associations among strong points, security principles and
countermeasure clusters

In this step, we established the many-to-many relation between strong points and secu-
rity principles. We have chosen to manually integrate this relation because strong points
and principles are mostly presented in an abstract manner, with textual documents. We
observed that the abstraction level of the strong points better fits with the most concrete
principles, which are the leaves of the hierarchical organisation depicted in Figure 5.

Afterwards, we established the many-to-many relation between countermeasures
clusters and security principles. After Step 3, the clusters include countermeasures shar-
ing the same security concepts. Once these concepts are known, linking clusters to se-



Figure 5. Hierarchical organisation of security principles

curity principles becomes straightforward, as principles are often defined with regard to
these same concepts.

These relations are materialised with the database DB5, which combines 21 clusters,
36 strong points and 66 principles.

If we take back our example of attack CAPEC-34, its first step “Explore” aims to
explore a Web application to record its user-controllable input points. A countermeasure
of this attack step consists in storing and auditing all the application accesses to detect
the application exploration. Only the administrator should be able to perform this task.
This countermeasure belongs to a cluster that is associated to the principles “Audit”,
“Log” and “File Authorization”. We associated “Log” with the strong point “log sensitive
information that should not be accessible to unauthorised users”, which finally belongs
to the security pattern “Secure Logger”.

2.2.6. Step 6: data consolidation

The previous databases DB1 to DB5 are now combined into a single one. On the one
hand, DB1, DB2 and DB5 store the relations among attacks, steps, countermeasures
and principles. On the other hand, DB3 and DB5 store the relations among security pat-
terns, strong points and principles. It is now manifest that the security principle hierarchy
becomes the central point that helps map attacks onto security patterns.

In our implementation, this step is automatically performed by the tool Talend by
means of the meta-model given in Figure 2. As two databases do not share more than
one entity of the meta-model, this process does not raise any particular issue. This step
produces the final database DBf , which is available in [21].



3. Security Pattern Classification and ADTree Generation

The final database DBf holds enough information to classify security patterns and gen-
erate ADTrees. We present below how to automatically generate them.

3.1. Security pattern classification

By means of the relations defined in the meta-model of Figure 2, we extract from DBf a
catalogue listing the combinations of security patterns that are countermeasures against
an attack. We derived, from the meta-model of Figure 2, a graph taking back the relations
defined from the entity Attack up to the entity Security pattern. The data extraction can
be automatically performed from this graph with a tool like Talend. Given an attack Att,
the following data and relations are extracted from DBf :

• the information about the attack (name, identifier, description);
• the tree T (Att), whose root is Att, if Att is not a leaf of the tree derived in Step 1.

For every attack found in T (Att), we also extract its attack steps and techniques;
• for each step st, the complete hierarchy of security principles Sp(st) by means

of the successive relations established among st, countermeasure clusters and se-
curity principles. Sp(st) denotes the complete hierarchy of security principles re-
lated to a step, i.e., if a principle sp of Sp(st) is not a leaf of the hierarchical organ-
isation depicted in Figure 5, then we also extract all the principle sub-tree whose
root is sp. As the CAPEC base does not clarify whether all the countermeasures or
only some of them have to be used for preventing an attack step, we have chosen
to take them all into consideration and all the respective security principles;

• for each principle sp in Sp(st), the set of security patterns Psp and the set of
patterns P2sp not in Psp that have relations with any pattern of Psp. In addition, we
extract the inter-pattern relations defined for couples of patterns by the annotations
in {”depend”, ”benefit”, ”impair”, ”alternative”, ”conflict”}.

After the data extraction, we obtain a security pattern classification presented in a
tabular form. The data integration steps and the classification extraction offer the ad-
vantage of semi-automatically achieving a security pattern classification that may be up-
dated. For instance, if one want to add a new attack, the steps 1, 2 and 5 have to be fol-
lowed. Likewise, if a new security pattern is proposed in the literature, the steps 3, 4 and
5 have to be applied. And the classification extraction can be re-executed every time the
data-store is updated. From our database DBf given in [21], we have automatically ex-
tracted a security pattern classification specialised to the Web application domain, which
includes 215 CAPEC attacks and 26 security patterns.

Figure 6 depicts an extraction example for the attack CAPEC-34. The first column
gives the attack ID. This attack has no sub attacks (otherwise, the next columns would
list them too). Columns 2 to 4 index the attack steps and techniques. To ease readability,
we only illustrate the step Experiment here. The security patterns allowing to prevent the
step are given in Column 5. These four patterns have to be integrated in the application
model and implemented to prevent the attack. The last two columns list the security
patterns being associated with the patterns of Column 5 and their relations. For instance,
Figure 6 reveals that “Application Firewall” and “Input guard” are alternative patterns,
hence using one of them is enough (although using both is not incorrect). Figure 6 also



Figure 6. Extraction of the pattern classification for the attack CAPEC-34

illustrates that “Secure Logger” may benefit from the security patterns “Secure Pipe” or
“Audit Interceptor”.

A designer can interpret this extraction to select security patterns in a precise man-
ner step after step. For instance, the attack step Experiment refers here to the sending of
malicious requests by means of the application entry points (URLs, forms, etc.). These
entry points were identified by the attack step Explore earlier. The first security solution
is to validate requests either with the security pattern “Input Guard” or “Application Fire-
wall”. The choice of the pattern mostly depends on the application design and features.
“Application Firewall” allows the decoupling of the input validation from the remainder
of the application. But it is also more cumbersome to implement than “Input Guard” as
it aims at filtering all the application requests and responses.

Figure 6 reveals that our classification does not list all the data available in the data-
store and related to an attack, e.g., countermeasures or strong points. We stated in Section
2 that this information is mostly used to establish direct relations among security con-
cepts to eventually generate links between attacks and security patterns. We have chosen
to generate a classification that includes these links but not all the underlying details to
make it more readable. However, the data-store can still be queried to extract more re-
lated details about attacks (techniques, counter-measures, affected principles) or patterns
(strong points, principles).

Raw tabulars may not be easily comprehensible for beginners in security or in pat-
terns. Actually, this classification representation may contradict the criterion Compre-
hensibility , which refers to the ability of using the classification by experts or novices.
This is why we supplement the classification with graphical models called ADTrees to
improve readability.

3.2. Attack-Defense Tree generation

Attack Defense Trees “are graphical representations of possible measures an attacker
might take in order to attack a system and the defenses that a defender can employ to pro-
tect the system” [13]. We recall that ADTrees have two different kinds of nodes: attack
nodes (red circles) and defense nodes (green squares). A node can be refined with child
nodes with disjunctive or conjunctive refinements. The former is recognisable by edges
going from a node to its children. The latter is graphically distinguishable by connecting



(a) Pattern classification representation with ADTrees (b) Conflicting pattern rep-
resentation with ADTrees

Figure 7. Generated ADTree forms

these edges with an arc. Here, we extend these two refinements with the sequential con-
junctive refinement of attack nodes, defined by the same authors in [11]. This operator
expresses the execution order of child attack nodes. Graphically, a sequential conjunctive
refinement is depicted by connecting the edges going from a node to its children with an
arrow.

We generate ADTrees having the general form illustrated in Figure 7(a). An ADTree
root node is labelled by an attack. This root node may be disjunctively refined with sub-
attacks. When an attack is defined with steps, its node is refined with child nodes labelled
by these steps (sequential conjunctive refinement). The most concrete steps are graph-
ically represented with attack nodes refined with other attack nodes labelled by tech-
niques (disjunctive refinement). A node labelled by an attack step has one child defense
node (in green in Figure 7(a)), which may be the root of a defense sub-tree expressing
security pattern combinations.

ADTrees are obtained with the following steps:

1. a new ADTree is generated for every attack stored into DBf . Its root node is la-
belled by the attack identifier. This root node is linked to other attack nodes with
a disjunctive refinement if the attack has sub-attacks. This step is repeated for ev-
ery sub-attack. In other words, we generate a sub-tree of the original hierarchical
tree extracted in Step 1;

2. for each attack Att found in the preceding tree, we collect its sequence of steps.
The node labelled by Att is refined with a sequential conjunction of attack nodes,
one for each step. We repeat this process if a step is itself composed of steps. In
the same way, for each step St, the related techniques are extracted from the data-
store and are associated to the node labelled by St with a disjunctive refinement;



3. for each step st, we extract the set P of security patterns that counter st. Given a
couple of patterns (p1, p2) ∈ P , we illustrate their associations with new nodes
and logic operations as follows. If we have:

• (p1 R p2) with R a relation in {depend, benefit}, we build three defense
nodes, one parent node labelled by p1 R p2 and two nodes labelled by p1, p2
combined with this parent defense node by a conjunctive refinement;

• (p1 alternative p2), we build three defense nodes, one parent node labelled
by p1 alternative p2 and two nodes labelled by p1, p2, which are linked by a
disjunctive refinement to the parent node;

• (p1 R p2) with R a relation in {impair, conflict}. The operator XOR sounds
to be the evident candidate for modelling this case. Unfortunately, this oper-
ator is not defined in this tree model. Therefore, we use the classical formula
(p1 xor p2 ) −→ ((p1 or p2 ) and not (p1 and p2 )), except that the not op-
erator (unavailable with ADTrees) is here replaced by an attack node labelled
by (p1 R p2) meaning that two conflicting security patterns used together con-
stitute a kind of attack. The corresponding sub-tree is depicted in Figure 7(b),

• p1 having no relation with any pattern p2 in P , we add one parent defense node
labelled with p1.

The parent defense nodes, resulting from the above steps, are combined to a
defense node labelled by ”Pattern Composition” with a conjunctive refinement.
This root defense node is linked to the attack node labelled by st. We consider all
the security patterns here (combined with a conjunctive operator) on account of
the lack of clarification of the CAPEC base. Indeed, as stated in the classification
generation, the CAPEC base does not report whether all the countermeasures or
only some of them have to be used for preventing an attack step. Hence, we have
chosen to consider them all and all the related security patterns.

When an attack step is linked to several security patterns, the second step may
achieve a large defense sub-tree. This one can be reduced though by using logical ex-
pression simplifications. In short, if we replace the relations depend, benefit by the oper-
ation AND, the relation alternative by OR and the relations impair, conflict by XOR, we
obtain classical logical expressions. These can be reduced with tools, e.g., BExpRed4. A
simplified defense tree can be derived from the reduced expression. For instance, with
the three patterns p1, p2 and p3 having the relations (p1 benefit p2), (p1 alternative p3)
and (p2 alternative p3), we obtain (p1 AND p2) AND (p2 OR p3) AND (p1 OR p3),
which can be reduced to (p1 AND p2). This expression gives a defense node that is
conjunctively refined with two nodes labelled by p1 and p2.

An ADTree resulting from the previous steps represents all the possible scenarios
that can lead to the realisation of the attack given in the root node. It provides sequences
of attack steps and techniques that have to be executed in the right order to perform the
attack with success. On the opposite side, it also includes defense nodes, which may be
the roots of sub-trees expressing combinations of security patterns. It remains for the
designer to chose one combination of patterns for every step at the application design
stage.

4https://sourceforge.net/projects/bexpred/



We implemented the ADTree generation with a tool available in [21]. It takes as
input an attack identifier and yields an ADTree, which is stored into an XML file. ADTree
files can be modified or updated as the designer wishes with the tool given in [12].

C
A

P
E

C
-3

4

1.
E

x
p
lo

re

1.
1.

S
p
id

er

1.
1.

1
1.

1.
2

1.
1.

3
b

en
ifi

ts

se
cu

re
lo

gg
er

au
d
it

in
te

rc
ep

to
r2.

E
x
p

er
im

en
t

2.
1.

A
tt

em
p
t

va
ri

at
io

n
s

on
in

p
u
t

p
ar

am
et

er
s

2.
1.

1
2.

1.
2

P
at

te
rn

co
m

p
il
at

io
n

al
te

rn
at

iv
e

ap
p
li
ca

ti
on

fi
re

w
al

l
in

p
u
t

gu
ar

d

b
en

ifi
ts

se
cu

re
lo

gg
er

a
u
d
it

in
te

rc
ep

to
r

3.
E

x
p
lo

it

3.
1.

C
ro

ss
-S

it
e

S
cr

ip
ti

n
g

3.
1.

1
P

at
te

rn
co

m
p
il
at

io
n

b
en

ifi
ts

se
cu

re
lo

g
ge

r
a
u
d
it

in
te

rc
ep

to
r

al
te

rn
at

iv
e

ap
p
li
ca

ti
on

fi
re

w
al

l
b

en
ifi

ts

in
p
u
t

gu
ar

d
al

te
rn

at
iv

e

co
m

p
ar

at
or

ch
ec

ke
d

fa
u
lt

to
le

ra
n
t

sy
st

em

ou
tp

u
t

gu
ar

d3.
2.

C
ac

h
e

p
oi

so
n
in

g

3.
2
.1

P
at

te
rn

co
m

p
il
a
ti

o
n

b
en

ifi
ts

se
cu

re
lo

gg
er

au
d
it

in
te

rc
ep

to
r

a
lt

er
n
a
ti

ve

a
p
p
li
ca

ti
o
n

fi
re

w
a
ll

b
en

ifi
ts

in
p
u
t

g
u
a
rd

a
lt

er
n
a
ti

ve

co
m

p
a
ra

to
r

ch
ec

ke
d

fa
u
lt

to
le

ra
n
t

sy
st

em

o
u
tp

u
t

gu
a
rd

Figure 8. ADtree of the Attack CAPEC-34



Table 1. attack techniques descriptions

TECHNIQUE TECHNIQUE DESCRIPTION
1.1.1 Use a spidering tool to follow and record all links and analyze the web pages to find

entry points. Make special note of any links that include parameters in the URL, forms
found in the pages (like file upload, etc.).

1.1.2 Use a proxy tool to record all links visited during a manual traversal of the web appli-
cation.

1.1.3 Use a browser to manually explore the website and analyze how it is constructed. Many
browsers’ plugins are available to facilitate the analysis or automate the discovery.

2.1.1 Use CR/LF characters (encoded or not) in the payloads in order to see if the HTTP
header can be split.

2.1.2 Use a proxy tool to record the HTTP responses headers.
3.1.1 Inject cross-site scripting payload preceded by response splitting syntax (CR/LF) into

user-controllable input identified as vulnerable in the Experiment Phase.
3.2.1 The attacker decides to target the cache server by forging new responses. The server

will then cache the second request and response.

Figure 8 illustrates the ADTree obtained for the attack CAPEC-34 and Table 1 lists
the techniques labelled in this ADTree. The root of the tree is the main goal of the at-
tacker. Its second and third levels relate to the attack steps. These nodes are sequential
conjunctive refinements of the root node. For instance, the step Exploit is achieved if
both steps 3.1 and 3.2 are successfully executed in the right order (from left to right).
An attack step has a disjunctive refinement of attack nodes labelled by techniques. The
step is achieved if one of the attack techniques is applied with success. The lower nodes,
labelled by attack steps, are linked to (green square) defense nodes, which illustrate se-
curity pattern combinations. We observe that the step 1.1 “Spider” can be prevented by
designing the application with both patterns “Audit interceptor” and “Secure logger”.
“Audit interceptor” can be used to detect the application crawling and to warn an admin-
istrator. The audit logs are secured by means of “Secure logger”, which guarantees that
the audit logs cannot be accessed or altered by unauthorised users.

4. Classification Discussion

We discuss in this section the quality, accuracy and the limitations of our classification.

4.1. Classification Quality

To assess the quality of this classification we studied the nine criteria proposed by Alvi
et al. in [2]. Our classification meets seven of these criteria:

• Navigability: our classification (supplemented with ADTrees), satisfies this crite-
rion as it exposes the hierarchical refinements of an attack and, for every attack
step, the combinations of patterns, which should be integrated in the application
model. Besides, the classification provides the relationships among security pat-
terns, which help choose the most appropriate pattern combination;

• Determinism: the classification is clearly defined by means of the methodology
steps. All these steps justify the soundness of the classification;



• Unambiguity/Comprehensibility: as patterns are classified w.r.t. attacks, steps, and
security principles, we provide a clear structure of categories. This organisation,
which is illustrated by means of ADTrees, makes our classification readable and
comprehensible even for novices in security patterns;

• Usefulness: we believe the classification can be used in practice since it is based
upon a known security pattern catalogue [38] and upon the CAPEC base, which is
more and more employed in the industry. Furthermore, the Attack tree formalism
is one of the most prominent security formalism for analysing threats. The ADTree
model is supported by several tools, in particular ADTool [12]. Our ADTree gen-
erator actually generates XML files taken as inputs by ADTools;

• Acceptability: an acceptable classification schema should be structured in a way
that it provides help in partitioning the security pattern landscape and becomes
generally approved [2]. Our classification partitions security patterns with regard
to attacks and security principles. Furthermore, the evaluation given in Section 5
suggests that the classification makes participants more efficient and confident on
their pattern choices without providing new constraints;

• Repeatability: the classification is generic and can be reused. Furthermore, the
data-store and the classification can be updated.

Our classification does not yet satisfy two quality criteria called Mutual exclusivity
(patterns should be categorised into at most one category) and Completeness (all the ex-
isting security patterns are covered). Mutual exclusivity does not hold because a security
pattern can be related to several attacks and security principles in the meta-model of Fig-
ure 2. Even though this is not a primary goal of our classification, we could fix this issue
by grouping the most concrete attacks into contexts in a mutual way as in [5]. To do so,
the meta-model of Figure 2 should be updated with a new entity called Context linked to
an entity Concrete Attack itself linked to the Entity Attack.

4.2. Classification Accuracy

We conducted a systematic review of the data integration steps and of the classification
to ensure that the security patterns provided to counter an attack are effective and that
none is missing among the 26 patters considered in this paper. Unfortunately, this review
had to be manually done as most of the security concepts considered in the meta-model
of Figure 2 are abstract in nature. In short, the review process was carried out as fol-
lows. The first author studied the associations between security patterns and principles
(steps 3, 4 and 5). Some relations were corrected and strong points were added during
this process. The second author audited the associations between attacks and principles
(steps 2 and 5). In particular, the clusters of counter-measures were carefully examined
as the clustering technique requires supervision. Step 1, which involves the automatic
extraction of information about attacks was quickly examined as the extraction was done
from a public base regularly reviewed by thousands of users. Then, we asked two master
students to review half of the pattern classification each one, i.e. the patterns provided to
counter every attack. One of the authors reviewed the complete classification. The other
author studied the associations between patterns and security principles and especially
checked whether some associations between strong points and principles were missing.
When there was a disagreement in answers, we discussed the issues until we reached an
agreement.



Furthermore, to validate the accuracy of the classification, we also compared it with
the results issued in the two papers dealing with the associations between patterns and
attacks/weaknesses [34,1]. In these works, the security pattern intents are manually com-
pared to the summaries of the attacks. As these textual sections are abstract, few relations
were found. The largest contribution is provided by Alvi et al. who considered around
20 attacks and manually linked them to 5 patterns. The relations exposed in [34,1] does
not reveal any inconsistency with our classification. For instance, the attack “CAPEC-
66 SQL Injection” is related to the security patterns “Intercepting Validator” and “Input
validation” in [34]. The attacks “CAPEC-244: Cross-Site Scripting via Encoded URI
Schemes” and CAPEC-66 are only associated with the pattern “Intercepting Validator”
in [1]. For these attacks, our method generates two ADTrees, which provide 4 combina-
tions of 7 patterns for the CAPEC-244 and 8 combinations of 9 patterns for the CAPEC-
66. These ADTrees give equivalent patterns. For instance, the ADTrees exhibit the pat-
tern “Input Guard”, which can be implemented by “Intercepting Validator”. But, they
also list other security patterns. For the CAPEC-244, some of these patterns are alterna-
tive to “Input Guard”, e.g., “Application Firewall”. Other patterns, e.g., “Authentication
Enforcer” or “Controlled Object Monitor” are related to specific countermeasures of the
attack CAPEC-244. We believe these patterns, which are not given in the previous clas-
sifications, are required to counter the attack with regard to the application context. More
generally, we have observed that our classification exposes more pattern combinations
per attack; the more choice is not always the better though. But, after inspection, we have
concluded that more than one or two patterns are generally required to counter attacks.

4.3. Limitations

After the review of our classification, we have observed that it presents some limitations,
which could lead to some research future work.

The notion of attack combination is not considered in the paper. Such a combination
could be seen as several attacks or as one particular attack. If an attack combination
can be identified and documented with its sub-attacks, then it can be integrated in our
data-store.

The ADTree size limit is not supported by our ADTree generator. When an attack
has a high level of abstraction, the resulting ADTree size may become large because it
includes a set of sub-attacks, themselves linked to several patterns. This is a strong limi-
tation since large trees are usually unreadable, which contradicts the method purposes.

The classification is not exhaustive: it includes 215 attacks out of 569 (for any kind
of application) and 26 security patterns out of 176. It can be completed with new attacks
automatically. But the completion of the data-store with new security patterns requires
some manual steps. It could be interesting to investigate whether text mining techniques
would help partially automate them. The classification exhaustiveness also depends on
the available security data. In the ADTree of Figure 8, all the lowest attack nodes are
linked to defense nodes. We sometimes observed that no defenses are provided with other
attacks. This can be usually explained by three main reasons:

1. security databases or pattern catalogues are incomplete (lack of mitigation, coun-
termeasure, etc.). More data are required during the data integration process. In
particular, we observed that some countermeasures are missing for some attacks
of the CAPEC base;



2. the attack is relatively new. It is not documented yet or no pattern based solution
is available;

3. security data are missing because we did not considered them in the manual data
integration steps. For instance, as the pattern descriptions do not clearly provide
strong points, it may be easy to skip one of them.

Several steps require manual interventions, which are prone to errors. These steps
may lead to associations among security data that are bound to be controversial. We re-
viewed and compared our classification with other papers to check whether the selected
patterns are appropriate. As these papers provide few associations between patterns and
attacks, our validation process is incomplete. Validating every relation of the meta-model
of Figure 2 is a hard problem. It could be partially solved by the use of verification meth-
ods. But the writing of formal expressions for modelling the entities and associations of
our meta-model is another long and error-prone task that should be addressed.

Finally, the inter-pattern associations are defined with binary relations only, as pre-
sented in [37]. These relations could be updated to link several patterns together.

5. Empirical Evaluation

We evaluated our classification to ensure that the previous quality criteria can be met in
practice. We empirically studied two scenarios where 24 participants were given the task
of choosing security pattern combinations to prevent two attacks, CAPEC-244: Cross-
Site Scripting via Encoded URI Schemes and CAPEC-66: SQL Injection, on two vulner-
able Web applications, Ropeytasks 5 and Bodgeit 6. The participants are third to fourth
year computer science undergraduate students following a block release training; most
of them have good skills in the design, development and test of Web applications (PHP,
Javascript). They have some knowledge about classical attacks and are used to handle
design patterns, but not security patterns. The duration of each scenario was set at most
to one hour.

In the first scenario, denoted Part 1, we supplied these documents to the students:
some UML sequence diagrams capturing the main functionalities of the application, the
CAPEC base, two concrete examples showing how to perform each attack, the catalogue
of security patterns given in [38] and the pattern classification proposed in [1]. The cat-
alogue includes 36 patterns whose most of them can be used with Web applications.
For simplicity, we refer to these documents as basic documents in the remainder of the
evaluation. In the second scenario, denoted Part 2, we supplied additional documents
for the two attacks, i.e., our classification under the form of tabulars giving the attack
steps, techniques and combinations of security patterns (as in Figure 6), two ADTrees
generated from the data-store (Figure 8 is one of them). At the end of each scenario, the
students were invited to fill in a form listing these questions:

• Q1: Was it difficult to choose security patterns?
• Q2: Was it difficult to use the CAPEC documentation (in Part 1) / our classifica-

tion+ADTrees (in Part 2)?

5https://github.com/continuumsecurity/RopeyTasks
6https://github.com/psiinon/bodgeit



Figure 9. Response rates for Q1 to Q3

• Q3: Was it difficult to use the basic pattern documents (in Part 1) / our classifica-
tion+ADTrees (in Part 2)?

• Q4: What was your time spent for choosing security patterns?
• Q5: How confident are you in your pattern choice?
• Q6: What are the patterns you have chosen?

This form was devised to evaluate these three criteria:

• C1 Comprehensibility: does our classification make the pattern choice less diffi-
cult?

• C2 Efficiency: does our classification help reduce the time needed to choose pat-
terns?

• C3 Accuracy: are the chosen patterns correct ?

5.1. Experiment results

From the forms returned by the participants (available in [21]), we extracted the follow-
ing results. Firstly, Figure 9 illustrates the percentages of answers to the questions Q1
to Q3. For these, we proposed this four-valued scale: easy, fairly easy, difficult, very dif-
ficult. From Question Q4, we collected the time spent by the participants for choosing
patterns (in Part 1 and 2 of the experimentation). In summary, response times varied be-
tween 15 and 50 minutes for Part 1, and between 5 and 30 minutes for Part 2. We gauged
the levels of confidence of the participants towards their security pattern choices (Ques-
tion Q5). The possible answers were for both scenarios: very sure, sure, fairly sure, not
sure. The bar charts of Figure 10 depicts the levels of confidence of the participants.

We finally analysed the security pattern combinations provided by the participants in
Question Q6. We organised these responses into four categories (ordered from the more
to the less accurate):

• Correct: we considered that any pattern combination allowing to counter the attack
is a good solution. Several pattern combinations were accurate. When a participant
gives one of these combinations, its response belongs to this category;



Figure 10. Confidence rates (Q5)

Figure 11. Accuracy Measurement (Q6)

• Correct+Additional: this category includes the responses composed of a correct
pattern combination, completed with some other unnecessary patterns;

• Missing: we gather in this category, the incomplete pattern combinations without
additional patterns;

• Missing+Additional: this category holds the worst responses, composed of unnec-
essary patterns eventually accompanied with some expected ones but not of of
them).

With these categories, we obtained the bar charts of Figure 11, which gives the
number of responses per category and per experiment scenario.

5.2. Result interpretation

5.2.1. C1: Comprehensibility

Figure 9 shows that 33% of the participants estimated that the pattern choice was easy
with our classification and ADTrees (Q1). In contrast, no participant found that the
choice was easy when using only the basic pattern documents. The rate of ”Easy” Fairly



Easy” increased by 70,8% between Part 1 and Part 2. With Question Q2, 41,7% of the
participants found ”Fairly easy” the use of the CAPEC base, whereas 87,5% esteemed
our documents (ADTrees) ”Easy” and ”Fairly Easy” to use. Similarly, only 37,5% of the
participants found ”Easy” and ”Fairly easy” the reading of the basic pattern documents.
This rate reaches 87,5% with our classification. Consequently, Figure 9 shows that our
classification and ADTrees make the pattern choice easier and that they are simpler to
interpret than the basic pattern documents. In addition, Figure 10 expresses that the con-
fidence of the participants on their responses increased by 20,8 %.

5.2.2. C2: Efficiency

The average time spent by the participants for choosing patterns is equal to 32 minutes in
the first scenario (Part 1). This time delay decreases to 15 minutes when the participants
employed our classification and ADTrees. Furthermore, no participants went over 30
minutes for choosing patterns in Part 2 (in contrast with 50 minutes for Part 1). Hence,
our documents make the participants more efficient.

5.2.3. C3: Accuracy

Figure 11 reveals how complicated it is to read the basic pattern documents. Indeed,
no participant gave a correct pattern combination in Part 1. In contrast, when they used
our classification and ADTrees, the number of correct responses rises to 15 out of 24
(60%). Furthermore, the category of responses ”Missing+Additional” (worst responses)
is strongly reduced (60 % with Part 1 to 8% with Part 2). Consequently, the pattern choice
is significantly more accurate with our classification and ADTrees. Nonetheless, even
with our documents, the number of participants that gave incomplete pattern combina-
tions remains around the same range (9 in Part 1, 7 in Part 2). More efforts seem required
to avoid the participants forgetting patterns in ADTrees.

5.3. Threat to Validity

There are many application and system contexts, but this preliminary experimental eval-
uation is applied on Web applications only. This is a threat to external validity, in the
sense that the results about Comprehensibility and Accuracy cannot be generalised to all
software systems. This is why the experiments deliberately avoid drawing any general
conclusion. But, this threat is somewhat mitigated by the considered context itself. The
Web development is indeed a rich field in great demand in the software industry. Web
applications also expose a lot of well-known vulnerabilities. Besides, this well-studied
application context helped us propose experimentations involving participants having the
adequate knowledge on software development and security.

This leads to the second threat to validity concerning the audience. Our evaluation
was indeed performed on a public of students following a block release training. This
sort of subject is sometimes considered as a bias, as any strict process should help them
improve their work. But, several studies conclude that student experiments are appropri-
ate as evaluation for software engineering approaches, especially when Comprehensibil-
ity is a criterion taken under evaluation [6]. We also believe that we would have achieved
the same results with a group of developers from the industry, as they often do not have
any software security skills. Evaluating our tools with a public of security experts could
be interesting, but this work initially do not target this kind of audience.



Another threat relates to the learning effect, which may happen between the two
stages of the evaluation: we indeed applied the same approach to the same participants.
We only replaced the Web application in Part 2 (to avoid another bias, we took care to
provide an application providing similar functionalities and exposing the same vulnera-
bilities), and we completed the available security documents by a list of ADTrees. We
deliberately chose to apply the same approach in Part 1 and 2 to evaluate the felling of the
participants about the security documents (Q3, Q2) and their confidence on their work
(Q5). In other words, the fact of changing the audience might have brought a bias on our
analysis of Comprehensibility. But, it is indisputable that this kind of experiment may
influence our results. We tried to mitigated this threat by changing the question order.
Besides, our results suggest that there are significant improvements in Comprehensibility
and Accuracy between Part 1 and 2. We believe that these improvements cannot only be
explained by a learning effect and that our approach has a real impact here.

There is also a risk as we asked the participants to select security patterns indepen-
dently of the application design, even though the latter was partly given to them. Hence,
our results on Accuracy (depicted in Figure 11) might include patterns whose integra-
tion in the application is not possible. We studied the problem of pattern selection with
regard to an existing model in another work [23]. We have shown that the strict analysis
of pattern integration in a model is not trivial and depends on several factors, e.g., struc-
tural or behavioural integration. We thus believe that this study requires its own kind of
experiment. In addition, the task of selecting patterns, which can fit in an existing model,
would require much longer experiment times that those we considered. But, let us exam-
ine the impact of considering as correct only the patterns that fit in the application design.
With regard to Figure 11, this new viewpoint would only affect the results of the two
first columns: we should have less pattern combinations in the column Correct, which
are transferred in the second column Correct + Additional pattern. The two last columns
(Missing, Additional patterns) remain unmodified. This shows that our approach still
increases Accuracy in this case.

We thus believe that the empirical experience reported in this paper provides relevant
insights on the benefits of using our pattern classification.

6. Conclusion

We have proposed a security pattern classification method based on the integration of
various security data. The method, composed of 6 manual and automatic steps, gener-
ates a data-store and a classification associating attacks, security principles and security
patterns in order to help designers choose security pattern combinations to design secure
applications. The method also builds ADTrees, which graphically illustrate the classi-
fication. As a proof of concept, we implemented these steps and generated a security
pattern classification, which includes 215 CAPEC attacks, 66 security principles and 26
security patterns. We evaluated the quality of this classification by means of the criteria
exposed in [2] and with an experimentation performed on 24 participants. The experi-
mentation suggests that our classification and ADTrees make the pattern choice easier,
more accurate, and the participants more efficient.

We also mentioned several limitations, which could lead to future research. We
firstly intend to focus on the automation of some of the data integration steps. We will in-
vestigate whether some text mining techniques could help partially automate the extrac-



tion and integration of security data without bringing ambiguity. Our method does not
take into consideration the size of the ADTrees, which might impede Comprehensibility.
The ADTree reduction could be a first solution to this problem. But, the literature does
not yet provide a generic method for this kind of reduction. Reducing such trees remains
a hard problem as the node meaning must be taken into account in the node aggregating
process. Another line of future work is to integrate other security concepts in our data-
store to provide other kinds of classifications. For example, several researchers studied
the relations between security patterns and tactics. Tactics are described as measures or
decisions taken to improve quality factors [4,9]. Patterns actually represent some realisa-
tions of tactics. In the meta-model of Figure 2, the notion of security tactic should find its
place between principles and strong points. But, another way of integration would be to
replace security principles with tactics. This alternative could refine the pattern selection,
as the desirable security property might be more precise. But we estimate that the effort
required to associate counter-measures, strong points and tactics would be substantial as
there are many more tactics than principles. Once more, text mining might help reduce
this effort. We will also continue to investigate the use of data integration techniques to
simplify some steps of the software life cycle. In particular, we will study whether our
generated ADTrees could serve for the test case generation.

References

[1] A. K. Alvi and M. Zulkernine. A Natural Classification Scheme for Software Security Patterns. 2011
IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pages 113–
120, 2011.

[2] K. Alvi, Aleem and M. Zulkernine. A Comparative Study of Software Security Pattern Classifications.
2012 Seventh International Conference on Availability, Reliability and Security, pages 582–589, 2012.

[3] P. Anand, J. Ryoo, and R. Kazman. Vulnerability-Based Security Pattern Categorization in Search of
Missing Patterns. 2014 Ninth International Conference on Availability, Reliability and Security, pages
476–483, 2014.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley Professional,
3rd edition, 2012.

[5] M. Bunke, R. Koschke, and K. Sohr. Organizing security patterns related to security and pattern recog-
nition requirements. International Journal on Advances in Security, 5, 2012.

[6] M. Daun, C. Hübscher, and T. Weyer. Controlled experiments with student participants in software
engineering: Preliminary results from a systematic mapping study. CoRR, abs/1708.04662, 2017.

[7] V. Dialani, S. Miles, L. Moreau, D. De Roure, and M. Luck. Transparent fault tolerance for web services
based architectures. In Euro-Par 2002 Parallel Processing, pages 889–898. Springer, 2002.

[8] E. B. Fernandez. Security patterns and secure systems design. In A. Bondavalli, F. Brasileiro, and
S. Rajsbaum, editors, Dependable Computing, pages 233–234, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[9] E. B. Fernandez, H. Astudillo, and G. Pedraza-Garcı́a. Revisiting architectural tactics for security. In
D. Weyns, R. Mirandola, and I. Crnkovic, editors, Software Architecture, pages 55–69, Cham, 2015.
Springer International Publishing.

[10] D. Harb, C. Bouhours, and H. Leblanc. Using an Ontology to Suggest Software Design Patterns Inte-
gration, pages 318–331. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[11] R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and R. Trujillo-Rasua. Attack trees with sequential
conjunction. In IFIP International Information Security Conference, pages 339–353. Springer, 2015.

[12] B. Kordy, P. Kordy, S. Mauw, and P. Schweitzer. ADTool: security analysis with attack–defense trees.
In International Conference on Quantitative Evaluation of Systems, pages 173–176. Springer, 2013.

[13] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer. Attack–defense trees. Journal of Logic and
Computation, page exs029, 2012.

[14] J. Meier. Web application security engineering. Security & Privacy, IEEE, 4(4):16–24, 2006.



[15] Mitre corporation. Common attack pattern enumeration and classification, url:https://capec.mitre.org/,
2018.

[16] Mitre corporation. Common weakness enumeration, url:https://cwe.mitre.org/, 2018.
[17] H. Munawar. Security pattern catalog, http://www.munawarhafiz.com/securitypatterncatalog/.
[18] Offensive Security. Exploit database archive, url:https://capec.mitre.org/, 2018.
[19] OWASP. Owasp testing guide v3.0 project. In http://www.owasp.org/index.php/Category:OWASP Testing

Project#OWASP Testing Guide v3, 2003.
[20] L. Regainia and S. Salva. A methodology of security pattern classification and of attack-defense tree

generation. In O. Camp, S. Furnell, and P. Mori, editors, Proceedings of the 3nd International Confer-
ence on Information Systems Security and Privacy (ICISSP 2017, Porto, Portugal, 02 2017. SciTePress.

[21] L. Regainia and S. Salva. Security pattern classification, companion site,
http://regainia.com/research/companion.html, 2018.

[22] L. Regainia, S. Salva, and C. Bouhours. A classification methodology for security patterns to help fix
software weaknesses. In 13th ACS/IEEE International Conference on Computer Systems and Applica-
tions AICCSA 2016, Agadir, Morocco, 11 2016. IEEE Computer Society.

[23] L. Reigaigna, C. Bouhours, and S. Salva. A systematic approach to assist designers in security pattern
integration. In The Second International Conference on Advances and Trends in Software Engineering
(SOFTENG 2016), Lisbon, Portugal, 02 2016.

[24] E. Rodriguez. Security Design Patterns. In 19th Annual Computer Security Application Conference
(ACSAC’03), 2003.

[25] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, 1975.

[26] J. Scambray and E. Olson. Improving Web Application Security. 2003.
[27] M. Schumacher. Security Engineering with Patterns: Origins, Theoretical Models, and New Applica-

tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.
[28] R. Slavin and J. Niu. Security patterns repository, http://sefm.cs.utsa.edu/repository/, 2017.
[29] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edition). Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2005.
[30] I. A. Tøndel, J. Jensen, and L. Røstad. Combining misuse cases with attack trees and security activity

models. In Availability, Reliability, and Security, 2010. ARES’10 International Conference on, pages
438–445. IEEE, 2010.

[31] A. V. Uzunov and E. B. Fernandez. An extensible pattern-based library and taxonomy of security threats
for distributed systems. Computer Standards & Interfaces, 36(4):734–747, 2014.

[32] J. Viega and G. McGraw. Building Secure Software: How to Avoid Security Problems the Right Way,
Portable Documents. Pearson Education, 2001.

[33] R. Wassermann and B. H. Cheng. Security patterns. In Michigan State University, PLoP Conf. Citeseer,
2003.

[34] A. Wiesauer and J. Sametinger. A security design pattern taxonomy based on attack patterns. In Inter-
national Joint Conference on e-Business and Telecommunications, pages 387–394, 2009.

[35] P. Willett. Recent trends in hierarchic document clustering: a critical review. Information Processing &
Management, 24(5):577–597, 1988.

[36] J. Yoder, J. Yoder, J. Barcalow, and J. Barcalow. Architectural patterns for enabling application security.
Proceedings of PLoP 1997, 51:31, 1998.

[37] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen. A system of security patterns, technical report
cw-469, 2006.

[38] K. Yskout, R. Scandariato, and W. Joosen. Do security patterns really help designers? In Proceedings
of the 37th International Conference on Software Engineering - Volume 1, ICSE ’15, pages 292–302,
Piscataway, NJ, USA, 2015. IEEE Press.


