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Numerical Simulation of Organized Convection. Part I: Model Description
and Preliminary Comparisons with Squall Line Observations

YVES POINTIN
L.AM.P., Université de Clermont II, B.P. 45, 63170 Aubiére, France
(Manuscript received 12 June 1984, in final form 15 October 1984)

ABSTRACT

A numerical model designed for the simulations of mesoscale flows perturbed by deep convective clouds
is discussed. It is based on the time dependent coupling between a three-dimensional nonhydrostatic mesoscale
model and a quasi-one-dimensional cloud model. The evolution and motion of individual convective cells
are simulated by the cloud model since they cannot be explicitly resolved by the mesoscale model. This
implies that in cloudy areas each model simulates the time evolution of the same variables, at the same
location and at the same time, under the influence of different processes (large-scale processes for the
mesoscale model and microphysical processes for the cioud model). The comparison between the cloud and
mesoscale rates of change leads to an evaluation of the coupling terms which transmit the cloud influences
into the mesoscale model so that mesoscale fields are perturbed accordingly. For example, the nonhydrostatic
pressure field reacts to the cloud development by building up an overpressure dome above the cloud top. On
the other hand, the environmental conditions of each cell, including the vertical gradient of the nonhydrostatic
pressure, represent the mesoscale influence on the cloud model. These conditions are deduced from the local
values of the perturbed mesoscale fields at each cloud position.

A particular simulation is analyzed. Analysis reveals that the main characteristics of the flow perturbed by
the convective cells are similar to those of a squall line deduced from ground station measurements. The
typical signatures of the gust front are simulated, even though the magnitude of the perturbations are not all
well simulated. The convective transport of horizontal momentum appears to be of fundamental importance

to the organization process.

1. Introduction

In recent years, it has become increasingly recog-
nized that deep convection is frequently organized
into mesoscale structures such as multicell storms,
squall lines, etc. The organization results from the
mutual interactions between cloud elements, on a
scale of hundreds of meters to kilometers, and the
mesoscale flow, on a scale of tens of kilometers to
hundreds of kilometers [B-mesoscale according to
Orlanski’s (1975) classification]: the convective trans-
ports of water, of energy and of momentum can
modify the mesoscale flow in such a way that the
latter forces the development of convective cells
through low-level convergence or favorable nonhy-
drostatic pressure gradients. In order to study different
mechanisms through which convective cells interact
with the mesoscale flow (in a domain hundreds of
kilometers wide), we developed a three-dimensional
numerical model. This model is based on the mutual
coupling between a nonhydrostatic three-dimensional
mesoscale model and a time-dependent quasi-unidi-
mensional cloud model. The general behavior of both
models is very well-known and only the coupling
procedure is somewhat new. .

The peculiarities of such a mesoscale model stem
from the fact that the simulation domain must be
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large enough (160 km X 160 km in our case) to
simulate mesoscale perturbations but it also should
resolve all motions and physical processes of cloud
scales. However, the limited speed of modern com-
puters implies that the number of grid points must
be limited so that the grid size must be of several
kilometers (5 km in our case). With such a grid size,
the convective motions cannot be explicitly resolved
on the mesoscale grid as Yau and Michaud (1982)
or Wilhelmson and Chen (1982) have done in smaller
domains with a grid size of 1-1.5 km. It is true that
Rosenthal (1979) obtained interesting results in cy-
clone simulations with a model in which condensation
is completely resolved on the mesoscale grid with a
mesh size of 20 km. However, for organized deep
convection, such as in squall lines, the localized
effects of the downdrafts generated by precipitation
loading and evaporational cooling are of fundamental
importance in the dynamics of these systems (Zipser,
1977; Moncrieff, 1981). Also, the large speed of the
vertical convective motions, including precipitation
fallout, must be obtained in the model. These phe-
nomena cannot be explicitly resolved and simulated
even with a 5 km grid model. Therefore, the intensity,
location and time evolution of the convective sources
and sinks must be estimated in a different way. The
convective parameterizations (Kuo, 1974; Arakawa
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and Schubert, 1974; Anthes, 1977; Geleyn et al,
1982), which are widely used in synoptic models in
order to provide such estimates of the convective
.influences, are based on a quasi-equilibrium hypoth-
esis requiring that many cells evolve substantially,
during the synoptic time step and in each synoptic
grid mesh. This hypothesis cannot hold in a model
with a grid size of 5 km and a corresponding time
step of 20 s. Therefore, a new procedure is required.
There are already several models based on the
coupling between a one-dimensional cloud model
and a three-dimensional mesoscale model (Kreitzberg
and Perkey, 1976; Anthes, 1977; Fritsch and Chappell,
1980a,b), but these mesoscale models are all hydro-
static models with a grid size greater than 20 km and
the cloud models are all stationary Lagrangian models.
Our model differs from these models in some impor-
tant physical features. The mesoscale model is fully
compressible with a grid size of 5 km and a time step
of 20 s and is such that nonhydrostatic pressure

gradients can be induced by the cloud cells and’

" influence their development. These spatial and tem-
poral resolutions should be appropriate to the simu-
lation of the main characteristics of the flow that
develops in the active part.of a squall line, for
example. The cloud model is time-dependent, quasi-
one-dimensional (Wang, 1983), and can simulate the
rapid increase of the cloud height (10 to 20 m s™')
and the fast evolution, due to microphysical processes
including precipitation fallout, which is badly simu-
lated with a stationary model. Furthermore, precipi-
tation unloading by the wind shear and vertical
transport of horizontal momentum are simulated by
the cloud model. Fritsch and Chappell (1980a) dis-
cussed the important effects of these two processes.
The coupling procedure between the two time-
dependent models is based on the fact that the two
models are integrated in parallel at the same time.
The cloud development is simulated by the cloud
model as the cell moves across the mesoscale domain.
During its whole life, the local conditions that it

experiences on its outside (thermodynamical profiles)

and the forcing that it undergoes (nonhydrostatic
pressure gradient) are evaluated, at each time step,
from the local values of the mesoscale fields at the
_instantaneous cloud position. As the cell evolves, it

locally influences the mesoscale environment through
the vertical fluxes of mass, momentum and energy
that it generates. The effects of these convective fluxes
on the mesoscale fields are quantified by convective
forcing terms which are introduced in the mesoscale
equations as local sources or sinks of mass, momen-
tum and energy. These convective forcing terms are
evaluated, using a conservation principle, from-the
comparison of the time evolutions of the cloud and
of the mesoscale variables under the influence of
specific processes (microphysical processes and large-
scale processes).
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This comparison procedure avoids defining the
convective forcing terms from the vertical profile of
in-cloud parameters by using somewhat arbitrary
principles, such as detrainment at the cloud top
(Arakawa and Schubert, 1974), mixing of the cloud
with its environment (Kuo, 1974), turbulent mixing
(Anthes, 1977) or direct influence of the sources and
sinks induced by in-cloud condensation (Fritsch and
Chappell, 1980a,b). Our method is not, however, free
from arbitrariness since a new cell is created whenever
the mesoscale flow satisfies some criteria (e.g., insta-
bility, convergence) at some location which becomes -
the initial position of the new cell. Therefore, the
convective activity that develops in the domain is
very dependent upon these creation criteria and upon
the total number of cells that can exist at any one
time. In some cases, such as squall lines, the preferred
location for the creation of new cells is better known.
However, the comparison between the simulation
results and experimental data may still be difficult
because the timing for the cell creations is still largely
unknown. o

The mesoscale model is schematically described in
Section 2, the cloud model in Section 3 and the
coupling procedure in Section 4. A complete descrip-
tion of both models can be found in Pointin (1984b).
Simulation results are presented in Section 5 and
compared with some experimental features of a squall
line observed during the French-Ivory Coast COPT
81 experiment (Sommeria and Testud, 1984).

2. Mesoscale model
a. Basic equations

The physics of the three-dimensional nonhydro-
static model are not very elaborate since the micro-
physical processes and the convective vertical motions
are explicitly simulated by the cloud model and their
effects are introduced in the mesoscale equations
through convective forcing terms. This model inte-
grates the primitive equations in fully compressible
form with a semiimplicit method developed by Tapp
and White (1976, hereafter TW).

The basic variables are:

u the velocity vector

P the total pressure

T  the gas temperature

" p the total density (dry air and water vapor)

g. the water vapor deficit (Kessler, 1969)
which indicates when condensation or
evaporation occurs by passing through
Zero.

We use the definition

(1)

g, — 4s dm <0 undersaturation
dm = . .
qc g» > 0 condensation
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where g,, ¢, and g, are the mass per unit volume of
the water vapor, of the saturated water vapor and of
the liquid water respectively. The equations of the me-
soscale model are written in terms of the perturbation
pressure P’ which is defined with respect to a hydrostatic
pressure profile P(z) deduced from the undisturbed
temperature profile 7(z). Also,

P(x, y, z, 1) = P(x, y, z, {) — P(2),
dB(z)

0z
P(z) = Rp(2)T(2)/M,,

2
©))
Q)]

where R is the perfect gas constant and M, the mo-
lecular mass of dry air.

The mesoscale equations include the momentum
equation:
du

5 +u-Vu=—-VP/p— gk(l ~ p/p)

= —p(2)g,

+ VP(p — p)/(pp) —fXu+F, (5
where k is the vertical vector and f the Coriolis
vector. The force term F includes the turbulent
Reynolds stresses and the convective forcing body
force F, which is evaluated in Section 4.

The pressure tendency equation replaces the con-
tinuity equation and reads:

oP - .
o +w-VP' = wpg — vP divu

— yP divu + p(y — 1)Q, (6)

where v is the ratio of the specific heats of dry air
and Q is the heat source which appears also in the
thermodynamic equation:

oT P’

Et—+u-VT= Q—(-&—j{—u-VP - ng)/de,
(7

where C,y is the specific heat at constant pressure of
dry air. The heat source Q also includes the convective
forcing heat source Q.. The water vapor continuity
equation reads:

G )
il + div[(g., + g,)u]

ot
aqs) aT (6(15) oP
=—=]=—-|==1—+S.,, @8
(6T ot oP) ot o @)
where S, is the convective forcing water vapor source.
The influence of water vapor and liquid water on the
thermodynamical equation can be easily taken into
account by using the wet equivalent enthalpy proposed
by Pointin (1984a).
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b. Main characteristics
The main characteristics of the model are as follows:

1) The time discretization is done between time
levels ¢, and ¢, as

6 X Xn-H — Xn

o At
where X is any variable and At is the mesoscale time
step. This discretization is suggested by the evaluation
of the convective forcing terms as explained in Section
4 and replaces the “leap-fog” time discretization used
in TW. Although this time discretization may lead to
some instabilities when centered differencing is used
in the advection terms, these instabilities have been
practically eliminated in the described simulations by
using the following differencing:

®

u-Vu = 5,8 +12)2 + 076,u — o,0) + wou,

= X = puy 4
u-Vw=ggw + vza,,w’ + wiow,

where
0 X = Xiv1p2, ik~ Xioip, j,k)/ Ax,

Xx = (X,'+|/2,j,k + Xi—l/z,j,k)/zy

2) The semi-implicit method of integration re-
quires that the first two terms in the right-hand sides
of (5) and (6) be evaluated as one mean value between
the value at time level #» and that at time level n
+ 1. This results into a set of two coupled discretized
equations which are transformed into a Helmholtz-
type equation as described in the Appendix.

3) The grid is staggered in all directions so that all
of the variables are defined at the grid points except
for the velocity components, which are located half
a grid length from the grid points in their respective
direction (C grid of Arakawa and Lamb, 1977). Grid
sizes are constant in the horizontal directions (Ax
= Ay = 5 km) but increase with height in the vertical
direction (0.6 km < Ak < 2.1 km).

4) Spatial derivatives are evaluated from centered
three-point formulae, which are second-order except
for the second vertical derivatives, which are first-
order due to the increasing grid thickness.

5) The model is bounded below by a constant flux
layer in which the turbulent fluxes are determined
from Monin-Obukhov similarity theory. The stability
functions are given by Nickerson and Smiley (1975),
the ground values are kept constant and the vertical
profiles of the heat and momentum eddy diffusion
coeflicients inside the boundary layer, 1 km deep, are
given by O’Brien (1970).

6) Turbulent Reynolds stresses due to subgrid mo-
tions, excluding the convective motions simulated by
the cloud model, are defined with a constant value
of horizontal eddy diffusion coefficients above the
boundary layer. For simplicity, this form of the
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turbulent Reynolds stresses is also used at grid points
covered by convective cells, although the latter give
rise to most of the mesoscale subgrid motions in
those points. It is not clear what terms must be added
to the convection forcing terms, there, in order to
represent the turbulent Reynolds stresses in the me-
soscale equations.
7) The lateral boundary condition for the normal
velocity is specified according to Orlanski (1976) as
ou
—37" = —(c+ u,)n-Vu,,
where n is the outward normal vector and u,, = u+n
the outward component of the velocity vector. The
term c is a constant wave velocity (¢ = 20 m's™!).
8) At the upper boundary, the evolution of the
vertical velocity is adopted from Tripoli and Cotton
(1982) as

(10)

w_ —(c + w) div(pu)/p,
ot
and at the bottom boundary, the vertical velocity is
set to zero since the model does not include topog-
raphy.

9) The lateral, upper and lower boundary condi-
tions for the other variables, except the pressure, are
such that the normal advection terms are set to zero
for incoming fluid particles (u#, < 0 or ws;, > 0) and
are evaluated from an “upstream” formula for out-
going fluid particles (1, > 0 or w;;; < Q).

10) The boundary condition for the pressure is
deduced from the discretized pressure tendency equa-
tion (6) written at the boundary and with the normal
advection term set to zero. In order to keep the form
of the discretized Helmholtz equation, derived in the
Appendix, an extra point is introduced outside the
domain. The value of the pressure at this extra point
is deduced from the discretized momentum equation
(5) written at the boundary but with the new value
of the normal velocity (u,"*") evaluated from (10) or
(11). This leads to a Neumann-type boundary con-
dition for the Helmholtz equation. This boundary
condition preserves the balance between the pressure
and the velocity fields through sound waves-balance
that is fundamentally important for this model with
the grid size and the time step of 5 km and 20 s
respectively.

(11

Simulations show that computational oscillations
are minimum while the period of most sound waves
is increased by time truncation to 4At (TW). As in
other fully compressible models (Tripoli and Cotton,
1982), the open boundary conditions lead to a slow
change in the mean total pressure in the domain.
Furthermore, the upper boundary condition (11)
produces a spurious increase of the absolute values
of the vertical velocity at the top of the domain (17.3
km) which remain small up to 40 min and increase
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almost exponentially towards the end of the simula-
tion.

3. Cloud model

This model simulates the development of each
convective cell evolving in the mesoscale domain. It
is, in many respects, similar to the model developed
independently by Wang (1983). Only the main fea-
tures, including those which are essential in the
coupling procedure with the mesoscale model, are
described here. Details can be found in Pointin
(1984b).

Figure 1 shows that the convective cell is made of
three concentric cylinders, described by an Eulerian
grid and topped by a Lagrangian hemispheric dome
which rises rapidly during the cloud development.
The internal cylinder (of index o = 1) represents the
active part of the cloud in which the main updraft is
generated. The localized downdraft, which is some-
times induced by precipitation loading and evapora-
tional cooling, can develop in the intermediate cyl-
inder (o = 2). The external cylinder (« = 3) represents
the close environment of the cloud, in which a weak
large-scale compensating motion can develop; it also
transmits the local changes in environmental condi-
tions to the cloud.

The basic variables, which are mean values over
each annulus cross section, are only functions of the
vertical coordinate and of time and include:

W, the vertical component of the veloc-
1ty,

Ty, _the virtual temperature,

Pa the total density,

Gmas Gre,  the water vapor deficit and the mass

dixs Gre  Per unit volume of the rain drops,

of the ice particles and of the grau-
pel respectively,

E.., Ey, the kinetic and the thermal turbu-
lent energies respectively as in Lo-
pez (1973),

R, the radius of each cylinder,

n, the horizontal velocity vector.

The same variables with the index T instead of «
denote the values in the Lagrangian cloud top. Other
variables are needed to describe the cloud cell. They
are only functions of time and include:

Zg, Zr the height of the cloud base and cloud
top respectively,

Xy the position of the mean axis of the
Nth cell,

uy the mean horizontal velocity of the
Nth cell.

The main characteristics of the cloud model are as
follows:
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FIG. 1. Sketch of the one-dimensional cloud with a slanting axis and variable
radius. The location of the Lagrangian variables of index T is shown by the solid
triangle. Circles mark where the Eulerian variables are situated in each cylinder. The
location of the nonhydrostatic pressure is marked by a cross.

1) Bulk microphysical equations are very similar to
those used by Ogura and Takahashi (1971), Wisner et
al. (1972) or Cotton and Tripoli (1978).

2) Entrainment and detrainment between one an-
nulus and another are defined in term of a turbulent
entrainment velocity

Vo = 8E}, (12)

where 6 = 0.3. This implies that each evolution equa-
tion for any intensive variable X' (=T, q../p, E., u,
and so on) includes the advection-entrainment term
as:

X, oX,, , ,
(__87.)3&, = TWy 62 + CaVapa+l(Xa+l - Xa)/pa

+ Ca—lVapa—l(Xl—l - X:x)S —1/(paSa)s (13)
where S, = m(R,? — R,_?) is the cross section of the
annulus between the radius R, and R,_; (Ry = 0). The
C, represents the ratio of the lateral surface A, per
unit height to the cross section S, (Wisner et al., 1972):

24172
A, =C,S, = ZWRa[l + (aRa) :| . (14) .

dz

3) The evolution of the turbulent energies appearing
in (12) is predicted with highly parameterized turbulent
equations obtained following Lopez (1973).

4) Besides turbulent entrainment, precipitating
particles (rain drops or graupel) can fall through the
lateral surface either when the radius increases with
height or when the axis of the cylinder makes the angle
with the vertical axis (Fig. 2). This angle can be deduced
from the vertical gradient of the horizontal distance
that the cloud has covered, at each altitude, from its
creation at time ¢;:

a l
'a_Z-J;, (ll] - “N)dl” . (15)

5) the Lagrangian cloud top rises according to

lgB(z,l) =

= wr,

dt (16)
where wy is the value of the vertical velocity at the
cloud top. As it rises, the cloud top passes over Eulerian
grid points which are then included in the cylindrical
cloud core. The value of each variable at this new grid
point is deduced from the value of the corresponding
cloud top variable at the crossing time. The Lagrangian
equations for the cloud top variables include the effect
of lateral entrainment, but also of vertical advection
which takes the form of the first term in the right-hand
side of the advection-entrainment rate of change for
any intensive variable X":
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a

FIG. 2. Schematic vertical section of one of the cloud cylinders showing how
precipitating particles can pass from one cylinder to another when ‘a) the radius is
function of héight, b) the axis of the cylinder is slanted by an angle 8. w is the air
velocity, V, the terminal velocity of the particle and V, their absolute velocity: Unprimed
variables refer to internal values, primed ones to external values.

= 3p(wy — wr)*/QaRrpr)( X — X7r)

( ’)
dr adv :
l 31 Ip}(lKIS ,7 )/(ZPTItT)’ (l‘)

where (+)* = max( -, 0) vanishes if the cloud top rises
faster than the speed of the air in the underneath core
and a is a flatness coefficient (a = 0.8).

6) The horizontal motion of the cell is deduced
from

Xy _
dt Ny

where the mean horizontal velocity of the Nth cell is
given by :

27‘ . 2T
Uy = f lelzllle/f lelde-
0 0

7) At the altitude z, the horizontal velocity of the
horizontal section of the cell results from vertical ad-
vection, entrainment of horizontal momentum and
the action of the drag force F, exerted by the other
cylinders: '

(18)

(19)

Ff= CD"“n - uex"(un - uex)Rpem (20)

where u, is the velocity of the annulus of external
radius R and the subscript ex refers to the external (or
" internal) flow. The value of the friction coefficient Cp
is 0.3. Therefore, the horizontal momentum equation

reads h 2
(), 03,2
ot ot/) .4 ot), oz
where the rate of change with subscript adv is obtained

from (13) [or (17) for the cloud top] and where the
friction term is given by
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(%)
ot /g
= -CDll‘lia — Uty — W DR pey
+ "“a = Ut "(ua - ua+l)Rapa+l]/(Sapa)' (22)

These equations define the vertical transport of hor-
izontal momentum by the convective cells. This trans-
port is shown in Section 5 to be fundamentally im-
portant to the convective organization process.

8) The bottom boundary conditions must be spec-
ified according to the large-scale flow so that the
cloud does not constitute an uncontrolled source of
mass, momentum or energy. Therefore, the vertical
mass flux in the cloud cross section must be equal to
the mesoscale mass flux at the cloud base, namely

2 Sapozwa = _(E Sa)(dlv“)SpZBs (23)

where p is a mean density, Zg the height of the cloud
base and (divu); is a mean value of the mesoscale
divergence of the horizontal velocity field at the
ground, over the cross section of the cell. The value
of the vertical velocity at the bottom of the cloud
(Fig. 1) in the internal cylinder is deduced from (23),
in which the value in the other cylinders is either
obtained from the general equation of motion with
upstream advection derivatives when this velocity .
value is negative, or is taken as some fraction of the
vertical velocity value in the internal cylinder other-
wise. The values of the temperature and of the water
vapor deficit at the bottom are deduced from similar
budget equations. The advection terms for the other
variables are either set to zero when the vertical
velocity is positive or are computed with an upstream
formula otherwise.
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9) The vertical momentum equation does not in-
clude a virtual mass coefficient, but a nonhydrostatic
pressure gradient computed from the mesoscale model
(as will be explained) modifies the acceleration due
to buoyancy effects. = -

4. Coupling algorithm
a. Principle

As explained in Section 1, each convective cell
evolving in the mesoscale model is simulated by a
quasi-one-dimensional cloud model. As it develops,
the cell moves across the domain and therefore meets
different environmental conditions. Furthermore, it
influences the mesoscale dynamical and thermody-
namical fields through vertical fluxes of mass, energy
and momentum. This influence is parameterized by
convective forcing terms which are added as sources
or sinks in the equations of the mesoscale model.

The coupling algorithm is illustrated in the temporal
diagram in Fig. 3. The cloud model is schematized
at the top, the mesoscale model at the bottom, while
the coupling terms (environment of the cell, convec-
tive forcing terms) are in the middle lozenges. The
evaluation of these terms is described in the following
sections and the different steps of the coupling algo-
rithm are as follows:

1) The values of the mesoscale variables being
defined at time ¢, = nAt, the Nth cell moves to its
new position according to (18). The values of the
variables in the external cylinder of this cell are
evaluated from the local values of the mesoscale
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variables and from the values of the variables in the
other two cylinders as will be explained. The nonhy-
drostatic vertical pressure gradient and the mean
value of the divergence of the horizontal wind at the
ground are also evaluated during this step.

2) For each cell, the cloud model is integrated with
a variable time step 6t < At, while the forcing terms
(pressure gradient and divergence) are kept constant.
The last time step is chosen so that the value of the
final time corresponds to the mesoscale time ¢,
= (n + 1)At

3) The convective forcing terms are evaluated from
the time evolution of the cloud variables and from
the evolution of the mesoscale variables under some
processes, as explained in Section 4c.

4) The mesoscale equations, in which the convec-
tive forcing terms are kept constant, are integrated
from time ¢, to time ¢,,, by the semi-implicit method.

5) Integration proceeds by going back to step 1.

This description shows that the cloud model and
the mesoscale model are integrated.in parallel and
that, during each time step At = 20 s, a coupling
term, evaluated from one model, modifies the evo-
lution predicted by the other one. Therefore, the time
evolution of the variables in both models is of fun-
damental importance in the coupling algorithm.

The evaluation of these coupling terms is based on
the geometrical position of the cell in the mesoscale
grid. This position is characterized by the values 4,
of the area that the ath cylinder of the Nth cell
covers, at time 7, and at altitude z;, on the grid mesh
centered at the point of coordinates (x;, ¥, zx). The

n 1 n+1
T
15t eyl Clould o] Cloud 1oyl s
/S [ S R A | he—eea—a
an_Cyl. =_-4E-41_52=ﬁ Parameters 2nd Cyl. =—»
3y, : R L ol s
B | 54
S5 58
Forcings — >
| .
l
1 I
Mesoscale IMesoscale Equations | Meso. L,
> Parameters 7 Para.
|

FIG. 3. Block diagram of the coupling procedure between the cloud model
(rectangles at the top) and the mesoscale model (rectangles at the bottom). The
coupling terms are in the middle lozenges and time runs from left to right.
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dependence of 4, upon the cell number N, time 1,
and upon the altitude z; is omitted in the followmg
The definition of these areas is illustrated in Fig. 4,
which shows a horizontal cross section of the meso-
scale grid in which a cloud cell is situated.

b. Evaluation of the environment of the cell

The value of each variable in the external cylinder
is not just obtained from mean local values of the
mesoscale fields, as is usually done; its evaluation-is
based on a conservation principle applied to the
averaged value of this variable over the horizontal
cross section of the external cylinder of each cell.
Namely, the horizontal integral over this section of
any variable X, at the altitude z; and at time ¢,, can
be expressed either in terms of the values Xy it takes
in the mesoscale model at the grid point situated at
the coordinates (x;, ¥;, zx), or in terms of the values
X, it takes in the ath cylinder of the Nth cell:

Xds = 2 Z_Xijk(Aijl + Aij2 + A,_,3)

meso i g

2 S X, = Xds. (24)

cloud
The middle equahty is used to evaluate the value
X3 of the variable X in the external cylinder of the
cell during step 1 of the coupling algorithm. This
value depends on the values Xj; of the mesoscale
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variable but also on the values X, and X, of the
variable in the other two cylinders. This procedure
implies a partial compensation for a high positive

-value in the internal cylinder by a low negative value

in the external cylinder, provided that the integrated
mean value in the mesoscale model remains zero. In
fact, this last value is likely to increase in response to
the convective forcing terms induced by the large
positive value in the internal cylinder.

When some variables are defined in one model but
not in the other (24) is useless. This is the case for
the nonhydrostatic pressure P, in the ath cylinder,
which is obtained as a mean value from the mesoscale
values Pjy as

P, =2 2 ApPii/ 20 2 Ajje-
i i

A similar equality gives the value (divu), of the
mean horizontal divergence at the ground. On the
other hand, the values E, and Er; of the turbulent
intensities in the external cylinders are diagnosed
from the mean values of the mesoscale flow fields
using turbulent equations derived by Sommeria (1976)
assuming that horizontal gradients of thermodynamic
quantities vanish.

c¢. Evaluation of the convective forcing terms

In previous works, the convective forcing terms
which in the mesoscale equations influence the evo-

i-2 i-1 i sl i+2
j’3 - + + \ +
N
2| A /”_ar\\ .
&
j*" R4+ / S
-] |
\\YW\\
j + +\:/AU1 Ald +
' R
\ N RAip &»
1) \% / .o
iy 3& /

A x

FiG. 4. Horizontal cross section at time ¢, and altitude z; of the mesoscale domain
in which a cell is centered at (X, YN) in the (i, j + 1) grid mesh. This section shows
some of the areas 4, that are used in the evaluation of the coupling terms.

o
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lution of the mesoscale fields are evaluated by for-
mulae based on different principles: detrainment at
the cloud top (Arakawa and Schubert, 1974); mixing
of the cloud in its environment (Kuo, 1974); turbulent
fluxes (Anthes, 1977); or direct forcing by the sources
and sinks induced by in-cloud condensation (Fritsch
and Chappell, 1980a,b). Our method takes advantage
of both models simulating the time evolution of the
same variables, at the same time and location, under
the influence of different processes (large-scale pro-
cesses and cloud-scale processes). In the mesoscale
model, the complete partial time derivative of any
variable X can be split, according to the scale. of
processes inducing this temporal change, as

(@), G G G), e

where the index ¢ refers to cloud-scale processes
which are not explicitly simulated by the mesoscale
model. The introduction of the convective forcing
terms Fy in the mesoscale equations can bring in this
model the effects of the cloud scale processes, provided
Fyx is defined by

Fy = (8X/d1),. (26)

The index v in (25) refers to processes which are
simulated both by the mesoscale model without con-
vective forcing terms and by the cloud model, as for
example, the vertical advection by the mesoscale
vertical velocity

X X
(E)v - _w‘f"(E)Uk = (X — Xu)/ AL, (27)

where the last equality defines X% as the value, at
time ¢,,, that these vertical processes would produce
alone. The index LS in (25) refers to large-scale
processes which are not at all simulated by the cloud
model, for example horizontal advection.

Therefore, the new value, at time f,,;, of the
variable X predicted by the mesoscale model under
all processes which are included in the cloud model

18:
n a a %*
xr+ad (o) +(50) | = X+ Fxar @28)

in the grid mesh centered at the point of coordinates
(xi» ¥, z¢). This value must be equal to the mean
value X§ that the cloud model predicts, at time ¢, ,,
in the same grid mesh:

Zk+Ak[2
w= [ S~ S (S Al Xne
Zk—Dk-1/2 N «

+ 2 (Z Al'j'aXan+l)N}dZ/f {[S - 2 (Z Aija)N]+
N « N a

+ 2 (Z Aija)N}dz’ (29)
N «a
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where S = AxAy is the area of the mesh section and
(-)* = max(-, 0) represents the area of the mesh
section not covered by any cell and in which the
value X3 is used to complete the integral.

The requirement that both models predict, after
each time step Af, the same mean value of the
variable X under the influence of processes which are
included in the cloud model leads to the equality
between (28) and (29), from which the convective
forcing term Fy can be evaluated as

When X = pu, X = pCpyT — Lyg. and X = g5 + gy
= g, + 4., the convective forcing terms pF,, pQ. and
S., which are defined in Section 2, result from (30)
respectively.

Note that the evaluation of the convective forcing
terms involves only the vapor density and not the
mass per unit volume of the rain drops or of graupel.
This results from the assumption, made in the me-
soscale model, that evaporation occurs whenever
liquid water or ice appears in subsaturated air. If the
mass of rain drops or graupel were included in the
definition of the variables X used to compute the
convective forcing terms, then evaporation of these
quantities would immediately cool the air in the
mesoscale model, in opposition to the fact that a
cloud constitutes a reserve of condensed water which
evaporates slowly during its dissipation stage.

The mesoscale time step (At = 20 s) is small
compared to the life cycle of a cloud, so that the
respective times of occurrence of the different pro-
cesses and their spatial locations are of fundamental
importance in the evaluation of the coupling terms.
Thus, the time evolution is crucial in the evaluation
of the convective forcing terms.

d. Ilustration of the coupling results

As the cloud develops, it induces vertical fluxes of
mass, energy and momentum in the mesoscale flow.
As a result, a nonhydrostatic pressure field is modified
in such a way that the resulting vertical gradient
opposes the cloud development (Marwitz, 1973; Ra-
mond, 1978; Klemp and Wilhelmson, 1978). This is
illustrated in Fig. 5, which shows a vertical cross
section of the perturbation pressure field P} obtained
at 8 min of a simulation in which a cloud is created
at 7 = 0 in the cross-section plane and at x = 55 km.
During these 8 min, the cloud rises up to 3.7 km
while influencing the mesoscale fields. As a conse-
quence, a high pressure dome appears centered at x
= 55 km just below the altitude of 4 km, and a low
pressure core is visible below 3 km at the same
position. The resulting vertical pressure gradient at
the cloud-top altitude is positive and opposes the
cloud-top development. On the other hand, near the
ground, the vertical pressure gradient is negative and
favors the cloud development (Marwitz, 1973) by
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pulling negatively buoyant air parcels to the conden-
sation level.

Another feature revealed in Fig. 5 is the slight
dissymmetry of the perturbation pressure field near
"the cloud. This effect results from the convective
transport of horizontal momentum, which induces
values of the horizontal velocities that differ inside
and outside the cloud (Ramond, 1978). Zones of
horizontal convergence or divergence develop at the
edge of the cloud and the pressure field is modified
accordingly This effect is illustrated in more detail
in Section 5.

These coupling procedures between the cloud model
and the mesoscale model produce expected interac-
tions and allow the introduction of a nonhydrostatic
pressure gradient into the quasi-one-dimensional cloud
‘model; Holton (1973) has shown the importance of
this introduction.

e. Initial conditions for a new cell

The different cells evolving in the mesoscale domain
are created sequentially when the following creation
criteria are satisfied at every time step, each horizontal
position is tested and only one cloud can be created
if, at first, the local vertical profile of the atmosphere
is potentially unstable. This is quantified by the value
of the CAPE (Convective Available Potential Energy)
as defined by Moncrieff (1981) by

ZM
CAPE = gf (T, — T,)/T,dz, 31
0

o
~

HEIGHT IN KM

N
e. 20. 40.
WEST - DISTANCE IN KM

FIG. 5. Vertical cross section of the perturbation pressure P’ (in
mb) made at 8 min of a simulation in which a cloud is created at
¢t = 0 and at the position (x = 55 km, y = 80 km). By the time of
8 min, the cloud top reaches 3.7 km. Isolines are drawn every 0.1
mb and dashed isolines correspond to negative values.
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where T, is the virtual temperature of the environment
and T, that of a parcel rising adiabatically from the
ground. The term Z,, is the altitude where, above the
condensation level, T, becomes smaller than T,,. The
value of CAPE must be larger than 1500 m? s72
according to Pastushkov (1973). Second, the chosen
point must be where the horizontal humidity conver-
gence is maximum (Hudson 1971) and is above a
threshold value:

div(g,u) < dy < 0. (32)

When both conditions are satisfied, a new cell is
created. In fact, the threshold value dj, is the control-
ling factor of the amount of convection. The more
negative this value is, the less often a new cell is
created since perturbations of the mesoscale fields
build up gradually. When the creation of a new cell
is accepted, its initial conditions are as follows:

e the cloud top height is taken just above the
condensation level;

e the vertical veloc1ty in the internal cylinder is
taken as a constant [w(z, t;) = 2 m s7'];

e the radii of the three cylinders are arbitrarily
imposed by lack of a relationship which could predict
them (R; = 2200 m, R, = 3300 m, R; = 9900 m);,

o the humidity is increased in the internal cylinder
under the condensation level. It should be noted that -
during the cloud development the boundary condition
for the humidity remains unmodified so that the
increase of humidity is restricted to the initial value
(paragraph 3-8).

These initial conditions and the above creation
criteria may appear quite arbitrary, but they are, for
the most part, compatible with the poor knowledge
we have on the conditions that prevail when a new
cloud starts developing.

5. Simulation results and comparison with experi-
- mental data

Several simulations have been made in order to
test the sensitivity of the organization mechanisms to
the environmental parameters; this study is described
in a Part II, to be published later. In the present Part,
we only describe the main features of the flow obtained
during one simulation in which several clouds devel-
oped. Comparisons of these features are also made
with some of the characteristics of a squall line that
can be deduced from an observational field program
(Sommeria and Testud, 1984). The observational
network covers an area of 50 km X 50 km and
includes two Doppler radars, an acoustic sounder and
a central meteorological station equipped for rawin
sounding and interrogation of remote ground. mete-
orological stations.

The initial conditions for the mesoscale model in

_ this simulation are deduced from rawinsonde data
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obtained at 1500 GMT 21 June 1981, almost 13
hours before the squall line passed through the ex-
perimental area near Korhogo (Ivory Coast). The
initial conditions are spatially uniform; the vertical
profiles of the temperature, dew-point temperature
and horizontal wind are drawn in Fig. 6 in a skew T
diagram. A heat source is introduced before the real
start of the simulation in order to create a.zone of
maximum convergence in the middle of the domain
(x = 80 km, y = 80 km). At ¢t = 0 a first cloud is
created at this point, and as the simulation proceeds
a total of 19 cells are created in a time of 23 min
while the total simulation time is 54 min. The
maximum number of cells is presently limited to 20
in the program. This small number of cells limits the
convective activity in this example, so that steady
state cannot be achieved.

a. Dynamical and thermodynamical fields at the
ground

The cell trajectories are drawn in F1g 7 in a
horizontal cross section of the mesoscale domain.
Figure 7 shows that the cells move towards the north,

<
\.‘OQ
\

672171981
15H GMT

FIG. 6. Skew-T diagram showing the temperature, dew-point
temperature and velocity vector as function of the pressure.
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i.e. towards the top of the figure, and then towards
the northwest direction. Their position at ¢ = 40 min
of the simulation, which is the time at which the
mesoscale fields are described later, is indicated by
the center of the dashed circles of radius 3 km that
schematize the cloud extent. The numbers on the
edge of the trajectories indicate the order in which
the clouds are created. A close examination of this
figure suggests that the new clouds are mainly created
west to northwest of the oldest ones. ,

The main reason for this preferred area of creation
stems from the fact that a zone of maximum conver-
gence of the horizontal wind at the ground exists,
west of the convective cells, in the mesoscale domain.
[The creation criteria (Section 3) imply that new cells
are created in this zone.] This zone is visualized in
the plot of the horizontal wind vectors shown in Fig.
8 for the first level of the model and at 40 min of
the simulation. The horizontal winds are rather weak
except in a circular zone, later referred to as the
perturbation region, in which all the convective cells
are situated at that time, as shown in Fig. 7. In this
perturbation region, the winds are rather uniform
and directed to the west-northwest. This velocity
field implies that a convergence zone exists on the
west side of the perturbation region, as discussed
above, while a divergence zone is created on the east
side.

The larger values of the horizontal winds in the
perturbation region result from the downward trans-
port of horizontal momentum caused both by the
mean mesoscale subsidence motion surrounding the
convective cells due to negative buoyancy effects and
by the local convective downdrafts driven by precip-
itation loading and evaporational cooling in the in-
termediate cylinder of each cell. This last effect is
introduced in the mesoscale equations by the convec-
tive forcing terms (Section 4). .

The comparison of the horizontal fields at different
simulation times indicates that the perturbation region
keeps its characteristics during the second half of the
simulation while -increasing its east-west size as it
propagates in the western direction. Indeed, between
40 and 52 min, the perturbation region is displaced
by about 8.6 km, leading to a mean velocity of about
12 m s™'. As a comparison, the observed squall line
has a mean velocity of 19 m s™! towards the west—~
southwest direction and the squall front, in which
most convective motions develop, makes a north-
south arch of more than 600 km long (Fig. 7 in
Sommeria and Testud, 1984). '

Despite the horizontal extent of the perturbation
region being only about 60 km in the simulation, the
mesoscale fields are very similar in the squall front
region, as can be deduced from the comparison of
the horizontal cross sections of the pressure pertur- -
bation at the ground. Isolines of the simulated per-
turbation pressure are drawn in Fig. 9 at the ground
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FI1G. 7. The cell trajectories are shown by the solid line (from right to left as time -

increases) on the horizontal cross section of the mesoscale domain. The position and
extent of the cells at 40 min of the simulation are indicated by the dashed circles.
The numbers at the edge of the trajectories indicate the order in which the cells have
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been created.

and at 40 min of the simulation while Fig. 10 shows
isolines of the measured perturbation pressure field
over a limited area of the squall line. Figure 10 is
deduced from ground station measurements assuming
that the squall line moves over the experimental ‘area
‘without much change during less than one hour so
that the “steady state” assumption is used to transform
temporal data into spatial data. In both figures, the
pressure increases in the west side of the perturbation
region (ahead of it) up to 2 mb inside an elongated
north-south region of 20 km width. In response to
this pressure increase, the wind velocity increases
strongly so that the.region is usually called the gust
front of the squall line. Behind it, the pressure
decreases in a much wider region.

The time evolution of the meteorological parame-
ters, recorded by one of the ground stations, is shown
in Fig. 11. Assuming a steady-state propagation of
the squall line, a distance scale may be added to the
time scale, taking into account the propagation speed
of 19 m s~!. Figure 11 shows that while the wind
speed increases at the same time as the pressure does,
the first precipitations occur only 10 km behind the
~gust front.” This feature is also simulated by the
model; comparison of Figs. 7 and 9 indicates that the

closest convective cells are more than 25 km away
from the gust front. This larger value is partly due to
the poor resolution of the mesoscale model (5 km),
which smoothes out sharp discontinuities such as the
gust front shown in Fig. 11. _

Another characteristic of the squall front shown in
Fig. 11 is the decrease of temperature and relative
humidity almost 7 km behind the gust front and 3
km before the first precipitations. This temperature
decrease indicates that the gust front is the edge of a
gravity current that is generated by the squall line.
Just after its small decrease, the relative humidity
increases almost to saturation due to the decrease of
temperature and the increase of mixing ratio induced
by precipitation evaporation. The decrease of tem-
perature a few kilometers behind the gust front is
also simulated by the model, as shown in Fig. 12, in
which a horizontal cross section of the temperature
field is made at the ground and at 40 min of the
simulation. It should be noted, however, that the
magnitude of this decrease is larger in the squall line
(3 K) than in the simulatéd perturbation region (0.2
K). This discrepancy partly results from ground tem-
peratures being kept constant in the constant flux
layer formulation (Nickerson and Smiley, 1975),
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FIG. 8. Horizontal cross section of the horizontal wind (arrows) at the first level
at 40 min of the simulation. The arrows show the path of a parcel, having the air
velocity, during a 500 s travel. The dash-dotted arc indicates the gust front (GF)
position. Isolines of the divergence of the horizontal wind are also shown (intervals

are 0.15 X 1073 57,

causing the layer to become unstable when the above
air cools, so that the ground heats up the air too
much. This feature implies that the simulated flow
can bear more resemblance to ocean squall lines
(Zipser, 1977). The smaller temperature decrease
partly explains the small propagation speed which
has been simulated (12 versus 19 m s™! for the
observed value) since the strength of the gravity
current, which generates the gust front, is decreased.

Comparison of the observed and simulated fields
at the ground shows that the relative position of the
different changes are well simulated by the model
even if their magnitudes are not all well predicted.
Some of the other main causes of the discrepancies
are the limited extent of the perturbation region and
the fact that no new cells are created after 23 min of
the simulation while the perturbation region still
propagates faster than the cells and therefore moves
away from the closest ones. These restrictions are
now being removed in simulations in which the
maximum number of cells is increased.

b. Vertical structure of the dynamical fields

The three-dimensional flow is visualized in Fig. 13,
which shows a vertical cross section of the relative

>0 divergence, <0 convergence).

velocity field made along an east-west direction
through the middle of the perturbation region (y
= 105 km) at 40 min of the simulation. The relative
wind is obtained by substracting the propagation
velocity of the perturbation region (¥ = 12 m s!).
The arrows in Fig. 13 indicate the path of a parcel
moving during 500 s with the relative air velocity at
each grid point.

Figure 13 indicates that, in the lowest layers, air
enters the perturbation region in the front part (west
side). The relative velocity decreases across the gust
front and becomes minimum inside the perturbation
region. As it slows down, the air tises above the
gravity current (x = 40 km) and, a few kilometers
behind, it rises up to 14 km in a narrow updraft. In
this particular cross section, this updraft is induced
by the convective cell No. 18 which is situated there,
at this time, as shown in Fig. 7. This velocity field
results from the fact that the new cells are created
just behind the gust front in a zone of maximum
convergence associated with mesoscale upward mo-
tions, and that by the time (20 min) these cells reach
the highest level, the gust front has moved a few
kilometers ahead of them. Older cells can induce
weaker vertical motions such as the updraft, shown
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FiG. 9. Horizontal cross section of the ground perturbation pressure P’ (in mb)
made at 40 min of the simulation. Isolines are drawn every 0.25 mb; dashed isolines
correspond to negative values. The dash-dotted arc indicates the gust front (GF)
position. The dotted rectangle indicates an area of the same extent as in Fig. 10.

FiG. 10. Horizontal .cross section of the ground perturbation pressure (in mb)
deduced from the measurements made every 30 s by the 13 ground stations (indicated
by circles). This cross section is derived under the assumption that the squall line
does not evolve substantially during its motion with a velocity of 19 m s™! in the
west—southwest direction. A long-term tendency has been removpd from the pressure
values. .
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FIG. 11. Time evolution of the meteorological parameters, mea-
sured by the ground station situated in the negative perturbation
pressure area in Fig. 10, every 30 s during the squall-line crossing,

at x = 90 km in Fig. 13, which is created by the cell
No. 15 (Fig. 7). These oldest cells also constitute
reserves of liquid water that partly precipitate and
partly evaporate, modifying the flow conditions in
the rear part of the perturbation region. In the rear
part, localized downdrafts develop between convective
cells and participate in the vertical transport of hori-
zontal momentum. As a consequence, the vertical
gradient of the horizontal velocity is smaller inside
the perturbation region (55 km < x < 80 km) than
ahead of it (x < 30 km).

The downdraft shown in Fig. 13 for x = 105 km
and at altitudes near 8 km is created by a zone of
convergence of the horizontal wind (as shown by the
isocontours) at 12 km altitude and by a zone of
divergence near 6 km. These zones result from the
different values of the horizontal wind inside and
outside the perturbation region in the near part. On
the other hand, a divergence zone appears at 12 km
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altitude and a convergence zone near 6 km in the
front part of the perturbation region (x = 40 km).
The resulting vertical motion is upward and is favor-
able to the cloud development.

In the case of squall lines, the air behind the squall
front has been perturbed by stratiform clouds over
distances of hundreds of kilometers since the squall
front moves, in general, faster than the air at midlevels.
The conditions behind the squall front are important
to the squall-line dynamics (Lilly, 1979; Le Mone,
1983), and these effects are not completely reproduced
in the simulation due to its limited duration.

6. Summary and conclusions

A new model is proposed for the simulation of
mesoscale flows perturbed by deep convective clouds.
It is based on the time-dependent coupling between a
nonhydrostatic three-dimensional mesoscale model
and a quasi-one-dimensional cloud model. Each
model simulates processes with particular character-
istic length scales (10-200 km for the mesoscale
model and 0.5-10 km for the cloud model) not
explicitly simulated by the other one. The coupling
terms transmit to each model the influence of pro-
cesses described by the other one. On the one hand,
the local evaluations of the environmental conditions
of each cell and of the nonhydrostatic pressure profile
transmit, to the cloud model, the influence of the
mesoscale dynamical and thermodynamical fields.
On the other hand, the convective forcing terms,
evaluated from the cloud model, transmit to the
mesoscale model the effects of the microphysical
processes. The interactions between the convective
cells and the mesoscale flow appear to be simulated
in a realistic manner since a mesoscale pressure field
develops in response to a cell growth.

A particular simulation is analyzed. Analysis shows
that the main characteristics of the flow perturbed by
convective cells are similar to those of a squall line
deduced from ground station measurements. In the
simulation, a gust front develops ahead of a pertur-
bation region in which the horizontal velocity changes
in response to vertical transport of horizontal mo-
mentum due to convective motions. The pressure
increases across the gust front, and 7 km behind it
the temperature decreases while the pressure reaches
a maximum value. The relative position of these
different effects is well simulated by the model even
though their magnitudes are sometimes poorly esti-
mated. The main discrepancies result from the limited
number of cells that have been simulated, from the
short duration of the simulation and from the poor
spatial resolution (5 km) of the mesoscale model.
Improvements of the models are underway such as a
possibility of moving the reference frame at a constant
velocity with respect to the ground; a modification of
the upstream vertical advection term at the first level
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F1G. 12. Horizontal cross section of the temperature at the ground at 40 min of
the simulation. Isolines are drawn every 0.05°C; dashed isolines correspond to

temperatures below the initial value.
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(M. Miller; personal communication, 1984); and a
slight modification of the pressure equation at the
top which would avoid the increase in vertical velocity
at the top or in the mean pressure at the ground.

This model can serve as a tool to be used in the
studies of such questions as:

e What are the mesoscale factors that are favorable
or unfavorable to a mesoscale organization of con-
vective clouds (potential instability, vertical gradient
of the horizontal wind, low level jet, and so on)?

e What happens when several mechanisms (vertical
transport of horizontal momentum, pressure gradients
created by convective motions, by divergence or
convergence of the horizontal winds, and so on) have
opposite effects on the organization process?

e Could a squall line develop in a given environ-
ment?

This tool can be very useful since simulations are
not very expensive and the initial vertical profiles of
temperature, humidity and wind speed and direction
can easily be varied. A simulation with 20 clouds
takes 21 min on an IBM 370-168 for a simulated
time of 54 min.
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APPENDIX

Derivation of the Discretized Helmholtz Equation

As in Tapp and White (1976), the momentum
equation (5) is discretized according to (9), with the
first two terms in the right-hand side evaluated as the
mean value between time levels » and n + 1. The
following equation results:

ut! = u* — AfVr/(2p) — gkAtn/(2vP) (A1)

where the vector u can be evaluated from the values
of the fields at time level n:

u* = w" + Aff—u-Vu -~ VP/p
—gk(p" —p)/p" —fXu+F] (A2)

in which the superscript » has been omitted. The
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pressure increment « which appears in the last two
terms in (A1) is defined by:

T = Pt — pn, (A3)

The last two terms in (A2) are correction terms which
are due to the semi-implicit method of integration;
namely they arise from the mean value between time
levels n and n + 1 in the pressure gradient term and
in the buoyancy term respectively. The discretized
pressure tendency equation (6) involves, by the semi-
implicit method, the new value of the velocity w™!
which is obtained from (A1). The following Helmholtz
equation for the pressure increment 7 results:

_Qzalnﬁ

Am dz dz

_W( 4  (v—-ng
AL2C2 ol

where Cy(z) = (YRT(2)/M,)'? is the speed of sound
at the altitude z and G" is given in terms of the field
values at time level # by:

G" = 2p div(w"” + u*)/Ar — [2gp(W" + w*)
— 4y P" divu — 4u"- VP + 4p(y — 1)Q1/(AICP),
(A5)

where Q includes both the convective forcing heat
source Q. and the mesoscale heat source Q; due to
the condensation resolved on the mesoscale grid. This
last term provides a coupling between the dynamical
equations and the thermodynamical equation (7).
This coupling is avoided by using in (AS5) an estimated
value of Q;, deduced from the vertical velocity and
from the water vapor deficit g,,. The right-hand side
of the Helmholtz equation (A4) is computed from
(AS) in which u* is evaluated from (A2). The Helm-
holtz equation is solved by a direct numerical method
based, as in TW, on the diagonalization of the matrix
representing the finite difference of the vertical differ-
ential operator. The resulting two-dimensional Helm-
holtz equations are solved by a cyclic reduction
algorithm.

The new value of the pressure is deduced from
(A3) and the new value of the velocity from (Al).
The thermodynamical equations are integrated si-
multaneously from time level n to time level n + 1
using the mean values, between time levels n and
n + 1, of the dynamical fields.

The final adjustment to the temperature and water
vapor deficit is due to the condensation process and
gives the true value of Q. However, since most
condensation occurs in the convective cells, the me-
soscale condensation is weak and Q; usually equals
Zero.

) =G",  (Ad)
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