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Prognostic Variables in Cloud Modeling
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Laboratoire Associé de Météorologie Physique, Université de Clermont 11, B.P. 45, 63170 Aubiére, France
(Manuscript received 23 May 1983, in final form 30 September 1983)

ABSTRACT

The bulk thermodynamic consequences of nonreversible phase changes and of the precipitation process are
emphasized. Two predictive quantities are proposed, either of which can be used as a prognostic thermodynamic
variable, instead of temperature or of potential temperature, in numerical models of convective clouds. The
use of these new variables decreases the coupling between the dynamical and the thermodynamical equations
and is shown to induce smaller errors under most circumstances involving physical processes such as the
freezing of supercooled drops and the evaporation in undersaturated air. The respective advantages of both
variables are discussed; the choice between them is shown to depend upon the phenomena to be simulated.

i. Imtroduction

The numerical simulation of the flows which develop
in a deep cumulonimbus cloud involves the solution
of equations appropriate to a multiphase mixture of
compressible gases, liquids and solids in which phase
changes (condensation, evaporation, sublimation,
freezing) take place. These equations must be able to
describe as accurately as possible such aspects as the
nonreversible phase changes (freezing of supercooled
drops, evaporation in subsaturated air), the spatial
transport of liquid water due to precipitation, and the
nonhydrostatic part of the pressure which are some of
the essential features of such flows. Therefore, the bulk
thermodynamics of these phenomena should be ac-
curately treated in a simple manner. However, the
fundamental thermodynamical equation, obtained by
applying an enthalpy conservation principle to a non-
equilibrium open system, involves the raie of change
of the partial pressure, the mixing ratio and the tem-
perature of each phase, and is not very easy to integrate.

Although considerable attention has been paid to
the thermodynamic equations (Betts, 1973; Iribarne
and Godson, 1973; Dutton, 1976; Wilhelmson, 1977;
Brook, 1978; Simpson, 1978; Paluch, 1979; Bolton,
1980; Tag, 1980; Lipps and Hemler, 1980) and to the
equations appropriate to multiphase flows (Das, 1969;
Tripoli and Cotton, 1981), it scems that all the terms
which appear in the fundamental bulk thermody-
namical equation have not yet been completely ac-
counted for. The first goal of the present paper is to
provide a complete formulation of the bulk thermo-
dynamics of a convective cloud as well as to emphasize
the thermodynamics of nonreversible phase changes.

In addition, two thermodynamical guantities are
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proposed for use as prognostic variables in numerical
models instead of the mean temperature or one of the
previously proposed potential temperatures (Betts,
1973; Wilhelmson, 1977; Paluch, 1979; Tripoli and
Cotton, 1981). For cloud modeling, it is essential to
make the right choice for this quantity since, as shown
by several authors (Madden and Robitaille, 1970; Beits,
1973; Simpson, 1978), the maximum altitude of cu-
mulus cloud predicted with the use of a thermodynamic
equation is strongly dependent upon the conservative
quantity used for the prediction. It is true that in three-
dimensional cloud modeling, other factors such as the
subgrid parameterization scheme (turbulence closure),
the dynamical scheme (hydrostatic versus nonhydro-
static, fully compressible versus anelastic), the bound-
ary conditions and the initial conditions may be even
more important. However, the bulk thermodynamical
aspect of the flow is probably the first to consider when
trying to avoid approximations made in earlier studies.
These approximations are becoming more and more
unnecessary due to the improvements in computers
and in numerical methods of integration.

In Section 2, the basic equations are derived and
justifications are provided for some approximations;
in Section 3, numerical computations are performed
in order to examine, in some extreme cases, the validity
of the proposed “conservative” thermodynamical
quantities. Analyses of the simulation results are given
in Section 4.

2. Formulation

The cloudy air consists of dry air (index d), of water
vapor (index v), of liquid water (index /) and of ice
particles (index {). In this work, water vapor and dry
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air are treated as perfect gases with constant specific
heats. Although molecular diffusion is important in
estimating the rate of change of each drop radius, its
effects on a characteristic length scale greater than a
few decimeters are much less than the effects of tur-
bulent diffusion which is not considered here. The
mixing ratios and all the species’ properties are defined
as mean values over a volume which is of the order
of a few cubic decimeters, i.e., large enough so that a
large number of particles are in this volume, but small
enough so that it can be considered homogeneous. The
water vapor does not have homogeneous properties
throughout the averaging volume considered since its
temperature and mixing ratio vary around each drop
due to the diffusive processes of heat and vapor. How-
ever, in general, the relative mass of water vapor directly
affected by the drops is small and, therefore, the mean
value of the water vapor temperature is taken as that
of the dry air. The partial pressure of water vapor is
generally below the saturated value at the correspond-
ing temperature; condensation occurs as soon as this
value is exceeded. The volume of the liquid water is
neglected, compared to the specific volume of the water
vapor (the error is less than 0.002), but the energy
carried by the water or ice particles is fully considered.

The liquid water is assumed to consist of droplets
which have a relative velocity V; in the air, a mean
temperature 7; and a concentration p; (kg m™3) or a
mixing ratio ;= p;/ps (kg kg™'). The difference between
the air temperature 7" and the droplet temperature 7
can be of the order of several degrees (Pruppacher and
Klett, 1978) for drops of radius. greater than 1 mm
falling in subsaturated air. The time evolution of the
drop temperature can be obtained from the heat budget
of each drop; the adaptation time of the drop tem-
perature to its steady-state value can be as large as
4.4 s for a drop of radius 1.35 mm. Therefore, in the
averaging volume, all drops of the same radius are
- assumed to have the same origin and identical prop-
erties which can be different from those of other drops.
For simplicity, in the following derivation, all drops
are assumed to have the same radius; this gives no
loss of generality since generalization of the following
equations to many classes of drops having different
radius, temperatures and terminal velocities is
straightforward and will be done in Section 3.

The solid phase is assumed to have a concentration
pi» a mixing ratio r; = p;/ps (kg kg™"), a temperature
T; and a mean relative velocity V;. Similar to the case
of liquid particles, the generalization to many classes
of ice particles is straightforward.

a. The basic thermodynamic equation

Dutton (1976) has considered the enthalpy variation
during any change appearing in an open system and
developed the first law of thermodynamics for such a
case [see Tripoli and Cotton, 1981; their Eq. (1)}]. Dut-
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ton’s equation is written in terms of internal and ex-
ternal derivatives (d;x/dt and d,x/dt, respectively). The
former derivative describes the change along the parcel
path; the latter results from the energy flux into or out
of the parcel and is here considered to be associated
with the derivative along the relative motion of the
precipitating particles alone. For example, and for any
quantity x (a list of symbols is given in the Appendix),
we have

d, .

zt () = V- V(r1x),
or

i"( ) = V- V(x)

rldt X Y1 X)
while

A
E(rvx) =% (sa) = 0.

With this interpretation of Dutton’s notation, the
fundamental thermodynamical equation used in this
paper reads, with the usual notations,

a\°T
#1(,&!); 1(&9)_ _E’.(/‘i_ﬂ)
a\"“ 1) a\T) "a\T)

d
+ reCy Z InT + r,CV;-V InT;

d d d{( Ly
7 G InT) = = (Rq 0P + (r,, —’)

— V. [v(‘%"’) -V lnT,-] -0, (1)

where d/dt is the time derivative following the air and
water vapor (internal derivative in Dutton’s notation),
1.€., .

d/dt = 9/t + uV, 2

where u is the air (and water vapor) velocity.

The term rpCid/dt InT in (1) represents energy
change due to a water mass being advected with the
fluid medium (Orville and Kopp, 1977). The term
r,C)V;+ V InT; has already been obtained by Das (1969)
and represents the cooling effect due to the downward
flux, through the air. parcel, of precipitating particles
which warm up under a forced conduction process at
the expense of the air parcel energy. The last term in
(1) is partly due to the energy caught away by the
precipitating ice particles and partly due to nonre-
versible change of entropy associated with the freezing
process. '

The affinity term Aj, (4;) is defined as the change
in the free enthalpy of water going from the liquid to
the vapor state (from the ice to the liquid state) such
that

Ap = h[ ~ T8 — hu + Tpsy T(Sv - sI) = Ly,
Ay = hi— Tis; — by + Tisy = Ti(s; — s) — L,

(3)
)
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where T (T)) is a mean temperature between 7 and
T, (T; and T;). The last equalities hold because the
phase changes occur at a constant total pressure (Dut-
ton, 1976) and because the temperatures 7;, T,, T;
are not very different. These last equalities will be used
to evaluate the affinity terms.

The affinity due to nonreversible processes can be
assumed to be of the order of magnitude of the cor-
responding free enthalpy difference experienced along
a reversible process going from the same initial state
to the final one. Two different processes can be con-
sidered which start from liquid water at the temperature
T; and lead to water vapor at the temperature 7 and
at the pressure e, (partial pressure of water vapor in
the dry air). The first one evaporates the water at the
temperature 7, giving water vapor with the partial
pressure e,(77) and then heats (or cools) the water vapor
to the temperature 7 while expanding it to the partial
pressure ¢,. The entropy change is therefore

sy — sh = Lp(T)/T; + Cp In(T/T))
— R, In[e,/e,(T)]. (5)

The second process warms (or cools) the liquid water
to the temperature T, evaporates the water at this tem-
perature, and expands the water vapor from the pres-
sure e,(T) to the pressure ¢,. The corresponding en-
tropy change is

LT
(50— 02 = “28 - (1T — R, Wen/e (DL
(6)
The use of the Clausius-Clapeyron’s relation
des(T) _ LIU(T)es(T)
dar ~  RT? M
together with Kirchhoff’s law
dL,,
7= Cn=Ci, ®)

shows that these two functions of 7 and 7; as given
by (5) and (6) are identical. This enables the evaluation
of the affinity 4, by inserting (6) in (3), giving

Alv ~ _RvT ln[ev/es(T)]s (9)

where the second term in (6), which is an order of
magnitude smaller than the third one, has been ne-
glected and where the mean temperature 7 has been
approximated by the air temperature 7. This affinity
term can be of the order of several percent of the latent
heat of vaporization and should not be neglecied in
the simulation of flows in which drops evaporate in
subsaturated air.

Similarly, the nonreversible process which consists
in the freezing of supercooled droplets (at a temperature
T; which can be as low as —20 to —40°C) gives an
entropy change which can be assumed to be of the
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order of the change produced by the following hy-
pothetical reversible process. In this latter process, the
supercooled water is warmed up to the temperature
To = 273.1 K; freezing occurs and the ice is cooled
back to the temperature 7;.

s;— 5= G In(Ty/To) + Li(To)/ Ty + C; In(To/T)).
‘ (10)

In the case of freezing, the drop temperature 7; can-
not depart very much from the air temperature 7" and,
likewise, since the latent heat of freezing is small, the
ice temperature 7; is also close to the air temperature
T. This affinity can be approximated by

Li(Ty)  Ly(T) —eyf L

which is a function of the temperature 7 alone. This
affinity term can reach 20% of the latent heat of freezing
and is identical to the expression proposed by Tripoli
and Cotton (1981):

Ay = R,T In[e(T)/e(T)],

if the saturated vapor pressure over ice is related to
the latent heat of sublimation by the Clausius-Cla-
peyron equation.

Equation (1), in which the affinity terms are eval-
uated from (9) and (11), is the fundamental thermo-
dynamical equation used in this study. It relates the
rate of change of temperature to those of the partial
pressures and the mixing ratios under any circum-
stances (nonreversible phase changes, precipitation
processes); equilibrium is not assumed. It differs from
Tripoli and Cotton’s (1981) fundamental equation
[their Eq. (14)], by explicitly showing the influence of
the precipitating particles [last terms in (1)] instead of
using the internal and external derivatives. Eq. (1) shall
be used as a norm to which the approximate equations
will be compared.

In fact, Eq. (1) is not of practical use in numerical
models since it is strongly coupled to the pressure ten-
dency equation and to the microphysical equations
predicting the value of the mixing ratios. It is, therefore,
essential to define a quantity which has a much smaller
variation along the particle path and is less dependent
upon the fluctuations of partial pressures and of mixing
ratios than the temperature. Two such quantities are
defined in the next two subsections.

Tripoli and Cotton (1981) have already considered
several approximations and proposed an ice-liquid
potential temperature (ILPT) defined by

LifTo)r: + r) + Ly(To)r] ™
0[” Cpa max(7, 253.) :I (12

where the potential temperature 6 is given by Poisson’s
equation

Ail ~ T[

0 = T(Po/PYRIH, (13)

Unauthenticated | Downloaded 06/08/21 12:44 PM UTC



654

and Py, = 1000 mb. It will be shown in the third part
of this paper that, in some extreme situations, this ice~
liquid potential temperature leads to errors of up to
5 K in the evaluation of the potential temperature of
a moist parcel and is not the most accurate quantity
to be considered.

b. Wet equivalent potential temperature (WEPT)

In order to derive a new potential temperature, two
‘approximations can be considered.

e The first approximation involves the replacement

of the term ‘
d (A,v) b d ( A,,,)
dt Yod )

This replacement induces no errors in two cases:

1) When A4;, =~ 0; this occurs during the conden-
sation since the supersaturation is very small in clouds
.and e, =~ ey(T).

2) When r, is constant; this occurs when the moist
air does not contain liquid or ice particles.

o Similarly, the second approximation replaces

a(z) v %)
rld[(T by dr,'T .

The magnitude of the terms involved by these ap-
proximations is only a few percent of the magmtude
of the dominant terms in (1).

With these two approximations, the thermodynamic
equation is approximated by

dInT dInP, ,
Cu— —Ra— =+ = {[L,(T)rv L(T))/T}
Ly
+ {r,»V,-I:C, - '—7':] + C,r,V,}-V InT = 0, (14)
where '
Cpt = Cpd + rrC],
L(T) = Li(T) — R,T In[e,/ey(T)],
L(T) = Ly(T) + A(T).

One consequence of this equation is that the wet
equivalent potential temperature (WEPT), defined by

8, = T(Po/Pay*“» exp{[L\(T)r, — L(T)r]/(TC,)},
(15)
has a rate of change which follows the equation
d1nf dr '
Cy T" = In(7/6,)C; EZI

—[ (c,—I;T) + C,r,V,:| VIn7, (16)
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where the first term on the right-hand side results from
the variation of C,, within the exponent. The change
in the total mixing ratio r;is due to precipitations and
is easily shown to be given by (Das, 1969)
% =V-(pVi+ piV)/pa.
t

Therefore, the wet equivalent potential temperature
0, is essentially constant (within the two approxima-
tions shown in Section 2b) during any transformation
even when it involves phase changes, except when pre-

(17)

" cipitating particles are present. Paluch (1979) has used

a similar quantity (without the ice phase) in an ex-
perimental study of the entrainment in clouds; how-
ever, two different expressions were found to be nec-
essary, corresponding to undersaturated and saturated
conditions. Keeping the affinity of condensation A4,
in the thermodynamical equation makes it possible to
define this unique expression [Eq. (15)].

As shown in Section 3, it is easy to set up an iterative
scheme in order to compute the temperature 7" and
the vapor mixing ratio from the values of the wet

_equivalent potential temperature. However, the main

difficulty with its use in numerical models lies in the
fact that its evaluation involves the lengthy compu-
tations of exponential, logarithmic and power func-
tions.

¢. Wet equivalent enthalpy (WEE)

A second approach to the simplification of the basic
thermodynamical equation (1) is as follows.

On elimination of the partial pressure of dry air
through the state equations, (1) can be exactly rewritten
as :

dT 1+ dP d
Gt rrCy S -2 2 1y
PT t
LT, @
Tz dt [ T ]+ Ay,

LA
+ [rivi(cf - 7’) + C,r,V,] .VT =0, (18)

where pr = ps(1 + rp) is the total density. This equation
can be further modified in order to eliminate the water
vapor mixing ratlo in favor of the total mixing ratio,

ie.,

(19)

Yo =Frr— 1 — 1.

‘Some straightforward algebra leads to

dr (1+rpdP d

—_————— e — — LU
or [1(’1

_r4 [L’( T)r; dr;
dt T dt

pd(l +er) ri)]

d
]+A,1 L) 'T

+ [ (C, - L?) + C,r,V,] VT =0, (20)
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where ¢’ = C,,/C,, is the ratio of the specific heat at
constant pressure of water vapor to that of dry air.

This energy equation shows that the wet equivalent
enthalpy (WEE) defined by

H1 = Cyll + (¢ — rT — gz

- [+ r+ B ja - v

is almost conserved under any adiabatic process in-
volving nonreversible phase changes without precip-
itating particles. Indeed, the rate of change of the wet
equivalent enthalpy is approximately given by

dH1
P =[rVi(C, = Ly/T) + CirV )] - VI(1 = rp)

pr Ldt pPTEW

d
+ L CuTe = ) = Ll = rr= 1= )l (22)

The first term on the right-hand side is due to the
energy caught by the precipitating particles which come
from higher altitudes with a lower temperature and
fall through the moist air exchanging energy with the
air parcel. The second term vanishes in hydrostatic
atmospheres but should not be neglected inside deep
convective clouds. The third term arises from the fact
that the wet equivalent enthalpy is an extensive quan-
tity which must vary when the total mixing ratio
changes. The wet equivalent enthalpy is at most qua-
dratic in the various parameters and, as shown in the
third part, it is easy to set up an iterative scheme in
order to solve for the parcel temperature knowing its
enthalpy, its altitude, and the rain, ice, graupel and
total mixing ratios.

3. Numerical evaluation of the errors using a Lagran-
gian model

Following Tripoli and Cotton (1981), numerical
computations are carried out in order to estimate the
errors involved in the simulation of convective flows
using the two different approximations considered in
this work. The basic equation considered in this paper,
namely (1), in which the affinity terms are evaluated
from (9) and (11), is solved for the temperature at the
next level [T7(P + AP)]. This temperature is considered
as the reference value to which the parcel temperatures,
deduced from the potential temperatures or enthalpy,
are compared. The differences between the corre-
sponding potential temperatures indicate the errors
that can be made when any of these quantities (po-
tential temperatures or enthalpy) is used as a predictive
quantity in a numerical model instead of using the
complete basic equation.

Y. POINTIN
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Three tests have been conducted under the following
general conditions. The parcel rises in a hydrostatic
atmosphere with a vertical velocity which is a function
of the total pressure alone given by

W(P) = Winax sin[(Py — P)w/P,],

where Wi = 10 m s™! and P, = 1100 mb.

The microphysical structure of the parcel is char-
acterized by five mixing ratios of the different water
species: r, for the water vapor, r. for the cloud droplets,
r, for the precipitating drops, r; for the ice crystals and
r, for the precipitating graupel. The microphysical
equations are similar to those used by Tripoli and
Cotton and imply no supersaturation. Condensation/
evaporation of cloud droplet (r.) occurs whenever the
partial pressure of water vapor becomes larger/smaller
than its saturated value. The function e¢,(T) is obtained
as the result of the analytical integration of the Clausius-
Clapeyron equation [(7)] in which the latent heat of
vaporization is a linear function of the temperature
satisfying (8).

In each case, the parcel starts its ascent from 1000
mb where it has a temperature of 310 K and a total
mixing ratio of 0.02. It rises up to 100 mb and then
descends back to the 1000 mb level with the negative
vertical velocity given by (23) with Wiax = —10 m s,
During the descent, the rain and graupel particles
evaporate slowly according to the microphysical equa-
tions.

The integration scheme is based on the iterative
solution of the implicit equation

(23)

dx - - - _  _
Xx(P + AP) = x(P) — AP;’I‘ P, T, F)(prew), (24)

where x stands for any parameter and where quantities
with overbars are evaluated as mean values between
the values at the upper and at the lower level. The
pressure increment AP is adjusted so that the change
in mixing ratios remains between 10™° and § X 107>
and the corresponding time step is less than 10 s.

In the discretization of the rate equations, the terms
involving the time derivatives are all evaluated as

1 [x(P + AP) — x(P)

dx
A(PaTsr)ENZ AP

T+ AT, r+ Ar) + AP, T, Nl(prgw),

][A(P + AP,

(25)

where A(P, T, r)is any function. This numerical scheme
implies that the condensation adjustment step is part
of the iterative solution of the resulting implicit equa-
tion. The iteration stops whenever the new estimate
of the temperature is closer than 0.001 K to the last
estimate. The integration from 1000 to 100 mb takes
600-900 steps with a mean pressure increment AP
~ 0,5 mb. The total simulated duration of the parcel
ascent (or descent) is about 25 min with the vertical
velocity specified by (23).
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For each parcel predictive quantity (potential tem-
peratures or enthalpy), the same semi-implicit inte-
gration scheme of its rate of change equation [(16) and
(22)] is set up in order to predict its new value at the
level P + AP. The value of the ice-liquid potential
temperature changes only under the influence of liquid
water and ice unloading due to its extensive property
(Tripoli and Cotton, 1981). In each case, the values
of the rain, ice, graupel and total mixing ratios are
assumed to be given by the referenced values obtained
during the integration process of the basic equation.
The values of the temperature, the cloud water and
water vapor mixing ratios, the air density and the al-
titude are obtained each time as results of the inversion
of each predictive quantity. Educated guess values of
the above parameters are assumed, except the tem-
perature, which is deduced from the value of the pre-
dictive quantity. A new estimate of the other param-
eters is deduced from the temperature, the saturated
vapor mixing ratio and all the “referenced” values.

Three cases have been considered in the numerical
simulations:

CASE 1. The terminal velocity of rain and graupel
particles is set equal to zero and the total mixing ratio
is constant. In this case, all the predictive quantities
(potential temperatures or enthalpy) happen to stay
constant. This case will tend to overestimate the errors
since the condensate mixing ratio can reach a value
of 0.02 which is seldom reached inside real clouds.

CAasE II. The terminal velocities are functions of the
mixing ratios but the total mixing ratio remains con-
stant. Here terms like Vy, - VT are taken to be identical
in all four integrations. The comparison of this case
to case I will give an indication of the order of mag-
nitude of the last two terms of (1) which have usually
been neglected previously (except for Das, 1969). These
terms-describe the cooling of the air due to the effect
of the downward flux of cooler precipitating particles.
Since the precipitation mixing ratios are too high due
to the absence of fallout mechanisms, the consequences
of these terms will be slightly overestimated.

CASE III. The total mixing ratio decreases due to
the precipitation of rain and graupel particles, which
is modeled by the arbitrary equations

fistr = —r/T
dr, '
7; = —r;,/-r (26)

where 7 = 2000 s is a relaxation time chosen to be
larger than the total time for the parcel rise or descent.
In this case, the error should be underestimated since
no processes of rain accumulation have been consid-
ered and the rain and graupel mixing ratios can be
very small. :
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4. Results of the simulations
a Casel

The potential temperature errors are defined as the
difference between the potential temperatures which
are obtained from the use of the three predictive quan-
tities (8, 8,, H,) and the potential temperature of the
parcel obtained as the result of the integration of the
basic equation (1). These errors are shown, for case I,
in Fig. la by the curves labeled 1-3 as functions of
the parcel pressure during the rise of the parcel. The
value of each mixing ratio is shown in Fig. 1b, as a
function of the pressure, by the vertical distance be-
tween the two curves enclosing each domain during
the rise of the parcel. Figs. 2a and 2b show similar
results for a descending parcel. The lowest curves in
Figs. 1b and 2b correspond to the water vapor mixing
ratio and the dotted curve corresponds to their satu-
rated values. During the rise of the parcel, these two
curves are identical (Fig. 1b) while, during the descent
(Fig. 2b), the relative humidity is indicated by the ratio
of the distances between each curve and the axis, and
can be as low as 15% for any pressure greater than
800 mb in case 1. The total mixing ratio, which is
indicated by the vertical distance between the highest
curve in Figs. 1b and 2b and the axis, can be seen to
stay constant in case 1.

As shown in Fig. 1b during the parcel rise, the small
droplets appear as soon as the parcel becomes saturated
at about 850 mb, are changed by autoconversion into
precipitating drops for pressures below 650 mb, and
are completely frozen into small crystals for pressures
below 180 mb. Precipitating drops grow by accretion
of small droplets and by self-coalescence and start to
freeze for pressures below 300 mb. Ice crystals, which
originate/ from the freezing of small droplets, are ac-
creted by raindrops and by. precipitating graupel.

As shown in Fig. 2b, during the parcel descent, the

PRESSURE ( MB )
250. 400. 550. 700. 850.
- T T T T T

1000.

(

-4. -2.

THETA ERRORS
-6.

| | | !

FIG. 1a. Potential temperature errors (K) for 1, the ice-liquid
potential temperature, 2, the wet equivalent potential temperature,
3, the wet equivalent enthalpy, during parcel rise (from right to left)
in case I as functions of the total pressure.

\
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FIG. 1b. Mixing ratios versus pressure during parcel rise
(from right to left) in case 1.

precipitating graupel continue to accrete the small ice
crystals and both species start to sublimate in the un-
saturated air. For pressure higher than 320 mb, ice
crystals followed by precipitating graupel start melting
into small droplets which evaporate instantaneously
and into precipitating drops which evaporate slowly
in the unsaturated air. The water vapor mixing ratio
increases up to .0.0085 at 1000 mb and precipitating
drops reach the ground.

During the first part of the parcel rise shown in Figs.
la and b, the parcel temperature deduced from each
conserved quantity is remarkably close to the “refer-
ence value” until the parcel reaches 300 mb (Fig. 1a)
when ice particles appear (Fig. 1b). The potential tem-

perature error levels off at a value of about 1 K for.

the temperature deduced from the wet equivalent po-
tential temperature or the wet equivalent enthalpy, but
reaches —7 K for the ice-liquid potential temperature.

During the parcel descent (Figs. 2a and b), the tem-
perature errors for two predictive quantities increase
below 300 mb due to the evaporation of raindrops in
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FI1G. 2a. As in Fig. 1a except during parcel descent
(from left to right) in case I.
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FIG. 2b. As in Fig. 1b except during parcel descent
(from left to right) in case L.

the subsaturated air. However, the potential temper-
ature deduced from the wet equivalent enthalpy be-
comes closer to the reference potential temperature
and the errors become as low as 0.12 K, showing that
this quantity can take into account the thermodynamic
effects due to all the nonreversible phase changes. The
wet equivalent and the ice-liquid potential tempera-
tures can lead to errors of several degrees in the de-
termination of the parcel potential temperature.

The numerical errors created by the integration of
(1), (16) and (22) accumulate during the ascent and
the descent. However, these numerical errors can be
estimated by the wet equivalent potential errors and
the wet equivalent enthalpy errors below 300 mb during
the parcel rise since, in this case, the approximations
are exact. Fig. 1a shows that these numerical errors
are below 0.05 K between 1000 and 300 mb.

b. Case Il

The curves corresponding to the parcel rise (not
shown) are almost identical to those of Figs. 1a and
1b, since precipitating particles appear only above 600
mb. Figure 3a concerns the parcel descent and shows
that, beside the curve relative to the ice-liquid potential
temperature (curve 1) which rises up to 5 K, the po-
tential temperature errors are almost identical to those
of case I. Indeed, the rate of change equations for the
wet equivalent potential temperature and for the wet
equivalent enthalpy includes the cooling effect due to
precipitation while, in this case, the ice-liquid potential
temperature does not change since the total mixing
ratio is kept constant. The mixing ratios are shown in
Fig. 3b for the parcel descent. These curves indicate
that the humidity is larger in case II than in case I for
any pressure larger than 300 mb. This fact is due to
the cooling of the air induced by the downward flux
of precipitating particles (cooler particles) through the
parcel.
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c. Case Il

The curves of the potential temperature errors as
functions of pressure (not shown for the parcel rise
and shown in Fig. 4a for the parcel descent) are almost
identical to the corresponding curves for case I, even
if the magnitude of the errors is slightly less in this
case. The total mixing ratio decreases from 20 g kg™!
to 16.8 g kg™! during the parcel rise and, as shown in
Fig. 4b, decreases further to 11.4 g kg~! during the
parcel descent. Due to the inclusion of a precipitation
process, the mixing ratio for precipitating drops and
ice particles are smaller in this case than in case I or
II. This implies that the potential temperature errors
which are mainly caused by the nonreversible evap-
oration process of ice and rain particles and by the
precipitation process are less important than in case
Iorll

For the choice of a predictive quantity to be used
in the simulation of atmospheric flows, two aspects
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FIG. 3b. As in Fig. 1b except during parcel descent
(from left to right) in case II.
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6.

1000.

must be considered. The first is the errors of the sim-
ulation and has been treated above. The second aspect
is concerned with the coupling between the thermo-
dynamical, microphysical and kinematical (continuity)
equations. This coupling is the weakest when the
change in the predictive quantity is small; that is, when
its new value is close to its old value during the in-
tegration. .

The changes in the predictive quantities during the
parcel descent are shown in Fig. 5 as functions of the
pressure. The change in the wet equivalent enthalpy
is expressed in kelvins obtained by dividing it by the
specific heat C,,; of dry air at constant pressure. The
largest values of the change in the predictive quantities
are approximately 25.4 K, —0.7 K and 16 K for the
ice-liquid potential temperature, for the wet equivalent
potential temperature and for the wet equivalent en-
thalpy, respectively. Curve 2 in Fig. 5 suggests that, in
this case, with very small errors, the wet equivalent
potential temperature can be assumed to be constant
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FIG. 5. Variation of 1, ice-liquid potential temperature (K), 2,
wet equivalent potential temperature (K), 3, wet equivalent enthalpy
(X) (divided by C,,), as functions of parcel pressure (mb) during
parcel descent in case III (from left to right).

following the parcel path. In all circumstances, the
variations of WEPT are small and are due only to
precipitating particles.

5. Discussion and conclusions

This work emphasizes the thermodynamical con-
sequences of such nonreversible phenomena as freezing
of supercooled water, evaporation in undersaturated
air and precipitation processes. A basic thermody-
namical equation is given which involves all the terms
considered both by Das (1969) and Tripoli and Cotton
(1981). This equation relates the rates of change of
temperature, pressure and mixing ratios under all cir-
cumstances, even when nonreversible phase changes
are involved and equilibrium is not assumed.

Two predictive quantities (WEPT, WEE) are pro-
posed which are analogous to the ice-liquid potential
temperature proposed by Tripoli and Cotton for use
in numerical models. Any of these quantities, together
with the total mixing ratio, can serve as prognostic
variables in numerical models instead of the temper-
ature, the total mixing ratio and the water vapor (or
droplet) mixing ratio. The use of these predictive
quantities avoids the need of a saturation adjustment
step and can decrease by one the number of prognostic
variables. The actual water vapor or the droplet mixing
ratio are simply diagnosed from the new values of the
predictive quantity and of the total mixing ratio. All
the predictive quantities considered in this work are
constant when precipitating particles are absent and
their rate of change equations are given whenever pre-
cipitating particles appear.

Simple computation with Lagrangian parcel models
suggests that the errors are larger when the ice-liquid
potential temperature is used than when the wet equiv-
alent potential temperature is used. For both potential
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temperatures, the errors are larger (up to 5 K) when
supercooled particles freeze and when precipitating
drops or precipitating ice particles evaporate in non-
saturated air. The important advantages of the wet
equivalent potential temperature lie in the fact that it
can be used in nonhydrostatic flows and its value
changes only in the presence of precipitating particles.
The largest errors arise when evaporation of particles
occurs in nonsaturated air. However, the errors are
smaller than when the ice-liquid potential temperature
is used. The main drawback of this potential temper-
ature comes from the rather lengthy computational
scheme associated with the inversion of its value.

The use of the wet equivalent enthalpy also leads
to very small errors, less than 1 K, and occurs when
supercooled particles freeze. The fact that the rate of
change of the pressure appears in the equation for the
rate of change of the wet equivalent enthalpy is not a
serious drawback for using this predictive variable
since, as discussed by Tripoli and Cotton (1981), the
coupling between the thermodynamical equation and
the continuity equation or the pressure tendency equa-
tion exists for any predictive quantity. Furthermore,
a nonhydrostatic pressure perturbation at the ground
of as much as 10 mb leads to a change in the wet
equivalent enthalpy of less than 1 X which is small
compared to the change induced by the precipitation
process as shown in Fig. 5. The prediction of tem-
perature, therefore, is not very sensitive to the non-
hydrostatic pressure term. It should be accurate enough
to estimate the pressure to be used in (22) without
taking into account the influence of the unknown
change in temperature. The new pressure can then be
calculated by using this predicted value of the tem-
perature. Since the wet equivalent enthalpy is mostly
quadratic in the independent variables, its inversion
can be done on a digital computer with competitive
speed. Therefore, the wet equivalent enthalpy should
be very useful in the numerical simulation of atmo-
spheric flows by allowing the modeler to take a more
complete account of the thermodynamical and dy-
namical effects of the water species.
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APPENDIX
List of Symbols

Ay, Ay affinity of vaporization and of melting

(kg™
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G, C, specific heats at constant pressure ofice, w vertical component of the velocity vector
Cpis Cpo liquid water, dry air and water vapor (ms™h)
JK'kg™ : z vertical coordinate (m)
Cp mean specific heat at constant pressure of vy ratio of the specific heats of dry air
cloudy air J K~! kg™!) € € ratios of the molecular weight and of the
d suffix for dry air " specific heat of water vapor to those of
¢ saturated partial pressure of water vapor over dry air
a plane ice surface (mb) Pds Pis Pls density of dry air, ice particles, liquid
e,, € partial pressure of water vapor and its sat- Pvs PT water, water vapor and total density
urated value (mb) (kg m™3)
g acceleration due to gravity (m s~2) 6, 0,9, dry air, ice liquid and wet equivalent
h;, h,, h; enthalpy of ice, of water vapor and of liquid potential temperature (K)
water (J kg™") X any variable
Hi1 wet equivalent enthalpy (J kg™) T relaxation time (s).
i suffix for ice particles
/ suffix for liquid water REFERENCES
L; latent heat of melting (J kg_l) Betts, A. K., 1973: Non-precipitating cumulus convection and its
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tion in: undersaturated air and to the Brook, R. R., 1978: The influence of water vapor fluctuations on
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: : Das, P., 1969: The thermodynamic equation in cumulus dynamics.
My, M, molecular weight of dry air and water vapor 7. Atmos. Sci,, 26, 399-407.
. (kg) . . Dutton, J. A., 1976: The Ceaseless Wind. McGraw Hill, 579 pp.
PP total pressure and partial pressure of dry air  Iribarne, J. V., and W. L. Godson, 1973: Atmospheric Thermody-
(mb) namics. Geophys. Astrophys. Monogr., No. 6, Reidel, 222 pp.
; — ) Lipps, F. B, and R. S. Hemler, 1980: Another look at the ther-
n
9e specific conde sat ° contept [=(o: + p)/p1] modynamic equation for deep convection. Mon. Wea. Rev.,
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