Climate change impact and adaptation for wheat protein - Université Clermont Auvergne Accéder directement au contenu
Article Dans Une Revue Global Change Biology Année : 2019

Climate change impact and adaptation for wheat protein

Senthold Asseng (1) , Pierre Martres (2) , Andrea Maiorano (2, 3) , Reimund P. Rötter (4, 5) , Garry J. O'Leary (6) , Glenn J. Fitzgerald (7, 8) , Christine Girousse (9) , Rosella Motzo (10) , M. Ali Babar (11) , Matthew P. Reynolds (12) , Ahmed M. S. Kheir (13) , Peter J. Thorburn (14) , Katharina Waha (14) , Alexander Clark Ruane (15) , Pramod K. Aggarwal (16) , Mukhtar Ahmed (17, 18) , Juraj Balkovič (19, 20) , Bruno Basso (21, 22) , Christian Biernath (23) , Marco Bindi (24) , Davide Cammarano (25) , Andrew J. Challinor (26, 27) , Giacomo de Sanctis (28) , Benjamin Dumont (29) , Ehsan Eyshi Rezaei (30, 31) , Elias Fereres (32) , Roberto Ferrise (24) , Margarita Garcia-Vila (32) , Sebastian Gayler (33) , Yujing Gao (1) , Heidi Horan (14) , Gerrit Hoogenboom (1, 34) , R. César Izaurralde (35, 36) , Mohamed Jabloun (37) , D. Jones Curtis (35) , Belay T. Kassie (1) , Kurt-Christian Kersebaum (38) , Christian Klein (39) , Ann-Kristin Koehler (26) , Bing Liu (40, 1) , Sara Minoli (41) , Manuel Montesino San Martin (42) , Christoph Muller (41) , Soora Naresh Kumar (43) , Claas Nendel (38) , Jørgen Eivind Olesen (37) , Taru Palosuo (44) , John Porter (45, 42, 46) , Eckart Priesack (39) , Dominique Ripoche (47) , Mikhail A. Semenov (48) , Claudio Stöckle (17) , Pierre Stratonovitch (48) , Thilo Streck (33) , Iwan Supit (49) , Fulu Tao (50, 44) , Marijn van Der Velde (51) , Daniel Wallach (52) , Enli Wang (53) , Heidi Webber (30, 38) , Joost Wolf (54) , Liujun Xiao (40) , Zhao Zhang (55) , Zhigan Zhao (56, 53) , Yan Zhuo (40) , Frank Ewert (30, 38)
1 UF|ABE - Department of Agricultural and Biological Engineering [Gainesville]
2 LEPSE - Écophysiologie des Plantes sous Stress environnementaux
3 European Food Safety Authority = Autorité européenne de sécurité des aliments
4 Tropical Plant Production and Agricultural Systems Modelling (TROPAGS)
5 CBL - Centre for Biodiversity and Sustainable Land-use [University of Göttingen]
6 Department of Economic Drt and Resources, Grains Innovation Park
7 Department of Economic Development, Jobs, Transport and Resources
8 Faculty of Veterinary and Agricultural Science [Melbourne]
9 GDEC - Génétique Diversité et Ecophysiologie des Céréales
10 Department of Agricultural Sciences
11 World Food Crops Breeding, Department of Agronomy, IFAS
12 CIMMYT - International Maize and Wheat Improvement Center
13 Soils, Water and Environment Research Institute
14 Agriculture and Food
15 GISS - NASA Goddard Institute for Space Studies
16 CIMMYT - International Maize and Wheat Improvement Centre [Inde]
17 Biological Systems Engineering
18 Department of Agronomy
19 Ecosystem Services and Management Program
20 Department of Soil Science, Faculty of Natural Sciences
21 KBS - W. K. Kellogg Biological Station
22 Department of Earth and Environmental Sciences [Ann Arbor]
23 Institute of Biochemical Plant Pathology, Research Center for Environmental Health
24 Department of Agri‐food Production and Environmental Sciences (DISPAA)
25 The James Hutton Institute
26 ICAS - Institute for Climate and Atmospheric Science [Leeds]
27 Collaborative Research Program from CGIAR and Future Earth on Climate Change, Agriculture and Food Security (CCAFS)
28 GMO Unit, European Food Safety Authority
29 Department Terra & AgroBioChem, Gembloux Agro‐Bio Tech
30 INRES - Institute of Crop Science and Resource Conservation [Bonn]
31 Department of Crop Sciences
32 IAS CSIC - Instituto de Agricultura Sostenible - Institute for Sustainable Agriculture
33 Institute of Soil Science and Land Evaluation
34 UF|IFAS - Food Systems Institute [Gainesville]
35 Department of Geographical Sciences, College Park
36 Texas A and M AgriLife Research
37 Department of Agroecology
38 ZALF - Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research
39 Institute of Biochemical Plant Pathology [Neuherberg]
40 National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production,
41 Member of the Leibniz Association
42 Department of Plant and Environmental Sciences [Copenhagen]
43 Centre for Environment Science and Climate Resilient Agriculture [New Delhi]
44 LUKE - Natural Resources Institute Finland
45 UMR SYSTEM - Fonctionnement et conduite des systèmes de culture tropicaux et méditerranéens
46 University of Lincoln
47 AGROCLIM - Agroclim
48 Rothamsted Research
49 Water & Food and Water Systems & Global Change Group
50 IGSNRR - Institute of geographical sciences and natural resources research [CAS]
51 IPTS - Joint Research Centre
52 AGIR - AGroécologie, Innovations, teRritoires
53 CSIRO - CSIRO Agriculture and Food
54 Plant Production Systems
55 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science
56 Department of Agronomy and Biotechnology
Davide Cammarano
  • Fonction : Auteur
  • PersonId : 1071162
Heidi Horan
  • Fonction : Auteur
Dominique Ripoche
  • Fonction : Auteur
  • PersonId : 1203876
Mikhail A. Semenov
Marijn van Der Velde
Daniel Wallach
  • Fonction : Auteur
  • PersonId : 1204429

Résumé

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.

Dates et versions

hal-01974610 , version 1 (08-01-2019)

Identifiants

Citer

Senthold Asseng, Pierre Martres, Andrea Maiorano, Reimund P. Rötter, Garry J. O'Leary, et al.. Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, ⟨10.1111/gcb.14481⟩. ⟨hal-01974610⟩
304 Consultations
64 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More