
HAL Id: hal-01948606
https://uca.hal.science/hal-01948606v1

Submitted on 4 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supply chain optimisation with both production and
transportation integration: multiple vehicles for a single

perishable product
Philippe Lacomme, Aziz Moukrim, Alain Quilliot, Marina Vinot

To cite this version:
Philippe Lacomme, Aziz Moukrim, Alain Quilliot, Marina Vinot. Supply chain optimisation with both
production and transportation integration: multiple vehicles for a single perishable product. Interna-
tional Journal of Production Research, 2018, 56 (12), pp.4313-4336. �10.1080/00207543.2018.1431416�.
�hal-01948606�

https://uca.hal.science/hal-01948606v1
https://hal.archives-ouvertes.fr

Submitted to IJPR

 1

Supply Chain Optimization with both Production and Transportation

Integration: Multiple Vehicles for a Single Perishable Product

Philippe Lacommea, Aziz Moukrimb, Alain Quilliota, Marina Vinota1

a Laboratoire d'Informatique (LIMOS, UMR CNRS 6158), Campus des Cézeaux,

63177 Aubière Cedex, France.

b Sorbonne Universités, Université de Technologie de Compiègne, (Heudiasyc UMR CNRS 7253),

CS 60 319, 60203 Compiègne France.

 This paper deals with an extension of the integrated production and transportation

scheduling problem (PTSP) by considering multiple vehicles (PTSPm) for optimisation of

supply chains. The problem reflects a real concern for industry since production and

transportation subproblems are commonly addressed independently or sequentially, which

leads to sub-optimal solutions. The problem includes specific capacity constraints, the short

lifespan of products and the special case of the single vehicle that has already been studied in

the literature. A greedy randomised adaptive search procedure (GRASP) with an evolutionary

local search (ELS) is proposed to solve the instances with a single vehicle as a special case.

The method has been proven to be more effective than those published and provides shorter

computational times with new best solutions for the single vehicle case. A new set of instances

with multiple vehicles is introduced to favour equitable future research. Our study extends

previous research using an indirect resolution approach and provides an algorithm to solve a

wide range of one-machine scheduling problems with the proper coordination of single or

multiple vehicles.

Keywords: supply chain coordination; transportation; scheduling; vehicle routing

problem; integration.

1 Introduction and literature review

1.1 Introduction to integrated problems

The Production and Transportation Scheduling Problem (PTSP) modelled a supply chain

problem with production and transportation where product perishability must be addressed

(which is common in the food, chemical and pharmaceutical industries). The PTSP is a problem

where both scheduling and routing must be jointly solved to have a proper coordination between

the production on a single production facility and the transportation, taking the product lifespan

into consideration. In this problem, once a lot of products is produced, it must be directly

transported to various customer sites within its limited lifespan. A solution to a PTSP is

composed of production operations (starting times have to be computed) and transportation

operations that define sub-trips (terminology used in the routing community) from the depot

(production facility) to a set of customers.

Supply chain management is a cross-functional approach that includes managing the

movement of raw materials into an organisation, the processing of materials into finished

products (production), and the movement of finished products out of the organisation and

toward the end consumers (transport). All these functions (production, storage, transportation)

can be seen as independent subproblems or can be integrated under one plan in supply chains.

In the literature, a tremendous amount of research considers the production and transportation

subproblems successively, and in the vast majority of companies, the scheduling problem is

1 Corresponding author. e-mail addresses: placomme@isima.fr (P. Lacomme); aziz.moukrim@utc.fr (A. Moukrim);

alain.quilliot@isima.fr (A. Quilliot); marina.vinot@isima.fr (M. Vinot)

Submitted to IJPR

 2

solved first and the routing problem is then addressed, although this kind of approach does not

lead to an optimal solution.

Production and transportation stages at the planning level are often linked by intermediate

inventory stages whose management strongly depends on the proper coordination between

production and transportation as an integrated resolution. Note that integrated production and

distribution has a significant impact on customer service, favouring product delivery in due

time. The connection between the production (processing stations) and transportation is a highly

desirable goal as stressed in numerous publications, including Belo-Filho et al. (2015), with a

problem with several production facilities and perishable products.

The integration of production and transportation can be relevant when the products are

perishable. The product perishability is related to an “expiration date”, which commonly

appears on product labels to indicate the date from which the quality of the product is no longer

guaranteed by the manufacturer (Rivera and Lallmahomed, 2015). Roscoe and Baker (2014)

underline that perishable goods are quite specific and influence the packing, the storage and the

transportation mode. The management of perishable products is critical for integrating

production and transportation scheduling in a coordinated manner.

As stressed by Chen (2010), the integrated production and transportation models at a detailed

scheduling level are fairly recent and the majority of models attempt to jointly optimise job-by-

job production and transportation by considering the customer service level at the individual

job level. Integrated production and routing problems are receiving more and more attention,

and several surveys are available, including Moons (2017), Chen (2010) and Saramiento et al.

(1999). Let us note that integrated production and transportation problems fall into two

categories of problems according to Kuhn and Liske (2017): (a) a Production Distribution

Problem; or (b) a Sourcing Production Problem. A large number of publications consider the

Production Distribution Problem, i.e., problems where the production is completed first and the

products are distributed afterwards.

Chen (2010) provides a survey on integrated production and outbound distribution

scheduling problems and classifies these existing problems into several different classes. These

problems often have different names: Integrated Production and Outbound Distribution

Scheduling (IPODS), Integrated Production and Distribution Problem (IPDP) or, in our case,

Production and Transportation Scheduling Problem (PTSP). In these problems, a solution is

characterised by a production schedule that plans the date and the location where each demand

is processed, and a delivery schedule that satisfies the orders in each shipment, the number of

vehicles and the delivery date. Problems can vary depending on the number of production

facilities with machine configuration (single-machine, parallel-machine, flow shop, etc.), the

number of customers, and customers’ characteristics, including delivery time windows and

deadlines. The number of available vehicles and their capacities may be limited or not. Chen

(2010) classifies existing IPODS problems into five classes considering individual and

immediate delivery, batch delivery to a single customer by direct shipping, batch delivery to

multiple customers by direct shipping, batch delivery to multiple customers by routing, and

fixed delivery departure dates.

1.2 Intregrated problem with one production facility and one perishable product

Perishability naturally occurs in the food, chemical and pharmaceutical industries and its

management creates several complications in the scheduling of production and transportation.

Special efforts are required to reduce the waste and cost of the storage and transportation of

perishable products. Chen (2010) mentions studies on the perishable products with time-

sensitive constraints (Armstrong et al., 2008; Devapriya et al., 2006; Geismar et al., 2008). The

problems studied in these articles belong to the same class: batch delivery to multiple customers

with routing. The time-sensitive constraints in these problems are due to industrial chemical

Submitted to IJPR

 3

compounds that must be delivered within a certain time limit once produced. In the survey of

Moons (2017) on integrated production scheduling and vehicle routing problems, two studies

with one perishable product and one production facility are mentionned (Karaoğlan et al., 2017;

Devapriya et al., 2017).

Armstrong et al. (2008) study the production and transportation problem with a single

vehicle and a single production facility. The order in which customers may receive deliveries

is fixed. Each customer requests a delivery quantity with a time window for receiving it. The

lifespan of the product begins as soon as the production of a customer’s order is completed. The

problem then turns into a routing problem, minimising the number of non-serviced customers

for a subset of customers.

Devapriya et al. (2006) focus on a problem with one production facility and a large fleet size.

The lifespan of the perishable products immediately begins when the last order of a batch has

been completed. The delivery of a batch order therefore begins as soon as the production is

achieved. The objective is to minimise the total transportation cost, i.e., the cost of delivery

time and the number of vehicles required to satisfy all the demands.

Table 1. Integrated problem with one production facility and one perishable product.
 Production Transportation Objective

 Vehicles Extra constrant

N
u
m
b
e
r

o
f

s
a
t
i
s
f
i
e
d

d
e
m
a
n
s

O
n
e

p
r
o
d
u
c
t
i
o
n

f
a
c
i
l
i
t
y

B
a
t
c
h

p
r
o
d
u
c
t
i
o
n

O
n
e

p
r
o
d
u
c
t

P
r
o
d
u
c
t
i
o
n

t
i
m
e

 A

s
i
n
g
l
e

v
e
h
i
c
l
e

H
o
m
o
g
e
n
e
o
u
s

f
l
e
e
t

U
n
l
i
m
i
t
e
d

n
u
m
b
e
r

L
i
m
i
t
e
d

n
u
m
b
e
r

T
r
a
n
s
p
o
r
t
a
t
i
o
n

t
i
m
e

S
e
v
e
r
a
l

t
r
i
p
s

F
i
x
e
d

c
u
s
t
o
m
e
r

o
r
d
e
r

T
i
m
e

w
i
n
d
o
w
s

D
e
l
i
v
e
r
y

d
u
e

d
a
t
e

P
r
o
d
u
i
t
s

p
é
r
i
s
s
a
b
l
e
s

 M
a
k
e
s
p
a
n

C
o
s
t

Geismar et al. (2008) ● ● ● ● ● ● ● ● ●

Armstrong et al. (2008) ● ● ● ● ● ● ● ● ● ● ●

Karaoğlan and Kesen (2017) ● ● ● ● ● ● ● ● ●

Devapriya (2006) ● ● ● ● ● ● ● ● ●

Devapriya et al. (2017) ● ● ● ● ● ● ● ● ● ●

Geismar et al. (2008) address a problem (PTSP) with a network of multiple customers, a

single facility with a constant production rate 𝑟 > 0, and a single vehicle with capacity 𝑄. The

objective is to minimise the time required to serve all customers, commonly referred to as the

makespan. Furthermore, due to a product with a lifespan 𝐵, waiting time must be addressed and

the problem can be considered as a two-machine flow shop with maximal time lags. Let us note

that in Geismar et al. (2008), the problem focuses on a situation where the lifespan is defined

by an expiration delay between the end of production and customer delivery. To jointly solve

the scheduling and routing problem, the authors introduce a genetic and a memetic algorithm

with the algorithm of Gilmore and Gomory (1964) and several lower bounds. The problem has

been proved to be NP-hard in the strong sense.

The problem described by Geismar et al. (2008) was recently solved by Karaoğlan et al.

(2017) using a branch-and-cut (B&C) algorithm. The algorithm uses several valid inequalities

taken from the existing literature, and a local search based on a simulated annealing approach

is used to improve upper bounds. Numerical experiments are achieved on the same instances

as Geismar et al. (2008) and prove that the B&C is strongly competitive. The objective function

consists in the minimisation of the makespan (Table 1).

Recently, Devapriya et al. (2017) addressed an extension (referred to as IPDSP) of the PTSP

introduced by Geismar et al. (2008) where the fleet size is a decision variable.

Submitted to IJPR

 4

1.3 Solution representation for scheduling and routing problems

Geismar et al. (2008) base their approach on an indirect representation of the solutions with

giant trips. The difficulty of integration is addressed with the dedicated (Gilmore and Gomory,

1964) algorithm to solve the no-wait flow shop problem and obtain an optimal order of sub-

trips. The final solution is then deduced by relaxing the no-wait constraint, keeping the

constraints on product perishability. Let us note that for the PTSP addressed by Geismar et al.

(2008), the solution is composed of one trip with several ordered sub-trips with increasing

starting times since there is no assignment problem of vehicles to be solved.

The PTSP with the constraint of perishable products can be modelled as a permutation flow

shop scheduling problem on two machines with maximal time lags. Fondrevelle et al. (2004)

prove that this problem is strongly NP-hard even when all the maximal time lags have the same

positive value. Nevertheless, note that this problem is a mix between the classical and the no-

wait flow shop scheduling problem that can be polynomially solved with the algorithm of

Johnson (1954) and with the algorithm of Gilmore and Gomory (1964), respectively. The first

research on the two-machine flow shop problem was proposed by Johnson (1954) who defined

rules to obtain the optimal schedule. It is commonly accepted that most of the scheduling

problem-solving approaches take advantage of a modelling based on the disjunctive graph of

Roy et al. (1964). Numerous authors have introduced approaches for graph generation and

search space exploration. Bierwirth’s (1995) proposal for the job shop remains within the global

trend of indirect representation schemes and proves that it is possible to express the machine

selections as a vector by repetitions that define a topological order of nodes. Similar remarks

hold for the routing problem that has received a considerable amount of attention in recent

years. The idea of splitting a giant trip was introduced by Beasley (1983) and was first included

in a global framework for the routing problem by Lacomme et al. (2001). The total number of

methods that take advantage of such an approach has strongly increased in recent years (as

mentioned in the state of the art of Prins et al. (2014)). The second key feature used in routing

approaches lies in the local search procedure, which is commonly based on a swap within a trip,

a 2-Opt within a trip, a swap between two trips and a 2-Opt between two trips (see Lacomme

et al. (2001) and Prins (2004)).

The remainder of this paper is structured as follows. The following section introduces the

problem of interest with multiple vehicles. Section 3 presents a GRASP×ELS framework

designed to address the key features for an integrated resolution. Section 4 provides the

computational evaluation of the problem by considering a single vehicle. Section 5 illustrates

the computational evaluation of the problem with multiple vehicles. The last section provides

some conclusions and avenues for further research.

2 Problem definition for the PTSPm

2.1 Definition

The PTSPm (PTSP with multiple vehicles) is an extension of Geismar et al.’s (2008) proposal

by taking not just a single but multiple vehicles into consideration and that can be formally

defined by considering 𝑛 customers and 𝑁 vehicles:

𝐸 set of customers

0 production facility located in (𝑥, 𝑦) = (0, 0)

𝑟 production rate 𝑟 ∈ {1, 2, 3}

𝐵 lifespan of the product

𝑉 set of available vehicles, 𝑘 ∈ {1, … , 𝑁}

𝑄 capacity of the vehicles

𝑞𝑖 demand of customer 𝑖, 𝑖 ∈ {1, … , 𝑛}

(𝑥𝑖, 𝑦𝑖) coordinates of location of customer 𝑖, 𝑖 ∈ {1, … , 𝑛}

Submitted to IJPR

 5

𝜏𝑖,𝑗 transportation time from customer 𝑖 to customer 𝑗; this matrix satisfies the triangle

inequality

To solve this problem, three subproblems must be jointly solved: the assignment, the routing

and the scheduling. When the assignment and the routing problems are solved, the residual

problem can be modelled as a two-stage hybrid flow shop with maximal time lags where the

machine in the first stage is the single production facility and where each vehicle defines a

machine in the second stage. The Johnson (1954) algorithm and the Gilmore and Gomory

(1964) algorithm can no longer be used to solve the scheduling part of the PTSPm.

A solution could be composed by a set of jobs 𝐽, with 𝑐𝑎𝑟𝑑(𝐽) = 𝑛𝑗 with 𝑛𝑗 ≤ 𝑛. A job 𝑗

includes a set of customers to be served and is composed of two operations 𝑂𝑗1 and 𝑂𝑗2
𝑘 .

Operation 𝑂𝑗1 is a production operation assigned to the production facility, modelling the

production of the demands of the customers in the job 𝑗. The operation 𝑂𝑗2
𝑘 is a transportation

operation assigned to the vehicle 𝑘, modelling the sub-trip that makes it possible to deliver the

demands of the customers in job 𝑗 from the production facility, also referred to as the depot.

The trip of vehicle 𝑘 is defined by a sequence of all the transport operations (sub-trips) assigned

to vehicle 𝑘. The following constraints must hold:

 each transportation operation begins and ends at the production facility, also referred to as

the depot or depot node, depending on the routing terminology;

 the order of the production operations and of the transportation operations should be identical

for a given vehicle between two jobs;

 a vehicle achieves at most one trip;

 all customers of a sub-trip 𝑂𝑖2
𝑘 must be served within 𝐵 time units after the end of the

production operation 𝑂𝑖1;

 the total demands in a sub-trip 𝑂𝑖2
𝑘

 cannot exceed the vehicle capacity ∑ 𝑞𝑗𝑗∈𝑂𝑖2
𝑘 ≤ 𝑄;

 deliveries must not be split (each customer must be delivered only once).

The following notations are used to caracterise a solution:

𝐶𝑗 set of customers included in job 𝑗

𝑂𝑗1 production operation of job 𝑗

𝑂𝑗2
𝑘 transportation operation of job 𝑗 assigned to vehicle 𝑘

𝑝𝑗1
 duration of the production operation of job 𝑗

𝑝𝑗2
 duration of the transportation operation of job 𝑗

𝑝𝑗2
′

 duration of the transportation operation of job 𝑗 without the empty transport to the depot

𝑠𝑗1 starting time of the production operation of job 𝑗

𝑠𝑗2 starting time of the transportation operation of job 𝑗

𝑓𝑗1 finishing time of the production operation of job 𝑗

𝑓𝑗2 finishing time of the transportation operation of job 𝑗

Figure 1 represents a solution of a PTSPm with two vehicles and five customers. In this

solution, the customers are divided into three groups to define three jobs:

 the first job (with the operations 𝑂11 and 𝑂12
1) includes customers 1 and 2;

 the second job (with the operations 𝑂21 and 𝑂22
2) contains customer 3;

 the third job (with the operations 𝑂31 and 𝑂32
1) includes customers 4 and 5;

The trip of vehicle 1 is composed of two transportation operations (𝑂12
1 and 𝑂32

1) and the trip

of vehicle 2 is composed of one transportation operation 𝑂22
2 . The solution presented on the

Gantt chart uses the following values for the demands of the customers, 𝑞1 = 1, 𝑞2 = 1, 𝑞3 =
6, 𝑞4 = 1, 𝑞5 = 3, and the transportation times are equal to 𝜏0,1 = 𝜏2,0 = 𝜏0,4 = 𝜏4,5 = 3,

Submitted to IJPR

 6

𝜏1,2 = 𝜏0,3 = 2 and 𝜏5,0 = 1. For the first job, the duration of the production operation 𝑝1 = 2

time units since the production rate 𝑟 = 1 and 𝑞1 = 𝑞2 = 1, and the duration of the

transportation operation 𝑡1 = 8 time units since 𝜏0,1 + 𝜏1,2 + 𝜏2,0 = 8. The lifespan of the

product is repected: 𝑓𝑗2 − 𝑓11 − 𝜏2,0 = 10 − 2 − 3 = 5 ≤ 𝐵 = 7.

Let us note that τx,y in this problem denotes a transportation time between customer x and

customer y that can be precomputed by considering either the minimal distance traveled by the

vehicle between customers or the minimal time necessary to travel between two customers that

are equal since the speed factor for the vehicles is equal to one. The jobs have to be defined and

ordered in order to minimise the makespan 𝐶𝑚𝑎𝑥, i.e., the arrival time of the last vehicle at the

depot.

p11 = (q1 + q2)/r

p12 = τ0,1 + τ1,2 + τ2,0

p21 = q3/r

p22 = τ0,3 + τ3,0

p31 = (q4 + q5)/r

p32 = τ0,4 + τ4,5 + τ5,0

Numerical example with:

Q = 10, B = 7 and r = 1

1

2

3

4

5

0

q1

q2
q4

q5

τ0,1

τ2,0

τ1,2
τ0,4

τ4,5

τ3,0

τ5,0

τ0,3

Delivey

Delivery

Delivery
Delivery

Delivery

Vehicle 1 Vehicle 1

Vehicle 2

Pickup

Pickup
Pickup

O11 O31

0 2 8 10 12 Cmax = 19

O21

O12 O32

O22

Depot

Vehicle 1

Vehicle 2

1 1

2

q3

Figure 1. Example of one PTSPm solution with five customers and two vehicles.

2.2 Linear formulation of the PTSPm

The combined production scheduling and vehicle routing problem is formulated as a mixed

integer linear programming model based on five binary variables (𝑦𝑏𝑖
 , ℎ𝑏

 , 𝑥𝑖𝑗
𝑏 , 𝑧𝑏𝑐

 , 𝑎𝑏𝑘
) and

seven integer variables (𝑠𝑏1, 𝑠𝑏2,𝑝𝑏1, 𝑝𝑏2, 𝑝𝑏2
′ , 𝑞𝑖

−, 𝐶𝑚𝑎𝑥). The binary decision variables are

related to the disjunctions between operations and the integer variables are related to the starting

and finishing times or duration of the operations.

Notations for the binary variables:

𝑦𝑏𝑖
 = {

1
0

 if customer 𝑖 is in job 𝑏

otherwise
𝑖 ∈ 𝐸

𝑏 ∈ 𝐽

ℎ𝑏
 = {

1
0

 if job 𝑏 is composed of at least one customer

otherwise
𝑏 ∈ 𝐽

𝑥𝑖𝑗
𝑏 = {

1
0

 if customer 𝑖 is serviced immediately before customer 𝑗 in job 𝑏

otherwise
(𝑖, 𝑗) ∈ 𝐸2

𝑏 ∈ 𝐽

𝑧𝑏𝑐
 = {

1
0

 if job 𝑏 is scheduled before job c

otherwise
(𝑏, 𝑐) ∈ 𝐽2

𝑎𝑏𝑘
 = {

1
0

 if job 𝑏 is assigned to vehicle 𝑘

otherwise
𝑏 ∈ 𝐽

𝑘 ∈ 𝑉

Job assignment requirement: this set of constraints ensures that one customer is assigned to

one and only one job.

∀𝑖 ∈ 𝐸 ∑ 𝑦𝑏𝑖𝑏∈𝐽 = 1 (1)

Submitted to IJPR

 7

Vehicle capacity requirements: this constraint ensures that the customers assigned to a job can

be serviced by one vehicle considering the total amount of demands of customers.

∀𝑏 ∈ 𝐽 ∑ 𝑦𝑏𝑖𝑖∈𝐸 . 𝑞𝑖 ≤ 𝐶 (2)

Job definition: this constraint ensures that if job 𝑏 encompasses no customer (ℎ𝑏 = 0), no

customer is assigned to the job (𝑦𝑏𝑖 = 0)

∀𝑏 ∈ 𝐽, ∀𝑖 ∈ 𝐸 𝑦𝑏𝑖 ≤ ℎ𝑏 (3)

Job duration for the production: this constraint defines the job processing time 𝑝𝑏 on the

production considering the set of customers assigned to the job. If customer 𝑖 is assigned to job

𝑏, then 𝑦𝑏𝑖 = 1 and ∑ 𝑞𝑖. 𝑟𝑖∈𝐸 is the sum of 𝑞𝑖 moderated with the production rate 𝑟.

∀𝑏 ∈ 𝐽 𝑝𝑏 = ∑ 𝑦𝑏𝑖𝑖∈𝐸 . 𝑞𝑖. 𝑟 (4)

Vehicle assignment to one vehicle: this constraint ensures that if job 𝑏 is used (there are one

or several customers assigned to 𝑏), i..e., ℎ𝑏 = 1, then one variable 𝑎𝑏𝑘 is assigned to 1, i.e.,

one vehicle 𝑘 is assigned to job 𝑏.

∀𝑏 ∈ 𝐽 ℎ𝑏 = ∑ 𝑎𝑏𝑘𝑘∈𝑉 (5)

Customer order in the jobs: this set of constraints ensures that each customer has a single

predecessor and a single successor

∀𝑗 ∈ 𝐸
∑ ∑ 𝑥𝑖𝑗

𝑏
𝑖∈𝐸∪{0}

𝑖≠𝑗
𝑏∈𝐽 = 1 (6)

∀𝑖 ∈ 𝐸
∑ ∑ 𝑥𝑖𝑗

𝑏
𝑗∈𝐸∪{0}

𝑗≠𝑖
𝑏∈𝐽 = 1 (7)

Depot definition: this constraint ensures that if job 𝑏 encompasses at least one customer

(ℎ𝑏 = 1), the sub-trip starts and ends at the depot.

∀𝑏 ∈ 𝐽 ℎ𝑏 = ∑ 𝑥0𝑗
𝑏

𝑗∈𝐸 (8)

∀𝑏 ∈ 𝐽 ℎ𝑏 = ∑ 𝑥𝑖0
𝑏

𝑖∈𝐸 (9)

Customer assignment to a job: this constraint ensures that if a customer 𝑖 is assigned to job 𝑏

(𝑦𝑏𝑖 = 1), then customer 𝑖 has one predecessor, i. e., ∃𝑗/𝑥𝑖𝑗
𝑏 = 1. Similar remarks hold for

constraint 13, considering the successor.

∀𝑖 ∈ 𝐸, ∀𝑏 ∈ 𝐽 𝑦𝑏𝑖 = ∑ 𝑥𝑖𝑗
𝑏

𝑗∈𝐸∪{0}
𝑗≠𝑖

 (10)

∀𝑖 ∈ 𝐸, ∀𝑏 ∈ 𝐽 𝑦𝑏𝑖 = ∑ 𝑥𝑗𝑖
𝑏

𝑗∈𝐸∪{0}
𝑗≠𝑖

 (11)

Sub-trip eliminations: these constraints are the Miller-Tucker-Zemlin (MTZ) constraints. This

constraint uses 𝑞𝑗
−, referred to as the total amount of products remaining in the vehicle after

servicing customer 𝑗.

∀𝑏 ∈ 𝐽, ∀(𝑖, 𝑗) ∈ 𝐸2, 𝑖 ≠ 𝑗 𝑞𝑗
− − 𝑞𝑖

− + 𝑥𝑖𝑗
𝑏 . 𝐶 ≤ 𝐶 − 𝑞𝑗

 (12)

∀𝑏 ∈ 𝐽, ∀(𝑖, 𝑗) ∈ 𝐸2, 𝑖 ≠ 𝑗 𝑞𝑖
− ≤ 𝐶 − 𝑞𝑖

 (13)

Job duration for transport: this constraint defines the sub-trip duration to service all customers

assigned to job 𝑏

∀𝑏 ∈ 𝐽 𝑝𝑏2 = ∑ ∑ 𝑥𝑖𝑗
𝑏

𝑗∈𝐸∪{0}
𝑗≠𝑖

. 𝜏𝑖𝑗𝑖∈𝐸∪{0} (14)

Job duration for transport: this constraint defines the trip duration to service all customers

assigned to job 𝑏 not considering the empty transport from the last customer to the depot.

∀𝑏 ∈ 𝐽 𝑝𝑏2
′ = 𝑝𝑏2 − ∑ 𝑥𝑖0

𝑏 . 𝜏𝑖0𝑖∈𝐸 (15)

Disjunctive constraints at the production end: this constraint ensures that the production

operation of job 𝑐 and the production operation of job 𝑑 cannot be performed at the same time

at the production facility.

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑏1 + 𝑝𝑏1 ≤ 𝑠𝑐1 + (1 − 𝑧𝑏𝑐
). 𝐻 (16)

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑐1 + 𝑝𝑐1 ≤ 𝑠𝑏1 + 𝑧𝑏𝑐
 . 𝐻 (17)

Submitted to IJPR

 8

If 𝑧𝑏𝑐
 = 1 (job 𝑏 is scheduled before job 𝑐), constraint (18) can be rewritten as 𝑠𝑏1 + 𝑝𝑏1 −

𝑠𝑐1 ≤ 0, meaning that 𝑠𝑏1 + 𝑝𝑏1 ≤ 𝑠𝑐1, ensuring that production of 𝑐 on the production facility

cannot start before the end of the production operation of job 𝑏. If 𝑧𝑏𝑐
 = 0, constraint (18)

holds, and constraint (19) can be rewritten as 𝑠𝑐1 + 𝑝𝑐1 ≤ 𝑠𝑏1, meaning that job 𝑐 is processed

first and job 𝑑 second for the production operations.

Disjunctive constraints for transport: this constraint ensures that the transport operations of

two jobs 𝑏 and 𝑐 are not performed at the same time by the same vehicle 𝑘.

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑏2 + 𝑝𝑏2 ≤ 𝑠𝑐2 + (3 − 𝑧𝑏𝑐
 − 𝑎𝑏𝑘 − 𝑎𝑐𝑘). 𝐻 (18)

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑐2 + 𝑝𝑐2 ≤ 𝑠𝑏2 + (2 − 𝑧𝑏𝑐
 + 𝑎𝑏𝑘 + 𝑎𝑐𝑘). 𝐻 (19)

If 𝑎𝑏𝑘 = 𝑎𝑐𝑘 = 1, this means that the two transport operations are assigned to the same vehicle

𝑘 and the constraints can be rewritten as: 𝑠𝑏2 + 𝑝𝑏2 ≤ 𝑠𝑐2 + (1 − 𝑧𝑏𝑐
). 𝐻 (20) and 𝑠𝑐2 + 𝑝𝑐2 ≤

𝑠𝑏2 + 𝑧𝑏𝑐
 . 𝐻 (21). If either 𝑎𝑏𝑘 or 𝑎𝑐𝑘 are not assigned to 1, the two constraints hold, regardless

of the value of 𝑧𝑏𝑐
 .

Precedence constraints per operation: this constraint ensures that the transport operations of

one job are performed according to the production-operation sequence first, followed by the

transport-operation sequence.

Lifespan products: this constraint ensures that the lifespan of the products are addressed. The

product lifespan defines a maximal delay between the delivery of the last customer of a sub-

trip of a job b, i.e., 𝑠𝑏2 + 𝑝𝑏2
′ , and the finishing time of the production referred to as 𝑠𝑏1 + 𝑝𝑏1:

the difference is upper bounded by 𝐵.

∀𝑏 ∈ 𝐽 𝑠𝑏2 + 𝑝𝑏2
′ ≤ 𝑠𝑏1 + 𝑝𝑏1 + 𝐵 (21)

Makespan. When minimising the makespan, the following constraints should be added to

define new integer variables. This constraint ensures that 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑏∈𝐽(𝑑𝑏2 + 𝑝𝑏2)

∀𝑏 ∈ 𝐽 𝑠𝑏2 + 𝑝𝑏2 ≤ 𝐶𝑚𝑎𝑥 (22)

2.3 Modelling

In the PTSPm, a sub-trip is fully defined by an ordered sequence of operations: (1) starting at

the depot with a pickup operation; (2) defining an ordered sequence of delivery operations; and

(3) finishing at the depot. The loading of the vehicle can be represented as a decreasing function

(see Fig. 2) during each sub-trip.

Figure 2 gives some details of the solution presented in Fig. 1. Figure 2 represents both the

vehicle load (on the top) and the proper coordination between production and transportation

over time, with an explicit modelling of pickup and delivery operations (at the bottom).

Table 2. Example of solution for the two-vehicle PTSPm.

𝑂11

𝑂12
1

𝑂21

𝑂22
2

𝑂31

𝑂32
1

 0 1 2 0 0 3 0 0 4 5 0

Starting time 0 2 8
Time Windows]-∞;9]]-∞;15]]-∞;19]

Departure time 2 5 7 8 10 12 15 18

Arrival time 5 7 10 10 12 15 18 19

Time constraints on sub-trips

Time dependency only exists between successive sub-trips of the same trip since all sub-

trips of one trip are assigned to the same vehicle. Concerning the trip of vehicle 1 in Fig. 2, the

previous remark implies that 𝑠32 ≥ 𝑓12. Moreover, the earliest starting time of 𝑂31
 depends on

the starting time 𝑂21
 , 𝑠31 ≥ 𝑠21 + 𝑝21. For the trip of vehicle 2, the earliest starting time of the

transportation operation 𝑂22
2 does not depend on the finishing time of 𝑂12

1 (operations in the

diagonal rectangle in Fig. 2). Vehicle 2 can potentially start the transportation operation 𝑂22
2

before the transportation operation 𝑂12
1 , as depicted in Fig. 2 and Table 2. Assignment of

∀𝑏 ∈ 𝐽 𝑠𝑏1 + 𝑝𝑏1 ≤ 𝑠𝑏2 (20)

Submitted to IJPR

 9

vehicles to sub-trips is a challenging problem that should be solved avoiding extra waiting time

on the Gantt chart.

s12

End of trip 1

Time

Vehicle

loading

0

O12

Node 1 Node 3 Node 4 Node 5Node 2

]-∞,y]

P D

P D

P D D

-y

-x

-z

τ0,1 τ1,2

τ0,3

O11

0

O31

s21s11 s31

0

0

0

O21

p31

τ3,0

*

p21 p31

00

0

Prod.

Trip 1
τ2,0 τ0,4 τ4,5 τ5,0

End of trip 2

0Trip 2

S

0

No time dependency between

the finishing time of

and the starting time of

0

p11

p11

D

p21

f12
s32

f32s22 f22

1

O22
2 O32

1

O12
1

O22
2

]-∞,x]]-∞,z]

Figure 2. Example of a two-vehicle workload.

Conjunctive and disjunctive arcs to link production and transportation with maximal time lags

The delivery nodes where products are unloaded have a time window constraint that defines

the maximal arrival time acceptable for the customer, which is correlated to the product

perishability. The time windows are related to the earliest starting time of the production on the

facility. They are modelled by maximal time lags that are defined using a negative arc between

one delivery node and the production node in this special case.

As shown in Fig. 2, the time window] − ∞; 𝑦] on node 2, which corresponds to a delivery

node, means that the maximal duration between 𝑠11 and the arrival time at node 2 must not

exceed 𝑦 units of time. Similarly, node 3 must be served within a delay of 𝑥 units of time after

𝑠21. One positive arc gives the minimal delay between the earliest starting time of two

operations. For example, τ1,2 models a minimal duration required between departure time at

node 1 and arrival time at node 2. Normally, these so-called conjunctive arcs are valuated with

the shortest path value between two nodes modelling transport, and with the duration of

production between two production nodes. Disjunctive arcs are required to define the order of

sub-trips in a trip. This type of time windows arises: (1) in routing problems including but not

limited to the Dial-A-Ride Problem where both maximal route duration and maximal customer

riding time must be taken into account; and (2) in scheduling problems.

In the Gantt chart in Fig. 1, the first job provides products for customers 1 and 2 for a

production duration of 𝑝11 = 2 time units, the earliest starting time of 𝑂11 is equal to 0 and

vehicle 1 is available at time 0. Therefore, on node 1 (Fig. 2), the time window is defined by

] − ∞; 2 + 𝛿1] and] − ∞; 2 + 𝛿2] for node 2, where 𝛿𝑖 is the lifespan of products for

customer 𝑖. The earliest starting time of a transportation operation is the maximal value between

the finishing time of the previous transportation operation assigned to the same vehicle and the

finishing time of the production operation. Similar considerations make it possible to define the

earliest starting time 𝑂22
2 at time 8 with a time window] − ∞; 8 + 𝛿3] for nodes 3. Because the

problem being considered is a single product PTSPm, the lifespan is equal for all nodes, i.e.,

𝛿𝑖 = 𝐵, ∀𝑖, implying that all time windows of all delivery nodes of the same sub-trip are

Submitted to IJPR

 10

identical and equal to] − ∞; 𝑥 + 𝐵], where 𝑥 is the duration of the production linked to the

transport.

Figure 3. Sub-trip with maximal time lag simplification.

The earliest arrival time of a vehicle increases within a sub-trip. Therefore, if an earliest arrival

time exists for the last delivery operation of the sub-trip that meets the time window constraints,

all previously scheduled operations with time window constraints will hold. In Fig. 3, sub-trip

𝐺 with three delivery nodes takes the three maximal time lags modelling the product lifespan

explicitly into account. For PTSPm with a single product, which consequently defines the same

lifespan for all customers, a new graph 𝐺′ can be used to model only the time window of the

last delivery operation of each sub-trip.

The feature that differentiates this problem from previous ones is the combination of the

scheduling decisions with the limited product lifespan and the vehicle routing decisions. These

interdependent decisions lead to the possibility that the product may expire before it reaches a

customer if an unprofitable scheduling solution is chosen. The objective consists in solving the

scheduling and routing problem by minimising the makespan to comply with the classical

objective function introduced by Geismar et al. (2008) and providing a semi-active solution,

i.e., a left-shifted solution.

3 A PTSPm resolution based on a GRASP ELS

This proposal is based on a GRASP×ELS, which introduces a new splitting algorithm for the

assignment and the routing problem, and a new resolution of the scheduling problem using an

approach based on a disjunctive graph. The disjunctive graph is specially designed to efficiently

take the perishability constraint into account using maximal time lags.

3.1 Key features for a PTSPm resolution

The key point for the PTSPm resolution is to alternate between solutions encoded by giant trips

(TSP - Traveling Salesman Problem - permutation list on the 𝑛 customers), set of trips (VRP -

Vehicle Routing Problem - on the 𝑛 customers) that comply with the ordered set of customers

defined by the giant trip, and a flow shop resolution by considering jobs linked to the trips

(PTSPm on the 𝑛 customers). The approach is a combination of three search space

representations that favour partial enumeration of the whole search space (Fig. 4).

The iterative search space exploration takes advantage, first, of the indirect representation of

solutions by using a giant trip. Second, a set of feasible sub-trips minimising the total

transportation time is computed using a split-based approach on the sequence of customers that

has been defined by the giant trip. Note that the specific local search for node routing can be

applied to obtain a high-quality local routing solution.

The resolution framwork is expressed by the following key features:

 a local search for routing with 2-Opt or swap within a sub-trip, and 2-Opt or swap between

two sub-trips, based on classical VRP neighbourhoods;

 a splitting procedure for proper coordination between production and transportation;

 a scheduling procedure based on a disjunctive graph with the sub-trips made by the splitting

procedure;

 a concatenation procedure to obtain a new giant trip.

P D D

-B
-B

τ0,1 τ1,2

D
τ2,3 τ3,0

0

-B

P D D
τ0,1 τ1,2

D
τ2,3 τ3,0

0

-B

G G’

Submitted to IJPR

 11

TSP

search space

PTSPm

search space

VRP

search space

GT

GT

Splitting

Local Search

Routing

Scheduling

Concat.

t2t1

p1 p3p2

t3

Figure 4. The three search spaces to build a PTSPm solution.

The GRASP×ELS approach is very different from Geismar et al.’s proposal and differs in both

scope and the resolution scheme that are summarised in Table 3.

Table 3. GRASP×ELS approach vs. Geismar et al.’s approach
 (Geismar et

al., 2008)
GRASP×ELS

Scope PTSP PTSP + PTSPm

Resolution

scheme

Scheduling Gilmore-Gomory Disjunctive graph

Routing
Split of the

classical VRP

Split with production and

transport consideration

Local search

for scheduling
/

Based on the proposal of

Laarhoven et al. (1992) and

Grabowski et al. (1986)

Local search

for routing
2-Opt moves

Inter/extra trips 2-Opt and swap

moves

Solution

representation
Chromosome Giant trip

3.2 The GRASP×ELS Principle

GRASP×ELS is a hybridisation (Prins, 2009) of a GRASP (Greedy Randomised Adaptive

Search Procedure) (Feo and Resende, 1995), with an ELS (Evolutionary Local Search) (Wolf

and Merz, 2007; Prins, 2004) that takes advantage of both methods. The multi-start approach

of the GRASP, which provides 𝑛𝑝 initial solutions, is based on a greedy randomised heuristic,

and solutions are then improved by a local search procedure. The second metaheuristic can be

expressed as an extension of the ILS (Iterated Local Search) (Lourenço et al., 2003), referred

to as ELS and proposed by Wolf and Merz (2007). The solution space investigation is achieved

by the GRASP that favours diversity, and the intensification phase is devoted to the ELS via a

proper local search investigation into the local search space. In addition, to combine GRASP

with ELS, another important feature is the alternation between solution spaces as stressed by

Prins (2004) and Prins et al. (2014). Converting a PTSPm solution into a giant trip is achieved

by a concatenation procedure, and the operation converting a giant trip into a VRP solution is

achieved by a dedicated splitting procedure (Split).

Algorithm 1 is composed of a loop from line 13 to 36, which iterates on a new starting

solution for the GRASP. For each initial solution, the procedure

Generation_of_initial_solution(), using a greedy heuristic creates a new initial

solution submitted to the Split procedure (line 16) to obtain a routing solution that is improved

(line 17) by the local search procedure Local_Search_on_Routing(S, nl). Secondly, the

Scheduling() procedure computes a solution (line 18). If the cost of the solution 𝑆, 𝑓(𝑆) is

better than the cost of the best PTSPm solution found, 𝑆*, 𝑓* (line 20), 𝑆 becomes the new best

solution. The while loop from lines 23 to 35 is the ELS and encompasses the loop (lines 25 to

Submitted to IJPR

 12

32) for neighbourhood generations. According to the common Split approach, the mutation

operator (line 26) is defined on the giant trip T and not on the solution.

The random heuristics, referred to as Generation_of_initial_solution(),

generates initial solutions. This method uses two heuristics to build the initial solution.

The first one, with a probability of 0.9 is based on a greedy randomised heuristic based on

a path-scanning-like approach. The first heuristic builds sub-trips one-by-one, starting from the

depot, and extends each sub-trip customer-by-customer using two criteria:

 the extension step at node 𝑖 considers that the sub-trip moves to the nearest customer not yet

served. If vehicle load ≥ 𝑄, the next customer to be served is selected to minimise the

distance to the depot;

 the next customer to be served is the customer that minimises the transportation time.

The second heuristic with a probability of 0.1 classifies the customers by decreasing

transportation time.

Algorithm 1. GRASP ELS for the PTSPm
1. procedure GRASP ELS

2. global parameters

3. np: number of GRASP iterations (initial solutions)

4. ne: maximal number of iterations per ELS

5. nr: maximal number of iterations without improvement per ELS

6. nd: number of diversifications (mutations)

7. nl: number of local searches on the routing

8. ng: number of local searches on the scheduling

9. output parameters

10. S*: best PTSPm solution found

11. begin

12. f* := ; O := Ø
13. for p := 1 to np do // GRASP loop

14. S := call Generation_of_initial_solution ()

15. T := call Concat (S)

16. S := call Split (T)

17. S := call Local_Search_on_Routing (S, nl)

18. S := call Scheduling (S)

29. T := call Concat (S)

20. if (f(S) < f*) then f* := f(S); S* := S; // f: the cost of a solution

21. endif

22. i, r := 0

23. while (i < ne) and (r < nr) do // ELS loop

24. i := i + 1; f” :=
25. for j := 1 to nd do // mutation loop

26. T’ := call Mutation (T)

27. S’ := call Split (T’)

28. S’ := call Local_Search_on_Routing (S’, nl)

29. S’ := call Scheduling (S’)

30. T’ := call Concat (S’)

31. if (f(S’) < f”) then f” := f(S’); T” := T’; S” := S’; endif

32. endfor

33. if (f” < f*) then S*:= S”; endif // if a new best solution update S*

34. T := T”; // best ELS solution becomes the new initial solution

35. endwhile

36. endfor

37. end

The local search on the routing (Local_Search_on_Routing()) is achieved using several

classical VRP neighbourhood moves to improve the initial solution, namely 2-Opt within a sub-

trip and insertion within a sub-trip. At each iteration, the first improved move is executed but

requires verification of the sub-trip feasibility by considering the capacity of the vehicles and

the lifespan. All solutions are converted into a giant trip by random concatenation of their sub-

trips and then evaluated by the Split procedure. The key point for the efficiency of

GRASP×ELS is to alternate between solutions encoded as giant trips and PTSPm solutions.

Submitted to IJPR

 13

3.3 Split procedure

Giant trips are evaluated via the Split procedure that minimises the total trip duration subject to

the vehicle capacity, as reported by Beasley (1983) and Prins et al. (2014). Split is a key

procedure used to convert a giant trip into a VRP solution (with respect to the sequence) and it

is based on the classical Split procedure adjusted to address the specific PTSPm constraints.

The algorithm provides an efficient solution by building an auxiliary graph 𝐺 = (𝑋, 𝐴), where

X represents n + 1 nodes numbered from 0 to n. Node 0 is a dummy node, while the nodes

1 … n correspond to the sequence of the giant trip 𝐺𝑇 = (𝜎1, … , 𝜎𝑛). An arc (𝑖, 𝑗) belongs to A

if a sub-trip serving customers 𝜎𝑖+1 to σj (inclusive) is both weight-feasible and lifespan-

feasible. An initial label is set at node 0 and the labels are propagated from node to node in G

using arcs. The best label at node 𝑛 is kept as the best solution.

The routing problem has a resource constraint since there is a limited number of available

vehicles, each vehicle defining one specific machine to be scheduled. The Split procedure for

the PTSPm is an extension of the split introduced for the HVRP (Heterogeneous Vehicle

Routing Problem) by Duhamel et al. (2012) because there is the earliest finishing time of the

production to take into account as well as the earliest finishing time of vehicles for the previous

sub-trip. Computation of the resource-constrained shortest path in the graph is typically

achieved by a label-correcting algorithm. According to Desrocher (1988), several labels per

node have to be handled and the key point consists in defining the label structure with the cost

and the resource availability. The generic Split procedure of Duhamel et al. (2012) is based on

three key points:

 a label description based on the resource availability;

 a dominance rule between labels to improve the running time by keeping only promising

labels on the node;

 a propagation rule to define a label from node 𝑖 to node 𝑗 depending on the customer

sequence (σi+1, … , σj).

Let 𝐿𝑖
𝑝 = (𝑑𝑃𝑖, 𝑑𝑉1𝑖 , … , 𝑑𝑉𝑁𝑖) be the 𝑝𝑡ℎ label assigned to node 𝑖 when the number of

vehicles 𝑉 = 𝑁, where Li
p(𝑗) is the earliest finishing time of vehicle 𝑗 for 𝑗 = 2. . 𝑁 + 1 and

Li
p
(1) is the earliest finishing time of the production. This corresponds to a feasible split of the

initial customers (𝜎1, … , 𝜎𝑖) into sub-trips, where dPi is the earliest production finishing time

and dVki is the transportation finishing time for the vehicle 𝑉𝑘. The initial label at node 0 is

defined as 𝐿0
1 = (0, 0, … , 0). It corresponds to the empty solution where the finishing time is

equal to 0. Given the arc (𝑖, 𝑗) ∈ 𝐴 and if this arc is put on vehicle 𝑉𝑘, label Li
p
 generates label

𝐿𝑗
𝑞 = (𝑑𝑃𝑗 , 𝑑𝑉1𝑗 , … , 𝑑𝑉𝑁𝑗) using the following propagation rule:

 𝑑𝑃𝑗 = 𝑚𝑎𝑥

(𝑑𝑃𝑖 + ∑ 𝑝𝜎𝑙

𝑗
𝑙=𝑖+1 ; 𝑑𝑉𝑘𝑖) = 𝑚𝑎𝑥

(𝑑𝑃𝑖 + ∑

𝑞𝜎𝑙

𝑟

𝑗
𝑙=𝑖+1 ; 𝑑𝑉𝑘𝑖)

 𝑑𝑉𝑘𝑗 = 𝑑𝑃𝑗 + 𝜏0,𝜎𝑖+1
+ ∑ 𝜏𝜎𝑙,𝜎𝑙+1

𝑗−1
𝑙=𝑖+1 + 𝜏𝜎𝑗,0.

The max operator, which appears in the propagation rule, is explained in Fig. 5. In the first

case, 𝑂𝑗1 has a duration (𝑝𝑗1) greater than the duration between the end of the production

operation 𝑂𝑖1 at time 𝑑𝑃𝑖 and the end of the previous sub-trip assigned to vehicle 𝑉1 (𝑑𝑉1𝑖).

The finishing time of 𝑂𝑖1 therefore corresponds to the starting time of 𝑂𝑗1 and,

consequently, 𝑑𝑃𝑗 = 𝑑𝑃𝑖 + ∑
𝑞𝜎𝑙

𝑟

𝑗
𝑙=𝑖+1 . In the other case, if 𝑂𝑗1 has a duration (𝑝𝑗1) lower than

the duration between the end of the production operation 𝑂𝑖1 at time 𝑑𝑃𝑖 and the end of the

previous sub-trip assigned to vehicle 𝑉1 (𝑑𝑉1𝑖), then to be compliant with the no-wait

constraint, the constraint 𝑑𝑃𝑗 = 𝑑𝑉1𝑖 must hold and the production planning will encompass a

period of inactivity.

Submitted to IJPR

 14

Oi1

dPi dV1i

Oi2

Oj1

Oj2

Oi1

dPi dV1i = dPj dV1j

Oi2

Oj1

Oj2

dPj = dPi+∑ql/r dV1j
l=i+1

j

period of inactivity

V2

V1

P

V2

V1

P

Figure 5. The two cases of label propagation in the Split procedure.

Since a large number of labels may be generated, dominance criterion is used to improve the

running time, keeping only non-dominated labels on the node thanks to the following

dominance propriety.

Dominance property

Label L = (𝑑𝑃, 𝑑𝑉1, … , 𝑑𝑉𝑁) dominates label P = (𝑑𝑃 , 𝑑𝑉1, … , 𝑑𝑉𝑁) when the two labels are

sorted and is therefore equal to (𝑑𝜎1
𝑝, … , 𝑑𝜎𝑁+1

𝑝) and (𝑑𝜎1
𝑞 , … , 𝑑𝜎𝑁+1

𝑞), respectively, and all of

the following conditions hold:

 ∃𝑖∗ ∈ {1, … , 𝑁 + 1}, dσ𝑖∗
𝑝 < dσ𝑖∗

𝑞
;

 ∀𝑗 ∈ {1, … , 𝑁 + 1}, dσ𝑗
𝑝 ≤ dσ𝑗∗

𝑞
.

The dominance rule limits the number of labels stored at each node but several authors,

including (Duhamel et al., 2012), have reported that a large number of labels could still be

generated. Another time-saving approach consists in limiting the maximal number 𝑁𝑚𝑎𝑥 of

labels generated during the split process and the maximal number 𝑁𝐵𝑚𝑎𝑥 of labels stored at

each node. This can reduce the CPU time, but discarding some labels may cause the algorithm

to miss the optimal split. Such an approach offers a compromise between split quality and the

number of labels kept on nodes and provides time-efficient sub-optimal split solutions.

The Split procedure is detailed in Algorithm 2 and uses low-level procedures to handle the

label on the graph:

 Propagation_label_to_vehicle(L,v,𝑖) propagates the label 𝐿 using the

vehicle v at node 𝑖 and returns a new label;

 CheckDomination(L, i, Ni) performs the dominance check between the label 𝐿

and all labels stored at node 𝑖, 𝑁𝑖. It returns 0 if 𝐿 is dominated by at least one label from 𝑖.
Thus, 𝐿 must not be saved. It returns 1 if 𝐿 dominates at least one label from 𝑖. It returns 2

otherwise;

 InsertLabel(L, i, CD, Ni, NBmax)attempts to add the label 𝐿 at node 𝑖 if 𝐶𝐷 ∈
{1,2} and by considering that the number of labels 𝑁𝑖 must not exceed the maximal

number 𝑁𝐵𝑚𝑎𝑥. If 𝐶𝐷=1, all labels from i dominated by 𝐿 are deleted. The list of labels is

ordered by decreasing cost;

 Extract_trip() checks the shortest path into the graph for the last node to the first

node, and returns the set of trips.

The Split algorithm (Algorithm 2) is composed of two parts: the initialisation part where local

variables are initialised (lines 14-15) and a for loop from lines 16 to 52, which iterates for the

ordered set of customers defined by the giant trip T. The while loop from lines 19 to 51 iterates

and makes it possible to evaluate the partial sequence (𝜎𝑖+1, … , 𝜎𝑗). If 𝑖 = 𝑗, a new sub-trip is

created and the initial sub-trip costs are assigned (lines 22- 23) and are updated in lines 25-26.

Submitted to IJPR

 15

The condition line 28 makes it possible to determine if the constraints hold and the loop is

stopped early thanks to the condition on the Boolean condition (stop=true). Because a set of

labels is saved at each node, the for loop of line 29 iterates over all labels of node i and addresses

the label 𝐿𝑖
𝑃.

Algorithm 2. Split
1. procedure Split

2. input parameters

3. T: giant tour

4. output parameters

5. S: VRP-PTSPm solution

6. global parameter

7. Q : maximal vehicle weight capacity

1. B : lifespan of the product

8. qi : total items ordered by customer i

9. 𝜏ij : cost from customer i to j
10. n : number of customers

11. N : number of vehicles

12. NBmax : maximal number of labels in each node

13. begin

14. L01:=(0,0,…,0), S :=
15. for i := 1 to n do NBi := 0 endfor

16. for j := 0 to n do

17. j := i

18. stop := false

19. while (j < n and stop=false)

20. customer := Tj

21. if (j = i) then

22. production_cost := dcustomer/r

23. transport_cost := cdepot,customer + ccustomer,depot

24. else

25. production_cost += dcustomer/r

26. transport_cost += ccustomer-1,customer +ccustomer,depot –ccustomer-1,depot

27. endif

28. if ((production_cost*r < Q) and (transport_cost -ccustomer,depot ≤ B)) then

29. for p := 1 to NBi do

30. if (dPi-1 = 0) then

31. insertion of the label in first position with the first vehicle

32. else

33. v:=0

34. do

35. v:=v+1

36. L:=Propagation_label_to_vehicle (Lip,v,i)

38. if (NBi=0)

39. insertion of L in first position

40. else

41. CD:=CheckDomination(L, j, Nj)

42. call InsertLabel(L, j, CD, Nj, NBmax)

43. endif

44. while (v < N)

45. endif

46. endfor

47. else

48. stop := true

49. endif

50. j := j + 1

51. endwhile

52. endfor

53. S := call Extract_trips () //save the best solution

54. endif

55. end

A full example is given in detail on the Web page:

http://fc.isima.fr/~vinot/Research/PTSP_Results.html

http://fc.isima.fr/~vinot/Research/PTSP_Results.html

Submitted to IJPR

 16

3.4 Scheduling procedure

After the splitting procedure, each job is fully defined by an ordered sequence of customer

demands that are assigned to a specific vehicle. The previous sections refer to a problem that

can be defined as a two-stage hybrid flow shop with one machine at the first stage and 𝑁

machines at the second stage. At the first stage, the term ‘machine’ is a general term that refers

to the production (production machine) and to the transportation for the second stage (also

referred to as transportation machine).

A job simultaneously models the production (the first operation on the production machine)

and a sub-trip (the transportation operation on one transportation machine among

the 𝑁 machines available).

The problem is modelled as a disjunctive graph model first defined by Roy et al. (1964)

using a directed graph G = (V, A, EP, ET), where V represents the set of nodes that contains one

element for each operation 𝑂𝑖, a source node 0 connected to the first operation of each job, and

a sink node ∗ linked to the last operation of each job (Fig. 6). The set A represents the set of

conjunctive arcs, EP the set of pairs of disjunctive arcs between the production nodes, and ET

the set of pairs of disjunctive arcs between the transportation nodes.

With the specific graph characteristic, the classical disjunctive graph can be adapted using

maximal time lags between the starting time of the production operation 𝑂𝑖1 and the starting

time of the transportation operation 𝑂𝑖2, which is consistent with the perishability constraints.

The value of the maximal time lag defines the larger gap between the starting time of 𝑂𝑖1 and

the starting time of 𝑂𝑖2, and is defined by −(𝐵 + 𝑝𝑖1 − 𝑝′𝑖2).

Conjunctive arcs are used to connect each pair of consecutive operations of the same job.

Each pair of disjunctive arcs on the production connects operation 𝑂𝑖1 to 𝑂𝑗1 (belonging to

different jobs), and has a duration 𝑝𝑖1. Each pair of disjunctive arcs on the transportation

connects two operations 𝑂𝑖2, 𝑂𝑗2 in this order belonging to different jobs that are to be processed

on the same transportation machine (vehicle), and has a duration 𝑝𝑖2 (Fig. 6). A feasible solution

corresponds to an acyclic graph, and an evaluation procedure can be defined using a Bellman-

like longest path algorithm to obtain the earliest starting time of each operation, including the

makespan 𝐶𝑚𝑎𝑥.

P V1

P V2

P

V1P

V2

P V30 *

p21

p22

p23

p24

p25

p11

p21

p31

p41

p51

VB = [2,1,3,5,4]

p21

p11

p31

p51

p22

p21

Disjonctive arc on

the production

Disjonctive arc on

the transportation

First stage Second stage

-(B+p11-p’21)

-(B+p21-p’22)

-(B+p31-p’23)

-(B+p41-p’24)

-(B+p51-p’25)

Figure 6. Example of the scheduling procedure with five sub-trips and V=3.

In Fig. 6, there are two disjunctive arcs on the transportation due to jobs using the same

vehicle. For vehicle 1 assigned to jobs 1 and 4, the value on the disjunctive arc is equal to p21.

Figure 7 is a graphical representation of relations between both the earliest and finishing times

Submitted to IJPR

 17

of operations with the lifespan constraint. The Bierwirth vector used in the scheduling

procedure gives an order on the job using the sub-trips created by the splitting procedure. An

efficient local search algorithm can be defined considering the critical path including the

neighbourhood of Laarhoven et al. (1992) and Grabowski et al. (1986) with the introduction of

blocks.

lifespan constraintO11 O14

O24

V2

V1

P

V3

O21

B

B+p11

s21 fs21 s21+p’21

s11 f11

Figure 7. Representation of the constraint due to the disjunctive arcs of the transportation.

The neighbourhood of Laarhoven consists of swapping two consecutive operations assigned to

the same machine along the critical path, leading to a modification of the machine disjunction.

Due to the indirect representation of solutions, the operation swap is achieved in the Bierwirth

vector by switching the two job numbers of the two operations in the disjunctive graph. The

permutation of operations based on the block definition and located at the critical path is

included in a depth first search local search investigates the move from the end of the critical

path to the dummy node. If one permutation leads to a lower cost solution, the critical path

exploration is restarted to the end of the graph. Note that due to computation time

considerations, a maximal number of iterations ns is reached. A full example is given in detail

on the Web page.

3.5 Hash function for PTSPm

To avoid premature convergence of the global algorithm and to stimulate the investigation of

the part of the search space not previously investigated, it is necessary to use an efficient clone

detection system. Previous research into scheduling/routing problems based on indirect

representation approaches has proved that efficient clone detection must be defined considering

the indirect representation or the solution. For the giant trip 𝐺𝑇, the related hash function

𝐻(𝑡) is defined as follows: 𝐻(𝑡) = ∑ 𝐺𝑇[𝑖] × 𝑖 𝑚𝑜𝑑 𝐾𝑛
𝑖=1 . 𝐺𝑇[𝑖] is the 𝑖𝑡ℎ customer in the

giant trip and 𝐾 is a constant. The value of 𝐾 impacts the size of the map and the probability of

collision (consequently, 𝐾 must be as large as possible considering the memory available).

3.6 Lower bound on the makespan

Three PTSP lower bounds were introduced by Geismar et al. (2008), leading to a poor

evaluation with multiple vehicles. Considering sub-trips with only one customer associated

with immediately available vehicles, 𝑁 ≥ 𝑛, a lower bound can be defined using Jackson’s

algorithm (1955) that considers the one-machine scheduling problem with tails. To obtain the

lower bound, the proposal is to extend Jackson’s earliest due date rule. The lower bound based

on the Jackson rule creates an optimal schedule that minimises the maximal lateness by ordering

the jobs by non-decreasing due dates because the release dates are equal to 0.

Line 18 in Algorithm 3 makes it possible to define the sum of the processing times of

previously scheduled jobs. At line 19, the release date of the job is updated as the maximum

between the current release date and the sum of the processing time plus the due date of the job.

These two lines do not appear in Jackson’s original algorithm; they have been added to the

algorithm in order to match the lower bound of the PTSPm.

Submitted to IJPR

 18

Algorithm 3: A Jackson rule-based lower bound
1. procedure A lower bound based on the Jackson Rule

2. input parameters

3. J: set of job/sub-trip

4. global parameter

5. rj : release date of the job/sub-trip j

6. pj : processing time of the job/sub-trip j

7. q : sum of the processing time already scheduled

8. dj : due date of the job/sub-trip j

9. n : number of customers/sub-trip

10. output parameters

11. Cmax : lower bound

12. begin

13. L := {1, …, n}, q := 0

14. if (J ≠) then

15. while (L ≠) do

16. u := minj{rj}, j in L

17. choose i in L such as ri = u and di maximal

18. q := q + pi

19. for all k in L do rk:= max{rk, q + di}, Cmax := rk

20. L := L\{i}

21. endwhile

22. endif

23. end

To apply Algorithm 3 on the PTSPm, a parallel should be drawn between the processing

time and the production time of the PTSPm, as well as between the due date and the PTSPm

transportation time. The lower bound is then given by Cmax at the end of the algorithm.

4 Computational evaluation for the PTSP

The benchmark introduced by Geismar et al. (2008) is composed of three small-scale instances

with 40 customers and three medium-scale instances with 50 customers, and customers’

demands are uniformly distributed between 100 and 300. The locations of the customers in the

three instances with 40 or 50 customers are randomly generated in the square of 200, 300 and

400 side lengths, which denotes 12 sets of parameters (𝑆𝑃 is detailed in Table 5a). As a

consequence, there are six datasets (𝐷𝑆 is is detailed in Table 5b). For each instance, the value

of three parameters is set: 𝑟 ∈ {1,2,3} is the production rate; 𝑄 ∈ {300,600} is the truck

capacity; and 𝐵 ∈ {300,600} is the product lifespan. We therefore have 72 resulting instances

in the benchmark. Note that the distance is the transportation time between customers by

considering the Euclidean distance and a vehicle speed of 1 unit of distance per unit of time.

Table 4 proposes speed factors that are used in the following comparative tables to ensure a

fair comparative study and that were established by previous research articles including

Dongarra, (2014), and on http://www.roylongbottom.org.uk/linpackresults.htm. Since the

MIPS performance is not the only influence on the CPU time, Table 4 also provides the

information available about the computer, the operating system and the language.

Table 4. Comparative performance of processors.
 (Geismar et al., 2008) (Karaoğlan et al., 2017) Our framework

Computer Intel Pentium 4 3.2GHz Intel Xeon 3.16GHz Intel Core i7 3.4GHz

OS Windows XP Pro. Windows 7 Windows 7

Language BASIC C++ IBM ILOG CPLEX 12.6 Visual C++

MFlops 1573 1892 2671

Speed

factor
1.0 1.2 1.7

http://www.roylongbottom.org.uk/linpackresults.htm

Submitted to IJPR

 19

Five replications (𝑟𝑒𝑝) are processed for each instance and Tables 6, 7 and 8 give the average

of the best solutions found over the five replications with the average CPU time required for

each run. The parameters used in the GRASP×ELS are given below. They remain unchanged

for all instances and were obtained after preliminary experiments:

 np Number of GRASP/ELS/ neighbourhood iterations 150/30/15

 lr Number of local searches on the routing/scheduling 40/500

 NBmax Maximal number of labels per node 5

The following notations are used in the tables below:
C Number of customers

S Size of the square for the customer’s location

Avg An average value

%Gap

N/A

Percentage gap

Data not available

Nb. Opt Number of instances where the solution has the same value as the lower

bound. In this case, the solution obtained is an optimal solution of the

PTSPm.

𝐿𝐵𝑖
𝑘 Lower bound of the problem with k ∈ SP and i ∈ DS

ℎ𝑖,𝑗
𝑘 Best solution found for an instance with (𝑖; 𝑗; 𝑘) ∈ (𝐷𝑆; 𝑆𝑃; ⟦1, 𝑟𝑒𝑝⟧)

𝑡𝑡𝑖,𝑗
𝑘 Total CPU time in seconds coupled with ℎ𝑖,𝑗

𝑘

𝑡𝑖,𝑗
𝑘 CPU time in seconds to get ℎ𝑖,𝑗

𝑘

𝐿𝐵∗
𝑘 = avg

𝑖𝜖𝐷𝑆
𝐿𝐵𝑖

𝑘 Average lower bound for one k ∈ SP, over all 𝑖 ∈ 𝐷𝑆

ℎ∗,∗
𝑘 = avg

𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
ℎ𝑖,𝑗

𝑘 Average best solution found for one k ∈ SP, over all (𝑖; 𝑗)/(𝑖 ∈ 𝐷𝑆; 𝑗 =
⟦1, 𝑟𝑒𝑝⟧)

𝑡𝑡∗,∗
𝑘 = avg

𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑡𝑖,𝑗

𝑘 Average total CPU time for one k ∈ SP, over all (𝑖; 𝑗)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧)

𝑡∗,∗
𝑘 = avg

𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑖,𝑗

𝑘 Average CPU time for one k ∈ SP, over all (𝑖; 𝑗)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧)

𝐿𝐵∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
𝐿𝐵𝑖

𝑘 Average lower bound over all (𝑖; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑘 ∈ 𝑆𝑃)

ℎ∗,∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
ℎ𝑖,𝑗

𝑘 Average best solution found over all (𝑖; 𝑗; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧; 𝑘 ∈ 𝑆𝑃)

𝑡𝑡∗,∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑡𝑖,𝑗

𝑘 Average total CPU time over all (𝑖; 𝑗; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧; 𝑘 ∈ 𝑆𝑃)

𝑡∗,∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑖,𝑗

𝑘 Average CPU time for all (𝑖; 𝑗; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧; 𝑘 ∈ 𝑆𝑃)

ℎ𝑖
𝑘 Best solution found among all replications, for one (k, i) ∈ (SP,DS)

𝑡𝑡𝑖
𝑘 Total CPU time in seconds coupled with ℎ𝑖

𝑘

𝑡𝑖
𝑘 CPU time in seconds to obtain ℎ𝑖

𝑘

ℎ∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
ℎ𝑖

𝑘 Average of the ℎ𝑖
𝑘over the all datasets 𝑖𝜖𝐷𝑆 and for all k ∈ SP

𝑡𝑡∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
𝑡𝑡𝑖

𝑘 Average of the 𝑡𝑡𝑖
𝑘 over the all datasets 𝑖𝜖𝐷𝑆 and for all k ∈ SP

𝑡∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
𝑡𝑖

𝑘 Average of the 𝑡𝑖
𝑘 over the all datasets 𝑖𝜖𝐷𝑆 and for all k ∈ SP

Table 5a gives the definition of the 12 sets of parameters 𝑆𝑃 = (𝑟, 𝑄, 𝐵), and Table 5b gives

the six dataset definition 𝐷𝑆 = (𝐶, 𝑆). In Table 6, each value is an average value over the 12

sets of parameters (𝑆𝑃 = ⟦1,12⟧), for the six datasets (𝐷𝑆 = ⟦1.6⟧) and over the five

replications for our proposal. Note that in Table 6, Table 7 and Table 8, the values reported by

Geismar et al. (2008), Karaoğlan et al. (2017), and for our proposal are rounded off to the

nearest integer value to ensure a fair comparative study.

Submitted to IJPR

 20

Table 5. Instances characteristics

a. Definition of the 12 sets of parameters (SP).

SP r Q B

1 1 300 300

2 2 300 300

3 3 300 300

4 1 300 600

5 2 300 600

6 3 300 600

7 1 600 300

8 2 600 300

9 3 600 300

10 1 600 600

11 2 600 600

12 3 600 600

b. Definition of the 6 datasets (DS).

DS C S

1 40 200

2 40 300

3 40 400

4 50 200

5 50 300

6 50 400

The genetic algorithm of Geismar et al. (2008) has an average time of 169 seconds, while

the average computing time of our method is 141 seconds (average time scale of Table 6). The

average computing time of the branch-and-cut of Karaoğlan et al. (2017) is significantly larger,

with approximately 3249 seconds.

Table 6. Average results on the instances of Geismar et al. (2008) with five replications.

 𝐿𝐵∗
∗

(Geismar et

al., 2008)

(Karaoğlan et

al., 2017)

Our proposal

ℎ∗,∗
∗ 𝑡𝑡∗,∗

∗ 𝑡∗,∗
∗ ℎ∗,∗

∗ 𝑡𝑡∗,∗
∗ 𝑡∗,∗

∗ ℎ∗,∗
∗ 𝑡𝑡∗,∗

∗ 𝑡∗,∗
∗ ℎ∗

∗ 𝑡𝑡∗
∗ 𝑡∗

∗

Avg. 5383 8045 7891 7884 7876

Avg.time 169 N/A 2708 N/A 82.7 40.7 81.1 42.7

Avg. time

scale
 169 N/A

3249 N/A 141 69

138 73

Nb. Opt 16/72 13/72 16/72 18/72

Our method provides an average value ℎ∗,∗
∗ of about 7884, which is better than Geismar et al.

(2008) (average value of approximately 8045) and Karaoğlan et al. (2017) (average value of

approximately 7891). The analysis of the full solution set (available on the Web page) makes it

possible to confirm that the GRASP×ELS provides better solutions in 31 instances, equal

solutions in 35 instances and worse solutions in only six instances. In general, when the

solutions are improved, they are improved by approximately 4.7%, whereas when they are

worsened, they are worsened by approximately 0.04%.

Table 7. Average results on the instances of Geismar et al. (2008).

k ∈ SP 𝐿𝐵∗
𝑘

(Geismar et al., 2008) (Karaoğlan et al., 2017) Our proposal

ℎ∗,∗
𝑘 %Gap ℎ∗,∗

𝑘 %Gap ℎ∗,∗
𝑘 %Gap

1 8781 10040 12.5 10049 12.6 10039 12.5

2 4412 9157 51.8 9179 51.9 9148 51.7

3 2956 9125 67.6 9153 67.7 9118 67.5

4 8781 10041 12.5 10048 12.6 10026 12.4

5 4412 9171 51.9 9180 51.9 9151 51.7

6 2956 9153 67.7 9152 67.7 9122 67.6

7 8781 8781 0.0 8782 0.0 8782 0.0

8 4412 5744 23.1 5346 17.5 5347 17.5

9 2956 5421 45.4 4887 39.5 4919 39.9

10 8781 8781 0.0 8782 0.0 8781 0.0

11 4412 5724 22.9 5276 16.4 5300 16.7

12 2956 5403 45.2 4861 39.2 4875 39.3

Avg. 5383 8045 33.4 7891 31.4 7884 31.4

Nb. Opt 16/72 13/72 16/72

The efficiency of the GRASP×ELS algorithm is more significant for the instances in which

𝑄 = 600 (𝑆𝑃 from 7 to 12) particularly for instances with the sets of parameters 𝑆𝑃 = 9 and

Submitted to IJPR

 21

𝑆𝑃 = 12 that have a high production rate (Table 7). For instances from 𝑆𝑃 = 7 to 𝑆𝑃 = 12,

the transportation time dominates the production time, as underlined by Geismar et al. (2008).

Therefore, improvements on routing phase lead to better results for these instances. In Table 7,

with 𝑆𝑃 = 12, the gap has been significantly reduced from 45.2% (Geismar et al., 2008) to

39.3% for our proposal. With the method used by Karaoğlan et al. (2017), the gap has also been

reduced to 39.2%.

For the PTSP, our method provides 18 optimal solutions vs. 16 optimal solutions for the

dedicated method of Geismar et al. (2008), as illustrated in Table 7. The method also

outperforms the method of Karaoğlan et al. (2017), providing 18 solutions that reached the

lower bound vs. 13 solutions for Karaoğlan et al. (2017).

5 Computational evaluation for the PTSPm

5.1 Benchmarks for the PTSPm

The instances of Geismar et al. (2008) are extended to tackle up to six vehicles and to evaluate

the impact of routing with regard to the scheduling solutions (Table 8). It can be observed that

by increasing the number of vehicles from one to two, the average makespan for all the

instances is reduced from 25% (decreasing from 7,884 to 5,820) and then decreased by 6%

(from 5,820 to 5,478) when increasing the number of vehicles from two to three.

Table 8. Average results with the GRASP×ELS for the PTSPm.

After intensive numerical experiments, we found that a fleet of six vehicles is sufficient to

reach the lower bound of each instance with the strongest constraints, 𝑟 ∈ {1,2,3}, 𝑄 = 300 and

𝐵 = 300. The instances of Geismar et al. (2008) and the details of our solutions are available

on the Web page. A careful analysis of the ratio between the average customer demand and the

vehicle capacity remains constant (approximately 0.3) for all instances. Consequently, the

average number of customers per sub-trip remains quite low (approximately two on average).

5.2 Proposal of new large-scale instances with multiple vehicles

A new set of instances with a broad range of parameters is defined considering:

 customer distribution to model both urban areas and rural surroundings;

 random depot node location (centered, peripheral location, etc.);

 large vehicle capacities and, consequently, larger sub-trips.

k ∈ SP 𝐿𝐵∗
𝑘

2 vehicles 3 vehicles 4 vehicles 5 vehicles 6 vehicles

ℎ∗,∗
𝑘 𝑡𝑡∗,∗

𝑘 𝑡∗,∗
𝑘 ℎ∗,∗

𝑘 𝑡𝑡∗,∗
𝑘 𝑡∗,∗

𝑘 ℎ∗,∗
𝑘 𝑡𝑡∗,∗

𝑘 𝑡∗,∗
𝑘 ℎ∗,∗

𝑘 𝑡𝑡∗,∗
𝑘 𝑡∗,∗

𝑘 ℎ∗,∗
𝑘 𝑡𝑡∗,∗

𝑘 𝑡∗,∗
𝑘

1 8781 8781 0 0 8781 0 0 8781 0 0 8781 0 0 8781 1 1

2 4412 5114 38 17 4452 23 10 4412 6 3 4412 1 1 4412 2 2

3 2956 4658 51 25 3461 41 19 3061 37 22 2968 30 15 2956 16 14

4 8781 8781 1 1 8781 1 1 8781 1 1 8781 1 1 8781 1 1

5 4412 5116 40 22 4435 27 8 4412 2 2 4412 2 2 4412 3 3

6 2956 4674 53 21 3467 46 20 3059 32 18 2969 36 15 2956 6 6

7 8781 8781 3 3 8781 2 2 8781 2 2 8781 2 2 8781 2 2

8 4412 4426 70 41 4419 50 28 4413 49 31 4412 44 25 4412 47 39

9 2956 3175 142 86 2988 131 56 2973 103 54 2968 106 51 2968 108 58

10 8781 8781 2 2 8781 1 1 8781 1 1 8781 1 1 8781 1 1

11 4412 4422 54 23 4412 52 39 4414 57 27 4414 61 28 4414 62 29

12 2956 3137 151 93 2979 123 41 2969 115 52 2968 133 66 2969 136 49

Avg. 5383 5820 5478 5403 5387 5385

Avg.time 50 28 41 19 34 18 35 17 32 17

Nb. Opt 41/72 53/72 63/72 63/72 66/72

Submitted to IJPR

 22

Each instance is characterised by:

 the number of customers that follows a discrete uniform distribution 𝑈(50,100) for the large

instances or 𝑈(100,200) for the very large instances;

 an interest area that contains all the customers and the plant. The length X and the width Y

of this area can vary between 100 and 500, which represents 25 possibilities (100 × 100,

100 × 200, …, 500 × 400 and 500 × 500). This area is centered in (0,0) and divided into

four sectors [−𝑋, 0] × [0, 𝑌], [0, 𝑋] × [0, 𝑌], [0, 𝑋] × [−𝑌, 0] and [−𝑋, 0] × [−𝑌, 0];
 the number of customer centers 𝑐 = {1,2,3}.

Moreover, the following parameters are necessary to define an instance:

 the capacity of the trucks is equal to 1000;

 the demand of each customer 𝑖, 𝑑𝑖 = {50, 100, 200, 300, 500} with the associated

probabilities {0.1, 0.2, 0.4, 0.2, 0.1};

 the position of each customer is uniformly distributed in one customer center;

 the position of each customer center is randomly selected among the sector centers with a

variation of ±10%;

 the size of each customer centre is equal to the minimal distance between the customer centre

and the edge of the interest area with a variation of ±20%;

 the position of the depot has a probability of 0.7 to be in the centre of one sector centres with

a variation of ±10%, and 0.3 to be centred in the interest area with a variation of ±10%.

With all these parameters, we have 150 instances. An instance is caracterised by a triplet

(𝑥, 𝑧, 𝑐) with: 𝑥 ∈ {𝐿, 𝑉𝐿} to indicate if the size of the instance is large 𝐿 or very lage 𝑉𝐿, 𝑧 ∈
⟦1,25⟧ to define the size of the interest area, and 𝑐 = {1,2,3} to give the number of customer

centres.

5.3 Computational results on the new instances

Five replications are achieved for each instance and Tables 9 gives the average of the best

solutions found over the five replications and on the three customers centers (column ℎ∗,∗
) with

the average total CPU time (column 𝑡𝑡∗,∗
) and the average time required to find the best solution

(column 𝑡∗,∗
). Note that the lower bound (𝐿𝐵∗

 column) refers to the lower bound introduced in

Section 3.6. The parameter setting remains identical for all instances and was obtained after

preliminary experiments:

 np/ne Number of GRASP/ELS/ neighbourhood iterations 50/10/5

 lr/ns Number of local searches on the routing/scheduling 40/500

 NBmax Maximal number of labels per node 5

The GRASP×ELS on the (𝐿,∗,∗) instances has an average time ranging from 1.13 to 0.1

seconds, depending on the number of vehicles, whereas the average computing time on the

(𝑉𝐿,∗,∗) instances is equal to 6.63 seconds for one vehicle and 0.86 seconds for two vehicles

(Tables 9a and 9b). The computing time has thus been multiplied by six between the large and

the very large instances. Moreover, on average, the gap between our results and the lower bound

is very small, with 0.09% on large instances and 0.03% on very large instances for one vehicle.

With two vehicles, the gap between our results and the lower bound is even smaller, with

0.005% on large instances and 0.003% on very large instances

The analysis of trips makes it possible to prove that the trip design is linked to the sub-graph

defined by the densities of nodes, referred to as customer centres. All the trips and a graphical

representation for instance 1 are available on the Web site.

Submitted to IJPR

 23

Table 9. Results on the large and very large-scale instances with one or two vehicle.

a. Large instances (𝑳,∗,∗)

 1 vehicle 2 vehicles

Inst. LB∗
̅̅ ̅̅ ̅ ℎ∗,∗

 𝑡𝑡∗,∗
 𝑡∗,∗

 ℎ∗,∗
 𝑡𝑡∗,∗

 𝑡∗,∗

(L,1,∗) 15119 15119 0.01 0.00 15119 0.00 0.00

(L,2,∗) 17572 17572 0.00 0.00 17572 0.01 0.00

(L,3,∗) 15929 15929 0.01 0.01 15929 0.00 0.00

(L,4,∗) 12396 12437 3.63 0.03 12396 0.00 0.00

(L,5,∗) 17458 17459 2.06 0.01 17458 0.00 0.00

(L,6,∗) 15173 15173 0.01 0.00 15173 0.00 0.00

(L,7,∗) 15985 15985 0.00 0.00 15985 0.00 0.00

(L,8,∗) 15851 15857 1.57 0.00 15851 0.00 0.00

(L,9,∗) 19815 19815 0.01 0.00 19815 0.00 0.00

(L,10,∗) 16333 16346 3.36 0.04 16333 0.00 0.00

(L,11,∗) 17774 17774 0.00 0.00 17774 0.00 0.00

(L,12,∗) 15607 15608 1.32 0.03 15607 0.01 0.00

(L,13,∗) 15235 15331 2.53 0.28 15235 0.03 0.03

(L,14,∗) 13497 13501 1.28 0.00 13497 0.01 0.00

(L,15,∗) 15425 15431 1.16 0.01 15425 0.01 0.00

(L,16,∗) 13687 13688 1.04 0.00 13687 0.00 0.00

(L,17,∗) 14273 14273 0.06 0.06 14273 0.00 0.00

(L,18,∗) 14449 14452 1.30 0.00 14449 0.00 0.00

(L,19,∗) 16579 16579 0.00 0.00 16579 0.01 0.01

(L,20,∗) 14415 14442 2.32 0.20 14415 0.00 0.00

(L,21,∗) 17012 17012 0.00 0.00 17012 0.00 0.00

(L,22,∗) 16300 16312 1.66 0.33 16300 0.01 0.00

(L,23,∗) 14421 14530 1.48 0.00 14439 2.48 0.06

(L,24,∗) 17364 17364 0.00 0.00 17364 0.01 0.00

(L,25,∗) 14167 14188 3.33 0.74 14167 0.01 0.00

Avg. 15673 15687 15674 0.10 0.00

Gap LB 0.09% 0.005%

Avg.time 1.13 0.07 0.10 0.00

Nb. Opt 55/75 74/75

b. Very large instances (𝑽𝑳,∗,∗)

 1 vehicle 2 vehicles

Inst. LB∗
̅̅ ̅̅ ̅ ℎ∗,∗

 𝑡𝑡∗,∗
 𝑡∗,∗

 ℎ∗,∗
 𝑡𝑡∗,∗

 𝑡∗,∗

(VL,1,∗) 27859 27859 0.02 0.01 27859 0.02 0.01

(VL,2,∗) 30401 30401 0.02 0.01 30401 0.02 0.01

(VL,3,∗) 37341 37341 0.03 0.03 37341 0.03 0.03

(VL,4,∗) 34229 34229 0.03 0.02 34229 0.02 0.01

(VL,5,∗) 23003 23069 8.64 6.57 23018 8.51 0.02

(VL,6,∗) 34625 34625 0.02 0.02 34625 0.02 0.02

(VL,7,∗) 34923 34923 0.03 0.02 34923 0.02 0.02

(VL,8,∗) 32175 32175 0.02 0.02 32175 0.02 0.02

(VL,9,∗) 35041 35046 13.59 0.02 35041 0.03 0.02

(VL,10,∗) 34739 34751 27.00 0.03 34739 0.02 0.02

(VL,11,∗) 31357 31357 0.02 0.02 31357 0.02 0.02

(VL,12,∗) 32843 32843 0.03 0.02 32843 0.02 0.02

(VL,13,∗) 34371 34371 0.02 0.02 34371 0.02 0.02

(VL,14,∗) 32165 32179 32.41 0.02 32165 0.02 0.02

(VL,15,∗) 31361 31361 8.27 0.34 31361 0.02 0.02

(VL,16,∗) 30529 30529 0.02 0.02 30529 0.02 0.02

(VL,17,∗) 30507 30507 0.02 0.01 30507 0.02 0.01

(VL,18,∗) 35015 35015 0.03 0.02 35015 0.03 0.02

(VL,19,∗) 33901 33901 0.02 0.02 33901 0.02 0.02

(VL,20,∗) 29647 29651 6.95 0.58 29647 0.02 0.02

(VL,21,∗) 35893 35893 0.03 0.03 35893 0.03 0.02

(VL,22,∗) 33157 33175 24.80 0.29 33157 0.02 0.02

(VL,23,∗) 31203 31229 11.92 0.02 31203 0.02 0.02

(VL,24,∗) 32379 32385 8.58 1.26 32379 0.02 0.02

(VL,25,∗) 33524 33576 23.19 11.86 33531 12.60 0.28

Avg. 32487 32496 32488

Gap LB 0.03% 0.003%

Avg.time 6.63 0.85 0.86 0.03

Nb. Opt 60/75 72/75

Submitted to IJPR

 24

6 Concluding remarks

Proper integration of production planning and routing is the key feature in a supply chain

since the coordination of these two functions has a significant impact on the customer service

level. This paper addresses the PTSP with multiple vehicles (PTSPm) in order to extend the

PTSP with a single vehicle in Geismar et al. (2008) and can be efficiently used to compute

coordinated solution in supply chain. This approach proves it is possible to solve the two

problems in a coordinate way and permits to obtain better solution than classical approach

where the two problems are solved sequentially.

The framework we propose takes advantage of an indirect representation of the solutions

using a split-based approach with search space alternation between TSP solutions, VRP

solutions and PTSPm solutions. This indirect approach is one of the key features of the

proposal. The framework efficiency leads to a special disjunctive graph for the trips and two

kinds of disjunctive arcs due to a single production facility and the vehicles. The method has

proven to be efficient in the one-vehicle instances, providing better solutions than Geismar et

al. (2008) and Karaoğlan et al. (2017), with shorter computation times. The method also

generates new solutions for the multi-vehicle extension. In order to ensure fair comparative

studies, a new set of instances has been introduced.

Our research is now directed towards a bi-objective resolution where a second criterion could

be introduced for the quality of service, which could be defined as the delay between the arrival

time of one vehicle at a customer node and the upper bound of the time window. This second

criterion should be relevant for the quality of service, provided that there is a large enough

difference between the delivery date and the expiration date for customer products modelled by

the perishability constraint.

Acknowledgements: This work was carried out and funded within the framework of the

ATHENA project (Ref.: ANR-13-BS02-0006) and Labex MS2T. It was supported by the

French government through the “Investments for the Future" program managed by the French

National Research Agency (Ref.: ANR-11-IDEX-0004-02).

References:

Armstrong R, Gao S, Lei L. (2008). A zero-inventory production and distribution problem with a fixed

customer sequence, Annals of Operations Research, 159(1): 395-414.

Beasley J.E. (1983). Route-first cluster-second methods for vehicle routing, Omega; 11: 403-408.

Belo-Filho M.A.F, Amorim P, Almada-Lobo B. (2015). An adaptive large neighbourhood search for the

operational integrated production and distribution problem of perishable products, International

Journal of Production Research, 53(20), 6040-6058.

Bierwirth C. (1995). A generalized permutation approach to job-shop scheduling with genetic

algorithms, OR Spektrum; 17: 87-92.

Chen Z.L. (2010). Integrated Production and Outbound Distribution Scheduling: Review and

Extensions, Operations Research, 58(1): 130-148.

Cheng R, Gen M, Tsujimura Y. (1996). A tutorial survey of job-shop scheduling problems using genetic

algorithms – I representation Computers and industrial engineering; 30: 983-997.

Desrochers M. (1988). An Algorithm for the Shortest Path Problem with Resource Constraints. Research

Report G-88 127; GERAD, Montreal, Canada.

Devapriya P, Ferrell W, Geismar H.N. (2006). Optimal fleet size of an integrated production and

distribution scheduling problem for a perishable product, IIE Annual Conference and Exposition,

Orlando, Florida.

Devapriya P, Ferrell W, Geismar H.N. (2017). Integrated production and distribution scheduling with a

perishable product, European Journal of Operational Research, 259(3); 906-916.

Dongarra J. (2014). Performance of various computers using standard linear equations software. Report

CS-89-85, University of Manchester.

Submitted to IJPR

 25

Duhamel C, Lacomme P, Prodhon C. (2012). A hybrid evolutionary local search with depth first search

split procedure for the heterogeneous vehicle routing problems, Engineering Applications of

Artificial Intelligence, 25(2): 345-358.

Feo T.A, Resende M.G.C. (1995). Greedy Randomized Adaptive Search Procedures, Journal of Global

Optimization, 6(2): 109-133.

Fondrevelle J, Oulamara A, Portmann M-C. (2004). Permutation Flowshop Scheduling Problems with

Maximal and Minimal Time Lags. Computers & Operations Research, Elsevier, 33(6):1540-1556.

Geismar H.N, Laporte G, Lei L, Sriskandarajah C. (2008). The Integrated Production and Transportation

Scheduling problem for a Product with a Short Lifespan, INFORMS Journal on Computing, 20(1):

21-33.

Gilmore P, Gomory R. (1964). Sequencing a one-state variable machine: A solvable case of the traveling

salesman problem. Operations Research, 12:655-679.

Grabowski J, Nowicki E, Zdrzalka S. (1986). A block approach for single machine scheduling with

release dates and due dates. European Journal of Operational Research, 26: 278-285.

Jackson R. (1955). Scheduling a production line to minimize maximum tardiness. Technical Report 43,

Management research project, University of California, Los Angeles.

Johnson S.M. (1954). Optimal Two and Three Stage Production Schedules with Set-Up Times,

Included, Naval Research Logistics, 1(1), 61-68.

Karaoğlan I, Erhan Kesen S. (2017). The coordinated production and transportation scheduling problem

with a time-sensitive product: a branch-and-cut algorithm, International Journal of Production

Research, 55(2); 536-557.

Lacomme P, Prins C, Ramdane-Chérif W. (2001). Competitive Memetic Algorithms for the Capacitated

Arc Routing Problem and its Extensions. Lecture Notes in Computer Science; 2037: 473-483.

Lourenço H, Martin O, Stützle T. (2003). Iterated local search, Handbook of Metaheuristics; 321-353.

Moons S., K. Ramazkezrs, A. Caris and Y. Arda. Integrated production scheduling and vehicle routing

decisions at the operational decision level: A review and discussion. Computers and Industrial

Engineering. 2017; 104: 224-245.

Prins C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem.

Computers & Operations Research, 31(12): 1985-2002.

Prins C. (2009). A GRASP × Evolutionary Local Search Hybrid for the Vehicle Routing Problem. Bio-

inspired Algorithms for the Vehicle Routing Problem; 161: 35-53.

Prins C, Lacomme P, Prodhon C. (2014). Order-first split-second methods for vehicle routing problems:

A review. Transportation Research Part C: Emerging Technologies; 40:179-200.

Rivera J.L, Lallmahomed A. (2016). Environmental implications of planned obsolescence and product

lifetime: a literature review, International Journal of Sustainable Engineering, 9(2), 119-129.

Roscoe S, Baker P. (2014). Supply chain segmentation in the sporting goods industry, International

Journal of Logistics: Research and Applications, 17(2), 136-155.

Roy B, Sussmann B. (1964). Les problèmes d’ordonnancement avec contraintes disjonctives; In: Note

DS N°9 bis, SEMA, Paris, France.

Sarmiento A.M, Nagi R. (1999). A review of integrated analysis of production-distribution systems; IIE

Transaction. 31, 1061-1074.

Van Laarhoven P.J.M, Aarts E.H.L, Lenstra J.K. (1992). Jobshop scheduling by simulated annealing.

Operations Research, 40: 113-125.

Wolf S, Merz P. (2007). Evolutionary local search for the super-peer selection problem and the p-hub

median problem, Lecture notes in computer science; 4771: 1-15.

