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ABSTRACT

A three-dimensional meso-8 model with parameterized microphysics is presented. The model is capable of
simulating orographically forced clouds, rain, and airflow. Tests using a two-dimensional version confirm the
ability of the model to replicate the linear and nonlinear mountain wave simulations of previous authors. The
model is applied to the Rhine valley and surrounding mountainous areas, the Vosges in France and the Black
Forest in Germany. Model-predicted rainfall over the mountainous areas is in good agreement with observations
in both magnitude and location; however, an absence of model-predicted cloud cover over the Rhine valley
suggests the need for an improved mesoscale initialization procedure.

1. Introduction

Local convergence and vertical motion fields in-
duced within air flowing over irregular terrain can sig-
nificantly influence the location, the intensity, and even
the microphysics of precipitation reaching the ground.
Studies of precipitation patterns over the British Isles
(Browning et al., 1974), New Zealand (Salinger, 1980),
and Hawaii (Lavoie et al., 1967) have documented the
strong effects of orography on the initiation, enhance-
ment, and/or suppression of precipitation. Although
it is not surprising to discover such effects in the pres-
ence of large mountain barriers, Bergeron (1965) has
shown that even relatively small orographic features
less than 100 m high can, under the proper conditions,
profoundly affect local precipitation patterns (Weick-
mann, 1979). Numerical simulations of orographicaily
induced precipitation present us with an opportunity
to evaluate the performance of mesoscale models under
much simpler conditions than would normally be
found in synoptically induced mesoscale systems
(Pielke, 1981).

Numerical models have demonstrated an ability to
provide realistic simulations of mesoscale weather sys-
tems (Anthes and Warner, 1978; Chang et al., 1981).
However, an accurate prediction of the amount and

* Presently privately employed in Pt. Barrow, AK.

to a lesser extent the location of precipitation has re-
mained an elusive goal (Warner et al., 1978; Anthes
and Haagenson, 1983). Among the reasons for the dis-
crepancies between observed and forecast precipitation
rates are the horizontal resolution of the model (espe-
cially in regions of complex terrain), and the procedures
used to parameterize the precipitation processes. An-
other important consideration is the specification of
the initial moisture fields and the associated vertical
motion necessary to maintain saturation (Tarbell et
al., 1981).

In order to simulate both the temporal and spatial
variability of precipitation reaching the ground, it may
be necessary to resolve in detail the complete micro-
physical sequence of events, and to significantly reduce
the horizontal grid increment. In the sections which
follow we first present a mesoscale model with a mi-
crophysical parameterization based upon an assumed
lognormal raindrop distribution. The rainwater mixing
ratio and raindrop concentration are calculated from
separate predictive equations. This approach is con-
siderably less complex than that of Young (1974), or
Takahashi (1979), but allows for an extra degree of
freedom not present in the Kessler parameterization
used for example by Clark (1979).

Simulations of a two-dimensional nature are then
discussed. These were carried out to test the ability of
the model to correctly replicate the linear and nonlinear
numerical mountain wave solutions obtained by pre-



FEBRUARY 1986

vious authors (Klemp and Lilly, 1978; Mahrer and
Pielke, 1978). We then test the performance of the
three-dimensional model by carrying out a simulation
of a rainfall event over the mountains surrounding the
Rhine valley along the French-German border. This
region will be the site of future field programs involving
wet and dry deposition in the Vosges and Black Forest
mountains, and it is anticipated that the model will be
used in the design and interpretation of those studies.

2. The model

The three-dimensional meso-3 model of Nickerson
(1979) is extended here to include warm rain micro-
physical processes. The equations are written in a sys-
tem of local coordinates (x, y, v) where the vertical
coordinate v is related to the usual sigma pressure co-

ordinate by ¢ = (4» — »*)/3. Here ¢ = (P — Pp)/II,.

where I = Pg—~ Prrepresents the difference in pressure
between the lower and upper boundaries. The vertical
coordinate represents a simple ad hoc transformation
in which the new vertical coordinate ranges from unity
to zero as in the conventional sigma system. The ver-
tical coordinate also satisfies the condition that de/dv
must be finite over the entire domain and must be
equal to zero at the lower boundary to assure second-
order accuracy in the discretization scheme (De Rivas,
1972). The terrain-following coordinate » was incor-
porated into the model and permits the use of a con-
stant vertical grid increment A» while providing for an
improved vertical resolution of meteorological param-
eters in the planetary boundary layer. (See Table 1 for
a comparison of the ¢ and v coordinate systems.)

a. Dynamical equations

The prognostic équations for the variables U = Hu
and V = Ilv are written in the » coordinate system as

TABLE 1. Comparison of the o and » coordinate systems.

v c
0.0000 0.0000
0.0333 0.0444
0.1000 0.1333
0.1667 0.2220
0.2333 0.3101
0.3000 0.3973
0.3667 0.4829
0.4333 - 0.5660
0.5000 0.6458
0.5667 0.7212
0.6333 0.7908
0.7000 0.8533
0.7667 0.9071
0.8333 0.9504
0.9000 0.9813
0.9667 0.9978
1.0000 1.0000
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where u and v are the usual horizontal wind compo-
nents, ® is the geopotential, and F, and F, are the
friction terms. Each friction term consists of a vertical
eddy diffusion term representing the turbulent trans-
port of a variable within the planetary layer (Nickerson,
1979), and a horizontal diffusion term of the form

L
HK”(@ + *675)

operating on a v surface. Other symbols are defined in
appendix A.
The vertical velocity » is given by

V= -

1o ,(an U oV
G
Il¢' Jo

+ —+ — Jdv*. 3
a  ox ay) 3

The temporal evolution of the surface pressure is
obtained from the vertical integration of the equation
of continuity:

oIl J“ (aU aV)
—_—= — + — )o'av. 4
ot o \ax T3y )0 @
The geopotential & is calculated as follows:
0
— = - 1+ 0.61q,). 5

b. Thermodynamical equations

The predicted thermodynamic variables are an en-
tropy variable S = IIH, and a moisture variable W
= Il(g, + 4.v), Where g, and g, are mixing ratios of
water vapor and cloud water, respectively. Apart from
a small correction factor (of order 10~3) which is pro-
portional to the mixing ratio of liquid water present in
the model, the entropy variable is the same as that
given by Dufour and Van Mieghem (1975), which is
conserved during both dry and wet reversible adiabatic
transformations:

T\ , L,
H=Inl=)+—. 6
“(P) C,T ©)
However, in contrast to the earlier version of the
model in which the condensation products remained

in the air (Nickerson, 1979), the present version consists

of an open system in which precipitation particles carry
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away some of the heat gained during the precipitation
process. Fortunately, such effects are quite small in this
pseudoadiabatic, pseudoreversible system (Hess, 1959),
since the predicted values of rainwater mixing ratio are
usually less than 0.5 g kg™".

The corresponding prognostic equations are given
by

3S _ A(Sw) d(Sv) 1 &(a'Sh)
o ox dy '

+ Fg + PROS,

7
oW _ o(Wu) o(Wv) 1 8(a'Wv)
ot 0x dy d

+ Fyw+ PROQW. (8)

Temperature and cloud water mixing ratio are not
explicitly predicted by the model, but are diagnosed
from the predicted values of S and W (Nickerson,
1979). In the event of supersaturation with respect to
hiquid water, excess vapor is converted into cloud water.
The term PROQW represents the transformation be-
tween cloud water and rainwater, and is explained in
section 2c. The term PROS, which includes radiative
processes and other diabatic effects, is zero in this
warm-rain model. Radiative cooling in very shallow
layers at the bases and tops of clouds may exceed 6°C
d~!, with some slight warming possible under the clouds
on the order of 1°C d~! (Stearns, 1983). But Stearns
also showed that the calculated radiative heating and
cooling rates are very sensitive to the choice of vertical
grid resolution. For simulations on the order of 6 to 8
hours, the most important neglected radiative effects
are probably not the calculated in situ heating or cool-
ing rates, but rather the evolving surface temperature
field, and the possibility that clouds in the model will
modify the amount of radiation reaching the ground.

¢. Microphysical equations

Liquid water in the model is partitioned into two
categories: rainwater, which falls through the air; and
cloud water, which wafts around with the air. Rain-
water is assumed to be distributed lognormally with

diameter; that is,
1 1n2(£—)]dD 9)

N,
" 27)25eD e"p[ 200> \Dyo

dN,
- is the number of raindrops in the size range D to D
+ dD, and N, is the total number of raindrops. Here
go and D, are distribution parameters. Markowitz
(1976) found that the lognormal distribution ade-
quately described the average spectra for a number of
rainfalls of several intensities.

If the diameter D, is large enough so that cloud-size
droplets contribute very little to the total number con-
centration, the integration of (9) over the entire spec-
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trum of drops of mass wpD°/6 yields the following
expression for g,, the rainwater mixing ratio:

N, (n 9
qr = 7 (g DOSPI) CXP(E 002) ,

where p and p, represent the density of air and licuid
water respectively. It will also be convenient to define
a mean drop diameter D,, which is the diameter the
raindrops would have if they were all the same size.
D, is related to the lognormal distribution parameters
by

(10)

D—, = Do exp(% 0'02) . (1 1)

Since there are two independent distribution pa-
rameters oo and Dy, only one of which can be diagnosed
given g, and N,, we close the microphysical system of
equations by assuming a constant value for go and
computing D,. For the model runs reported here,
gg = 0.5. .

We have made extensive use of the work of Berry
and Reinhardt (1973) in developing parameterizations
for autoconversion, accretion, and selfcollection pro-
cesses appropriate to the lognormal raindrop distri-
bution. Because the present cloud water formulation
does not permit supersaturation with respect to water,
we assume that diffusional growth of raindrops can be
neglected. :

Separate prognostic equations are written for both
rainwater mixing ratio and total number concentration:

ollg, o4, g,
—q=-A(q,)+II—q— +ni
ot Ot | 4u0 Ot | eer
d
+0%%| +n%| +r, (2
0t |eva Ot | eq
N, oN,
M—-———A(N,)-%II‘-’—' + I =
ot ot auto ot self
oN,
+ 11 I + Fy,, (13)
Ot | g

where the operator A applied to a variable q is defined
by '

3 ) ma .
A(g) = a—x(qU) + 5;((1V) + ;5@4»). (14)

The terms for autoconversion, selfcollection, accre-
tion, evaporation, and sedimentation are given in ap-
pendix B. Let us note, however, that selfcollection af-
fects only the concentration of raindrops, while accre-
tion affects only the mixing ratio. And although the
accretion and autoconversion processes represent
source terms in the rainwater equations, they are at
the same time sink terms for cloud water and are there-
fore incorporated into the term PROQW for the pre-
diction of W in (8).
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d. Numerical procedure

The computational grid and discretization scheme
are based on Anthes and Warner (1978), and are pre-
sented in detail in Nickerson {1979). The 2A x smoother
(Shapiro, 1970) that was previously applied to pressure-
weighted wind fields has been removed and replaced
by explicit horizontal diffusion on each prognostic
variable. The nondimensional value of the horizontal
background diffusion is 107%.

Centered differences are used to represent the time
derivative, and an Asselin filter with a coefficient of
0.25 (Schlesinger et al., 1983) is applied to avoid split-
ting between odd and even time steps. The time step
is 10 seconds.

The model domain is 250 km on a side and has a
horizontal grid length of 10 km. The vertical grid con-
sists of 15 equally spaced levels in the v coordinate
system. The first grid point is located approximately
15 m above the underlying terrain, and there are four
computational levels in the lowest kilometer. The
physical separation between computational levels in-
creases with increasing altitude.

e. Initial conditions

The model is initialized with a single radiosounding.
Temperature, vapor mixing ratio, and horizontal winds
are initially horizontally uniform throughout the model
domain and are interpolated to the » coordinate sur-
faces. No attempt has been made to provide for an
initial balance between the mass and momentum fields,
but rather the model itself attains that balance during
the course of the numerical simulation. At the begin-
ning of the simulation, all the microphysical variables
are set equal to zero.

[ Boundary conditions

The model makes use of stability-dependent surface
layer formulations for the vertical fluxes of momentum
and sensible heat (Nickerson and Smiley, 1975; Benoit,
1977; Nickerson, 1979). A constant flux layer exists
between the lower boundary, where z, has a constant
value of 1 cm, and the lowest grid point in the model,
which occurs at a height of approximately 15 m. Al-
though a larger value of z, would perhaps have been
more appropriate, the predicted wind, temperature, and
moisture fields are relatively insensitive to the particular
value selected for z,. The surface values of S and W
change only in response to changes in surface pressure,
since temperature, vapor mixing ratio, and cloud water
mixing ratio at the lower boundary retain their initial
values.

The planetary boundary layer is assumed to have a
constant depth of 1 km in which the exchange coeffi-
cients are computed in accordance with the profile
given by O’Brien (1970). The value selected for the
depth of the planetary boundary layer is appropriate
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for steady state, neutrally stratified conditions (Sutton,
1953; Pielke, 1981), and is in agreement with the struc-
ture of the sounding used in the case study.

The vertical velocity » is set to zero at the upper
boundary defined by Pr = 100 mb. To minimize re-
flection from the upper boundary, we use a viscous
damping layer at the top of the domain, similar to that
used by Klemp and Lilly (1978) to absorb vertically
propagating waves. This absorbing layer takes the fol-
lowing form:

KHo for k=5

Ko = i _ 2
o Ky, + K”[sin lzl- (————05 ak)] for k<5,

Os

where Ky, is the background diffusion and Kj the
maximum diffusion value of the wave-absorbing coef-
ficient at the top level in the model. The nondimen-
sional value used for K is 0.10.

The normal velocity component at the lateral
boundaries is computed using Orlanski’s type of
boundary conditions (Orlanski, 1976). The tangential
velocity and all other prognostic variables are computed
according to an advective formulation at outflow
boundary points and are specified at inflow boundary
points.

3. Two-dimensional model verification

A two-dimensional version was developed to assess
the ability of the model to replicate previous numerical
simulations of airflow over an idealized mountain. The
subsections that follow describe results of several ex-
periments involving both linear and nonlinear moun-
tain wave simulations. This two-dimensional model
also provides a more economical framework for the
testing of new formulations of microphysics, air chem-
istry, lower boundary conditions, and other physical
processes.

a. Linear hydrostatic mountain waves in an isothermal
atmosphere

The behavior of linear mountain waves has been
studied in detail by Alaka (1960) and Smith (1979).
Although the numerical model is not linear, it should
produce a steady solution that closely approximates
the analytical solution when the height of the mountain
is very small.

In the following experiments we study the airflow
over a 1 m high bell-shaped mountain of 20 km half-
width. The atmosphere is initially isothermal and has
a horizontal wind speed of 20 m s™!. The planetary
boundary layer and the surface layer have been elim-
inated. The background diffusion is set to zero, and
Ky, the maximum diffusion at the top of the absorbing
layer, is set to 0.05.
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FIG. 1. Perturbation horizontal velocity from (a) the linear hydro-

static solution for a 1 km high mountain; (b) and (c) two numerical W-E (Km)
simulations with different vertical resolutions for a 1 m high mountain
(amplified by a factor of 1000). FIG. 2. As in Fig. 1, but for potential temperature.

Unauthenticated | Downloaded 06/11/21 05:41 AM UTC



FEBRUARY 1986

The perturbation velocity fields in Fig. 1 show results
of the analytical solution for a 1 km high mountain
(case a), and two numerical solutions with different
vertical resolution (cases b and c). The corresponding
potential temperature fields are shown in Fig. 2. The
numerical model results have been amplified by a factor
of 1000 for purposes of visualization, and are shown
after 12 hours of model time. This corresponds to a
nondimensional time of 21.6, using the definition given
in terms of the initial wind speed and the width of the
mountain (Klemp and Lilly, 1978).

Simulation b was performed with 30 vertical k levels
and 9 levels within the absorbing layer. The horizontal
extent of the domain was 500 km, and only the central
portion is shown in the figure. For simulation ¢, only
15 vertical levels were used, with 5 of them located
within the absorbing layer. The entire horizontal do-
main is displayed. In both cases b and c, the absorbing
layer begins at about 6 km above the ground. A com-
parison between cases a and b shows that there is good
agreement between model results and the analytical
solution below the absorbing layer. The agreement is
still good in case ¢ where the vertical resolution is much
coarser and the lateral boundaries are closer to the
mountain.

Figure 3 shows the vertical distribution of the nu-
merically computed momentum flux, M, for cases b
and c, normalized by the analytical linear value M.
In the inviscid layer, the momentum flux for case b is
nearly constant with height. Case ¢ shows some differ-
ence at the interface between the absorbing layer and
the inviscid layer, probably due to a lack of vertical
resolution. The small oscillations more noticeable in
case c than case b appear to be related to the proximity
of the lateral boundaries.

b. Nonlinear hydrostatic waves in a two-layer atmo-
sphere

To test the model for large-amplitude cases where
nonlinear terms have a significant effect, we now set
the height of the bell-shaped mountain to 1 km. The
lowest part of the domain, below 300 mb, represents
a troposphere in which the temperature decreases at a
constant rate of 6°C km™! from a value of 280 K at
zero elevation. The region above 300 mb is isothermal
and contains the wave-absorbing layer. The horizontal
wind is initially 20 m s™'. A constant eddy diffusion
Ky, of 1073 is applied to all prognostic variables, and
the planetary boundary layer parameterization is in-
voked.

We performed two simulations, and the results are
displayed in Figs. 4a and b. Case a is a dry case (i.e.,
initialized with g, = 0), whereas case b is a moist case,
initialized with 100% relative humidity. Experiment a
is similar to Mahrer and Pielke’s (1978) experiment.
In spite of slight differences in initialization and pa-
rameterization of the planetary boundary layer, our
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15

Z (KM)

FIG. 3. Momentum flux normalized by its linear hydrostatic value .
for case (b) in Figs. 1 and 2 (solid line) and case (c) (dashed line).
The black dots indicate for each simulation the position of the k
levels within the absorbing layer.

results are in good agreement with the results shown
in Fig. 9 of Mahrer and Pielke. A comparison of Figs.
4a and b shows, as is expected (Durran and Klemp,
1983), that the moist waves are appreciably weaker
than the dry waves.

The vertical grid consisting of 15 computational lev-
els is not really appropriate for the simulation of two-
dimensional mountain waves. We could have done a
better job in these experiments by increasing the vertical
resolution and by using another type of vertical coor-
dinate rather than the sigma system, but our purpose
here was to run those two-dimensional experiments
with a code analogous to the one used for the three-
dimensional simulation. The results have demonstrated
that despite the relatively coarse vertical and horizontal
resolution used in the model, the solutions are quite
comparable to the results obtained by other authors.

4. A case study

The Vosges-Black Forest area between France and
Germany, separated by the Rhine Valley and the Alsace
plain (Fig. 5), is the locale for this case study designed
to test the ability of the model to simulate orographic
precipitation. The two mountainous areas extend from
400 to 1500 m above sea level, and have a great influ-
ence on the local airflow and rainfall patterns.
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U (mis) initialize the model, indicates that low-level air as well

as the layer between 3.5 and 8 km was nearly saturated.
At this station, the predominant wind direction was
from the southwest. During the period 1200 to 1800
GMT, most of the stations in the domain were re-
porting two layers of clouds representing 6 to 8 octals
of cloudiness. .

Between 0900 and 1000 GMT, the EDF aircraft flew
across the Rhine Valley, which is approximately 40
km wide at Colmar’s latitude. The values reportec for
the wind direction show that the southwest wind (245°
measured at 1000 m above sea level) was backing to a
more southerly direction at lower altitudes (200° at
600 m and below). In general, this channeling of the
synoptic flow at low levels was regularly observed all
along the valley during conditions of southwesterly

Z (Km)

0. 50. 100. 150. 200. 250.

W-E (KM)
POTENTIAL TEMPERATURE (K) U (M/S)
‘ 10
10 i | ! [ I . T T K‘ T
D
8 sl d
g -‘\/\ g ‘
< ;_mf\ g £
N 4W ~ L )
W = 20 2 -
0 - ) 0 A

0. 50. 100. 150. 200. 250. 0. 50. 100. 150. 200. 250.
W-E (Km) W-E (KM)
FI1G. 4a. Horizontal velocity and potential teinperature POTENTIAL TEMPERATURE (K)

for the dry case with a 1-km high mountain.

During October 1976, an observational study was
carried out by the Electricité de France (EDF) using a
light aircraft and one special radiosonde site to provide
low-level data on wind, temperature, and humidity in
the southern portion of the Rhine valley. Among the
rainy days of that period, 14 October was selected on
the basis of the occurrence of moderate rainfall in the
surrounding mountains.

Z (KM)

a. Meteorological observations

The 1200 GMT surface pressure chart (Fig. 6) shows
that the Rhine Valley area was located ahead of a cold
front in a warm sector of a perturbation associated
with a deep low centered over Cornwall. This resulted
in a southwest wind regime over the domain.

The Nancy 1200 GMT sounding (Fig. 7), used to FIG. 4b. As in Fig. 4a, but for the moist case.
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Rhine valley

250

200

150
SN (KM)
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™ Black Forest

0. 50. 100.  150.
W-E (Km)

FI1G. 5. Height contours of the model-testing domain.

airflow. The effect of the valley on the surface winds
may be seen in Fig. 8, which shows the wind vectors
corresponding to the network of surface stations.

In Fig. 9, 24-hour accumulated rainfall data from
0600 GMT 14 October to 0600 GMT 15 October are
plotted using data from 361 stations in the domain.
Significant precipitation occurred over the mountain-
ous areas: 18.9 mm over the Black Forest and 11.1
mm over the Vosges.

b. Model results

At the beginning of the simulation there is an initial
imbalance between the mass and momentum fields as-

FIG. 6. Surface pressure chart (mb) for 1200 GMT 14 October
1976 from the European Meteorological Bulletin. The location of
the model-testing domain is indicated by the shaded area.
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FIG. 7. Radiosonde of Nancy, France, 1200 GMT 14 October
1976. The solid line is the temperature and the dashed line the dew-
point temperature.

sociated with the single-sounding initialization proce-
dure. It takes approximately 2 hours for the model air-
flow to overcome this imbalance and adjust to the un-
derlying terrain. Although there are still some very
slight changes occurring in the wind field at the end of
the 6-hour simulation, the model has apparently
reached a near steady-state condition.

5m/s

FIG. 8. Wind vectors corresponding to the network of surface sta-
tions 1200 GMT 14 October 1976. The 0.3 and 0.5 km contours of
terrain are indicated.
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FIG. 9. Objective analysis of 24-hour accumulated rainfall data
from 0600 GMT 14 October 1976 to 0600 GMT 15 October 1976.
The contours are drawn every 0.2 cm starting at 0.4 cm.

Figure 10 shows the model-predicted wind field after
6 hours of simulation at a height of 600 m above sea
level. Whereas the winds at each elevation were initially
uniform over the entire domain, we observe in Fig. 10
the effects of the terrain in modifying the flow, espe-
cially in the Rhine Valley and in the vicinity of the
mountainous areas. One notices a channeling by the
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F1G. 10. Model-predicted wind field after six hours of simulation
at a height of 600 m above sea level.

MONTHLY WEATHER REVIEW

VOLUME 114

valley whereby the winds have acquired a more south-
erly component associated with an acceleration of sev-
eral meters per second. The corresponding wind field
computed at the lowest level of the model is shown in
Fig. 11.

As the moist air is forced up by the underlying to-
pography, condensation occurs and clouds form above
the highest mountains. Figure 12 shows contours, after
6 hours of model time, of the vertically integrated cloud
water defined by .

1 f=
Gew = — f pchdz-
P Yo

Figure 13 shows the spatial distribution of precipi-
tation after 6 hours of simulation. The heaviest model-
predicted rainfall (5.4 mm) occurred over the Black
Forest, a little upwind of the highest Feldberg peak.
Weaker precipitation occurred over the Vosges (3 mm),
and a very light arc of rain fell over the northern part
of the Black Forest.

We now turn our attention to two different vertical
cross sections along the mean wind direction: through
the Vosges massif, and through the Black Forest massif.
The positions of these two cross sections are indicated
respectively by lines AA’ and BB’ in Fig. 12. The cloud
water mixing ratio after 1 hour of simulation (Fig. 14)
shows that the model predicts two distinct cloud layers
over both the Vosges and the Black Forest. Over the
Black Forest (Fig. 14b), as time progresses, the lower
level cloud builds up and the upper level cloud becomes -
weaker. Over the Vosges (Fig. 14a), it is the upper-level
cloud that seems to become more active. These two
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FIG. 11. Model-predicted wind field after 6 h of simulation at a
height of 15 m above the ground. The 0.3 and 0.5 km contours of
terrain are indicated.
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FIG. 12. Vertically integrated cloud water after 6 hours. The in-
dicated contours are 0.03, 0.02, and 0.01 cm and the shaded area
corresponds to the 0.001 cm contour. The lines AA’ and BB’ identify
the locations of the vertical cross sections shown in Figs. 14-17.

cloud layers do not have the same efficiency in pro-
ducing precipitation at the ground, as can be seen in
Fig. 15 where the corresponding contours for the rain-
water mixing ratio have been plotted.

The lower cloud generates more rainwater above the

250
| 1 ! |
200 | ' ]
10 ]
£
X
z .
b 100l _
sol_ _
0 | [
0. 50. 100. 150. 200. 250.
W-E (Km)

FIG. 13. Model-predicted rainfall after 6 h. The contours are in-
dicated every 0.1 cm starting at 0.1 cm. The shaded area corresponds
to 0.01 cm.

NICKERSON, RICHARD, ROSSET

10

AND SMITH

407

th 3h 5h
8
AN >,
P~ N o
~ 6 in in! A\
= ' \ Ififu L
x \ 1 Uit | \‘,
N ) ) h 1 H
4 s i\ | v/
Wt !
\
10
1h 3h 5h
8
g 6 {l“.| ll/‘\..
x O Q! 0
N | Vg
~ 4 @) N,
IN/ g Lt
Lo ”:\l //l,
v n o
2 ) : \ l' N
JAN b\ }
{ \ 11 ' H
L R
0
—
100 KM

FIG. 14. Vertical cross sections of cloud water mixing ratio: (a)
along AA’ over the Vosges and (b) along BB’ over the Black Forest;
both cross sections are after 1, 3 and 5 h of simulation. The solid
contours are drawn every 0.05 g kg™! starting at 0.05 g kg™'. The
dashed line corresponds to 0.01 g kg™'.

Black Forest, and this rainwater succeeds in reaching
the ground, while the upper level cloud above the
Vosges produces precipitation that does not reach the
ground.

Figures 16 and 17 show for the same cross sections
the contours of the raindrop concentration and the
mean raindrop diameter after 5 hours of simulation.
The highest concentrations are found in the lower level
cloud over the two massifs (>250 drops 1™! for the
Vosges and >350 for the Black Forest), while the largest
drops are found at the bases of the upper cloud for the
Black Forest, and somewhat lower for the Vosges.

5. Discussion

The model was able to reproduce the channeling of
the airflow in the Rhine Valley, which was observed
during the experimental period for southwest wind
conditions. Even allowing for the possible unrepresen-
tativeness of isolated surface wind observations in
mountainous locations, a comparison between model
predictions (Fig. 11) and observations (Fig. 8) shows
reasonably good agreement over the central and north-
ern portion of the model domain, even though the
computed airflow may be adversely affected by the
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FIG. 15. As in Fig. 14, but for rainwater mixing ratio.

initialization procedure and an incorrect specifica-
tion of the winds at the southern boundary (an inflow
boundary).

During the whole course of the simulation, the cloud
cover remains essentially attached to the mountains
and does not spread out enough when compared with
the network data. The underprediction of the zone of
cloudy air over the plain is related to the present
method of initialization which is based upon a single
radiosonde and in which no account is taken of initial
cloudiness and convergence. This procedure limits the
model response to orographically forced cloud fields.

A comparison of Figs. 9 and 13 shows good agree-

ment between the spatial distribution of observed and
computed precipitation, in spite of their different in-
tegration time periods: 24 hours for the data and 6
hours for the simulation. The locations of both rainfall
maxima over the Vosges and Black Forest are repro-
duced reasonably well by the model, as is the strong
gradient observed around the Feldberg peak. In the
actual field data, the precipitating zone covering the
northern part of the Black Forest is more widespread
over the valley. The simulation misses this feature,
.probably because of the initialization procedure dis-
cussed above. A quantitative comparison is not really
possible because of the lack of temporal rainfall infor-
mation: only three stations, all of which are located in
the plain, reported rainfall over an extended period of
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FI1G. 16. Vertical cross section of the raindrop concentration: (a)
along AA' over the Vosges and (b) along BB’ over the Black Forest;
both cross sections are after 5 h simulation. The solid contours are
drawn every 50 drops 17!, starting at 50. The dashed contour corre-
sponds to 1 raindrop 1~

time (from 6 to 10 hours in the 24-hour period con-
sidered). However, we notice that the maximum rain-
fall intensity over the Black Forest is about twice as
large as that over the Vosges in both observed and
computed precipitation fields.

A further discussion of the simulation results is
helpful to understand why such a large difference in
precipitation amounts is obtained over these two
mountainous regions of almost comparable elevation.

10

Z(Km)

b el

100 KM

FIG. 17. As in Fig. 16, but for the mean raindrop diameter.
The contours are drawn every 50 um starting at 50 um.
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Although the elevation of their respective summits dif-
fer by only 150 m, differences in the shapes of the two
massifs lead to different dynamical responses. A steeper
slope and a smaller width for the Black Forest gives a
higher upwind vertical velocity and a more vigorous
lower cloud over this massif than over the Vosges. On
the other hand, the more active cloud over the Vosges
is the upper cloud, which is probably influenced by the
presence of the Black Forest downwind. However, the
precipitation formed in this upper cloud is not strong
enough to reach the ground. Most of the raindrops are
evaporated before reaching the lower cloud as can be
seen in Fig. 16. The few drops that do reach the lower
cloud are quite large (270 um in Fig. 17) but not nu-
merous enough (less than 50 I™!) to enhance more ac-
tive precipitation in the lower cloud.

The explicit prediction of both the mixing ratio and
number concentration for the assumed lognormal
droplet distribution allows the droplet spectra to evolve
differently in different parts of a cloud. For example,
with the same mixing ratio, one can have large numbers
of small drops or small numbers of large drops within
a given cloud. Such effects may not necessarily lead to
a better precipitation forecast, but they are essential
for other applications of the model to situations re-
quiring knowledge of the droplet spectra.

6. Conclusions

A warm-rain microphysical parameterization based
upon a lognormal drop distribution has been inserted
into a three-dimensional meso-3 model. A two-dimen-
sional version has shown that the vertical resolution
in the 15-layer model is adequate to damp and prevent
the unwanted reflection of vertically propagating waves
in the absorbing layer at the top of the model domain.

A test of the precipitation scheme has been carried
out for a case of orographically forced rainfall over the
Vosges and Black Forest mountains. Model-predicted
rainfall is in good agreement with observations in both
magnitude and location; however, the single-sounding
initialization procedure does not yield realistic predic-
tions of cloud formation over the plain. Current re-
search efforts are attempting to alleviate this problem
using spatially varying initial conditions with balanced
mass and momentum fields generated within a large-
scale model.
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APPENDIX A
List of Principal Symbols

specific heat at constant pressure

diameter of a precipitating water drop

distribution parameter for the lognormal rain-
drop distribution

mean diameter of the raindrop distribution

collision efficiency

Coriolis parameter

friction terms relative to any prognostic vari-
able x

acceleration of gravity

entropy

horizontal diffusion

background diffusion

maximum diffusion at the top of the absorbing
layer

latent heat

momentum flux

rain drop number concentration

pressure

reference pressure = 1013 mb

pressure at the lower boundary

pressure at the upper boundary

(P/Pyy ,

cloud water mixing ratio

vertically integrated cloud water

rainwater mixing ratio

water vapor mixing ratio

universal gas constant

nH

temperature

virtual temperature

horizontal wind speed along the x coordinate

Iu

horizontal wind speed along the y-coordinate

ITv

(g, + gew)

horizontal west—east coordinate

horizontal south-north coordinate

altitude

roughness length

(Ps— Pp)

constant = 3.141592653

constant = 2/7

pressure coordinate defined by ¢ = (P — Pp)/I1

distribution parameter for the lognormal rain-
drop distribution

vertical coordinate defined by ¢ = (4v — 1*)/3

vertical velocity

do/dy

8z .

potential temperature defined by 7/P

density of air

density of liquid water
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APPENDIX B
Microphysical Parameterizations
B1. Autoconversion

We use the autoconversion parameterization of
Berry and Reinhardt (1973). This formulation consists
of a fit to the results of a bin-type model that solves
the stochastic collection equation. It will be convenient
to introduce to quantities xrand x, defined by

_Pra
=N’ (B1.1)
Xg = ;)171 f m? fim)dm, (B1.2)

where m is the drop mass and f(m)dm is the concen-
tration of drops of mass between m and m + dm. (Note
that the subscripts to N and ¢ have been dropped to
make the derivation more general.) Here x;is the mass
each drop would have if all drops were the same size,
and corresponds to the diameter D, in (11); x, is the
“predominant mass.”

We now assume that the mass is distributed lognor-

mally:
N m
) = i L~ B ) |- @19

Upon inserting (Bi.3) into (B1.2) and expressing the
drop mass in terms of diameter, with Ay = 30y and
moy = wDy>/6, we obtain

(B1.4)

Berry and Reinhardt also define a variance parameter
varx = (Xg/x;) — 1, which in terms of the lognormal
distribution yields

X, = x; exp(90¢?).

(BL.5)

This defines the relation between Berry’s (1967) vari-
ance parameter that appears in the autoconversion
formula and the distribution parameter ¢¢. Since we
assume oy is constant, varx is constant and

varx = exp(90¢%) — 1.

oo = % [In(varx + 1)]"2 (B1.6)

Berry and Reinhardt derived an expression for the
average growth rate of the autoconversion of cloud wa-
ter to rainwater by calculating for a variety of initial
conditions the time for the rainwater spectrum to reach
a size corresponding to a drop radius of 50 um. Ne-
glecting local changes in air density, we find the rate
of increase of rainwater mixing ratio expressed in mks
units is
dq,

paew\”’
3 = 0.067pq.v [ 016(Ncw) (varx)"z - 2.7]

auto ow

X {10*[pgen(varx)*/Np,]'? — 1.2}.
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If we now assume that o9 and N, =
constant,

New/pqcw are

dg,

3% (B1.8)

= apchz:

auto

where

a = 0.067{10' N, (varx)'? — 2.7}

X {104N,, '(varx)2}'/® — 1.2}.

From Berry and Reinhardt, the corresponding expres-
sion for the number concentration of raindrops in mks
units is

AN,

dg,
= 35X 10°% —
3 3.5 X 10°

ot

(B1.9)

auto auto

The quantities N,,, and varx that appear in the coef-
ficient o are related to the size distribution of the cloud
water. Since the present formulation of the model does
not include an explicit formulation for the cloud spec-
tra, it is not possible to calculate N, and varx directly.
To evaluate the coefficient «, we assume that the cloud
droplets are also partitioned according to a lognormal
distribution for which the distribution parameters oy
and D, remain constant. This is equivalent to supposing
that the mean mass of the cloud droplets remains con-
stant. That is,

PYGcw
New

Xfew =

is constant.

In spite of the restrictions imposed, the hypothesis
is compatible with the results of Berry and Reinhardt,
who found in the course of their numerical simulations
that xy,, tends to remain constant during the formation
of hydrometeors by the stochastic coalescence of cloud
drops. We have chosen Dy = 32.5 um and g = 0.2203,
which then leads to a value of & = 4

B2. Accretion

Accretion is the process whereby cloud droplets are
collected by raindrops. Differences in the terminal ve-
locity between collector droplets and the smaller col-
lected drops permit the treatment of accretion as a
continuous process.

We consider a large collector drop of diameter D,
and terminal velocity v(D,) and let n'(D,,)dD,, denote
the number of small droplets of diameter D,,, per unit
volume of cloud. During the interval of time dt, the

large drop during its fall could theoretically collect

EDflv(Dr) — U(Do)(Dew)dDydt - (B2.1)
small droplets of diameter D,,, whose terminal velocity
is v(D,,). The theoretical upper limit for the capture
process given by (B2.1) must be modified by the inclu-
sion of the coalescence efficiency, E(D,, D.y), and the

collision efficiency,
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wb*/4

02 Dn D, =777
YeDr, D) = 7550

(B2.2)

where b is the diameter of the circle in which the small
droplet must lie in order for collision to occur. Equation
(B2.1) then becomes

% DPv(D,) — W Do) (Dew)yX(Dy, Dew)E(D,, Dew)

X dD,,dt = K(D,, D, )n'(D,,)dD,,dt.
The mass gained by the collector drop is
K(Dy, Do) De)n'(D)dD v dlt,

where m(D,,,) is the mass of a cloud droplet of diame-
ter D,,,.

If there are n(D,)dD, collector drops of diameter D,,
the rate of increase of mass is given by

K(D;, De)r(D)n'(D o) De)dD, dD.,.

Upon integrating over both cloud water and rain-
water spectra, we obtain the increase of rainwater con-
tent due to accretion. If, as before, the local change in
air density is neglected, we obtain

aq, 1 J“”
atlm b n(D,)

X U:o K(D,, Dcw)n,(Dcw)m(Dcw)chw]dDr- (B2.4)

(B2.3)

By the integral mean value theorem, we know that
there exists a diameter D¥, such that

%i—’ . = ;1; J; ” n(D)K(D,, D%,)
X [J:" n’(Dcw)m(Dm)chw]dD,
= Qew L‘” n(D)b(D,, Dx)ym(D)dD,, (B2.5)
where KD,. D)
bAD,, DA) = —((—D)ﬂ

Upon applying the integral mean value theorem a
second time, (B2.5) becomes

a‘j’ = pg,deubdD¥, DL),  (B2.6)
accr
where
6
a D ro D cow) —
bl (wpD?‘3)
x [§ D20z, DRIED?, D3 0D - oD
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In the parameterization of Berry, one assumes that
D¥ = D, and D}, = D, where D,, is the diameter
correspondmg to the predominant mass x,, relative to
the rainwater spectrum, D,, the mean diameter of the
cloud droplets. We therefore let

6pqr)l/3 2
¥=D,={—— 30¢°),
D? o (mr,’ exp(30¢°)
— _ [ 609w )” :
* = =fL2 )
Dcw Dcw (WPIN::W

Upon assuming that the coalescence efficiency is one,
(B2.6) then becomes

a_q_r = 309:4cw

(D))
Of | poor 20D (Do)l

(B2.7)

For evaluation of the collision efficiency, we follow
Berry (1967) and adopt the following approximation
to the data of Shafrir and Neiburger (1963):

'Ycz(Dgn D_cw)[U(Dgr) -

d
Y(r,p)=1+p + (B2.8)

(1 )g’

where p = ry/r; is the ratio of the radius of the smail

~ drop to the radius of the collector drop, and where

d = ~21/r',

e = —58/r'?,
f=Q5/r)*+1.13,

g = (16.7/r)® + 0.004r, + 1,

with the radii expressed in micrometers.
Berry and Pranger (1974) have developed an em-
pirical expression for the terminal velocity of the form
1Re
Dp’

where Re is the Reynolds number for the airflow

w(D) = (B2.9)

. around the drops, and where 5, the dynamic viscosity

of the air, is given by the relation
1.5

T+120°

The following expressions for Reynolds number have
been obtained from the data for Beard and Pruppacher
(1969) and Gunn and Kinzer (1949):

Re = 0.0412657y ~ 1.50074 10~4y?
+ 7.58884 1077y — 1.68841 107%)*
when 0 < y < 175.27, and by
Re = exp[—2.36534 + 0.767787 Iny
+ 0.00535826(Iny)? — 7.63554 1074(Iny)%]

n = 1.496286 107° (B2.10)
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when 175.27 < y < 107. The parameter y is given by

4ppig
=—— D
V=30

B3. Selfcollection

Selfcollection is the process by which collisions be-
tween raindrops produce larger drops. In contrast to
the previous discussion of growth by accretion, the in-

teracting drops are of the same size range. It is therefore

necessary to envisage here (as for autoconversion) a
stochastic coalescence mode.

Let n(V) be the number of drops per unit volume
of air. If selfcollection is the only process considered,
the variation of n(?") can be represented by the follow-
ing equation:

a(n(V))
ot

1 V-v
== f (V= VWVKY — V', V")
self 2 |4

Xdv' — fm n(Vn(VYK(V, VHdV', (B3.1)
Vv

where V is the volume of the smallest drops (the drops
smaller than this size belong to the category of cloud
droplets), and where K(V, V') = K(D, D’) is the collec-
tion kernel of a drop of diameter D’ (volume V") by a
drop of diameter D (volume V).

The first integral on the right side of (B3.1) is a source
term: two drops of volume greater than V but less than
V collide to form a drop of volume V. The second
integral constitutes a sink term: a drop of volume V
encounters another raindrop, and its volume becomes
larger than V.

Upon integrating over the entire spectrum, we ob-
tain:

dN,

o0 V-V
= =%fw L n(V — Vyn(VYK(V ~ V', V')

self
X dv'av — f m f: n(WMn(VYK(V, V)dV'dV.
| 4

(B3.2)

Let us denote the first double integral as I1 and the
second as I2. To evaluate /1, we first permute the order
of integration. After making the change of variable
V=V -V,

In= f w fw nW(Vn(VYK(V”, Vydv'dv', (B3.3)
Vv Vv .

and 71 = I2. Equation (B3.2) then becomes

an,
ot self

-_1 = ) f VYKV, VYav'av.
2Jy 14

(B3.4)
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Upon expressing (B3.4) in terms of diameter, and
making the substitution

K(D, D)
m(D) + m(D')
___ 3

2p)(D3 + D?)

b(D, D') =

vA(D, D)D) ~ (D],

(B3.5)
we obtain
W __L f ) f . n(Dyn(D"ym(D)b{(D, D")dD'dD
6t self 2 D D

_ % J;:O J:o n(D)n(D')m(D')bs(D’ DI)dD,dD (B36)

After permuting the order of integration in the sec-
ond integral, we obtain

dN,

=- f w m(D)n(D) f w n(D"b«(D, DdD'dD.
self D D

(B3.7)

Using the same calculation procedure as in the pre-
vious discussion of accretional growth, (Section B3) we
know that there exist D* and D such that

oN,
ot

= _bs(D~, D*)Nrpqr‘

self

(B3.8)

In the parameterizations of Berry and Reinhardlt, D

= D, and D* = D,,with the same notation as before.

B4. Sedimentation

The flux of raindrop concentration through a unit
horizontal surface may be written '

Fy= J:o n(D)v(D) — wldD

o0
= J; n(Dyv(D)dD — wN,. (B4.1)
With the same notation as before, we use (B2.9) for
the terminal fall velocity expressed in terms of Reynolds
number and dynamic viscosity. Berry and Pranger
(1974) give the following expression for the Reynolds
number:

RAD) = explc; + cx(Iny) + cs(Iny)?], (B4.2)

where
¢ = —3.12611,

¢ = 101338,
~0.0191182,

C3

4ppig
y= (—-3"2 D3 = aD3.

and where
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If we let X denote the dimensionless ratio D/Dy,
then we may express Sy, the sedimentation term in
(B4.1), as

Sy = fw n(Dyw(D)dD

= f B n(Do X YW(Dy X)DodX. (B4.3)
Now
Re(D) = Re(DoX) = k. X** exp(9¢; In?X), (B4.4)
where

k, = exple; + ¢ In(aDy’) + ¢3 In¥(aDy®)] = Re(Dy),
kz = 3Cz + 6C3 ln(aDo3).
We then have

V(Do X) =

k2—1
koX exp(9¢; In%X),
Dop

1
n(DeX) = - lan) .

N,
1) 2o Do X °"p( 202
The sedimentation term (B4.3) then becomes

Nrnkl f ka—1
(27)260pDy Jo

1
X exp[—(m - 9c3) lan] %

Since (30¢> — 9c;) is always positive, we define p?
= (J ¢ — 9¢3) and evaluate the integral to obtain the
result

Sp =

(B4.5)

_ Nu(Dy) . [(kz_ 1)2] (B4.6)
yreal B .

" 2m) o

We now let S, be the sedimentation term for the
rainwater mixing ratio.

_ f"" m(D)

Dy?
"” =t f X3n(DoX)(DoX)DodD. (B4.7)

n(D)w(D)dD

After integration, one then obtains an equivalent
expression for .S,:

qov(Do) ex [(kz + 2)?
(2m)oop 4p*

Sg= ] , (B4.8)

where
_ N, r m(D 0)

p

Finally, the sedimentation terms in (12) and (13) are
written
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o) _ 25, B49)
O g 0z )
a—qf| _ 9% (B4.10)
Ot | 02

B5. Rain evaporation

The evaporation of a raindrop of diameter D is given
by dD/dt = ASf]D, where A is a thermodynamical
function of pressure and temperature, S is the under-
saturation, and fis a ventilation coefficient.

Pruppacher and Rasmussen (1979) give a parame-
terization for fas a function of Reynolds and Schmidt
numbers which leads to the following fit as a function

of diameter
= —4.33 10°D? + 5.31 10°D + 0.572. (B5.1)

The integration of (B5.1) over the whole spectrum gives
for the evaporation term

G
at

_hT

2
ASN/] 0.572D
52 S ,I:O oexp(z)

eva

90,
+ 5.31 10°Dy? exp(20,%) — 4.33 10°Dy’ exp(——%—)] .
(B5.2)

The number of raindrops which completely evaporate
during one model time step is given by

N, . = L chm N ex (— — In? -—)dD
™ AtJo (2w)%eD 20
(B5.3)

where D is found by equating

0 1+ AL
f DdD = f ASdt.
Derit t

Here it is assumed that the drops which completely
evaporate during one time step are small enough that
the ventilation effect can be ignored.

Assuming AS to be constant over one time step, we
then obtain Dy = (—24SAf)"? (where S is negative).
N.,... is removed from N, after the prediction.

REFERENCES

Alaka, M. A. (Ed.), 1960: The airflow over mountains. WMO Tech.
Note 34, 135 pp.

Anthes, R. A., and T. T. Warner, 1978: The development of mesoscale
models suitable for air pollution and other mesometeorological
studies. Mon. Wea. Rev., 106, 1045-1078.

——, and P. L. Haagenson, 1983: A comparative numerical simu-
lation of the Sichuan flooding catastrophe (11-15 July 1981).
Proc. First Sino-American Workshop on Mountain Meteorology,
Beijing, Amer. Meteor. Soc., 519-524.

Beard, K. V., and H. R. Pruppacher, 1969: A determination of the

Unauthenticated | Downloaded 06/11/21 05:41 AM UTC



414

terminal velocity and drag of small water drops by means of a
wind tunnel. J. Atmos. Sci., 26, 1066-1072.

Benoit, R., 1977: On the integral of the surface layer profile-gradient
functions. J. Appl. Meteor., 16, 859-860.

Bergeron, T., 1965: On the low-level redistribution of atmospheric
water caused by orography. Suppl. Proc. Int. Conf. on Cloud
Physics, Tokyo, 96-100.

Berry, E. X., 1967: Cloud droplet growth by collection. J. Atmos.
Sci., 24, 688-701.

—, and R. L. Reinhardt, 1973: Modeling of condensation and
collection within clouds. D.R.1. Phys. Sci. Pub. No. 16, University
of Nevada. :

——, and M. P. Pranger, 1974: Equations for calculating the terminal
velocities of water drops. J. Appl. Meteor., 13, 108-113.

Browning, K. A, F. F. Hill and C. W. Pardoe, 1974: Structure and
mechanism of precipitation and the effect of orography in a
wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100, 309~
330.

Chang, C. B., D. J. Perkey and C. W. Kreitzberg, 1981: A numerical
study of the squall line of 6 May 1975. J. Atmos. Sci., 38, 1601-
1615.

Clark, T. L., 1979: Numerical simulations with a three-dimensional
cloud model: Lateral boundary condition experiments and multi-
cellular severe storm simulations. J. Atmos. Sci., 36, 2191-2215.

De Rivas, E. K., 1972: On the use of nonuniform grids in finite
difference equations. J. Comput. Phys., 10, 202-210.

Dufour, L., and J. Van Mieghem, 1975: Thermodynamique de I’at-
mosphere. Institut Royal Meteorologique de Belgique, Brussels.

Durran; D. R., and J. B. Klemp, 1983: A compressible model for
the simulation of moist mountain waves. Mon. Wea. Rev., 111,
2341-2361.

Gunn, R,, and G. D. Kinzer, 1949: The terminal velocity of fall for
water droplets in stagnant air. J. Meteor., 6, 243-248.

Hess, S. L., 1959: Introduction to Theoretical Meteorology, Holt-
Dryden, 362 pp. :

Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hy-
drostatic waves. J. Atmos. Sci., 35, 78-107.

Lavoie, R. L., et al., 1967: The warm rain project in Hawaii. Tellus,
19,:347-461.

Mahrer, Y., and R. A. Pielke, 1978: A test of an upstream spline
interpolation technique for the advective terms in a numerical
mesoscale model. Mon. Wea. Rev., 106, 818-830.

Markowitz, A. H., 1976: Raindrop size distribution expressions. J.
Appl. Meteor., 15, 1029-1031.

» Nickerson, E. C., 1979: On the numerical simulation of airflow and

MONTHLY WEATHER REVIEW

VOLUME 114

clouds over mountainous terrain. Beitr. Phys. Atmos., 52, 161~
177.

—, and V. E. Smiley, 1975: Surface layer and energy budget pa-
rameterization for mesoscale models. J. Appl. Meteor., 14, 297-
300.

O’Brien, J., 1970: On the vertical structure of the eddy exchange
coefficient in the planetary boundary layer. J. Atmos. Sci., 27,
1213-1215.

Orlanski, 1., 1976: A simple boundary condition for unbounded hy-
perbolic flows. J. Comput. Phys., 21, 251-269.

Pielke, R. A., 1981: Mesoscale numerical modeling. Advances in
Geophysics, 23, Academic Press, 185-344.

Pruppacher, H. R, and R. Rasmussen, 1979: A wind tunnel inves-
tigation of the rate of evaporation of large water drops falling at
terminal velocity in air. J. Atmos. Sci., 36, 1255-1260.

Salinger, M. J., 1980: New Zealand Climate: I. Precipitation patterns.
Mon. Wea Rev., 108, 1892-1904.

Schlesinger, R. E., L. W. Uccellini and D. R. Johnson, 1983: The
effects of the Asselin time filter on numerical solutions to the
linearized shallow-water wave equations. Mon. Wea. Rev., 111,
455-467.

Shafrir, U., and M. Neiburger, 1963: Collision efficiencies of two
spheres falling in a viscous medium. J. Geophys. Res., 68,4141-
4148.

Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev.
Geophys. Space Phys., 8, 359-387. .

Smith, R. B., 1979: The influence of mountains on the atmosphere.
Advances in Geophysics, 21, Academic Press, 87-230.

Stearns, L. P., 1983: Infrared cooling in cloudy atmospheres: Precision
of grid point selection for numerical models. Mon. Wea. Rev.,
111, 1501-1505.

Sutton, O. G., 1953: Micrometeorology. McGraw-Hill, New York.

Takahashi, T., 1979: Warm cloud electricity in a shallow axisymmetric
cloud model. J. Atmos. Sci., 36, 2236~2258.

Tarbell, T. C., T. T. Warner and R. A. Anthes, 1981: An example
of the initialization of the divergent wind component in a me-
soscale numerical prediction model. Mon. Wea. Rev., 109, 77-
9s.

Young, K. C., 1974: A numerical simulation of wintertime orographic
precipitation: Part I. Description of model microphysics and
numerical techniques. J. Atmos. Sci., 31, 1735-1748.

Warner, T. T., R. A. Anthes and A. L. McNab, 1978: Numerical
simulations with a three-dimensional mesoscale model. Mon.
Wea. Rev., 106, 1079-1099.

Weickmann, H. K., 1979: Tor Harold Percival Bergeron. Bull. Amer.
Meteor. Soc., 60, 406-414.

Unauthenticated | Downloaded 06/11/21 05:41 AM UTC



