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 This paper deals with an extension of the integrated production and transportation 

scheduling problem (PTSP) by considering multiple vehicles (PTSPm) for optimisation of 

supply chains. The problem reflects a real concern for industry since production and 

transportation subproblems are commonly addressed independently or sequentially, which 

leads to sub-optimal solutions. The problem includes specific capacity constraints, the short 

lifespan of products and the special case of the single vehicle that has already been studied in 

the literature. A greedy randomised adaptive search procedure (GRASP) with an evolutionary 

local search (ELS) is proposed to solve the instances with a single vehicle as a special case. 

The method has been proven to be more effective than those published and provides shorter 

computational times with new best solutions for the single vehicle case. A new set of instances 

with multiple vehicles is introduced to favour equitable future research. Our study extends 

previous research using an indirect resolution approach and provides an algorithm to solve a 

wide range of one-machine scheduling problems with the proper coordination of single or 

multiple vehicles. 

Keywords: supply chain coordination; transportation; scheduling; vehicle routing 

problem; integration. 

1 Introduction and literature review 

1.1 Introduction to integrated problems 

The Production and Transportation Scheduling Problem (PTSP) modelled a supply chain 

problem with production and transportation where product perishability must be addressed 

(which is common in the food, chemical and pharmaceutical industries). The PTSP is a problem 

where both scheduling and routing must be jointly solved to have a proper coordination between 

the production on a single production facility and the transportation, taking the product lifespan 

into consideration. In this problem, once a lot of products is produced, it must be directly 

transported to various customer sites within its limited lifespan. A solution to a PTSP is 

composed of production operations (starting times have to be computed) and transportation 

operations that define sub-trips (terminology used in the routing community) from the depot 

(production facility) to a set of customers. 

Supply chain management is a cross-functional approach that includes managing the 

movement of raw materials into an organisation, the processing of materials into finished 

products (production), and the movement of finished products out of the organisation and 

toward the end consumers (transport). All these functions (production, storage, transportation) 

can be seen as independent subproblems or can be integrated under one plan in supply chains. 

In the literature, a tremendous amount of research considers the production and transportation 

subproblems successively, and in the vast majority of companies, the scheduling problem is 

                                                 
1 Corresponding author. e-mail addresses: placomme@isima.fr (P. Lacomme); aziz.moukrim@utc.fr (A. Moukrim); 

alain.quilliot@isima.fr (A. Quilliot); marina.vinot@isima.fr (M. Vinot) 

 



Submitted to IJPR 

 2 

solved first and the routing problem is then addressed, although this kind of approach does not 

lead to an optimal solution.  

Production and transportation stages at the planning level are often linked by intermediate 

inventory stages whose management strongly depends on the proper coordination between 

production and transportation as an integrated resolution. Note that integrated production and 

distribution has a significant impact on customer service, favouring product delivery in due 

time. The connection between the production (processing stations) and transportation is a highly 

desirable goal as stressed in numerous publications, including Belo-Filho et al. (2015), with a 

problem with several production facilities and perishable products. 

The integration of production and transportation can be relevant when the products are 

perishable. The product perishability is related to an “expiration date”, which commonly 

appears on product labels to indicate the date from which the quality of the product is no longer 

guaranteed by the manufacturer (Rivera and Lallmahomed, 2015). Roscoe and Baker (2014) 

underline that perishable goods are quite specific and influence the packing, the storage and the 

transportation mode. The management of perishable products is critical for integrating 

production and transportation scheduling in a coordinated manner. 

As stressed by Chen (2010), the integrated production and transportation models at a detailed 

scheduling level are fairly recent and the majority of models attempt to jointly optimise job-by-

job production and transportation by considering the customer service level at the individual 

job level. Integrated production and routing problems are receiving more and more attention, 

and several surveys are available, including Moons (2017), Chen (2010) and Saramiento et al. 

(1999). Let us note that integrated production and transportation problems fall into two 

categories of problems according to Kuhn and Liske (2017): (a) a Production Distribution 

Problem; or (b) a Sourcing Production Problem. A large number of publications consider the 

Production Distribution Problem, i.e., problems where the production is completed first and the 

products are distributed afterwards. 

Chen (2010) provides a survey on integrated production and outbound distribution 

scheduling problems and classifies these existing problems into several different classes. These 

problems often have different names: Integrated Production and Outbound Distribution 

Scheduling (IPODS), Integrated Production and Distribution Problem (IPDP) or, in our case, 

Production and Transportation Scheduling Problem (PTSP). In these problems, a solution is 

characterised by a production schedule that plans the date and the location where each demand 

is processed, and a delivery schedule that satisfies the orders in each shipment, the number of 

vehicles and the delivery date. Problems can vary depending on the number of production 

facilities with machine configuration (single-machine, parallel-machine, flow shop, etc.), the 

number of customers, and customers’ characteristics, including delivery time windows and 

deadlines. The number of available vehicles and their capacities may be limited or not. Chen 

(2010) classifies existing IPODS problems into five classes considering individual and 

immediate delivery, batch delivery to a single customer by direct shipping, batch delivery to 

multiple customers by direct shipping, batch delivery to multiple customers by routing, and 

fixed delivery departure dates. 

1.2 Intregrated problem with one production facility and one perishable product  

Perishability naturally occurs in the food, chemical and pharmaceutical industries and its 

management creates several complications in the scheduling of production and transportation. 

Special efforts are required to reduce the waste and cost of the storage and transportation of 

perishable products. Chen (2010) mentions studies on the perishable products with time-

sensitive constraints (Armstrong et al., 2008; Devapriya et al., 2006; Geismar et al., 2008). The 

problems studied in these articles belong to the same class: batch delivery to multiple customers 

with routing. The time-sensitive constraints in these problems are due to industrial chemical 
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compounds that must be delivered within a certain time limit once produced. In the survey of 

Moons (2017) on integrated production scheduling and vehicle routing problems, two studies 

with one perishable product and one production facility are mentionned (Karaoğlan et al., 2017; 

Devapriya et al., 2017). 

Armstrong et al. (2008) study the production and transportation problem with a single 

vehicle and a single production facility. The order in which customers may receive deliveries 

is fixed. Each customer requests a delivery quantity with a time window for receiving it. The 

lifespan of the product begins as soon as the production of a customer’s order is completed. The 

problem then turns into a routing problem, minimising the number of non-serviced customers 

for a subset of customers.  

Devapriya et al. (2006) focus on a problem with one production facility and a large fleet size. 

The lifespan of the perishable products immediately begins when the last order of a batch has 

been completed. The delivery of a batch order therefore begins as soon as the production is 

achieved. The objective is to minimise the total transportation cost, i.e., the cost of delivery 

time and the number of vehicles required to satisfy all the demands.  

 

Table 1. Integrated problem with one production facility and one perishable product. 
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Geismar et al. (2008) ● ● ● ●  ●    ● ●    ●  ●   

Armstrong et al. (2008) ● ● ● ●  ●    ● ● ● ●  ●    ● 

Karaoğlan and Kesen (2017) ● ● ● ●  ●    ● ●    ●  ●   

Devapriya (2006) ● ● ● ●   ● ●  ●     ●   ●  

Devapriya et al. (2017) ● ● ● ●   ●  ● ● ●    ●   ●  

 

Geismar et al. (2008) address a problem (PTSP) with a network of multiple customers, a 

single facility with a constant production rate 𝑟 > 0, and a single vehicle with capacity 𝑄. The 

objective is to minimise the time required to serve all customers, commonly referred to as the 

makespan. Furthermore, due to a product with a lifespan 𝐵, waiting time must be addressed and 

the problem can be considered as a two-machine flow shop with maximal time lags. Let us note 

that in Geismar et al. (2008), the problem focuses on a situation where the lifespan is defined 

by an expiration delay between the end of production and customer delivery. To jointly solve 

the scheduling and routing problem, the authors introduce a genetic and a memetic algorithm 

with the algorithm of Gilmore and Gomory (1964) and several lower bounds. The problem has 

been proved to be NP-hard in the strong sense. 

The problem described by Geismar et al. (2008) was recently solved by Karaoğlan et al. 

(2017) using a branch-and-cut (B&C) algorithm. The algorithm uses several valid inequalities 

taken from the existing literature, and a local search based on a simulated annealing approach 

is used to improve upper bounds. Numerical experiments are achieved on the same instances 

as Geismar et al. (2008) and prove that the B&C is strongly competitive. The objective function 

consists in the minimisation of the makespan (Table 1). 

Recently, Devapriya et al. (2017) addressed an extension (referred to as IPDSP) of the PTSP 

introduced by Geismar et al. (2008) where the fleet size is a decision variable. 
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1.3 Solution representation for scheduling and routing problems 

Geismar et al. (2008) base their approach on an indirect representation of the solutions with 

giant trips. The difficulty of integration is addressed with the dedicated (Gilmore and Gomory, 

1964) algorithm to solve the no-wait flow shop problem and obtain an optimal order of sub-

trips. The final solution is then deduced by relaxing the no-wait constraint, keeping the 

constraints on product perishability. Let us note that for the PTSP addressed by Geismar et al. 

(2008), the solution is composed of one trip with several ordered sub-trips with increasing 

starting times since there is no assignment problem of vehicles to be solved. 

The PTSP with the constraint of perishable products can be modelled as a permutation flow 

shop scheduling problem on two machines with maximal time lags. Fondrevelle et al. (2004) 

prove that this problem is strongly NP-hard even when all the maximal time lags have the same 

positive value. Nevertheless, note that this problem is a mix between the classical and the no-

wait flow shop scheduling problem that can be polynomially solved with the algorithm of 

Johnson (1954) and with the algorithm of Gilmore and Gomory (1964), respectively. The first 

research on the two-machine flow shop problem was proposed by Johnson (1954) who defined 

rules to obtain the optimal schedule. It is commonly accepted that most of the scheduling 

problem-solving approaches take advantage of a modelling based on the disjunctive graph of 

Roy et al. (1964). Numerous authors have introduced approaches for graph generation and 

search space exploration. Bierwirth’s (1995) proposal for the job shop remains within the global 

trend of indirect representation schemes and proves that it is possible to express the machine 

selections as a vector by repetitions that define a topological order of nodes. Similar remarks 

hold for the routing problem that has received a considerable amount of attention in recent 

years. The idea of splitting a giant trip was introduced by Beasley (1983) and was first included 

in a global framework for the routing problem by Lacomme et al. (2001). The total number of 

methods that take advantage of such an approach has strongly increased in recent years (as 

mentioned in the state of the art of Prins et al. (2014)). The second key feature used in routing 

approaches lies in the local search procedure, which is commonly based on a swap within a trip, 

a 2-Opt within a trip, a swap between two trips and a 2-Opt between two trips (see Lacomme 

et al. (2001) and Prins (2004)). 

The remainder of this paper is structured as follows. The following section introduces the 

problem of interest with multiple vehicles. Section 3 presents a GRASP×ELS framework 

designed to address the key features for an integrated resolution. Section 4 provides the 

computational evaluation of the problem by considering a single vehicle. Section 5 illustrates 

the computational evaluation of the problem with multiple vehicles. The last section provides 

some conclusions and avenues for further research. 

2 Problem definition for the PTSPm 

2.1 Definition 

The PTSPm (PTSP with multiple vehicles) is an extension of Geismar et al.’s (2008) proposal 

by taking not just a single but multiple vehicles into consideration and that can be formally 

defined by considering 𝑛 customers and 𝑁 vehicles:  

𝐸  set of customers 

0  production facility located in (𝑥, 𝑦) = (0, 0) 

𝑟  production rate 𝑟 ∈ {1, 2, 3} 

𝐵 lifespan of the product 

𝑉   set of available vehicles, 𝑘 ∈  {1, … , 𝑁} 

𝑄  capacity of the vehicles 

𝑞𝑖  demand of customer 𝑖, 𝑖 ∈  {1, … , 𝑛} 

(𝑥𝑖,  𝑦𝑖) coordinates of location of customer 𝑖, 𝑖 ∈  {1, … , 𝑛} 
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𝜏𝑖,𝑗 transportation time from customer 𝑖 to customer 𝑗; this matrix satisfies the triangle 

inequality 

To solve this problem, three subproblems must be jointly solved: the assignment, the routing 

and the scheduling. When the assignment and the routing problems are solved, the residual 

problem can be modelled as a two-stage hybrid flow shop with maximal time lags where the 

machine in the first stage is the single production facility and where each vehicle defines a 

machine in the second stage. The Johnson (1954) algorithm and the Gilmore and Gomory 

(1964) algorithm can no longer be used to solve the scheduling part of the PTSPm. 

A solution could be composed by a set of jobs 𝐽, with 𝑐𝑎𝑟𝑑(𝐽) = 𝑛𝑗  with 𝑛𝑗 ≤ 𝑛. A job 𝑗 

includes a set of customers to be served and is composed of two operations 𝑂𝑗1 and 𝑂𝑗2
𝑘 . 

Operation 𝑂𝑗1 is a production operation assigned to the production facility, modelling the 

production of the demands of the customers in the job 𝑗. The operation 𝑂𝑗2
𝑘  is a transportation 

operation assigned to the vehicle 𝑘, modelling the sub-trip that makes it possible to deliver the 

demands of the customers in job 𝑗 from the production facility, also referred to as the depot. 

The trip of vehicle 𝑘 is defined by a sequence of all the transport operations (sub-trips) assigned 

to vehicle 𝑘. The following constraints must hold:  

 each transportation operation begins and ends at the production facility, also referred to as 

the depot or depot node, depending on the routing terminology; 

 the order of the production operations and of the transportation operations should be identical 

for a given vehicle between two jobs; 

 a vehicle achieves at most one trip; 

 all customers of a sub-trip 𝑂𝑖2
𝑘  must be served within 𝐵 time units after the end of the 

production operation 𝑂𝑖1; 

 the total demands in a sub-trip 𝑂𝑖2
𝑘

 cannot exceed the vehicle capacity ∑ 𝑞𝑗𝑗∈𝑂𝑖2
𝑘 ≤ 𝑄;  

 deliveries must not be split (each customer must be delivered only once). 

The following notations are used to caracterise a solution: 

𝐶𝑗 set of customers included in job 𝑗 

𝑂𝑗1 production operation of job 𝑗 

𝑂𝑗2
𝑘  transportation operation of job 𝑗 assigned to vehicle 𝑘 

𝑝𝑗1 
 duration of the production operation of job 𝑗 

𝑝𝑗2 
 duration of the transportation operation of job 𝑗 

𝑝𝑗2
′

 
 duration of the transportation operation of job 𝑗 without the empty transport to the depot 

𝑠𝑗1 starting time of the production operation of job 𝑗 

𝑠𝑗2 starting time of the transportation operation of job 𝑗 

𝑓𝑗1 finishing time of the production operation of job 𝑗 

𝑓𝑗2 finishing time of the transportation operation of job 𝑗 

Figure 1 represents a solution of a PTSPm with two vehicles and five customers. In this 

solution, the customers are divided into three groups to define three jobs: 

 the first job (with the operations 𝑂11 and 𝑂12
1 ) includes customers 1 and 2; 

 the second job (with the operations 𝑂21 and 𝑂22
2 ) contains customer 3; 

 the third job (with the operations 𝑂31 and 𝑂32
1 ) includes customers 4 and 5; 

The trip of vehicle 1 is composed of two transportation operations (𝑂12
1  and 𝑂32

1 ) and the trip 

of vehicle 2 is composed of one transportation operation 𝑂22
2 . The solution presented on the 

Gantt chart uses the following values for the demands of the customers, 𝑞1 = 1, 𝑞2 = 1, 𝑞3 =
6, 𝑞4 = 1, 𝑞5 = 3, and the transportation times are equal to 𝜏0,1 = 𝜏2,0 = 𝜏0,4 = 𝜏4,5 = 3, 
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𝜏1,2 = 𝜏0,3 = 2 and 𝜏5,0 = 1. For the first job, the duration of the production operation 𝑝1 = 2 

time units since the production rate 𝑟 = 1 and 𝑞1 = 𝑞2 = 1, and the duration of the 

transportation operation 𝑡1 = 8 time units since 𝜏0,1 + 𝜏1,2 + 𝜏2,0 = 8. The lifespan of the 

product is repected: 𝑓𝑗2 − 𝑓11 − 𝜏2,0 = 10 − 2 − 3 = 5 ≤ 𝐵 = 7. 

Let us note that τx,y in this problem denotes a transportation time between customer x and 

customer y that can be precomputed by considering either the minimal distance traveled by the 

vehicle between customers or the minimal time necessary to travel between two customers that 

are equal since the speed factor for the vehicles is equal to one. The jobs have to be defined and 

ordered in order to minimise the makespan 𝐶𝑚𝑎𝑥, i.e., the arrival time of the last vehicle at the 

depot. 

p11 = (q1 + q2)/r 

p12 = τ0,1 + τ1,2 + τ2,0 

p21 = q3/r

p22 = τ0,3 + τ3,0

p31 = (q4 + q5)/r 

p32 = τ0,4 + τ4,5 + τ5,0 

Numerical example with: 

Q = 10, B = 7 and r = 1 

1

2

3

4

5

0

q1

q2
q4

q5

τ0,1

τ2,0

τ1,2
τ0,4

τ4,5

τ3,0

τ5,0

τ0,3

Delivey

Delivery

Delivery
Delivery

Delivery

Vehicle 1 Vehicle 1

Vehicle 2

Pickup

Pickup
Pickup

O11 O31

0      2                        8 10        12              Cmax = 19

O21

O12 O32

O22

Depot

Vehicle 1

Vehicle 2

1 1

2

q3

 

Figure 1. Example of one PTSPm solution with five customers and two vehicles. 

2.2 Linear formulation of the PTSPm 

The combined production scheduling and vehicle routing problem is formulated as a mixed 

integer linear programming model based on five binary variables (𝑦𝑏𝑖
 , ℎ𝑏

 , 𝑥𝑖𝑗
𝑏 , 𝑧𝑏𝑐

 , 𝑎𝑏𝑘
 ) and 

seven integer variables (𝑠𝑏1, 𝑠𝑏2,𝑝𝑏1, 𝑝𝑏2, 𝑝𝑏2
′ , 𝑞𝑖

−, 𝐶𝑚𝑎𝑥). The binary decision variables are 

related to the disjunctions between operations and the integer variables are related to the starting 

and finishing times or duration of the operations. 

Notations for the binary variables: 

𝑦𝑏𝑖
 = {

1
0

 if customer 𝑖 is in job 𝑏 

otherwise 
𝑖 ∈ 𝐸 

𝑏 ∈ 𝐽 

ℎ𝑏
 = {

1 
0 

 if job 𝑏 is composed of at least one customer 

otherwise 
𝑏 ∈ 𝐽 
 

𝑥𝑖𝑗
𝑏 = {

1 
0 

 if customer 𝑖 is serviced immediately before customer 𝑗 in job 𝑏 

otherwise 
(𝑖, 𝑗) ∈ 𝐸2 

𝑏 ∈ 𝐽 

𝑧𝑏𝑐
 = {

1
0 

 if job 𝑏 is scheduled before job c 

otherwise 
(𝑏, 𝑐) ∈ 𝐽2 

 

𝑎𝑏𝑘
 = {

1
0 

 if job 𝑏 is assigned to vehicle 𝑘 

otherwise 
𝑏 ∈ 𝐽 

𝑘 ∈ 𝑉 
 

Job assignment requirement: this set of constraints ensures that one customer is assigned to 

one and only one job. 

∀𝑖 ∈ 𝐸 ∑ 𝑦𝑏𝑖𝑏∈𝐽 = 1   (1) 
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Vehicle capacity requirements: this constraint ensures that the customers assigned to a job can 

be serviced by one vehicle considering the total amount of demands of customers. 

∀𝑏 ∈ 𝐽 ∑ 𝑦𝑏𝑖𝑖∈𝐸 . 𝑞𝑖 ≤ 𝐶   (2) 

Job definition: this constraint ensures that if job 𝑏 encompasses no customer (ℎ𝑏 = 0), no 

customer is assigned to the job (𝑦𝑏𝑖 = 0) 

∀𝑏 ∈ 𝐽, ∀𝑖 ∈ 𝐸 𝑦𝑏𝑖  ≤ ℎ𝑏  (3) 

Job duration for the production: this constraint defines the job processing time 𝑝𝑏 on the 

production considering the set of customers assigned to the job. If customer 𝑖 is assigned to job 

𝑏, then 𝑦𝑏𝑖 = 1 and ∑ 𝑞𝑖. 𝑟𝑖∈𝐸  is the sum of 𝑞𝑖 moderated with the production rate 𝑟. 

∀𝑏 ∈ 𝐽 𝑝𝑏 = ∑ 𝑦𝑏𝑖𝑖∈𝐸 . 𝑞𝑖. 𝑟  (4) 

Vehicle assignment to one vehicle:  this constraint ensures that if job 𝑏 is used (there are one 

or several customers assigned to 𝑏), i..e., ℎ𝑏 = 1, then one variable 𝑎𝑏𝑘 is assigned to 1, i.e., 

one vehicle 𝑘 is assigned to job 𝑏. 

∀𝑏 ∈ 𝐽 ℎ𝑏 = ∑ 𝑎𝑏𝑘𝑘∈𝑉    (5) 

Customer order in the jobs: this set of constraints ensures that each customer has a single 

predecessor and a single successor  

∀𝑗 ∈ 𝐸 
∑ ∑ 𝑥𝑖𝑗

𝑏
𝑖∈𝐸∪{0}

𝑖≠𝑗
𝑏∈𝐽 = 1   (6) 

∀𝑖 ∈ 𝐸 
∑ ∑ 𝑥𝑖𝑗

𝑏
𝑗∈𝐸∪{0}

𝑗≠𝑖
𝑏∈𝐽 = 1   (7) 

Depot definition: this constraint ensures that if job 𝑏 encompasses at least one customer 

(ℎ𝑏 = 1), the sub-trip starts and ends at the depot. 

∀𝑏 ∈ 𝐽 ℎ𝑏 = ∑ 𝑥0𝑗
𝑏

𝑗∈𝐸    (8) 

∀𝑏 ∈ 𝐽 ℎ𝑏 = ∑ 𝑥𝑖0
𝑏

𝑖∈𝐸    (9) 

Customer assignment to a job: this constraint ensures that if a customer 𝑖 is assigned to job 𝑏 

(𝑦𝑏𝑖 = 1), then customer 𝑖 has one predecessor, i. e., ∃𝑗/𝑥𝑖𝑗
𝑏 = 1. Similar remarks hold for 

constraint 13, considering the successor. 

∀𝑖 ∈ 𝐸, ∀𝑏 ∈ 𝐽 𝑦𝑏𝑖 = ∑ 𝑥𝑖𝑗
𝑏

𝑗∈𝐸∪{0}
𝑗≠𝑖

  (10) 

∀𝑖 ∈ 𝐸, ∀𝑏 ∈ 𝐽 𝑦𝑏𝑖 = ∑ 𝑥𝑗𝑖
𝑏

𝑗∈𝐸∪{0}
𝑗≠𝑖

   (11) 

Sub-trip eliminations: these constraints are the Miller-Tucker-Zemlin (MTZ) constraints. This 

constraint uses 𝑞𝑗
−, referred to as the total amount of products remaining in the vehicle after 

servicing customer 𝑗. 

∀𝑏 ∈ 𝐽, ∀(𝑖, 𝑗) ∈ 𝐸2, 𝑖 ≠ 𝑗 𝑞𝑗
− − 𝑞𝑖

− + 𝑥𝑖𝑗
𝑏 . 𝐶 ≤ 𝐶 − 𝑞𝑗

   (12) 

∀𝑏 ∈ 𝐽, ∀(𝑖, 𝑗) ∈ 𝐸2, 𝑖 ≠ 𝑗 𝑞𝑖
− ≤ 𝐶 − 𝑞𝑖

  (13) 

Job duration for transport: this constraint defines the sub-trip duration to service all customers 

assigned to job 𝑏 

∀𝑏 ∈ 𝐽 𝑝𝑏2 = ∑ ∑ 𝑥𝑖𝑗
𝑏

𝑗∈𝐸∪{0}
𝑗≠𝑖

. 𝜏𝑖𝑗𝑖∈𝐸∪{0}   (14) 

Job duration for transport: this constraint defines the trip duration to service all customers 

assigned to job 𝑏 not considering the empty transport from the last customer to the depot. 

∀𝑏 ∈ 𝐽 𝑝𝑏2
′ = 𝑝𝑏2 − ∑ 𝑥𝑖0

𝑏 . 𝜏𝑖0𝑖∈𝐸   (15) 

Disjunctive constraints at the production end: this constraint ensures that the production 

operation of job 𝑐 and the production operation of job 𝑑 cannot be performed at the same time 

at the production facility. 

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑏1 + 𝑝𝑏1 ≤ 𝑠𝑐1 + (1 − 𝑧𝑏𝑐
 ). 𝐻  (16) 

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑐1 +  𝑝𝑐1 ≤ 𝑠𝑏1 + 𝑧𝑏𝑐
 . 𝐻 (17) 
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If 𝑧𝑏𝑐
 = 1 (job 𝑏 is scheduled before job 𝑐), constraint (18) can be rewritten as 𝑠𝑏1 +  𝑝𝑏1 −

𝑠𝑐1 ≤ 0, meaning that 𝑠𝑏1 +  𝑝𝑏1 ≤ 𝑠𝑐1, ensuring that production of 𝑐 on the production facility 

cannot start before the end of the production operation of job 𝑏. If 𝑧𝑏𝑐
 = 0, constraint (18) 

holds, and constraint (19) can be rewritten as 𝑠𝑐1 +  𝑝𝑐1 ≤ 𝑠𝑏1, meaning that job 𝑐 is processed 

first and job 𝑑 second for the production operations. 

Disjunctive constraints for transport:  this constraint ensures that the transport operations of 

two jobs 𝑏 and 𝑐 are not performed at the same time by the same vehicle 𝑘.  

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑏2 + 𝑝𝑏2 ≤ 𝑠𝑐2 + (3 − 𝑧𝑏𝑐
 − 𝑎𝑏𝑘 − 𝑎𝑐𝑘). 𝐻  (18) 

∀(𝑏, 𝑐) ∈ 𝐽2, 𝑐 ≠ 𝑏 𝑠𝑐2 +  𝑝𝑐2 ≤ 𝑠𝑏2 + (2 − 𝑧𝑏𝑐
 + 𝑎𝑏𝑘 + 𝑎𝑐𝑘). 𝐻 (19) 

If 𝑎𝑏𝑘 = 𝑎𝑐𝑘 = 1, this means that the two transport operations are assigned to the same vehicle 

𝑘 and the constraints can be rewritten as: 𝑠𝑏2 + 𝑝𝑏2 ≤ 𝑠𝑐2 + (1 − 𝑧𝑏𝑐
 ). 𝐻 (20) and 𝑠𝑐2 + 𝑝𝑐2 ≤

𝑠𝑏2 + 𝑧𝑏𝑐
 . 𝐻 (21). If either  𝑎𝑏𝑘 or 𝑎𝑐𝑘 are not assigned to 1, the two constraints hold, regardless 

of the value of 𝑧𝑏𝑐
 . 

Precedence constraints per operation: this constraint ensures that the transport operations of 

one job are performed according to the production-operation sequence first, followed by the 

transport-operation sequence. 

Lifespan products: this constraint ensures that the lifespan of the products are addressed. The 

product lifespan defines a maximal delay between the delivery of the last customer of a sub-

trip of a job b, i.e., 𝑠𝑏2 + 𝑝𝑏2
′ , and the finishing time of the production referred to as 𝑠𝑏1 +  𝑝𝑏1: 

the difference is upper bounded by 𝐵. 

∀𝑏 ∈ 𝐽 𝑠𝑏2 + 𝑝𝑏2
′ ≤ 𝑠𝑏1 + 𝑝𝑏1 + 𝐵  (21) 

Makespan. When minimising the makespan, the following constraints should be added to 

define new integer variables. This constraint ensures that 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑏∈𝐽(𝑑𝑏2 + 𝑝𝑏2) 

∀𝑏 ∈ 𝐽 𝑠𝑏2 + 𝑝𝑏2 ≤ 𝐶𝑚𝑎𝑥  (22) 

 

2.3 Modelling 

In the PTSPm, a sub-trip is fully defined by an ordered sequence of operations: (1) starting at 

the depot with a pickup operation; (2) defining an ordered sequence of delivery operations; and 

(3) finishing at the depot. The loading of the vehicle can be represented as a decreasing function 

(see Fig. 2) during each sub-trip. 

Figure 2 gives some details of the solution presented in Fig. 1. Figure 2 represents both the 

vehicle load (on the top) and the proper coordination between production and transportation 

over time, with an explicit modelling of pickup and delivery operations (at the bottom). 

Table 2. Example of solution for the two-vehicle PTSPm. 
 

𝑂11
  

𝑂12
1  

𝑂21
  

𝑂22
2  

𝑂31
  

𝑂32
1  

 0 1 2 0 0 3 0 0 4 5 0 

Starting time 0     2    8     
Time Windows    ]-∞;9]    ]-∞;15]     ]-∞;19]  

Departure time  2 5 7   8 10   12 15 18  

Arrival time   5 7 10   10 12   15 18 19 

Time constraints on sub-trips 

Time dependency only exists between successive sub-trips of the same trip since all sub-

trips of one trip are assigned to the same vehicle. Concerning the trip of vehicle 1 in Fig. 2, the 

previous remark implies that 𝑠32 ≥ 𝑓12. Moreover, the earliest starting time of 𝑂31
  depends on 

the starting time 𝑂21
 , 𝑠31 ≥ 𝑠21 + 𝑝21. For the trip of vehicle 2, the earliest starting time of the 

transportation operation 𝑂22
2  does not depend on the finishing time of 𝑂12

1  (operations in the 

diagonal rectangle in Fig. 2). Vehicle 2 can potentially start the transportation operation 𝑂22
2  

before the transportation operation 𝑂12
1 , as depicted in Fig. 2 and Table 2. Assignment of 

∀𝑏 ∈ 𝐽 𝑠𝑏1 + 𝑝𝑏1 ≤ 𝑠𝑏2   (20) 
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vehicles to sub-trips is a challenging problem that should be solved avoiding extra waiting time 

on the Gantt chart. 

s12

End of trip 1

Time

  

Vehicle 

loading

0

O12

Node 1 Node 3 Node 4 Node 5Node 2
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Figure 2. Example of a two-vehicle workload. 

Conjunctive and disjunctive arcs to link production and transportation with maximal time lags 

The delivery nodes where products are unloaded have a time window constraint that defines 

the maximal arrival time acceptable for the customer, which is correlated to the product 

perishability. The time windows are related to the earliest starting time of the production on the 

facility. They are modelled by maximal time lags that are defined using a negative arc between 

one delivery node and the production node in this special case.  

As shown in Fig. 2, the time window ] − ∞; 𝑦] on node 2, which corresponds to a delivery 

node, means that the maximal duration between 𝑠11 and the arrival time at node 2 must not 

exceed 𝑦 units of time. Similarly, node 3 must be served within a delay of 𝑥 units of time after 

𝑠21. One positive arc gives the minimal delay between the earliest starting time of two 

operations. For example, τ1,2 models a minimal duration required between departure time at 

node 1 and arrival time at node 2. Normally, these so-called conjunctive arcs are valuated with 

the shortest path value between two nodes modelling transport, and with the duration of 

production between two production nodes. Disjunctive arcs are required to define the order of 

sub-trips in a trip. This type of time windows arises: (1) in routing problems including but not 

limited to the Dial-A-Ride Problem where both maximal route duration and maximal customer 

riding time must be taken into account; and (2) in scheduling problems.  

In the Gantt chart in Fig. 1, the first job provides products for customers 1 and 2 for a 

production duration of 𝑝11 = 2 time units, the earliest starting time of 𝑂11 is equal to 0 and 

vehicle 1 is available at time 0. Therefore, on node 1 (Fig. 2), the time window is defined by 

] − ∞; 2 + 𝛿1] and ] − ∞; 2 + 𝛿2] for node 2, where 𝛿𝑖 is the lifespan of products for 

customer 𝑖. The earliest starting time of a transportation operation is the maximal value between 

the finishing time of the previous transportation operation assigned to the same vehicle and the 

finishing time of the production operation. Similar considerations make it possible to define the 

earliest starting time 𝑂22
2  at time 8 with a time window ] − ∞; 8 + 𝛿3] for nodes 3. Because the 

problem being considered is a single product PTSPm, the lifespan is equal for all nodes, i.e., 

𝛿𝑖 = 𝐵, ∀𝑖, implying that all time windows of all delivery nodes of the same sub-trip are 
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identical and equal to ] − ∞; 𝑥 + 𝐵], where 𝑥 is the duration of the production linked to the 

transport. 

 
Figure 3. Sub-trip with maximal time lag simplification. 

The earliest arrival time of a vehicle increases within a sub-trip. Therefore, if an earliest arrival 

time exists for the last delivery operation of the sub-trip that meets the time window constraints, 

all previously scheduled operations with time window constraints will hold. In Fig. 3, sub-trip 

𝐺 with three delivery nodes takes the three maximal time lags modelling the product lifespan 

explicitly into account. For PTSPm with a single product, which consequently defines the same 

lifespan for all customers, a new graph 𝐺′ can be used to model only the time window of the 

last delivery operation of each sub-trip.  

The feature that differentiates this problem from previous ones is the combination of the 

scheduling decisions with the limited product lifespan and the vehicle routing decisions. These 

interdependent decisions lead to the possibility that the product may expire before it reaches a 

customer if an unprofitable scheduling solution is chosen. The objective consists in solving the 

scheduling and routing problem by minimising the makespan to comply with the classical 

objective function introduced by Geismar et al. (2008) and providing a semi-active solution, 

i.e., a left-shifted solution. 

3 A PTSPm resolution based on a GRASP ELS 

This proposal is based on a GRASP×ELS, which introduces a new splitting algorithm for the 

assignment and the routing problem, and a new resolution of the scheduling problem using an 

approach based on a disjunctive graph. The disjunctive graph is specially designed to efficiently 

take the perishability constraint into account using maximal time lags. 

3.1 Key features for a PTSPm resolution 

The key point for the PTSPm resolution is to alternate between solutions encoded by giant trips 

(TSP - Traveling Salesman Problem - permutation list on the 𝑛 customers), set of trips (VRP - 

Vehicle Routing Problem - on the 𝑛 customers) that comply with the ordered set of customers 

defined by the giant trip, and a flow shop resolution by considering jobs linked to the trips 

(PTSPm on the 𝑛 customers). The approach is a combination of three search space 

representations that favour partial enumeration of the whole search space (Fig. 4). 

The iterative search space exploration takes advantage, first, of the indirect representation of 

solutions by using a giant trip. Second, a set of feasible sub-trips minimising the total 

transportation time is computed using a split-based approach on the sequence of customers that 

has been defined by the giant trip. Note that the specific local search for node routing can be 

applied to obtain a high-quality local routing solution.  

The resolution framwork is expressed by the following key features: 

 a local search for routing with 2-Opt or swap within a sub-trip, and 2-Opt or swap between 

two sub-trips, based on classical VRP neighbourhoods; 

 a splitting procedure for proper coordination between production and transportation; 

 a scheduling procedure based on a disjunctive graph with the sub-trips made by the splitting 

procedure; 

 a concatenation procedure to obtain a new giant trip.  
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search space

GT
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t2t1

p1 p3p2

t3

 
Figure 4. The three search spaces to build a PTSPm solution. 

The GRASP×ELS approach is very different from Geismar et al.’s proposal and differs in both 

scope and the resolution scheme that are summarised in Table 3.  

Table 3. GRASP×ELS approach vs. Geismar et al.’s approach 
  (Geismar et 

al., 2008) 
GRASP×ELS 

Scope  PTSP PTSP + PTSPm 

Resolution 

scheme 

Scheduling Gilmore-Gomory Disjunctive graph 

Routing 
Split of the 

classical VRP 

Split with production and 

transport consideration 

Local search 

for scheduling 
/ 

Based on the proposal of 

Laarhoven et al. (1992) and 

Grabowski et al. (1986) 

Local search 

for routing 
2-Opt moves 

Inter/extra trips 2-Opt and swap 

moves 

Solution 

representation 
Chromosome Giant trip 

 

3.2 The GRASP×ELS Principle 

GRASP×ELS is a hybridisation (Prins, 2009) of a GRASP (Greedy Randomised Adaptive 

Search Procedure) (Feo and Resende, 1995), with an ELS (Evolutionary Local Search) (Wolf 

and Merz, 2007; Prins, 2004) that takes advantage of both methods. The multi-start approach 

of the GRASP, which provides 𝑛𝑝 initial solutions, is based on a greedy randomised heuristic, 

and solutions are then improved by a local search procedure. The second metaheuristic can be 

expressed as an extension of the ILS (Iterated Local Search) (Lourenço et al., 2003), referred 

to as ELS and proposed by Wolf and Merz (2007). The solution space investigation is achieved 

by the GRASP that favours diversity, and the intensification phase is devoted to the ELS via a 

proper local search investigation into the local search space. In addition, to combine GRASP 

with ELS, another important feature is the alternation between solution spaces as stressed by 

Prins (2004) and Prins et al. (2014). Converting a PTSPm solution into a giant trip is achieved 

by a concatenation procedure, and the operation converting a giant trip into a VRP solution is 

achieved by a dedicated splitting procedure (Split). 

Algorithm 1 is composed of a loop from line 13 to 36, which iterates on a new starting 

solution for the GRASP. For each initial solution, the procedure 

Generation_of_initial_solution(), using a greedy heuristic creates a new initial 

solution submitted to the Split procedure (line 16) to obtain a routing solution that is improved 

(line 17) by the local search procedure Local_Search_on_Routing(S, nl). Secondly, the 

Scheduling() procedure computes a solution (line 18). If the cost of the solution 𝑆, 𝑓(𝑆) is 

better than the cost of the best PTSPm solution found, 𝑆*, 𝑓* (line 20), 𝑆 becomes the new best 

solution. The while loop from lines 23 to 35 is the ELS and encompasses the loop (lines 25 to 
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32) for neighbourhood generations. According to the common Split approach, the mutation 

operator (line 26) is defined on the giant trip T and not on the solution. 

The random heuristics, referred to as Generation_of_initial_solution(), 

generates initial solutions. This method uses two heuristics to build the initial solution.  

The first one, with a probability of 0.9 is based on a greedy randomised heuristic based on 

a path-scanning-like approach. The first heuristic builds sub-trips one-by-one, starting from the 

depot, and extends each sub-trip customer-by-customer using two criteria: 

 the extension step at node 𝑖 considers that the sub-trip moves to the nearest customer not yet 

served. If vehicle load ≥ 𝑄, the next customer to be served is selected to minimise the 

distance to the depot; 

 the next customer to be served is the customer that minimises the transportation time. 

The second heuristic with a probability of 0.1 classifies the customers by decreasing 

transportation time. 

Algorithm 1. GRASP ELS for the PTSPm 
1.  procedure GRASP ELS 

2.  global parameters 

3.    np: number of GRASP iterations (initial solutions) 

4.    ne: maximal number of iterations per ELS 

5.    nr: maximal number of iterations without improvement per ELS 

6.    nd: number of diversifications (mutations) 

7.    nl: number of local searches on the routing 

8.    ng: number of local searches on the scheduling 

9.  output parameters 

10.   S*: best PTSPm solution found 

11. begin 

12.   f* := ; O := Ø 
13.   for p := 1 to np do                // GRASP loop 

14.     S := call Generation_of_initial_solution () 

15.     T := call Concat (S) 

16.     S := call Split (T) 

17.     S := call Local_Search_on_Routing (S, nl) 

18.     S := call Scheduling (S) 

29.     T := call Concat (S) 

20.     if (f(S) < f*) then f* := f(S); S* := S; // f: the cost of a solution 

21.     endif 

22.     i, r := 0 

23.     while (i < ne) and (r < nr) do   // ELS loop 

24.       i := i + 1; f” :=  
25.       for j := 1 to nd do            // mutation loop 

26.           T’ := call Mutation (T) 

27.           S’ := call Split (T’) 

28.           S’ := call Local_Search_on_Routing (S’, nl) 

29.           S’ := call Scheduling (S’) 

30.           T’ := call Concat (S’) 

31.           if (f(S’) < f”) then f” := f(S’); T” := T’; S” := S’; endif 

32.       endfor 

33.       if (f” < f*) then S*:= S”; endif //  if a new best solution update S*  

34.       T := T”;         // best ELS solution becomes the new initial solution  

35.     endwhile 

36.   endfor 

37. end 

 

The local search on the routing (Local_Search_on_Routing()) is achieved using several 

classical VRP neighbourhood moves to improve the initial solution, namely 2-Opt within a sub-

trip and insertion within a sub-trip. At each iteration, the first improved move is executed but 

requires verification of the sub-trip feasibility by considering the capacity of the vehicles and 

the lifespan. All solutions are converted into a giant trip by random concatenation of their sub-

trips and then evaluated by the Split procedure. The key point for the efficiency of 

GRASP×ELS is to alternate between solutions encoded as giant trips and PTSPm solutions. 
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3.3 Split procedure 

Giant trips are evaluated via the Split procedure that minimises the total trip duration subject to 

the vehicle capacity, as reported by Beasley (1983) and Prins et al. (2014). Split is a key 

procedure used to convert a giant trip into a VRP solution (with respect to the sequence) and it 

is based on the classical Split procedure adjusted to address the specific PTSPm constraints. 

The algorithm provides an efficient solution by building an auxiliary graph 𝐺 = (𝑋, 𝐴), where 

X represents n + 1 nodes numbered from 0 to n. Node 0 is a dummy node, while the nodes 

1 … n correspond to the sequence of the giant trip 𝐺𝑇 = (𝜎1, … , 𝜎𝑛). An arc (𝑖, 𝑗) belongs to A 

if a sub-trip serving customers 𝜎𝑖+1 to σj (inclusive) is both weight-feasible and lifespan-

feasible. An initial label is set at node 0 and the labels are propagated from node to node in G 

using arcs. The best label at node 𝑛 is kept as the best solution.  

The routing problem has a resource constraint since there is a limited number of available 

vehicles, each vehicle defining one specific machine to be scheduled. The Split procedure for 

the PTSPm is an extension of the split introduced for the HVRP (Heterogeneous Vehicle 

Routing Problem) by Duhamel et al. (2012) because there is the earliest finishing time of the 

production to take into account as well as the earliest finishing time of vehicles for the previous 

sub-trip. Computation of the resource-constrained shortest path in the graph is typically 

achieved by a label-correcting algorithm. According to Desrocher (1988), several labels per 

node have to be handled and the key point consists in defining the label structure with the cost 

and the resource availability. The generic Split procedure of Duhamel et al. (2012) is based on 

three key points: 

 a label description based on the resource availability; 

 a dominance rule between labels to improve the running time by keeping only promising 

labels on the node; 

 a propagation rule to define a label from node 𝑖 to node 𝑗 depending on the customer 

sequence (σi+1, … , σj). 

Let 𝐿𝑖
𝑝 = (𝑑𝑃𝑖, 𝑑𝑉1𝑖 , … , 𝑑𝑉𝑁𝑖) be the 𝑝𝑡ℎ label assigned to node 𝑖 when the number of 

vehicles 𝑉 = 𝑁, where Li
p(𝑗) is the earliest finishing time of vehicle 𝑗 for 𝑗 = 2. . 𝑁 + 1 and 

Li
p
(1) is the earliest finishing time of the production. This corresponds to a feasible split of the 

initial customers (𝜎1, … , 𝜎𝑖) into sub-trips, where dPi is the earliest production finishing time 

and dVki is the transportation finishing time for the vehicle 𝑉𝑘. The initial label at node 0 is 

defined as 𝐿0
1 = (0, 0, … , 0). It corresponds to the empty solution where the finishing time is 

equal to 0. Given the arc (𝑖, 𝑗) ∈ 𝐴 and if this arc is put on vehicle 𝑉𝑘, label Li
p
 generates label 

𝐿𝑗
𝑞 = (𝑑𝑃𝑗 , 𝑑𝑉1𝑗 , … , 𝑑𝑉𝑁𝑗) using the following propagation rule: 

 𝑑𝑃𝑗 = 𝑚𝑎𝑥
 

( 𝑑𝑃𝑖 + ∑ 𝑝𝜎𝑙

𝑗
𝑙=𝑖+1  ;  𝑑𝑉𝑘𝑖 ) = 𝑚𝑎𝑥

 
( 𝑑𝑃𝑖 + ∑

𝑞𝜎𝑙

𝑟

𝑗
𝑙=𝑖+1  ;  𝑑𝑉𝑘𝑖 )  

 𝑑𝑉𝑘𝑗 =  𝑑𝑃𝑗 +  𝜏0,𝜎𝑖+1
+ ∑ 𝜏𝜎𝑙,𝜎𝑙+1

𝑗−1
𝑙=𝑖+1 + 𝜏𝜎𝑗,0. 

The max operator, which appears in the propagation rule, is explained in Fig. 5. In the first 

case, 𝑂𝑗1 has a duration (𝑝𝑗1) greater than the duration between the end of the production 

operation 𝑂𝑖1 at time 𝑑𝑃𝑖 and the end of the previous sub-trip assigned to vehicle 𝑉1 (𝑑𝑉1𝑖). 

The finishing time of 𝑂𝑖1 therefore corresponds to the starting time of 𝑂𝑗1 and, 

consequently, 𝑑𝑃𝑗 = 𝑑𝑃𝑖 + ∑
𝑞𝜎𝑙

𝑟

𝑗
𝑙=𝑖+1 . In the other case, if 𝑂𝑗1 has a duration (𝑝𝑗1) lower than 

the duration between the end of the production operation 𝑂𝑖1 at time 𝑑𝑃𝑖 and the end of the 

previous sub-trip assigned to vehicle 𝑉1 (𝑑𝑉1𝑖), then to be compliant with the no-wait 

constraint, the constraint 𝑑𝑃𝑗 = 𝑑𝑉1𝑖 must hold and the production planning will encompass a 

period of inactivity. 
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Figure 5. The two cases of label propagation in the Split procedure. 

Since a large number of labels may be generated, dominance criterion is used to improve the 

running time, keeping only non-dominated labels on the node thanks to the following 

dominance propriety. 

Dominance property 

Label L = (𝑑𝑃, 𝑑𝑉1, … , 𝑑𝑉𝑁) dominates label P = (𝑑𝑃 , 𝑑𝑉1, … , 𝑑𝑉𝑁) when the two labels are 

sorted and is therefore equal to (𝑑𝜎1
𝑝, … , 𝑑𝜎𝑁+1

𝑝 ) and (𝑑𝜎1
𝑞 , … , 𝑑𝜎𝑁+1

𝑞 ), respectively, and all of 

the following conditions hold:  

 ∃𝑖∗ ∈ {1, … , 𝑁 + 1}, dσ𝑖∗
𝑝 < dσ𝑖∗

𝑞
; 

 ∀𝑗 ∈ {1, … , 𝑁 + 1}, dσ𝑗
𝑝 ≤ dσ𝑗∗

𝑞
.  

The dominance rule limits the number of labels stored at each node but several authors, 

including (Duhamel et al., 2012), have reported that a large number of labels could still be 

generated. Another time-saving approach consists in limiting the maximal number 𝑁𝑚𝑎𝑥 of 

labels generated during the split process and the maximal number 𝑁𝐵𝑚𝑎𝑥 of labels stored at 

each node. This can reduce the CPU time, but discarding some labels may cause the algorithm 

to miss the optimal split. Such an approach offers a compromise between split quality and the 

number of labels kept on nodes and provides time-efficient sub-optimal split solutions.  

The Split procedure is detailed in Algorithm 2 and uses low-level procedures to handle the 

label on the graph: 

 Propagation_label_to_vehicle(L,v,𝑖) propagates the label 𝐿 using the 

vehicle v at node 𝑖 and returns a new label; 

 CheckDomination(L, i, Ni) performs the dominance check between the label 𝐿 

and all labels stored at node 𝑖, 𝑁𝑖. It returns 0 if 𝐿 is dominated by at least one label from 𝑖. 
Thus, 𝐿 must not be saved. It returns 1 if 𝐿 dominates at least one label from 𝑖. It returns 2 

otherwise; 

 InsertLabel(L, i, CD, Ni, NBmax)attempts to add the label 𝐿 at node 𝑖 if 𝐶𝐷 ∈
{1,2} and by considering that the number of labels 𝑁𝑖 must not exceed the maximal 

number 𝑁𝐵𝑚𝑎𝑥. If 𝐶𝐷=1, all labels from i dominated by 𝐿 are deleted. The list of labels is 

ordered by decreasing cost; 

 Extract_trip() checks the shortest path into the graph for the last node to the first 

node, and returns the set of trips.  

The Split algorithm (Algorithm 2) is composed of two parts: the initialisation part where local 

variables are initialised (lines 14-15) and a for loop from lines 16 to 52, which iterates for the 

ordered set of customers defined by the giant trip T. The while loop from lines 19 to 51 iterates 

and makes it possible to evaluate the partial sequence (𝜎𝑖+1, … , 𝜎𝑗). If 𝑖 = 𝑗, a new sub-trip is 

created and the initial sub-trip costs are assigned (lines 22- 23) and are updated in lines 25-26.  
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The condition line 28 makes it possible to determine if the constraints hold and the loop is 

stopped early thanks to the condition on the Boolean condition (stop=true). Because a set of 

labels is saved at each node, the for loop of line 29 iterates over all labels of node i and addresses 

the label 𝐿𝑖
𝑃. 

Algorithm 2. Split 
1.  procedure Split 

2.  input parameters 

3.    T: giant tour 

4.  output parameters 

5.    S: VRP-PTSPm solution 

6.  global parameter 

7.    Q : maximal vehicle weight capacity 

1.    B : lifespan of the product 

8.    qi : total items ordered by customer i 

9.    𝜏ij : cost from customer i to j 
10.   n : number of customers 

11.   N : number of vehicles 

12.   NBmax : maximal number of labels in each node 

13.  begin 

14.    L01:=(0,0,…,0), S :=  
15.    for i := 1 to n do NBi := 0 endfor 

16.    for j := 0 to n do 

17.     j := i 

18.     stop := false 

19.     while (j < n and stop=false) 

20.       customer := Tj 

21.       if (j = i) then 

22.         production_cost := dcustomer/r 

23.         transport_cost := cdepot,customer + ccustomer,depot 

24.       else 

25.         production_cost += dcustomer/r 

26.         transport_cost += ccustomer-1,customer +ccustomer,depot –ccustomer-1,depot 

27.       endif 

28.       if ((production_cost*r < Q) and (transport_cost -ccustomer,depot ≤ B)) then 

29.         for p := 1 to NBi do 

30.           if (dPi-1 = 0) then 

31.             insertion of the label in first position with the first vehicle 

32.           else 

33.             v:=0 

34.             do 

35.               v:=v+1  

36.               L:=Propagation_label_to_vehicle (Lip,v,i) 

38.               if (NBi=0) 

39.                 insertion of L in first position 

40.               else 

41.                 CD:=CheckDomination(L, j, Nj) 

42.                 call InsertLabel(L, j, CD, Nj, NBmax) 

43.               endif 

44.             while (v < N) 

45.           endif 

46.         endfor 

47.       else 

48.         stop := true 

49.       endif   

50.       j := j + 1 

51.     endwhile  

52.   endfor 

53.   S := call Extract_trips ()  //save the best solution 

54.   endif 

55. end 

 

A full example is given in detail on the Web page: 

http://fc.isima.fr/~vinot/Research/PTSP_Results.html 

http://fc.isima.fr/~vinot/Research/PTSP_Results.html


Submitted to IJPR 

 16 

3.4 Scheduling procedure 

After the splitting procedure, each job is fully defined by an ordered sequence of customer 

demands that are assigned to a specific vehicle. The previous sections refer to a problem that 

can be defined as a two-stage hybrid flow shop with one machine at the first stage and 𝑁 

machines at the second stage. At the first stage, the term ‘machine’ is a general term that refers 

to the production (production machine) and to the transportation for the second stage (also 

referred to as transportation machine).  

A job simultaneously models the production (the first operation on the production machine) 

and a sub-trip (the transportation operation on one transportation machine among 

the 𝑁 machines available). 

The problem is modelled as a disjunctive graph model first defined by Roy et al. (1964) 

using a directed graph G = (V, A, EP, ET), where V represents the set of nodes that contains one 

element for each operation 𝑂𝑖, a source node 0 connected to the first operation of each job, and 

a sink node ∗ linked to the last operation of each job (Fig. 6). The set A represents the set of 

conjunctive arcs, EP the set of pairs of disjunctive arcs between the production nodes, and ET 

the set of pairs of disjunctive arcs between the transportation nodes.  

With the specific graph characteristic, the classical disjunctive graph can be adapted using 

maximal time lags between the starting time of the production operation 𝑂𝑖1 and the starting 

time of the transportation operation 𝑂𝑖2, which is consistent with the perishability constraints. 

The value of the maximal time lag defines the larger gap between the starting time of 𝑂𝑖1 and 

the starting time of 𝑂𝑖2, and is defined by −(𝐵 + 𝑝𝑖1 − 𝑝′𝑖2).  

Conjunctive arcs are used to connect each pair of consecutive operations of the same job. 

Each pair of disjunctive arcs on the production connects operation 𝑂𝑖1 to 𝑂𝑗1 (belonging to 

different jobs), and has a duration 𝑝𝑖1. Each pair of disjunctive arcs on the transportation 

connects two operations 𝑂𝑖2, 𝑂𝑗2 in this order belonging to different jobs that are to be processed 

on the same transportation machine (vehicle), and has a duration 𝑝𝑖2 (Fig. 6). A feasible solution 

corresponds to an acyclic graph, and an evaluation procedure can be defined using a Bellman-

like longest path algorithm to obtain the earliest starting time of each operation, including the 

makespan 𝐶𝑚𝑎𝑥. 

P V1

P V2

P

V1P

V2

P V30 *

p21

p22

p23

p24

p25

p11

p21

p31

p41

p51

VB = [2,1,3,5,4]

p21

p11

p31

p51

p22

p21

Disjonctive arc on 

the production

Disjonctive arc on 

the transportation

First stage Second stage

-(B+p11-p’21)

-(B+p21-p’22)

-(B+p31-p’23)

-(B+p41-p’24)

-(B+p51-p’25)

 
Figure 6. Example of the scheduling procedure with five sub-trips and V=3. 

 

In Fig. 6, there are two disjunctive arcs on the transportation due to jobs using the same 

vehicle. For vehicle 1 assigned to jobs 1 and 4, the value on the disjunctive arc is equal to p21. 

Figure 7 is a graphical representation of relations between both the earliest and finishing times 
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of operations with the lifespan constraint. The Bierwirth vector used in the scheduling 

procedure gives an order on the job using the sub-trips created by the splitting procedure. An 

efficient local search algorithm can be defined considering the critical path including the 

neighbourhood of Laarhoven et al. (1992) and Grabowski et al. (1986) with the introduction of 

blocks. 

lifespan constraintO11 O14

O24

V2

V1

P

V3

O21

B

B+p11

s21 fs21 s21+p’21

s11 f11

 
Figure 7. Representation of the constraint due to the disjunctive arcs of the transportation. 

The neighbourhood of Laarhoven consists of swapping two consecutive operations assigned to 

the same machine along the critical path, leading to a modification of the machine disjunction. 

Due to the indirect representation of solutions, the operation swap is achieved in the Bierwirth 

vector by switching the two job numbers of the two operations in the disjunctive graph. The 

permutation of operations based on the block definition and located at the critical path is 

included in a depth first search local search investigates the move from the end of the critical 

path to the dummy node. If one permutation leads to a lower cost solution, the critical path 

exploration is restarted to the end of the graph. Note that due to computation time 

considerations, a maximal number of iterations ns is reached. A full example is given in detail 

on the Web page. 

3.5 Hash function for PTSPm 

To avoid premature convergence of the global algorithm and to stimulate the investigation of 

the part of the search space not previously investigated, it is necessary to use an efficient clone 

detection system. Previous research into scheduling/routing problems based on indirect 

representation approaches has proved that efficient clone detection must be defined considering 

the indirect representation or the solution. For the giant trip 𝐺𝑇, the related hash function 

𝐻(𝑡) is defined as follows: 𝐻(𝑡) = ∑ 𝐺𝑇[𝑖] × 𝑖 𝑚𝑜𝑑 𝐾𝑛
𝑖=1 . 𝐺𝑇[𝑖] is the 𝑖𝑡ℎ customer in the 

giant trip and 𝐾 is a constant. The value of 𝐾 impacts the size of the map and the probability of 

collision (consequently, 𝐾 must be as large as possible considering the memory available). 

3.6 Lower bound on the makespan 

Three PTSP lower bounds were introduced by Geismar et al. (2008), leading to a poor 

evaluation with multiple vehicles. Considering sub-trips with only one customer associated 

with immediately available vehicles, 𝑁 ≥ 𝑛, a lower bound can be defined using Jackson’s 

algorithm (1955) that considers the one-machine scheduling problem with tails. To obtain the 

lower bound, the proposal is to extend Jackson’s earliest due date rule. The lower bound based 

on the Jackson rule creates an optimal schedule that minimises the maximal lateness by ordering 

the jobs by non-decreasing due dates because the release dates are equal to 0. 

Line 18 in Algorithm 3 makes it possible to define the sum of the processing times of 

previously scheduled jobs. At line 19, the release date of the job is updated as the maximum 

between the current release date and the sum of the processing time plus the due date of the job. 

These two lines do not appear in Jackson’s original algorithm; they have been added to the 

algorithm in order to match the lower bound of the PTSPm. 
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Algorithm 3: A Jackson rule-based lower bound 
1.  procedure A lower bound based on the Jackson Rule 

2.  input parameters 

3.    J: set of job/sub-trip 

4.  global parameter 

5.    rj : release date of the job/sub-trip j 

6.    pj : processing time of the job/sub-trip j 

7.    q : sum of the processing time already scheduled 

8.    dj : due date of the job/sub-trip j 

9.    n : number of customers/sub-trip 

10. output parameters 

11.   Cmax : lower bound 

12.  begin 

13.    L := {1, …, n}, q := 0 

14.    if  (J ≠ ) then 

15.      while (L ≠ ) do 

16.       u := minj{rj}, j in L  

17.       choose i in L such as ri = u and di maximal 

18.       q :=  q + pi   

19.       for all k in L do rk:= max{rk, q + di}, Cmax := rk     

20.       L := L\{i} 

21.      endwhile 

22.    endif 

23.  end      

 

To apply Algorithm 3 on the PTSPm, a parallel should be drawn between the processing 

time and the production time of the PTSPm, as well as between the due date and the PTSPm 

transportation time. The lower bound is then given by Cmax at the end of the algorithm. 

4 Computational evaluation for the PTSP 

The benchmark introduced by Geismar et al. (2008) is composed of three small-scale instances 

with 40 customers and three medium-scale instances with 50 customers, and customers’ 

demands are uniformly distributed between 100 and 300. The locations of the customers in the 

three instances with 40 or 50 customers are randomly generated in the square of 200, 300 and 

400 side lengths, which denotes 12 sets of parameters (𝑆𝑃 is detailed in Table 5a). As a 

consequence, there are six datasets (𝐷𝑆 is is detailed in Table 5b). For each instance, the value 

of three parameters is set: 𝑟 ∈ {1,2,3} is the production rate;  𝑄 ∈ {300,600} is the truck 

capacity; and 𝐵 ∈ {300,600} is the product lifespan. We therefore have 72 resulting instances 

in the benchmark. Note that the distance is the transportation time between customers by 

considering the Euclidean distance and a vehicle speed of 1 unit of distance per unit of time.  

Table 4 proposes speed factors that are used in the following comparative tables to ensure a 

fair comparative study and that were established by previous research articles including 

Dongarra, (2014), and on http://www.roylongbottom.org.uk/linpackresults.htm. Since the 

MIPS performance is not the only influence on the CPU time, Table 4 also provides the 

information available about the computer, the operating system and the language. 

 

Table 4. Comparative performance of processors. 
 (Geismar et al., 2008) (Karaoğlan et al., 2017) Our framework 

Computer Intel Pentium 4 3.2GHz Intel Xeon 3.16GHz Intel Core i7 3.4GHz 

OS Windows XP Pro. Windows 7 Windows 7 

Language BASIC C++ IBM ILOG CPLEX 12.6 Visual C++ 

MFlops 1573 1892 2671 

Speed 

factor 
1.0 1.2 1.7 

 

http://www.roylongbottom.org.uk/linpackresults.htm


Submitted to IJPR 

 19 

Five replications (𝑟𝑒𝑝) are processed for each instance and Tables 6, 7 and 8 give the average 

of the best solutions found over the five replications with the average CPU time required for 

each run. The parameters used in the GRASP×ELS are given below. They remain unchanged 

for all instances and were obtained after preliminary experiments: 

 np Number of GRASP/ELS/ neighbourhood iterations 150/30/15 

 lr Number of local searches on the routing/scheduling 40/500 

 NBmax Maximal number of labels per node  5 

The following notations are used in the tables below: 
C Number of customers 

S Size of the square for the customer’s location 

Avg   An average value 

%Gap 

N/A 

Percentage gap 

Data not available 

Nb. Opt Number of instances where the solution has the same value as the lower 

bound. In this case, the solution obtained is an optimal solution of the 

PTSPm. 

𝐿𝐵𝑖
𝑘 Lower bound of the problem with k ∈ SP and i ∈ DS 

ℎ𝑖,𝑗
𝑘  Best solution found for an instance with (𝑖; 𝑗; 𝑘) ∈ (𝐷𝑆; 𝑆𝑃; ⟦1, 𝑟𝑒𝑝⟧)  

𝑡𝑡𝑖,𝑗
𝑘  Total CPU time in seconds coupled with ℎ𝑖,𝑗

𝑘  

𝑡𝑖,𝑗
𝑘  CPU time in seconds to get ℎ𝑖,𝑗

𝑘  

𝐿𝐵∗
𝑘 = avg

𝑖𝜖𝐷𝑆
𝐿𝐵𝑖

𝑘 Average lower bound for one k ∈ SP, over all 𝑖 ∈ 𝐷𝑆 

ℎ∗,∗
𝑘 = avg

𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
ℎ𝑖,𝑗

𝑘  Average best solution found for one k ∈ SP, over all (𝑖; 𝑗)/(𝑖 ∈ 𝐷𝑆; 𝑗 =
⟦1, 𝑟𝑒𝑝⟧) 

𝑡𝑡∗,∗
𝑘 = avg

𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑡𝑖,𝑗

𝑘  Average total CPU time for one k ∈ SP, over all (𝑖; 𝑗)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧)   

𝑡∗,∗
𝑘 = avg

𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑖,𝑗

𝑘  Average CPU time for one k ∈ SP, over all (𝑖; 𝑗)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧)   

𝐿𝐵∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
𝐿𝐵𝑖

𝑘   Average lower bound over all (𝑖; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑘 ∈ 𝑆𝑃)  

ℎ∗,∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
ℎ𝑖,𝑗

𝑘  Average best solution found over all (𝑖; 𝑗; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧; 𝑘 ∈ 𝑆𝑃)  

𝑡𝑡∗,∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑡𝑖,𝑗

𝑘  Average total CPU time over all (𝑖; 𝑗; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧; 𝑘 ∈ 𝑆𝑃)  

𝑡∗,∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆,𝑗=⟦1,𝑟𝑒𝑝⟧
𝑡𝑖,𝑗

𝑘   Average CPU time for all (𝑖; 𝑗; 𝑘)/(𝑖 ∈ 𝐷𝑆; 𝑗 = ⟦1, 𝑟𝑒𝑝⟧; 𝑘 ∈ 𝑆𝑃)  

ℎ𝑖
𝑘 Best solution found among all replications, for one (k, i) ∈ (SP,DS) 

𝑡𝑡𝑖
𝑘 Total CPU time in seconds coupled with ℎ𝑖

𝑘 

𝑡𝑖
𝑘 CPU time in seconds to obtain ℎ𝑖

𝑘 

ℎ∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
ℎ𝑖

𝑘 Average of the ℎ𝑖
𝑘over the all datasets 𝑖𝜖𝐷𝑆 and for all k ∈ SP  

𝑡𝑡∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
𝑡𝑡𝑖

𝑘 Average of the 𝑡𝑡𝑖
𝑘  over the all datasets 𝑖𝜖𝐷𝑆 and for all k ∈ SP  

𝑡∗
∗ = avg

𝑘𝜖𝑆𝑃,𝑖𝜖𝐷𝑆
𝑡𝑖

𝑘 Average of the 𝑡𝑖
𝑘 over the all datasets 𝑖𝜖𝐷𝑆 and for all k ∈ SP  

Table 5a gives the definition of the 12 sets of parameters 𝑆𝑃 = (𝑟, 𝑄, 𝐵), and Table 5b gives 

the six dataset definition 𝐷𝑆 = (𝐶, 𝑆). In Table 6, each value is an average value over the 12 

sets of parameters (𝑆𝑃 = ⟦1,12⟧), for the six datasets (𝐷𝑆 = ⟦1.6⟧) and over the five 

replications for our proposal. Note that in Table 6, Table 7 and Table 8, the values reported by 

Geismar et al. (2008), Karaoğlan et al. (2017), and for our proposal are rounded off to the 

nearest integer value to ensure a fair comparative study. 
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Table 5. Instances characteristics 

a. Definition of the 12 sets of parameters (SP). 

SP r Q B 

1 1 300 300 

2 2 300 300 

3 3 300 300 

4 1 300 600 

5 2 300 600 

6 3 300 600 

7 1 600 300 

8 2 600 300 

9 3 600 300 

10 1 600 600 

11 2 600 600 

12 3 600 600 
 

b. Definition of the 6 datasets (DS). 

DS C S 

1 40 200 

2 40 300 

3 40 400 

4 50 200 

5 50 300 

6 50 400 
 

The genetic algorithm of Geismar et al. (2008) has an average time of 169 seconds, while 

the average computing time of our method is 141 seconds (average time scale of Table 6). The 

average computing time of the branch-and-cut of Karaoğlan et al. (2017) is significantly larger, 

with approximately 3249 seconds. 

 

Table 6. Average results on the instances of Geismar et al. (2008) with five replications. 

  𝐿𝐵∗
∗ 

(Geismar et 

al., 2008) 

(Karaoğlan et 

al., 2017) 

Our proposal 

ℎ∗,∗
∗  𝑡𝑡∗,∗

∗  𝑡∗,∗
∗  ℎ∗,∗

∗  𝑡𝑡∗,∗
∗  𝑡∗,∗

∗  ℎ∗,∗
∗  𝑡𝑡∗,∗

∗  𝑡∗,∗
∗  ℎ∗

∗ 𝑡𝑡∗
∗ 𝑡∗

∗ 

Avg.  5383 8045   7891   7884   7876   

Avg.time   169 N/A  2708 N/A  82.7 40.7  81.1 42.7 

Avg. time 

scale  
 169 N/A 

 
3249 N/A  141 69 

 
138 73 

Nb. Opt  16/72   13/72   16/72   18/72   

 

Our method provides an average value ℎ∗,∗
∗  of about 7884, which is better than Geismar et al. 

(2008) (average value of approximately 8045) and Karaoğlan et al. (2017) (average value of 

approximately 7891). The analysis of the full solution set (available on the Web page) makes it 

possible to confirm that the GRASP×ELS provides better solutions in 31 instances, equal 

solutions in 35 instances and worse solutions in only six instances. In general, when the 

solutions are improved, they are improved by approximately 4.7%, whereas when they are 

worsened, they are worsened by approximately 0.04%.  

Table 7. Average results on the instances of Geismar et al. (2008). 

k ∈ SP  𝐿𝐵∗
𝑘 

(Geismar et al., 2008) (Karaoğlan et al., 2017) Our proposal 

ℎ∗,∗
𝑘  %Gap ℎ∗,∗

𝑘  %Gap ℎ∗,∗
𝑘  %Gap  

1 8781 10040 12.5 10049 12.6 10039 12.5 

2 4412 9157 51.8 9179 51.9 9148 51.7 

3 2956 9125 67.6 9153 67.7 9118 67.5 

4 8781 10041 12.5 10048 12.6 10026 12.4 

5 4412 9171 51.9 9180 51.9 9151 51.7 

6 2956 9153 67.7 9152 67.7 9122 67.6 

7 8781 8781 0.0 8782 0.0 8782 0.0 

8 4412 5744 23.1 5346 17.5 5347 17.5 

9 2956 5421 45.4 4887 39.5 4919 39.9 

10 8781 8781 0.0 8782 0.0 8781 0.0 

11 4412 5724 22.9 5276 16.4 5300 16.7 

12 2956 5403 45.2 4861 39.2 4875 39.3 

Avg.  5383 8045 33.4 7891 31.4 7884 31.4 

Nb. Opt  16/72  13/72  16/72  

 

The efficiency of the GRASP×ELS algorithm is more significant for the instances in which 

𝑄 = 600 (𝑆𝑃 from 7 to 12) particularly for instances with the sets of parameters 𝑆𝑃 = 9 and 
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𝑆𝑃 = 12 that have a high production rate (Table 7). For instances from 𝑆𝑃 = 7 to 𝑆𝑃 = 12, 

the transportation time dominates the production time, as underlined by Geismar et al. (2008). 

Therefore, improvements on routing phase lead to better results for these instances. In Table 7, 

with 𝑆𝑃 = 12, the gap has been significantly reduced from 45.2% (Geismar et al., 2008) to 

39.3% for our proposal. With the method used by Karaoğlan et al. (2017), the gap has also been 

reduced to 39.2%. 

For the PTSP, our method provides 18 optimal solutions vs. 16 optimal solutions for the 

dedicated method of Geismar et al. (2008), as illustrated in Table 7. The method also 

outperforms the method of Karaoğlan et al. (2017), providing 18 solutions that reached the 

lower bound vs. 13 solutions for Karaoğlan et al. (2017). 

5 Computational evaluation for the PTSPm 

5.1 Benchmarks for the PTSPm 

The instances of Geismar et al. (2008) are extended to tackle up to six vehicles and to evaluate 

the impact of routing with regard to the scheduling solutions (Table 8). It can be observed that 

by increasing the number of vehicles from one to two, the average makespan for all the 

instances is reduced from 25% (decreasing from 7,884 to 5,820) and then decreased by 6% 

(from 5,820 to 5,478) when increasing the number of vehicles from two to three. 

Table 8. Average results with the GRASP×ELS for the PTSPm. 

After intensive numerical experiments, we found that a fleet of six vehicles is sufficient to 

reach the lower bound of each instance with the strongest constraints, 𝑟 ∈ {1,2,3}, 𝑄 = 300 and 

𝐵 = 300. The instances of Geismar et al. (2008) and the details of our solutions are available 

on the Web page. A careful analysis of the ratio between the average customer demand and the 

vehicle capacity remains constant (approximately 0.3) for all instances. Consequently, the 

average number of customers per sub-trip remains quite low (approximately two on average). 

5.2 Proposal of new large-scale instances with multiple vehicles 

A new set of instances with a broad range of parameters is defined considering:  

 customer distribution to model both urban areas and rural surroundings; 

 random depot node location (centered, peripheral location, etc.); 

 large vehicle capacities and, consequently, larger sub-trips. 

 

k ∈ SP  𝐿𝐵∗
𝑘 

2 vehicles 3 vehicles 4 vehicles 5 vehicles 6 vehicles 

ℎ∗,∗
𝑘  𝑡𝑡∗,∗

𝑘  𝑡∗,∗
𝑘  ℎ∗,∗

𝑘  𝑡𝑡∗,∗
𝑘  𝑡∗,∗

𝑘  ℎ∗,∗
𝑘  𝑡𝑡∗,∗

𝑘  𝑡∗,∗
𝑘  ℎ∗,∗

𝑘  𝑡𝑡∗,∗
𝑘  𝑡∗,∗

𝑘  ℎ∗,∗
𝑘  𝑡𝑡∗,∗

𝑘  𝑡∗,∗
𝑘  

1  8781 8781 0 0 8781 0 0 8781 0 0 8781 0 0 8781 1 1 

2  4412 5114 38 17 4452 23 10 4412 6 3 4412 1 1 4412 2 2 

3  2956 4658 51 25 3461 41 19 3061 37 22 2968 30 15 2956 16 14 

4  8781 8781 1 1 8781 1 1 8781 1 1 8781 1 1 8781 1 1 

5  4412 5116 40 22 4435 27 8 4412 2 2 4412 2 2 4412 3 3 

6  2956 4674 53 21 3467 46 20 3059 32 18 2969 36 15 2956 6 6 

7  8781 8781 3 3 8781 2 2 8781 2 2 8781 2 2 8781 2 2 

8  4412 4426 70 41 4419 50 28 4413 49 31 4412 44 25 4412 47 39 

9  2956 3175 142 86 2988 131 56 2973 103 54 2968 106 51 2968 108 58 

10  8781 8781 2 2 8781 1 1 8781 1 1 8781 1 1 8781 1 1 

11  4412 4422 54 23 4412 52 39 4414 57 27 4414 61 28 4414 62 29 

12  2956 3137 151 93 2979 123 41 2969 115 52 2968 133 66 2969 136 49 

Avg. 5383 5820   5478   5403   5387   5385   

Avg.time   50 28  41 19  34 18  35 17  32 17 

Nb. Opt  41/72   53/72   63/72   63/72   66/72   
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Each instance is characterised by: 

 the number of customers that follows a discrete uniform distribution 𝑈(50,100) for the large 

instances or 𝑈(100,200) for the very large instances; 

 an interest area that contains all the customers and the plant. The length X and the width Y 

of this area can vary between 100 and 500, which represents 25 possibilities (100 × 100, 

100 × 200, …, 500 × 400 and 500 × 500). This area is centered in (0,0) and divided into 

four sectors [−𝑋, 0] × [0, 𝑌], [0, 𝑋] × [0, 𝑌], [0, 𝑋] × [−𝑌, 0] and [−𝑋, 0] × [−𝑌, 0]; 
 the number of customer centers 𝑐 = {1,2,3}. 

Moreover, the following parameters are necessary to define an instance: 

 the capacity of the trucks is equal to 1000; 

 the demand of each customer 𝑖, 𝑑𝑖 = {50, 100, 200, 300, 500} with the associated 

probabilities {0.1, 0.2, 0.4, 0.2, 0.1}; 

 the position of each customer is uniformly distributed in one customer center; 

 the position of each customer center is randomly selected among the sector centers with a 

variation of ±10%; 

 the size of each customer centre is equal to the minimal distance between the customer centre 

and the edge of the interest area with a variation of ±20%; 

 the position of the depot has a probability of 0.7 to be in the centre of one sector centres with 

a variation of ±10%, and 0.3 to be centred in the interest area with a variation of ±10%. 

With all these parameters, we have 150 instances. An instance is caracterised by a triplet 

(𝑥, 𝑧, 𝑐) with: 𝑥 ∈ {𝐿, 𝑉𝐿} to indicate if the size of the instance is large 𝐿 or very lage 𝑉𝐿, 𝑧 ∈
⟦1,25⟧ to define the size of the interest area, and 𝑐 = {1,2,3} to give the number of customer 

centres. 

 

5.3 Computational results on the new instances 

Five replications are achieved for each instance and Tables 9 gives the average of the best 

solutions found over the five replications and on the three customers centers (column ℎ∗,∗
 ) with 

the average total CPU time (column 𝑡𝑡∗,∗
 ) and the average time required to find the best solution 

(column 𝑡∗,∗
 ). Note that the lower bound (𝐿𝐵∗

  column) refers to the lower bound introduced in 

Section 3.6. The parameter setting remains identical for all instances and was obtained after 

preliminary experiments: 

 np/ne Number of GRASP/ELS/ neighbourhood iterations 50/10/5 

 lr/ns Number of local searches on the routing/scheduling  40/500 

 NBmax Maximal number of labels per node  5 

The GRASP×ELS on the (𝐿,∗,∗) instances has an average time ranging from 1.13 to 0.1 

seconds, depending on the number of vehicles, whereas the average computing time on the 

(𝑉𝐿,∗,∗) instances is equal to 6.63 seconds for one vehicle and 0.86 seconds for two vehicles 

(Tables 9a and 9b). The computing time has thus been multiplied by six between the large and 

the very large instances. Moreover, on average, the gap between our results and the lower bound 

is very small, with 0.09% on large instances and 0.03% on very large instances for one vehicle. 

With two vehicles, the gap between our results and the lower bound is even smaller, with 

0.005% on large instances and 0.003% on very large instances 

The analysis of trips makes it possible to prove that the trip design is linked to the sub-graph 

defined by the densities of nodes, referred to as customer centres. All the trips and a graphical 

representation for instance 1 are available on the Web site. 
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Table 9. Results on the large and very large-scale instances with one or two vehicle.  

a. Large instances (𝑳,∗,∗) 

  1 vehicle 2 vehicles 

Inst. LB∗
̅̅ ̅̅ ̅ ℎ∗,∗

  𝑡𝑡∗,∗
  𝑡∗,∗

  ℎ∗,∗
  𝑡𝑡∗,∗

  𝑡∗,∗
  

(L,1,∗) 15119 15119 0.01 0.00 15119 0.00 0.00 

(L,2,∗) 17572 17572 0.00 0.00 17572 0.01 0.00 

(L,3,∗) 15929 15929 0.01 0.01 15929 0.00 0.00 

(L,4,∗) 12396 12437 3.63 0.03 12396 0.00 0.00 

(L,5,∗) 17458 17459 2.06 0.01 17458 0.00 0.00 

(L,6,∗) 15173 15173 0.01 0.00 15173 0.00 0.00 

(L,7,∗) 15985 15985 0.00 0.00 15985 0.00 0.00 

(L,8,∗) 15851 15857 1.57 0.00 15851 0.00 0.00 

(L,9,∗) 19815 19815 0.01 0.00 19815 0.00 0.00 

(L,10,∗) 16333 16346 3.36 0.04 16333 0.00 0.00 

(L,11,∗) 17774 17774 0.00 0.00 17774 0.00 0.00 

(L,12,∗) 15607 15608 1.32 0.03 15607 0.01 0.00 

(L,13,∗) 15235 15331 2.53 0.28 15235 0.03 0.03 

(L,14,∗) 13497 13501 1.28 0.00 13497 0.01 0.00 

(L,15,∗) 15425 15431 1.16 0.01 15425 0.01 0.00 

(L,16,∗) 13687 13688 1.04 0.00 13687 0.00 0.00 

(L,17,∗) 14273 14273 0.06 0.06 14273 0.00 0.00 

(L,18,∗) 14449 14452 1.30 0.00 14449 0.00 0.00 

(L,19,∗) 16579 16579 0.00 0.00 16579 0.01 0.01 

(L,20,∗) 14415 14442 2.32 0.20 14415 0.00 0.00 

(L,21,∗) 17012 17012 0.00 0.00 17012 0.00 0.00 

(L,22,∗) 16300 16312 1.66 0.33 16300 0.01 0.00 

(L,23,∗) 14421 14530 1.48 0.00 14439 2.48 0.06 

(L,24,∗) 17364 17364 0.00 0.00 17364 0.01 0.00 

(L,25,∗) 14167 14188 3.33 0.74 14167 0.01 0.00 

Avg. 15673 15687   15674 0.10 0.00 

Gap LB  0.09%   0.005%   

Avg.time   1.13 0.07  0.10 0.00 

Nb. Opt  55/75   74/75   
 

 

b. Very large instances (𝑽𝑳,∗,∗) 

  1 vehicle 2 vehicles 

Inst. LB∗
̅̅ ̅̅ ̅ ℎ∗,∗

  𝑡𝑡∗,∗
  𝑡∗,∗

  ℎ∗,∗
  𝑡𝑡∗,∗

  𝑡∗,∗
  

(VL,1,∗) 27859 27859 0.02 0.01 27859 0.02 0.01 

(VL,2,∗) 30401 30401 0.02 0.01 30401 0.02 0.01 

(VL,3,∗) 37341 37341 0.03 0.03 37341 0.03 0.03 

(VL,4,∗) 34229 34229 0.03 0.02 34229 0.02 0.01 

(VL,5,∗) 23003 23069 8.64 6.57 23018 8.51 0.02 

(VL,6,∗) 34625 34625 0.02 0.02 34625 0.02 0.02 

(VL,7,∗) 34923 34923 0.03 0.02 34923 0.02 0.02 

(VL,8,∗) 32175 32175 0.02 0.02 32175 0.02 0.02 

(VL,9,∗) 35041 35046 13.59 0.02 35041 0.03 0.02 

(VL,10,∗) 34739 34751 27.00 0.03 34739 0.02 0.02 

(VL,11,∗) 31357 31357 0.02 0.02 31357 0.02 0.02 

(VL,12,∗) 32843 32843 0.03 0.02 32843 0.02 0.02 

(VL,13,∗) 34371 34371 0.02 0.02 34371 0.02 0.02 

(VL,14,∗) 32165 32179 32.41 0.02 32165 0.02 0.02 

(VL,15,∗) 31361 31361 8.27 0.34 31361 0.02 0.02 

(VL,16,∗) 30529 30529 0.02 0.02 30529 0.02 0.02 

(VL,17,∗) 30507 30507 0.02 0.01 30507 0.02 0.01 

(VL,18,∗) 35015 35015 0.03 0.02 35015 0.03 0.02 

(VL,19,∗) 33901 33901 0.02 0.02 33901 0.02 0.02 

(VL,20,∗) 29647 29651 6.95 0.58 29647 0.02 0.02 

(VL,21,∗) 35893 35893 0.03 0.03 35893 0.03 0.02 

(VL,22,∗) 33157 33175 24.80 0.29 33157 0.02 0.02 

(VL,23,∗) 31203 31229 11.92 0.02 31203 0.02 0.02 

(VL,24,∗) 32379 32385 8.58 1.26 32379 0.02 0.02 

(VL,25,∗) 33524 33576 23.19 11.86 33531 12.60 0.28 

Avg. 32487 32496   32488   

Gap LB  0.03%   0.003%   

Avg.time   6.63 0.85  0.86 0.03 

Nb. Opt  60/75   72/75   
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6 Concluding remarks  

Proper integration of production planning and routing is the key feature in a supply chain 

since the coordination of these two functions has a significant impact on the customer service 

level. This paper addresses the PTSP with multiple vehicles (PTSPm) in order to extend the 

PTSP with a single vehicle in Geismar et al. (2008) and can be efficiently used to compute 

coordinated solution in supply chain. This approach proves it is possible to solve the two 

problems in a coordinate way and permits to obtain better solution than classical approach 

where the two problems are solved sequentially. 

The framework we propose takes advantage of an indirect representation of the solutions 

using a split-based approach with search space alternation between TSP solutions, VRP 

solutions and PTSPm solutions. This indirect approach is one of the key features of the 

proposal. The framework efficiency leads to a special disjunctive graph for the trips and two 

kinds of disjunctive arcs due to a single production facility and the vehicles. The method has 

proven to be efficient in the one-vehicle instances, providing better solutions than Geismar et 

al. (2008) and Karaoğlan et al. (2017), with shorter computation times. The method also 

generates new solutions for the multi-vehicle extension. In order to ensure fair comparative 

studies, a new set of instances has been introduced.  

Our research is now directed towards a bi-objective resolution where a second criterion could 

be introduced for the quality of service, which could be defined as the delay between the arrival 

time of one vehicle at a customer node and the upper bound of the time window. This second 

criterion should be relevant for the quality of service, provided that there is a large enough 

difference between the delivery date and the expiration date for customer products modelled by 

the perishability constraint.  
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