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Genome organization and chromatin
analysis identify transcriptional
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factor signaling as a hallmark of aging
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Abstract

Background: Aging is characterized by loss of function of the adaptive immune system, but the underlying causes
are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene
expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in
bone marrow pro-B and pre-B cells from young and aged mice.

Results: Our analysis reveals that the expression levels of most genes are generally preserved in B cell precursors
isolated from aged compared with young mice. Nonetheless, age-specific expression changes are observed at
numerous genes, including microRNA encoding genes. Importantly, these changes are underpinned by multi-layered
alterations in chromatin structure, including chromatin accessibility, histone modifications, long-range promoter
interactions, and nuclear compartmentalization. Previous work has shown that differentiation is linked to changes in
promoter-regulatory element interactions. We find that aging in B cell precursors is accompanied by rewiring of such
interactions. We identify transcriptional downregulation of components of the insulin-like growth factor signaling
pathway, in particular downregulation of Irs1 and upregulation of Let-7 microRNA expression, as a signature of the aged
phenotype. These changes in expression are associated with specific alterations in H3K27me3 occupancy, suggesting
that Polycomb-mediated repression plays a role in precursor B cell aging.

Conclusions: Changes in chromatin and 3D genome organization play an important role in shaping the altered gene
expression profile of aged precursor B cells. Components of the insulin-like growth factor signaling pathways are key
targets of epigenetic regulation in aging in bone marrow B cell precursors.
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Background
Old age is accompanied by increased frailty including a
breakdown in functionality of the adaptive immune sys-
tem mediated by B and T lymphocytes [1]. This results
in refractory responses to vaccination, loss of previously
established immunity, and substantial increases in
susceptibility to infection. Unravelling the molecular
changes and mechanisms underlying aging phenotypes is
thus an important task for biology. The B cell population
is a critical pillar of adaptive immunity, involved in gen-
erating protective antibodies, presenting antigens, and
regulating immune responses. B cells develop continu-
ously in the bone marrow from hematopoietic stem cells
through several precursor stages, including pro-B cells,
where immunoglobulin heavy chain (IgH) recombination
occurs, followed by pre-B cells in which the immuno-
globulin light chains (IgK or IgL) recombine. Inherent
inefficiencies in the recombination process lead to sub-
stantial cell loss at each stage. To provide adequate
numbers of B cells to ensure a diverse antibody reper-
toire, recombination events alternate with proliferative
expansion at each stage to restore depleted B cell
numbers. Pro-B cell expansion is controlled by the
interleukin-7 receptor (IL7R) [2], potentiated by the
insulin-like growth factor 1 (IGF1) receptor [3], while
progression to the pre-B cell stage is characterized by
signaling through both the IL7R and the pre-B cell re-
ceptor (pre-BCR) which is composed of the productively
recombined IgH and the invariant surrogate light chain
(SL) [4]. Thereafter, the pre-BCR assumes control of
both pre-B cell proliferation and IgK recombination [5,
6]. This pro-B to pre-B transition also requires IGF1 sig-
naling [7]. The size of precursor B cell subsets and the
primary antibody repertoire are reduced during aging
(reviewed in [8]), which, together with defects in matur-
ation of the antigen-responsive repertoire, substantially
reduces the antibody response to infection during aging.
In particular, the size of the pre-B cell pool is reduced in
the aged mouse, indicating that aging-specific defects
arise early in B cell development [9]. In vivo labeling ex-
periments show that the progression of B cell progeni-
tors through the pro- and pre-B cell stages is also
diminished with age [10–12]. There is evidence of both
B cell-intrinsic defects (e.g. [13]) as well as defects in
the stromal cell compartment [10], which supports
developmental progression, but the underlying causes
of these changes remain to be elucidated (reviewed in
[8]). In particular, the nature and extent of changes in
gene expression in aged B cell precursors are
unknown.
The advent of new technologies in functional genom-

ics enables illumination of the changes in B cell develop-
ment that occur during aging genome-wide. Recently,
application of these technologies to aging human T cells

has provided profound insight into widespread epigen-
etic changes that impair the function of closely related
lymphocytes in the adaptive immune system. In particu-
lar, aging CD8+ T cells lose chromatin accessibility at
promoters, which may compromise their metabolic state
[14]. Comparison of aging human lymphocyte popula-
tions in peripheral blood has revealed concordant down-
regulation of chromatin accessibility and gene
expression of components of the IL7R signaling pathway
in CD8+, but not CD4+ T cells, suggesting that epigen-
etic dysfunction in shared pathways in aging requires
careful unravelling [15].
Here we present an integrated analysis of the transcrip-

tome, epigenetic landscape, and higher-order chromatin
structure in young and aged pro- and pre-B cells from
mouse bone marrow. We show that aging affects the
expression of a limited number of genes, in particular key
components of the insulin-like growth factor (IGF)
signaling pathway. These alterations in the transcriptome
are accompanied by perturbations of multiple regulatory
layers affecting transcriptional and post-transcriptional
mechanisms, including microRNAs (miRNAs) and
polycomb-mediated epigenetic regulation.

Results
Gene expression changes in B cell precursors in aged
mice
Using multi-parameter flow cytometry analysis of the
bone marrow B cell compartment, we found substantial
changes in the B cell precursor pools in aged mice
(Fig. 1). Our analysis revealed a roughly twofold reduc-
tion in pro-B (Fig. 1c) and an almost threefold reduction
in pre-B cell numbers (Fig. 1d) in the bone marrow of
aged (19–22 months) compared with young mice
(three months), consistent with previous reports [9, 16].
In contrast, we found an increase in recirculating mature
B cells in the bone marrow of aged mice (Fig. 1e).
We sorted cells from pooled cohorts of male young

and aged mice (12–15 mice per cohort) as shown in Fig.
1a and generated transcriptome, chromatin accessibility
(ATAC-seq), histone modification (ChIP-seq), and
chromosome conformation (Hi-C) datasets to identify
changes associated with the aging phenotype (summary
statistics for all datasets and replicates are provided in
Additional file 1: Table S1). Transcriptome analysis of
ribosomal RNA (rRNA)-depleted total RNA identified
82 significantly upregulated and 54 downregulated genes
in aged pro-B cells and 23 upregulated and 33 downreg-
ulated genes in aged pre-B cells (Fig. 2a, b; Additional
file 1: Tables S2 and S3). Seventeen of these differentially
expressed genes (DEGs) were detected in both pro- and
pre-B cells (including age-upregulated Rnf125, Dock9,
Iigp1, Igj, and age-downregulated Irs1, Rftn2, Plxna2,
and Igf2bp3). Overall, age-specific expression changes
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Fig. 1 Reduction in average pro-B and pre-B cell numbers upon aging. a Representative flow cytometry plots showing the gating strategy used to
isolate pro- and pre-B cells from young and aged bone marrow following depletion of non-B cells. Numbers indicate percentage of cells in the
gate. b–d Average total number of cells (b) and numbers of flow-sorted pro-B (c) and pre-B (d) cells obtained from the bone marrow of both
tibias and femurs of young and aged mice. Each point represents the average number of cells per mouse from a single flow sort comprising
cohorts of 12–15 mice. Differences were tested for significance using an unpaired t test. e t-SNE analysis based on flow cytometry data shows
changes in bone marrow derived B cell precursor populations between young (3 months) and aged mice (19–22 months)
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were correlated between pro- and pre-B cells, even when
significance was reached in only one of the cell types
(Fig. 2c). Several of the age-upregulated genes, particu-
larly in pro-B cells, have known roles in late stages of B
cell development; these include Igj, Faim3 (Fc receptor
for IgM), and genes coding for Major Histocompatibility
Complex proteins, such as Cd74 (Additional file 1:
Table S2). This could be explained by aberrant

expression of mature B cell-specific genes in the aged
pro-B cells. However, we cannot exclude the presence of
a small number of contaminating mature B cells in the
sorted aged pro-B cell population. The latter may be due
to the increased number of recirculating mature B cells,
and the less distinct separation between B cell precursors
(IgM-) and mature cells (IgM+), in the aged bone marrow
(Fig. 1a). Therefore, we excluded mature B cell-specific
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genes from further analyses and chose to focus primarily
on age-downregulated genes, since we are confident that
they do not arise from this potential contamination.
Many genes with age-associated changes in expression

also showed a strong modulation of their expression
during B cell development (Additional file 2: Figure
S1a). Genes whose expression decreased upon aging in
pro-B cells were frequently downregulated during the
pro-B to pre-B cell transition in young cells (Additional
file 2: Figure S1a, blue points); examples include Rftn2,

Plxna2, Cdc42bpa, Plxdc2, and Pcdh9 (Additional file 2:
Figure S1b). This suggests that these genes are either
prematurely downregulated in aged pro-B cells or that
they fail to be upregulated at an earlier developmental
stage in the aged cells. Conversely, genes with reduced
expression in aged pre-B cells were often upregulated in
the pro-B to pre-B cell transition in young mice
(Additional file 2: Figure S1a, red points); examples in-
clude Irs1 (Insulin Receptor Substrate 1) and the
PI3K-AKT pathway antagonist Inpp4b (reviewed in [17];
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Additional file 2: Figure S1b). This pattern suggests a
failure to upregulate these genes as the aged B cell pro-
genitors progress to the pre-B cell stage. Notably, several
genes downregulated upon aging at the pro-B and/or
pre-B cell stage encode components of the IGF signaling
pathway, such as Irs1 and Igf1r. Indeed, Irs1, a key com-
ponent of this pathway, was found to be the most sig-
nificantly downregulated gene in pre-B cells upon aging
at the messenger RNA (mRNA) level. We therefore ex-
amined IRS1 protein levels and found that these were
decreased upon aging in both pro-B and pre-B cells (Fig.
2d), demonstrating that age-specific mRNA changes of
Irs1 are propagated into reduced protein levels.
Total RNA levels reflect both the rate of transcription

and downstream processes such as RNA stability. To ex-
plore the effects of aging on gene transcription more dir-
ectly, we isolated nuclear RNA from young and aged
pro-B cells to enrich for nascent transcripts and profiled
global changes in intronic transcription as a specific meas-
ure of nascent transcription. While ~ 17% (30 out of 175)
of DEGs detected in total RNA were also DEGs in the nu-
clear RNA-sequencing (RNA-seq) analysis, and overall the
fold changes were correlated (Additional file 2: Figure S2),
this analysis revealed many more genes showing signifi-
cant age-related differential transcription (Fig. 3a;
Additional file 1: Table S4; 147 downregulated and 255
upregulated genes upon aging). Notably, several age-

downregulated genes, such as Plxdc2 [18], Igf1, Igf2bp3,
and Igf1r, and upregulated genes, such as Adam19 [19]
and Tmem163 [20], have been linked to IGF signaling or
type 2 diabetes. More broadly, KEGG pathway analysis of
DEGs highlighted several metabolic pathways linked to
nutrient signaling (Additional file 2: Figure S3).
The nuclear RNA-seq analysis revealed Nespas as one

of the most significantly downregulated genes in aged
pro-B cells (Fig. 3a, Additional file 2: Figure S4a). Nespas
is a non-coding transcript implicated in the regulation of
imprinting and serves as the non-coding precursor RNA
of miRNAs miR-296 and miR-298 [21, 22]. To explore
the link between miRNA expression and aging in B cell
precursors, we performed small RNA-seq. We identified
34 significantly differentially expressed miRNAs in either
pro- or pre-B cells (Fig. 3b, c; Additional file 1: Table
S5). Of these, 20.6% (7 out of 34) were differentially
expressed in both pro- and pre-B cells. This analysis
confirmed a profound downregulation of miR-296 and
miR-298, consistent with changes in Nespas levels
detected with nascent RNA-seq. We also observed an
upregulation of seven Let-7 family members and of
miR-223, upon aging in pro- and/or pre-B cells (Fig. 3b,
c). Differentially expressed miRNAs segregated into clus-
ters displaying similar expression changes upon aging,
several of which also showed a modulation in their
expression between pro-B and pre-B cells (Fig. 3c).
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KEGG pathway analysis of validated target genes of the
differentially regulated miRNAs (Additional file 1: Tables
S13-S16) showed that they mapped to multiple pathways,
including those related to cancer, PI3 kinase, and FoxO
signaling, suggesting the potential post-transcriptional
modulation of these miRNA target genes in aging
(Additional file 2: Figure S5).
Let-7 miRNAs consist of 12 members that share the

same seed sequence and are expressed from eight
genomic loci (Let-7a1, Let-7a2, Let-7b, Let-7c1,
Let-7c2, Let-7d, Let-7e, Let-7f1, Let-7f2, Let-7g,
Let-7i, and miR-98) [23]. As Let-7b and -7c2 were the
most significantly upregulated miRNAs in aged pre-B
cells, we examined the nuclear RNA-seq data and identi-
fied an unannotated long, apparently non-coding RNA on
chromosome 15 that was significantly increased in the
aged pro-B cells and that overlaps with Let-7b and -7c2
(Fig. 3a, d). Thus, this transcript is likely a precursor RNA
for these miRNAs. We also noted the presence of a long
transcript encompassing Let-7a1, −7d, and -7f1, although
its expression was not significantly altered in aged pro-B
cells (Additional file 2: Figure S4b).
Taken together, these results demonstrate that aging

leads to specific changes in the developing B cell
transcriptome affecting coding, long non-coding, and
miRNA transcripts.

Changes in chromatin structure underlie alterations in
gene expression in aged B cell precursors
To explore the mechanisms of age-specific transcriptional
modulation, we profiled chromatin accessibility by
ATAC-seq [24] in developing B cells from young and aged
mice. In aged pro-B cells, accessibility was significantly in-
creased in only five regions and decreased in 12 regions
genome-wide (Additional file 2: Figure S6a; Additional file 1:
Table S6). Interestingly, two of the regions with decreased
accessibility mapped to the promoter of Plxna2, whose ex-
pression is decreased in aged pro-B cells (as found by total
RNA-seq and nuclear RNA-seq). In aged pre-B cells, we
identified ten regions with significantly lower accessibility
and four regions with higher accessibility (Fig. 4a; Additional
file 1: Table S6). Two of the regions with reduced accessibil-
ity overlapped with the Irs1 promoter region and another
one mapped close to the Irs1 transcription termination site
(Fig. 4a; Additional file 2: Figure S7a). Therefore, ATAC-seq
revealed a limited number of changes in chromatin acces-
sibility upon aging and implicated a role for chromatin re-
modeling in repressing the Irs1 locus in aged B cell
precursors.
Transcriptional regulation and chromatin accessibility

are associated with changes in the binding of regulatory
and architectural factors, as well as alterations in histone
modifications. Therefore, we generated genome-wide
profiles of histone modifications associated with active

promoters (H3K4me3, H3K27ac), active enhancers
(H3K27ac), and polycomb repressive complex binding
(H3K27me3), as well as binding of the architectural pro-
tein CTCF in young and aged B cell precursors
(summary statistics for all datasets are presented in
Additional file 1: Table S1).
For H3K4me3, we found 87 differentially enriched

peaks in pro-B cells, with a loss of H3K4me3 detected at
19 of these sites, including the Irs1 promoter region, and
a gain of H3K4me3 at 68 sites. The latter regions in-
cluded a potential regulatory region which may serve as
an alternative promoter for the Let-7b/c2 precursor
RNA (chromosome 15) and the promoter of the
Let-7a1/d/f1 precursor (chromosome 13) (Additional file
2: Figures S6b and S7b; Additional file 1: Table S7).
Changes in H3K4me3 overlapped significantly with
DEGs (Additional file 2: Figure S6b; as expected, in-
crease of H3K4me3 was only linked to increased ex-
pression and vice versa). In pre-B cells, we identified
15 differentially enriched H3K4me3 peaks between
young and aged, including a loss of this mark at the
Irs1 promoter region and a gain at the promoter of
the age-upregulated gene Reln, as well as at the pre-
cursors to the Let-7b/c2 and Let-7a1/d/f1 miRNAs
(Additional file 2: Figures S6b and S7c; Additional file
1: Table S7).
For the polycomb-mediated histone modification

H3K27me3, we identified only two peaks with a signifi-
cant differential enrichment between young and aged
pre-B cells (Fig. 4b; Additional file 1: Table S8). The first
peak was located at the Irs1 promoter and showed a sig-
nificantly higher enrichment in aged pre-B cells, consist-
ent with Irs1 transcriptional downregulation. The
second peak, displaying a decrease in H3K27me3 upon
aging, was located in the Let-7b/c2 regulatory region on
chromosome 15 (Fig. 4b; Additional file 2: Figure S8a,
b). This is in line with our finding that nascent tran-
scription over this region was significantly upregulated
in aged pro-B cells compared to young and consistent
with Let-7b and -7c2 being the most upregulated miR-
NAs in aged pre-B cells. Comparing young to aged
pro-B cells, no H3K27me3 peaks passed the multiple
testing correction in the differential enrichment analysis
(Additional file 1: Table S8). However, the peak overlap-
ping the Let-7b/c2 precursor displayed a lower enrich-
ment in aged pro-B cells, similar to pre-B cells
(Additional file 2: Figure S6c). Consistent with the devel-
opmental upregulation of Irs1 expression observed dur-
ing B cell differentiation, we observed a decrease in
H3K27me3 in young pre-B compared to young pro-B
cells at the Irs1 promoter region (Additional file 2:
Figure S9b). This decrease in H3K27me3 did not occur
to the same extent in the aged pre-B cells (Additional
file 2: Figure S9b). Thus, Irs1 repression in aged pre-B

Koohy et al. Genome Biology  (2018) 19:126 Page 7 of 24



cells appears to arise due to a failure to relieve
polycomb-mediated silencing in the transition from the
pro-B to the pre-B cell stage.
Acetylation at lysine 27 of histone H3 is mutually ex-

clusive to methylation of this residue and is linked to ac-
tive enhancers or promoters. We noted a trend towards
increased H3K27ac enrichment at peaks overlapping or
within 10-kb of the upregulated genes in the aged pro-B
and pre-B cells, while the opposite was true for down-
regulated genes (Additional file 2: Figure S6d). Notably,
H3K27ac displayed reciprocal changes to H3K27me3 at
the promoter of Irs1 and the Let-7b/c2 precursor (Add-
itional file 2: Figures S6d, S8, and S9). Analysis of CTCF
ChIP-seq data did not reveal any significant differential
binding of CTCF between young versus aged pre-B cells
(Additional file 2: Figure S6e).
The stringent threshold-based approach presented

above identified high-confidence loci showing changes
in chromatin accessibility and histone modifications
upon aging, revealing remarkably few such changes, but
highlighting a significant chromatin component to the

transcriptional regulation of Irs1 and the Let-7 miRNAs.
However, this does not exclude the possibility that more
subtle changes in the epigenomic landscape might play a
broader role in shaping the gene expression profile of
aged compared to young B cell precursors. Therefore,
we tested whether changes in chromatin, identified using
a low stringency threshold, were generally accompanied
by altered gene expression (Additional file 2: Figure S10;
Additional file 1: Tables S6–S9) and whether genes with
altered expression were characterized by remodelled
chromatin (Fig. 5). This revealed not only that changes
in chromatin upon aging, especially H3K4me3 and
H3K27me3 occupancy, likely impact on gene expression
(Additional file 2: Figure S10), but further, that if there is
a change in gene expression, this is frequently linked to
changes in chromatin (Fig. 5). It is noteworthy that
H3K4me3 and H3K27ac agree more with differential
gene expression than chromatin accessibility (ATAC-seq;
Fig. 5; Additional file 2: Figure S10). This is in line with
the fact that chromatin accessibility is not necessarily
linked to active gene expression but can also be found

−0.2

0.0

0.2

Downregulated

Unchanged

Upregulated

Gene expression change in total RNA

H
3K

27
m

e3
 lo

g2
 

f o
ld

 c
ha

ng
e

(A
ge

d/
Yo

un
g)

Pro-B cells

−0.1

0.1

−0.2

0.0

0.4

Pre-B cells

Downregulated

Unchanged

Upregulated

0.2

−0.2

0.0

0.2

Gene expression change in total RNA

H
3K

27
ac

 lo
g2

 
f o

ld
 c

ha
ng

e
(A

ge
d/

Yo
un

g)

Pro-B cells

Downregulated

Unchanged

Upregulated

0.4

−0.3

0.0

0.3

Pre-B cells

Downregulated

Unchanged

Upregulated

0.6

−0.6

−0.6

−0.3

0.0

0.3

Gene expression change in total RNA

H
3K

4m
e3

 lo
g2

 
fo

ld
 c

ha
ng

e
(A

ge
d/

Yo
un

g)

Pro-B cells

Downregulated

Unchanged

Upregulated

−0.25

0.00

0.25

Pre-B cells

Downregulated

Unchanged

Upregulated

−0.5

0.0

0.5

Gene expression change in total RNA

AT
A

C
−

se
q 

lo
g2

 
fo

ld
 c

ha
ng

e
(A

ge
d/

Yo
un

g)

Pro-B cells

Downregulated

Unchanged

Upregulated

−1.0

−0.50

−0.25

0.00

0.50

Pre-B cells

Downregulated

Unchanged

Upregulated

0.25

12 3123 16 15 3188 7 52 10138 69 80 12001 43

76 13490 77 75 13292 35 114 21893 151 105 15308 46

p = 0.00119 p = 2.51e−05 p = 0.00123 p = 6.58e−09

p = 1.49e−39 p = 1.98e−19 p = 0.000305 p = 0.00494
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Koohy et al. Genome Biology  (2018) 19:126 Page 8 of 24



State (Emission order)

H3K27me3
ATAC
CTCF

H3K27ac
H3K4me3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Poly
co

m
b

Biva
len

t

Acti
ve

 p
ro

m
ot

er

Acti
ve

 R
eg

ula
to

ry

In
su

lat
or

Bac
kg

ro
un

d

S
ta

te
 F

ro
m

 (
E

m
is

si
on

 o
rd

er
) 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

State To (Emission order)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Polycomb

Bivalent

Active 
promoter

Active Regulatory
Region

Insulator

Background

U
pr

eg
ul

at
ed

 G
en

es

0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0

Erg
Hck
Daam1
Reln
Mctp1
Ccnd2
Let-7b/c2
Rassf4
Cd52
Trib2
Plin3
Epb4.1l4b
Oaf
Pqlc3
Dock9
Trf
Ampd3
F5
Sgk1
P2ry10
Rnf125
Pcdhb16
Iigp1

Proportion of promoter in state

Chromatin
state

Reg
ion

Insulator

Active regulatory
region

Active promoter

Bivalent

Polycomb

−2000 0 2000
Change in coverage

of promoter (bp)

Cluster

Lo
g2

 fo
ld

 c
ha

ng
e 

in
 g

en
e 

ex
pr

es
si

on
(A

ge
d 

vs
 y

ou
ng

 p
re

-B
 c

el
ls

)

−0.2

0.0

0.2

Cluster
1 98764 532

1 98764 532
Polycomb
Bivalent
Active promoter

Active regulatory region
Insulator
Background

Aged States

D
ow

nr
eg

ul
a t

ed
 G

en
es

Young States
Mast4
Grip1
Igf1r
Large
Nespas
Irs1
Atrnl1
Zswim6
Igf2bp3
Exoc6b
Fam189a1
Fmn2
Plxna2
Ptma
Prkce
Ccnd3
Sorcs2
Bard1
Xylt1
Camk1d
Pde5a
Rai1
Lgals1
Tmem108
Inpp4b
Rftn2
Airn
Mcf2l
Cdkal1
Stac
Nrxn1
Ddc
Cask

Subset of gene promoters displaying largest
alterations in chromatin state coverage (n = 331)

a b

c d

Fig. 6 Integrated chromatin state analysis in pre-B cells identifies age-related changes. a Emission parameters learnt by the Hidden Markov Model
in chromHMM analysis. It shows the likelihood of emitting each of the 5 marks used in this analysis at any given chromatin state. b Transition
parameters learnt by the HMM in chromHMM analysis: given the current chromatin state (at a specific 200-bp genomic region), how likely is it
that the adjacent 200-bp region will be in any of the 16 inferred states. Dashed blocks show states that transit to each other more frequently
suggesting a more biologically meaningful chromatin state, thus driving our clustering into 6 states: Polycomb, Bivalent, Active Promoter, Active
Regulatory Region, Insulator, and Background. c Top: Heatmap showing the change in the occupancy (bp) of each regulatory chromatin state
over gene promoter regions (2500-bp up- and downstream of TSS), for a subset of genes showing the largest magnitude changes. Genes are
hierarchically clustered based on their correlation and assigned to 9 clusters showing distinct patterns. Bottom: Log2 fold change in expression
of genes in each cluster, in aged versus young pre-B cells. Dashed line indicates unchanged gene expression. To better display the data, some
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over other regulatory elements such as insulators, while
H3K4me3 and H3K27ac are more strongly linked to ac-
tively transcribed genes [25, 26].
In order to examine the relationship between the

different types of chromatin alterations that we have an-
alyzed, we identified overlapping peaks between all pair-
wise combinations of ChIP-seq and ATAC-seq data
within a given cell type (pro-B or pre-B) and between
pro-B and pre-B cells for a given chromatin feature. We
then derived correlation coefficients comparing the
age-related log2 fold changes in enrichment for overlap-
ping peaks from each pairwise combination (Additional
file 2: Figure S11, left). The highest correlation was ob-
served for log2 fold changes in the same chromatin
mark in pro-B versus pre-B cells, consistent with the
correlation between age-related gene expression changes
at these two developmental stages. We also observed a
positive correlation between changes in ATAC-seq and
H3K4me3 in aging, but less so between either of these
and H3K27ac, in line with the non-redundant nature of
these chromatin features [26, 27]. The majority of cor-
relation coefficients increased when considering only
pairs of peaks for which at least one ranked highly (top
10%) in significance (Additional file 2: Figure S11, right).
Most strikingly, changes in H3K27me3 anti-correlate
with changes in ATAC-seq, H3K4me3, and H3K27ac,
suggesting coordinated changes in chromatin marks
upon aging.
To further increase the power of the analysis, we next

sought to identify age-associated changes in the chromatin
landscape jointly across histone marks, chromatin accessi-
bility (as assayed by ATAC-seq) and CTCF occupancy. To
do this, we employed chromHMM, an unsupervised
machine-learning approach that employs a multivariate
Hidden Markov Model and segments the genome into
characteristic chromatin states [28]. We chose a 16-state
model based on balancing within-class homogeneity and
between-class heterogeneity (Fig. 6a). This model was fur-
ther collapsed into six broader classes (Fig. 6a, b), termed
‘polycomb’ (prevalence of repressive H3K27me3 mark),
‘bivalent’ (presence of active H3K4me3 and repressive
H3K27me3 marks), ‘active promoter’ (prevalence of
H3K4me3), ‘active regulatory region’ (H3K27ac), ‘insulator’
(CTCF), and ‘background’ (Additional file 3; Additional
file 4). We first measured the coverage of each chromatin
state over both promoters and regulatory elements (de-
fined as the union between ATAC-seq and ChIP-seq peaks
for histone modifications and CTCF in pre-B cells)
genome-wide and assigned each to the chromatin state
covering the largest proportion, excluding background ex-
cept if no other state was present. The proportion of re-
gions assigned to each state was very similar in young and
aged cells, particularly for promoters (Additional file 2:
Figure S12a, b). Over half of all promoters were in the

active promoter state, with significant subsets also
assigned to the polycomb and bivalent states; indeed the
majority of regulatory regions in these three states
mapped to a transcription start site (TSS), in contrast to
the active regulatory region and insulator states which
were rarely localized at TSSs (Additional file 2: Figure
S12c). The chromatin states of the vast majority of both
promoters and regulatory regions were unchanged in aged
compared to young pre-B cells (Additional file 2: Figure
S12d).
To extend this analysis and identify more subtle

changes that do not necessarily result in an overall
switch in the state, we then calculated the difference in
the total number of base pairs occupied by each state in
aged compared to young pre-B cells. While the majority
of promoters displayed minimal changes in state occu-
pancy upon aging (Additional file 2: Figure S12), we se-
lected a subset of genes that displayed the largest
magnitude changes over their promoters. In order to inte-
grate these changes and identify groups of genes whose
promoters displayed similar transitions in their chromatin
state, we used unsupervised clustering. This segregated
the promoters into nine clusters displaying different pat-
terns of state changes (Fig. 6c, top; Additional file 1: Table
S10). These genes also frequently displayed modulations
in gene expression consistent with their altered chromatin
state (Fig. 6c, bottom). For example, expression of genes
that transitioned from the active promoter state to the bi-
valent or polycomb state (clusters 2 and 4, respectively)
was generally reduced upon aging. Conversely, genes
showing the opposite transition (cluster 6) or whose poly-
comb state occupancy was decreased (cluster 5), tended to
increase in expression (Fig. 6c, bottom). We next assessed
chromatin state changes at the promoters of all genes
showing significant age-specific expression changes in
pre-B cells. Promoters of age-upregulated genes showed
only subtle changes, with a few notable exceptions, includ-
ing the newly identified Let-7b/c2 precursor gene, Ccnd2
(cyclin D2), and Mctp1 (multiple C2 and transmembrane
domain-containing protein 1). In these cases, the pro-
moter regions switched from a bivalent dominant state in
young to a more active state in aged pre-B cells (Fig. 6d).
Both Ccnd2 and Mctp1 were also assigned to cluster 6 in
the genome-wide analysis (Fig. 6c). For genes downregu-
lated in aged pre-B cells, occupancy of the active promoter
or active regulatory region state was reduced over 19 of
the 32 promoters. Similar to the observation for the ma-
jority of upregulated genes, most of these changes were
subtle, consistent with the relatively small fold changes in
the expression of these genes (Fig. 2b) and the binary na-
ture of chromHMM (at a given genomic location, a peak
for a specific chromatin feature is either present or ab-
sent). However, we observed substantial changes occur-
ring over the Irs1 promoter, where the active state
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Fig. 7 Genome organization changes in pre-B cells upon aging. a Top left: Mean AB compartment strength (first principal component of Hi-C matrices) in
aged vs young mice, at 250-kb resolution. Red points represent bins showing significant differences in compartment strength
(p< 0.05, ANOVA without multiple testing correction but with standardized compartment strength change > 3). The bin encompassing Irs1 is highlighted;
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on a Fisher’s exact test for independence of the proportion of genes that gain/lose interactions across gene categories
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transitioned to a bivalent state upon aging (Fig. 6d); it was
also identified in the genome-wide analysis, segregating in
cluster 2 (Fig. 6c). Chromatin state analysis thus highlights
genes that show the most profound alterations in the
chromatin at their promoters.
Taken together, these results demonstrate specific

age-associated changes in the chromatin at gene pro-
moters in developing B cells, which potentially underlie
the observed age-specific changes in gene expression.

Age-specific changes in genome organization in B cell
precursors
Aging has been linked with changes in genome
organization in other systems [29]. In order to address
whether such changes occur in developing B cells and
whether these correlate with changes in gene regulation,
we first performed Hi-C in nuclei isolated from pre-B
cells. We used Hi-C data to segment the genomes into
A (active) and B (repressed) compartments using princi-
pal component analysis (PCA) combined with H3K4me3
data [30]. This analysis showed that the chromosome
compartmentalization was near identical between young
and aged pre-B cells. However, 100 out of 9928 regions
displayed a significant change in their compartment
score upon aging (Fig. 7a top left; Additional file 1: Table
S11). The compartment score was significantly increased
for 40 regions, three of which switched from a repressive
B compartment (negative score) to an active A compart-
ment (positive score). Conversely, 60 regions showed a
significant decrease in compartment score, with six
switching from the A compartment to the B compart-
ment. Notably, one of the A-to-B switch regions encom-
passed the Irs1 gene on chromosome 1 (Fig. 7a, bottom;
Additional file 2: Figure S13a). Regions with decreased
compartment score overlapped with a total of ten genes
whose expression was significantly decreased in aged
pre-B cells, including Plxna2 and Igf1r, while two genes
whose expression increased upon aging (Reln and
Daam1) were located in regions displaying an increase
in compartment score (Fig. 7a, top left; Additional file 1:
Table S11). When we compared the expression of all
genes located within regions with significantly altered
compartment scores, we observed a highly significant
trend towards an increase in expression of genes with an
increased compartment score and vice versa (Fig. 7a, top
right; p = 2.99e-40). This suggests that relocation of
genes between active and repressive nuclear environ-
ments may contribute to the modulation of gene expres-
sion upon aging.
To obtain a high-resolution view of promoter interac-

tions in pre-B cells and their dynamics upon aging, we
performed Promoter Capture Hi-C (PCHi-C; [31, 32]) on
cells from young and aged mice and identified statistically
significant promoter interactions using CHiCAGO [33].

PCHi-C enriches for elements that interact with a given
promoter (promoter interacting regions [PIRs]), including
enhancers and silencers. It also enriches for interactions
between promoters, e.g. when they are located in the same
transcription factory or share an enhancer. To distinguish
such interactions, we analyzed promoter:PIR interactions,
where we specifically exclude promoter:promoter interac-
tions, separately from promoter:promoter interactions.
Consistent with PCHi-C results in other cell types [31,
32], we observed that PIRs were enriched for features as-
sociated with gene regulation including H3K4me3,
H3K27me3, and H3K27ac (Fig. 7b). This suggests that
many of the detected physical interactions connect pro-
moters with regulatory elements. In both young and aged
cells, active promoters frequently interacted with active
regulatory regions as well as with other active promoters
(Additional file 2: Figure S14a, b), while polycomb-associ-
ated and bivalent promoters were enriched for interac-
tions with bivalent promoters and bivalent PIRs, as well as
with insulator regions.
We asked how the number and strength of promoter

interactions relates to age-specific changes in gene ex-
pression (Additional file 1: Table S12). Promoters of
age-upregulated genes gained interactions with other
promoters in aged pre-B cells and rarely lost interactions
with either promoters or PIRs, while downregulated
genes frequently lost interactions with both upon aging
(Fig. 7c). We then considered changes in the CHiCAGO
interaction scores, which give a measure of the confi-
dence with which we detect interactions [33], instead of
the binary (present/absent) interaction states. This re-
vealed a general trend towards higher scores at upregu-
lated genes, suggesting stronger or more frequent
interactions, and lower scores at downregulated genes,
suggesting loss of contacts with regulatory elements (Fig.
7d; Additional file 2: Figure S14c).
We next explored how age-specific changes in gene

expression associated with changes in the chromatin
state of the PIRs. In some cases, such as at the P2ry10,
Epb4.1l4b, and Ccnd3 genes, the PIR of an up- or down-
regulated gene showed a slight increase or decrease in
the levels of active chromatin marks, respectively (Fig. 8b,
Additional file 2: Figure S15a, c). However, overall, we
did not detect a significant association between gene ex-
pression changes and alterations in chromatin at PIRs
upon aging (Fig. 7e), in contrast to findings in other sys-
tems such as ES cell differentiation [34]. We also ob-
served a number of cases where the promoters of
upregulated genes gained connections to regions charac-
terized by an active chromatin state (including both pro-
moters and PIRs), while a number of downregulated
genes lost interactions with active regions (Fig. 8,
Additional file 2: Figure S15); although, overall, this
trend did not reach significance (Fig. 7f ). Notably,
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examples of such ‘rewiring’ of interactions included the
age-downregulated Irs1 gene, which lost several interac-
tions in aged cells, including an interaction with the
highly active chromatin surrounding the Cul3 promoter
(Fig. 8a; Additional file 2: Figure S13b).

These results suggest that modulation of the chromatin
at PIRs occurs infrequently in aging, even when the ex-
pression from the promoter is altered. Rather, our analysis
reveals that gene expression changes upon aging are fre-
quently linked to ‘rewiring’ of specific promoter

Fig. 8 Rewiring of promoter interactions in aged pre-B cells. Genome browser representation of interactions from the Irs1 (a) and Ccnd3 (b) promoters
in young and aged pre-B cells. Both are examples of genes whose expression is downregulated upon aging. Shown are all interactions
with a CHiCAGO score above the significance threshold of 5 that lie within the genomic region depicted. For ATAC-seq and ChIP-seq
tracks, read counts were quantified over 100-bp windows and normalized with size factors from DESeq2 analysis of MACS peaks. For
a given locus and chromatin mark, young and aged are displayed on the same scale. Shading indicates interactions that are lost upon
aging (blue) or that display a decrease in H3K27ac enrichment at the PIR (grey)
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interactions, that might contribute to the broader shifts
between active (A) and inactive (B) genomic
environments.

Discussion
Multilayered chromatin mechanisms underlie age-
associated changes in gene expression
Here we present the first study examining how aging af-
fects gene regulation in B cell precursors during their
development in the mouse bone marrow. Importantly,
our global integrative analysis revealed that, while the
chromatin landscape of aged B cell precursors was gen-
erally similar to that of young cells, changes in chroma-
tin structure and chromosomal conformation frequently
accompanied age-specific alterations in gene expression.
In addition to changes in protein-coding gene expres-
sion, we identified several long non-coding and miRNAs
that are differentially regulated between young and aged
B cell precursors, and highlighted chromatin alterations
that might play a role therein. Thus, modulation of the
underlying chromatin likely contributes to transcrip-
tional alterations upon aging and may play a causative
role in some of the gene expression changes that we ob-
served. We found differences in the repressive,
polycomb-linked histone modification H3K27me3 par-
ticularly noteworthy: this modification has the potential
to be heritable from one cell generation to the next by
regulating the binding of polycomb repressive complexes
[35] and was broadly increased over age-downregulated
genes, while upregulated genes displayed decreased en-
richment. These opposing trends indicate that it is un-
likely that there is a general change in the machinery
that sets or removes H3K27me3; indeed, we did not de-
tect altered expression of polycomb group genes. Rather,
these differences are more readily explained by
gene-specific alterations, such as in signaling pathways
to chromatin or the binding of site-specific transcription
factors that, in turn, affect H3K27me3. This is illustrated
by our observation that modulation of Irs1 and Let-7
gene expression was linked to opposing changes in his-
tone H3K27me3 over proximal regulatory elements at
those genes. A previous study demonstrated that in skel-
etal muscle of rapamycin-treated mice (which develop
diabetes-like symptoms), Irs1 was downregulated to-
gether with several other insulin signaling-linked genes
through PRC1 recruitment and increased H3K27me3;
this repression was dependent on the transcriptional
regulator YY1 [36]. Consistent with this, the changes in
H3K27me3 that we observed in the Irs1 promoter and
the Let-7b/c2 regulatory region are close to YY1 binding
sites. Future work will explore the mechanisms that tar-
get H3K27me3 to these genes in pro-B and pre-B cells.
In contrast to the association between gene expression

changes and alterations in histone modifications and

chromatin accessibility over promoter regions, the chro-
matin at PIRs was remarkably stable. However, we found
that changes in gene expression upon aging were often
accompanied by rewiring of the interactions of these
promoters with other, potentially regulatory, regions of
the genome. Given the absence of chromatin alterations
at PIRs, it is conceivable that this rewiring is driven by
chromatin modulations at the promoters themselves.
Notably, downregulation of genes upon aging was often
linked to a loss of promoter interactions, while upregula-
tion was linked to a gain of promoter:promoter interac-
tions. These alterations in specific promoter interactions
likely contribute to the shifts that we observed for sev-
eral DEGs between active and inactive nuclear compart-
ments. Rewiring of promoter interactions has been
documented in other systems, especially during differen-
tiation (reviewed in [37]). Here we reveal this layer of
genome regulation in an important new context, aging.
Together, these analyses shed light on the multiple com-
plementary layers of gene regulation that affect the aging
phenotype in B cell precursors.
Interestingly, there was only a partial overlap in the

genes differentially expressed upon aging between the
total versus nuclear RNA-seq analyses, with more wide-
spread changes identified in the nuclear transcriptome.
This might suggest that aging is accompanied by alter-
ations in nascent transcription of numerous genes,
whose levels are then buffered by the cells, e.g. through
mechanisms involving RNA stability. On the other hand,
genes identified only in the total RNA-seq analysis might
be transcribed with the same kinetics in young and aged
cells, but differently regulated by mechanisms acting
post-transcriptionally. The differential expression of
several miRNAs that we observed likely contributes to
altered protein abundance upon aging. It will be
important to explore the numerous facets of
post-transcriptional mechanisms and their potential role
in aging.
Aging has been linked to increased heterogeneity at

the organismal and cellular level [38]. To minimize con-
founding effects of heterogeneity in this study, we used
pools of healthy mice to normalize for inter-individual
variation. The fact that we could robustly detect both an
increase of H3K27me3 over the age-downregulated Irs1
promoter and a decrease of this mark over the Let-7b/
c2-linked regulatory region supports the notion that the
gene expression changes we observe are not due to a
few ‘outlier’ mice and/or cells, because in the latter case
a decrease in H3K27me3 would be difficult to observe,
as the signal would be diluted out. Conversely, this
normalization approach likely masked gene expression
changes within individual aged mice, leading to an
underestimate of the numbers of genes affected.
While we cannot exclude the possibility that there are
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additional pathways that may be revealed by analysis
of individual mice, we believe we have captured dom-
inant pathways that are altered in aging mouse B cell
precursors.

Precursor B cell aging is associated with gene expression
alterations linked to IGF signaling
Our analyses revealed alterations in the IGF signaling
pathway at several regulatory levels, suggesting a pivotal
contribution to the aging process in B cell precursors.
We observed changes in the expression of several key
components of the insulin/IGF signaling (IIS) machinery,
especially Irs1 and Igf1r, with striking alterations in the
chromatin and interaction profile at the Irs1 promoter/
regulatory regions, underscoring that this regulation is
in part at the transcriptional level and involves
polycomb-mediated repression. We also observed de-
creased IRS1 protein levels in the aged pro- and pre-B
cells compared with the young cells, demonstrating that
the lower mRNA level leads to a reduction in the
amount of IRS1 protein produced. Notably, downregula-
tion of these key players in the IIS and nutrient signaling
pathways has been associated with the aging process, as
further discussed below.
Several of the differentially expressed miRNAs that we

identified have also been linked to insulin/IGF/metabolic
signaling. These include miR-223, which modulates Igf1r
expression [39, 40], and the Let-7 miRNA family, which
regulates Irs1. Let-7 miRNAs are critical regulators of
glucose metabolism and insulin signaling; the upregula-
tion of Let-7 expression leads to downregulation of ex-
pression of several components of the insulin signaling
machinery in skeletal muscle and liver, such as Insr and
Irs2 [41, 42]. We predict that the increased abundance
of Let-7 in aged B cell precursors would drive a decrease
in IIS responsiveness, through targeting Irs1 and other
components at the post-transcriptional level. Notably,
we also observed striking alterations in the chromatin at
a novel potential precursor RNA for the Let-7b and -7c2
miRNAs, indicative of an interplay between epigenetic
and post-transcriptional mechanisms in shaping gene
expression.

Insights into the biology of B cell precursors and aging
The gene expression changes we observed in developing
B cells upon aging differ from those that have been de-
tected in hematopoietic stem cells (HSC), where aging in
the mouse leads to changes in different classes of genes,
such as those involved in TGF-beta signaling [43]. The
majority of HSCs in the bone marrow are not prolifera-
tive, in contrast to the pro- and pre-B cells. This illus-
trates that aging affects gene expression in cells within a
developmental cascade in different ways, dependent on
proliferative status, niche, and other factors.

Nevertheless, genes encoding members of the IIS
pathway have been linked to the aging process in other
tissues and systems [44–46]. In fact, the nutrient- and
growth-linked IIS and mTOR pathways are some of the
most conserved aging-controlling pathways in evolution,
in worms, flies, and mice [47]. Moreover, members of
the Let-7 miRNA family have previously been linked to
the metabolic physiology of aging [48, 49] and show in-
creased expression in human skeletal muscle of aged in-
dividuals [50]. Much of this past work linking IIS to
aging is based on gene deletion or mutation analysis.
Our work highlights changes in gene expression of these
components in normal aging and reveals epigenetic
mechanisms that are involved.
B cell development is critically dependent on the bone

marrow microenvironment, which is altered upon aging.
A decrease in secretion of IL7 by aged stromal cells has
been linked to impaired generation of B cells in the bone
marrow (reviewed in [51]), which is exacerbated by im-
paired signaling responses to IL7 in aged pro-B cells.
Consistent with reduced IL7-dependent survival and
proliferation, we observed reduced numbers of pro-B
cells in aged mice. Our data additionally implicate IGF-1
signaling in the aged phenotype of the B cell precursors
(see above). Previous work has analyzed the involvement
of IGF1R signaling in B cell function, showing that Igf1r
is the predominantly expressed insulin-family receptor
in B lymphocytes [52] and that IGF-1, secreted by osteo-
blasts, is required for normal B cell development in the
bone marrow [53]; reviewed in [51]. We observed a
more profound reduction in pre-B compared to pro-B
cell numbers, concomitant with the onset of IGF-1 sig-
naling in the pro-B to pre-B cell transition [7]. Notably,
Igf1r deletion in B cell precursors leads to a similar re-
duction in numbers as we have observed (see Fig. 3 in
reference [52]). It is well established that the IIS pathway
is subject to multiple levels of feedback regulation. In
particular, post-translational regulation of IRS-1 by
serine/threonine protein kinases is thought to promote
homeostasis with regard to circulating levels of nutrients
and insulin (e.g. [54]). Our results uncover a further
level of control in this pathway, the chromatin
reorganization of key genes, such as Irs1 and Let-7. It
will therefore be important to establish the upstream
triggers for these changes during aging and the extent to
which they are cell autonomous or reflect changes in
other components of the bone marrow niche of the aged
mouse, such as bone architecture, cell composition or
secreted levels of IGF-1 [55, 56]. It will also be import-
ant to understand how altered expression of these genes
integrates with other central signaling pathways regulat-
ing B cell precursor growth, survival, and differentiation.
Notably, we did not find alterations in gene expression
or epigenetic regulation within these pathways. In
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particular, we found unaltered expression of the IL7R,
consistent with previous studies implicating reduced
availability of IL7 and cytoplasmic signaling of the IL7R
in the reduction of pro-B cell numbers in aging [13, 57].
Additionally, we did not detect altered expression of SL
components of the pre-BCR. Reduced SL cell surface ex-
pression observed in aged precursor B cells has been
proposed to be an adaptive response to the aging micro-
environment which restricts pre-B cell selection [58].
Our data suggest that neither of these pathways is dys-
regulated at the level of gene expression in aging B cell
precursors.
It is noteworthy that Irs1−/− mice have a longer life-

and health-span, with an aged T cell profile that is
more comparable to young mice than the control
aged mice [44, 45] and that heterozygous IGF-1R
mice (Igfr1−/+) also show an increased lifespan [46].
Furthermore, there is evidence that reducing IIS leads to
greater resilience against cellular stress [46], such as pro-
teotoxicity [59]. Thus, the precursor B cells that remain in
aged mice may be those that have adapted best to altered
stress conditions in aging. One might speculate that pre-B
cells with lower expression of Irs1 in the aged mice may
be more viable and/or the result of a selection process.
This could be because greater stimulation of the
IRS1-mediated signaling pathway may render cells more
susceptible to age-associated stresses, e.g. proteotoxicity
[59].
In addition to the genes related to IGF-1 signaling, we

identified other DEGs that have the potential to affect
the aged phenotype in B cell precursors. Several miR-
NAs that are differentially expressed between young and
aged B cell precursors play important roles in B cell de-
velopment, including miR-142a, miR-155, and miR-221
[60–62]. Therefore, changes in miRNA and gene expres-
sion may contribute at multiple levels to reduced B cell
precursor numbers and function. An important question
that needs to be tackled in the future is whether the
pre-B cells in aged mice ultimately develop into B cells
with altered immune responses, as has been reported for
Igf1r KO mice [52].

Conclusions
In summary, we demonstrate altered gene expression,
especially of genes linked to metabolic signaling, in de-
veloping B cells upon aging. These changes are con-
nected to alterations in promoter chromatin structure
and three-dimensional genome organization. Our study
reveals in a well-characterized developmental paradigm
that aging affects the regulation of key signaling path-
ways at multiple levels. A key question for the future is
whether these regulatory mechanisms affect other tissues
and systems during aging.

Methods
Babraham institute C57BL/6 J/Babr aging mouse Colony
Mice were bred and maintained in the Babraham Insti-
tute Biological Services Unit under Specific Opportunis-
tic Pathogen Free (SOPF) conditions. C57BL/6 J mice
were imported from Charles River Laboratories by em-
bryo transfer and bred as a SOPF colony (/Babr) in plas-
tic film isolators. After weaning, male mice were
maintained in individually ventilated cages (2–5 mice
per cage). Mice were fed CRM (P) VP diet (Special Diet
Services) ad libitum, as well as sunflower seeds, poppy
seeds or millet at cage-cleaning as environmental enrich-
ment. Health status was monitored closely and any
mouse with clinical signs of ill-health or distress persist-
ing for more than three days was culled. Treatment with
antibiotics was not permitted to avoid interference with
immune function. Thus, all mice remained ‘sub-thresh-
old’ under UK Home Office severity categorization. As a
result of these procedures, mice in the aging colony
remained healthy for a median period of 99 weeks. Clin-
ical signs necessitating culling included dermatitis (ex-
cessive scratching), fight wounds, and muscle weakness.
Post-mortem analysis occasionally revealed neoplasias
(especially lymphomas and hemangiosarcomas) typical
of the C57BL/6 J strain. Any mice exhibiting gross path-
ology upon post-mortem examination were excluded
from this study.

Primary cells
Bone marrow was flushed from 12–15 12-week (young)
or 19–22 month (aged) healthy male C57BL/6 mice per
replicate and depleted of macrophages, granulocytes,
erythroid lineage, and T cells using biotinylated anti-
bodies against Cd11b (MAC-1; ebioscience), Ly6G
(Gr-1; ebioscience), Ly6C (Abd Serotec), Ter119
(ebioscience), and Cd3e (ebioscience) followed by
streptavidin MACs beads (Miltenyi). Thereafter, pro-B
(B220+CD19+CD43+CD25−IgM−) and pre-B (B220+CD
19+CD43-CD25+IgM−) cells were flow sorted on a BD
FACSAria in the Babraham Institute Flow Cytometry fa-
cility. Antibodies used were CD45R BV421 (B220,
RA3-6B2, Biolegend), CD19 PerCP-Cy5.5 (1D3, BD
Pharmingen), CD43 FITC (S7, BD Pharmingen), CD25
APC (PC61.5, eBioscience), and IgM PE (eB121-15F9,
eBioscience). Purities were > 85% for pro-B and > 90%
for pre-B.
The flow cytometry data were quality checked using

the automated method in FlowAI [63] and low-quality
events were filtered out. Lymphocytes, singlets, and
B220 positive cells were gated using FlowJo V10.1 soft-
ware (FlowJo, LLC) and all compensated parameters
were exported for subsequent analysis. Target popula-
tions were also manually gated and exported. A tSNE
plot was constructed using the Rtsne package with
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default parameters [64]. To identify populations of inter-
est, manual gates were projected onto the tSNE plot.

Nuclear and total RNA-seq
For nuclear RNA-seq, nuclei were isolated from 1 to
10 × 106 flow sorted B lymphocytes by incubation in
50 mM Tris-HCl pH 7.5, 140 mM NaCl, 1.5 mM MgCl2,
1 mM DTT, 0.4% NP40 for 5 min on ice followed by
centrifugation at 500 × g. RNA was isolated with a
RNeasy mini kit (Qiagen) and treated with Turbo
DNAse (Ambion). Total RNA was isolated and depleted
of rRNA using a Ribo-Zero Gold rRNA removal kit (Hu-
man/Mouse/Rat; Illumina) according to the manufac-
turer’s instructions. For both nuclear and total RNA,
paired-end strand-specific libraries for Illumina sequen-
cing were generated as described [65] except polyA+
RNA selection was omitted, first strand complementary
DNA (cDNA) synthesis was performed with random
hexamer primers, and double-stranded cDNA was frag-
mented with a Covaris e220 sonicator. Libraries were se-
quenced on Illumina HiSeq sequencers according to
manufacturer’s instructions.

Short RNA-seq
Short RNAs were isolated from 1 to 10 × 106 flow
sorted B lymphocytes using a mirVANA kit (Ambion/
ThermoFisher) and libraries generated directly from
this using the NEBNext small RNA library prep set
for Illumina with 15 cycles of polymerase chain
reaction (PCR). Transfer RNA and rRNA derived
fragments were removed from the libraries by ‘dou-
ble-sided’ AMPure XP size selection as described in
the user manual and libraries were sequenced on a
HiSeq2500 sequencer (Illumina) according to manu-
facturer’s instructions.

ATAC-seq
ATAC-seq was performed on 5 × 104 flow sorted B lym-
phocytes as described in [24] and libraries were se-
quenced on a HiSeq2500 sequencer (Illumina) according
to manufacturer’s instructions.

ChIP-seq
Sorted B cells (3–4 million/sort) were fixed in phosphate
buffered saline (PBS) containing 1% formaldehyde and
10% fetal bovine serum for 10 min at room temperature.
After quenching the fixation with glycine (125 mM final
concentration) for 5 min at room temperature, the cells
were washed with PBS and the cell pellet was flash fro-
zen in liquid nitrogen and stored at − 80 °C. After
defrosting on ice, the cells were then resuspended in
sonication buffer (150 mM NaCl, 25 mM Tris-HCl
pH 7.4, 5 mM EDTA, 0.1% Triton, 1% SDS)

complemented with protease inhibitor cocktail (P8340,
Sigma) and, in the case of H3K27ac, with 20 mM So-
dium Butyrate and incubated 10–15 min on ice to allow
complete lysis. Samples were sonicated using a Bioruptor
UCD 200 (Diagenode), for 25 cycles of 30 s ON/30 s
OFF, high power. After centrifugation at 14,000 × g for
10 min, the supernatant was diluted 5–10 times in ChIP
dilution buffer (0.01% SDS, 1.1% Triton, 1.2 mM EDTA,
16.7 mM Tris-HCl pH 8.1, 167 mM NaCl) and 5–25 μg
of DNA equivalents (25 μg for CTCF or 15 μg for
H3K4me3 ChIP, and 5 μg for H3K27me3) were incubated
with either 10 μL of anti-CTCF (Millipore 07–729), 1 μg
of anti-H3K27me3 (Active motif 39,155) or 1 μg of
anti-H3K4me3 (Active Motif 39,159) antibody overnight
on a rotating wheel at 4 °C. A total of 25 μL of protA-G
magnetic beads (Millipore 16–663) were added to the
samples and incubated on a rotating wheel for 3 h at 4 °C.
For H3K27ac ChIP 0.3 μg of H3K27ac antibody

(Abcam ab4729) were pre-incubated with 15 μL
protA-G magnetic beads (Millipore 16–663) on a rotat-
ing wheel at 4 °C for 4 h; the beads were then washed
three times for 5 min on a rotating wheel at 4 °C with
RIPA buffer (10 mM Tris-HCl pH 7.5, 140 mM NaCl,
1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1%
SDS, 0.1% Na-deoxycholate), added to chromatin (5 μg
of DNA equivalents), diluted ten times in RIPA buffer,
and incubated on a rotating wheel at 4 °C overnight.
Antibody-bound beads were washed once with Low Salt
buffer (0.1% SDS, 2 mM EDTA, 20 mM Tris-HCl
pH 8.0, 150 mM NaCl), twice with High Salt buffer
(0.1% SDS, 2 mM EDTA, 20 mM Tris-HCl pH 8.0,
500 mM NaCl), and twice with TE buffer (10 mM
Tris-HCl pH 8.0, 1 mM EDTA). For CTCF ChIP the last
High Salt buffer was substituted with a LiCl Buffer
(0.25 M LiCl, 1% IGEPAL, 1% deoxycholic acid, 1 mM
EDTA, 10 mM Tris-HCl pH 8.1). For H3K27ac ChIP the
first three washes were performed with RIPA buffer.
Each wash was carried out for 5 min on a rotating wheel
at 4 °C. ChIP DNA was eluted at 65 °C for 30 min in
200 μL of Elution Buffer (0.1 M NaHCO3 and 1% SDS)
upon shaking at 1300 rpm. After bringing all inputs to
200 μL with Elution Buffer, all samples were
reverse-crosslinked by adding NaCl at 200 mM final
concentration and incubating overnight at 65 °C,
300 rpm, followed by addition of Proteinase K (Ambion)
to a final concentration of 125 ng/μL and incubation at
65 °C for 2 h. ChIP and input DNA was purified using
the QIAquick PCR Purification Kit (Qiagen) and quanti-
fied using a Qubit™ 3.0 fluorimeter.
Library preparation was performed from 0.2–0.8 ng of

purified DNA using the NEBNext® Ultra™ II DNA Li-
brary Prep Kit for Illumina® with the following modifica-
tions: Illumina Tru-Seq adaptors were used and library
amplification was performed with the KAPA PCR
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Amplification kit (KAPA, Cat. KK2501) using 15 cycles.
Libraries were sequenced on a HiSeq2500 sequencer
(Illumina) according to manufacturer’s instructions.

Hi-C and Promoter Capture Hi-C (PCHi-C)
Hi-C and PCHi-C libraries were generated as described
[32] with modifications as detailed below. In total, 3.2 to
3.5 × 107 pre-B cells were fixed in 2% formaldehyde
(Agar Scientific) for 10 min, after which the reaction was
quenched with ice-cold glycine (Sigma; 0.125 M final
concentration). Cells were collected by centrifugation
(400 × g for 10 min at 4 °C) and washed once with
50 mL PBS pH 7.4 (Gibco). After another centrifugation
step (400 × g for 10 min at 4 °C), the supernatant was
completely removed and the cell pellets were immedi-
ately frozen in liquid nitrogen and stored at − 80 °C.
After thawing, the cell pellets were incubated in 50 mL
ice-cold lysis buffer (10 mM Tris-HCl pH 8, 10 mM
NaCl, 0.2% Igepal CA-630, protease inhibitor cocktail
[Roche]) for 30 min on ice. After centrifugation to pellet,
the cell nuclei (650 × g for 5 min at 4 °C) were washed
once with 1.25 × NEBuffer 2 (NEB). The nuclei were
then resuspended in 1.25 × NEBuffer 2, SDS (10% stock;
Promega) was added (0.3% final concentration) and the
nuclei were incubated at 37 °C for 1 h with agitation
(950 rpm). Triton X-100 (Sigma) was added to a final
concentration of 1.7% and the nuclei were incubated at
37 °C for 1 h with agitation (950 rpm). Restriction digest
was performed overnight at 37 °C with agitation
(950 rpm) with HindIII (NEB; 1500 units per 7 million
cells). Using biotin-14-dATP (Life Technologies), dCTP,
dGTP, and dTTP (Life Technologies; all at a final con-
centration of 30 μM), the HindIII restriction sites were
then filled in with Klenow (NEB) for 75 min at 37 °C.
The ligation was performed for 4 h at 16 °C (50 units T4
DNA ligase [Life Technologies] per 7 million cells start-
ing material) in a total volume of 5.5 mL ligation buffer
(50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 1 mM ATP,
10 mM DTT, 100 μg/mL BSA) per 7 million cells start-
ing material. After ligation, crosslinking was reversed by
incubation with Proteinase K (Roche; 65 μL of 10 mg/
mL per 7 million cells starting material) at 65 °C over-
night. An additional Proteinase K incubation (65 μL of
10 mg/mL per 7 million cells starting material) at 65 °C
for 2 h was followed by RNase A (Roche; 15 μL of
10 mg/mL per 7 million cells starting material) treat-
ment and two sequential phenol/chloroform (Sigma) ex-
tractions. After DNA precipitation (3 M sodium acetate
pH 5.2 [1/10 volume] and ethanol [2.5 × volumes]) over-
night at − 20 °C, the DNA was spun down (centrifuga-
tion 3200 × g for 30 min at 4 °C). The pellets were
resuspended in 400 μL TLE (10 mM Tris-HCl pH 8.0;
0.1 mM EDTA) and transferred to 1.5 mL Eppendorf
tubes. After another phenol/chloroform (Sigma)

extraction and DNA precipitation overnight at − 20 °C,
the pellets were washed three times with 70% ethanol
and the DNA concentration was determined using
Quant-iT Pico Green (Life Technologies). For quality
control, candidate 3C interactions were assayed (primers
available upon request) by PCR and the efficiency of bio-
tin incorporation was assayed by amplifying a 3C
ligation product (primers available upon request),
followed by digest with HindIII or NheI.
To remove biotin from non-ligated fragment ends,

40 μg of Hi-C library DNA were incubated with T4
DNA polymerase (NEB) for 4 h at 20 °C, followed by
phenol/chloroform purification and DNA precipitation
overnight at − 20 °C. After a wash with 70% ethanol,
sonication was carried out to generate DNA fragments
with a size peak around 400-bp (Covaris E220 settings:
duty factor: 10%; peak incident power: 140 W; cycles per
burst: 200; time: 55 s). After end repair (T4 DNA poly-
merase, T4 DNA polynucleotide kinase, Klenow [all
NEB] in the presence of dNTPs in ligation buffer [NEB])
for 30 min at room temperature, the DNA was purified
(Qiagen PCR purification kit). dATP was added with
Klenow exo- (NEB) for 30 min at 37 °C, after which the
enzyme was heat-inactivated (20 min at 65 °C). A double
size selection using AMPure XP beads (Beckman
Coulter) was performed: first, the ratio of AMPure XP
beads solution volume to DNA sample volume was ad-
justed to 0.6:1. After incubation for 15 min at room
temperature, the sample was transferred to a magnetic
separator (DynaMag-2 magnet; Life Technologies) and
the supernatant was transferred to a new Eppendorf
tube, while the beads were discarded. The ratio of
AMPure XP beads solution volume to DNA sample vol-
ume was then adjusted to 0.9:1 final. After incubation
for 15 min at room temperature, the sample was trans-
ferred to a magnet (DynaMag-2 magnet; Life Technolo-
gies). Following two washes with 70% ethanol, the DNA
was eluted in 100 μL of TLE (10 mM Tris-HCl pH 8.0;
0.1 mM EDTA). Biotinylated ligation products were iso-
lated using MyOne Streptavidin C1 Dynabeads (Life
Technologies) on a DynaMag-2 magnet (Life Technolo-
gies) in binding buffer (5 mM Tris-HCl pH 8, 0.5 mM
EDTA, 1 M NaCl) for 30 min at room temperature.
After two washes in binding buffer and one wash in
ligation buffer (NEB), PE adapters (Illumina) were li-
gated onto Hi-C ligation products bound to streptavidin
beads for 2 h at room temperature (T4 DNA ligase NEB,
in ligation buffer, slowly rotating). After washing twice
with wash buffer (5 mM Tris-HCl pH 8, 0.5 mM EDTA,
1 M NaCl, 0.05% Tween-20) and then once with binding
buffer, the DNA-bound beads were resuspended in a
final volume of 90 μL NEBuffer 2. Bead-bound Hi-C
DNA was amplified with seven PCR amplification cycles
(36–40 individual PCR reactions) using PE PCR 1.0 and
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PE PCR 2.0 primers (Illumina). After PCR amplification,
the Hi-C libraries were purified with AMPure XP beads
(Beckman Coulter). The concentration of the Hi-C li-
braries was determined by Bioanalyzer profiles (Agilent
Technologies) and qPCR (Kapa Biosystems); the Hi-C li-
braries were paired-end sequenced (HiSeq 1000, Illu-
mina) at the Babraham Institute Sequencing Facility.
For PCHi-C, 500 ng of Hi-C library DNA was

resuspended in 3.6 μL H2O and hybridization blockers
(Agilent Technologies; hybridization blockers 1 and 2,
and custom hybridization blocker) were added to the
Hi-C DNA. Hybridization buffers and the custom-made
RNA capture bait system (Agilent Technologies; de-
signed as previously described [32, 66]: 39,021 individual
biotinylated RNAs targeting the ends of 22,225
promoter-containing mouse HindIII restriction frag-
ments) were prepared according to the manufacturer’s
instructions (SureSelect Target Enrichment, Agilent
Technologies). The Hi-C library DNA was denatured for
5 min at 95 °C and then incubated with hybridization
buffer and the RNA capture bait system at 65 °C for 24 h
(all incubation steps in a MJ Research PTC-200 PCR ma-
chine). After the hybridization incubation, 60 μL of
MyOne Streptavidin T1 Dynabeads (Life Technologies)
were washed three times with 200 μL binding buffer (Sur-
eSelect Target Enrichment, Agilent Technologies), before
incubation with the Hi-C DNA/RNA capture bait mixture
with 200 μL binding buffer for 30 min at room
temperature, slowly rotating. Hi-C DNA bound to capture
RNA was isolated using a DynaMag-2 magnet (Life Tech-
nologies). Washes (15 min in 500 μL wash buffer I at
room temperature, followed by three 10 min incubations
in 500 μL wash buffer II at 65 °C) were performed accord-
ing to the SureSelect Target enrichment protocol (Agilent
Technologies). After the final wash, the beads were resus-
pended in 300 μL NEBuffer 2, isolated on a DynaMag-2
magnet, and then resuspended in a final volume of 30 μL
NEBuffer 2. After a post-capture PCR (four amplification
cycles using Illumina PE PCR 1.0 and PE PCR 2.0 primers;
13–15 individual PCR reactions), the PCHi-C libraries
were purified with AMPure XP beads (Beckman Coulter).
The concentration of the PCHi-C libraries was deter-
mined by Bioanalyzer profiles (Agilent Technologies) and
qPCR (Kapa Biosystems); the PCHi-C libraries were
paired-end sequenced (HiSeq 1000, Illumina) at the
Babraham Institute Sequencing Facility.

Computational and statistical methods
All next-generation sequencing reads were first trimmed
using Trim Galore [67] and aligned to the GRCm38
mouse genome reference sequence. Statistics for each
dataset and replicate are provided in Additional file 1:
Table S1.

RNA-seq analysis
RNA-seq reads were aligned to the GRCm38 reference
genome using HISAT2 [68]. Seqmonk version 1.39 [69]
was used for quality control, visualization, and quantifi-
cation. For this, BAM files were imported into Seqmonk
as paired-end RNA-seq data and reads with a mapping
quality score < 30 were filtered out. Gene and mRNA
annotations were filtered to exclude unannotated genes
or genes annotated only as a predicted gene, Riken tran-
scripts, pseudogenes, non-functional transcripts, and
ribosomal protein subunits. Raw read counts were gen-
erated over genes using the RNA quantitation pipeline
(total RNA) or counted over mRNA with merged iso-
forms using the active transcription pipeline, which
counts reads only over introns (nuclear RNA), in both
cases assuming opposing strand specificity. DESeq2 ver-
sion 1.12.4 was used for differential expression analysis
[70]. For total RNA from both pro- and pre-B cells, we
noted a significant batch effect when comparing the first
two replicates, which were processed together, with the
third replicate which was processed at a later date; this
was therefore included in the DESeq2 modeling. Other-
wise, default parameters were used, except that ‘indepen-
dentFiltering’ was set to False and instead only genes
with at least 25 reads for at least two replicates in one or
both conditions were included. Genes with an adjusted p
value < 0.05 were labelled as DEGs; for the comparison
of pre-B versus pro-B cells in young an additional filter
requiring a log2 fold change > 1 was also applied. KEGG
pathway analysis was performed using gProfiler [71]. To
visualize transcription over specific loci, read counts ori-
ginating from the forward and reverse strand were quan-
tified over 100-bp windows covering the region of
interest using Seqmonk, normalized using DESeq2 size
factors from the differential gene expression analysis and
visualized in R. Gene annotations for the same regions
were imported into R using biomaRt and visualized
using the GenomeGraphs package [72].

MiRNA analysis
MiRNA annotations from Ensembl and miRBase were
merged and deduplicated. Reads were mapped to
genome build GRCm38 using Bowtie 2 [73] and
strand-specific raw read counts were generated using
Seqmonk. DESeq2 was then used for differential expres-
sion analysis with default parameters and an adjusted p
value threshold of 0.05. Complete-linkage hierarchical
clustering of differentially expressed miRNAs was per-
formed based on the Euclidean distance between the
Pearson correlation coefficients between expression pat-
terns for each replicate.
Target genes of differentially expressed miRNAs were

identified using mouse mirTarBase v7 database, released
in 2017 [74]. Only functionally validated target genes
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have been considered. The identified target genes for
each class have been used for KEGG pathway analysis
using DAVID v6.8 online server [75, 76]. P values reflect
multiple-test corrected (Benjamini–Hochberg) values.

ATAC-seq analysis
Trimmed reads were aligned to the GRCm38 mouse ref-
erence genome using Bowtie 2 [73]. Reads mapping to
the mitochondrial genome and alternative contigs were
excluded from downstream analysis. Fragment size ana-
lysis and quality control was made by a custom in-house
code. Fragment coverage BigWig files were constructed
using bedtools V2 [77].
We used MACS2 [78, 79] with ‘--nomodel --shif -25

--extsize 50 -q 0.01’ for detection of open chromatin
(peaks of read counts). With these parameters, we de-
tected 18,000–51,000 peaks per sample. For each condi-
tion (young and aged), a region was accepted as a
condition-specific peak if the region was detected as a
peak in at least three out of four samples. Two peaks
closer than 100-bp to each other were merged. We further
pooled young and aged peak sets to get a genome-wide
set (union) of open chromatin regions for further differen-
tial accessibility analysis. After removing reads with a
mapping quality score < 30, peaks were filtered to exclude
those with < 64 reads or that overlapped with a blacklisted
region [80, 81]. We used featureCounts [82] to count the
number of fragments overlapping these regions in each
sample. We used DESeq2 [70] for detection of differen-
tially accessible regions, with an adjusted p value threshold
of 0.05. A lower stringency threshold (unadjusted p value
< 0.005) was used to identify a larger group of genes over
which chromatin accessibility is altered, and the log2 fold
gene expression changes were compared between these
groups. Peaks were assigned to a gene if they overlapped
with a window extending 1-kb up- and downstream of the
gene. For comparison of ATAC-seq peaks with genes
whose expression was significantly altered upon aging, as-
signment to genes was performed in the same way. Read
counts for each peak were normalized with DESeq2 and
the log2 fold change in the median counts (aged/young)
was compared for peaks assigned to upregulated genes,
downregulated genes or exclusively to genes whose ex-
pression was not significantly changed. For pro-B and
pre-B cell ATAC-seq data, up- and downregulated
genes were assigned from the total RNA-seq analyses
from pro-B and pre-B cells, respectively. All
upregulated genes predicted to originate from mature
B cells were excluded.

ChIP-seq analysis
ChIP-seq data were mapped to the GRCm38 mouse
reference genome using Bowtie 2. For all except
H3K27me3, we called peaks using MACS2 with default

parameters for narrow peaks. For H3K27me3, we instead
used MACS V1.4 to call broad peaks. Similar to
ATAC-seq analysis, peaks for aged and young were
merged; those with low numbers of high-quality reads
(< 32 for CTCF; otherwise < 64) or overlapping black-
listed regions were filtered out and differential enrich-
ment analysis was performed using featureCounts and
DESeq2, with adjusted p value threshold < 0.05. To
identify a larger set of genes for comparison of their
log2 fold change in expression, lower stringency
thresholds were used (unadjusted p value < 0.005 for
H3K4me3 and < 0.1 for H3K27me3 and H3K27ac),
with peaks assigned to genes as described for
ATAC-seq. Comparison with genes whose expression
was significantly up- or downregulated was performed
as described for ATAC-seq.

Fold change correlation analyses for chromatin datasets
Overlapping peaks between all pairwise combinations of
ChIP-seq and ATAC-seq data within a given cell type
(pro-B or pre-B), and between pro-B and pre-B cells for a
given chromatin feature, were first defined. These were fil-
tered such that if a single peak in one dataset overlapped
with multiple peaks in the second, one of the peaks from the
second dataset was selected at random. Pearson correlation
coefficients comparing the age-related log2 fold changes in
enrichment for overlapping peaks from each pairwise com-
bination were then calculated and displayed as heatmaps. To
reduce the influence of stochastic variation in peaks that are
unchanged upon aging, peaks from each dataset were then
ranked based on their uncorrected p values from the DESeq2
differential enrichment analysis (see above), with the smallest
(most significant) p value ranked highest. Each pairwise set
of overlapping peaks was then filtered to retain only pairs of
peaks for which at least one of the peaks was ranked in the
top 10%, i.e. retaining those peaks with the greatest evidence
for an age-related change in enrichment. Pearson correlation
coefficients were then derived as above for these filtered sets
of overlapping peaks.

Chromatin state analysis and differential occupancy of
states at promoter regions
For chromatin state analysis, we used chromHMM [28].
We took a similar approach to that described in a previ-
ous study [26], allowing us to provide both Young and
Aged data (analogous to cell types in that study) in one
CellMarks file. With this setting, only one Emission and
one Transition parameter matrix is inferred. Based on
these learnt parameters, the genomic localization of
these states is inferred separately for Young and Aged.
For this, first, the genome was binned into 200-bp bins
and binarized based on the pre-B cell ATAC-seq and
ChIP-seq peaks using the ‘binarizeBed’ function. We
then ran the ‘learnModel’ function, varying the number
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of chromatin states in the range of 3–24. We chose 16
states as the optimum; these were then manually col-
lapsed into six distinct and more biologically relevant
states, as illustrated in Fig. 6a, b.
Promoter occupancy for each state (bp) was calculated

over a 5-kb window centred on the TSS of each gene;
the overall state of a given promoter was assigned to the
state with the largest coverage, with the exception of the
background state to which a promoter was assigned only
if no other state was present. A genome-wide set of
regulatory elements was defined by merging the MACS
peaks called from ATAC-seq and ChIP-seq for
H3K4me3, H3K27me3, H3K27ac, and CTCF in pre-B
cells; the overall state of each was assigned in the same
way as for promoters. States were assigned separately
based on young and aged chromatin segmentation,
allowing the proportions of promoters and regulatory el-
ements in each state to be compared and to identify re-
gions that changed state upon aging. To assess the
overlap of regulatory elements in each state with tran-
scription start sites, all mRNA isoforms (based on
Ensembl annotations) were considered; any regulatory
element within 1-kb of a transcription start site was
considered overlapping. To extend the analysis of pro-
moters, the absolute coverage of all states was consid-
ered for each promoter: genes displaying the greatest
magnitudes of change in state coverage upon aging (in
the top 0.5% for increased or decreased bp coverage for
at least one regulatory state, excluding background) were
selected and changes in coverage were normalized by
subtracting the mean change in bp coverage for a given
state. Complete-linkage hierarchical clustering was per-
formed based on the Euclidean distance between the
Pearson correlation coefficients between state changes.
Genes were segregated into nine clusters to maximize
the distinction between state change patterns and the
log2 fold change in pre-B cell total gene expression upon
aging compared for each cluster. The fraction of the pro-
moter occupied by each state was also calculated for se-
lected age-up- and downregulated genes.

Hi-C analysis
We mapped and filtered the Hi-C reads using HiCUP [83]
and analyzed the filtered Hi-C data using HOMER [84].
Using the binned Hi-C data, we computed the coverage-
and distance-related background in the Hi-C data at
250-kb resolution, based on an iterative correction algo-
rithm [85]. The compartment signal was computed as the
first principle component of the distance-and-coverage
corrected interaction profile correlation matrix at 250-kb
resolution, as has previously been described and shown to
identify active and inactive compartments [30]. Since PCA
does not necessarily assign a positive value to the active
compartment, H3K4me3 enrichment in young pre-B cells

was compared for positive and negative compartments;
positive values were then assigned to the group with high
enrichment and vice versa. Genomic 250-kb bins that sig-
nificantly changed compartment association were identi-
fied by ANOVA with a threshold of 0.05 and further
filtered to include only bins showing a standardized mean
change in compartment score > 3. Genes overlapping each
bin were identified and the log2 fold change in their ex-
pression in aged versus young pre-B cells (total RNA-seq)
was compared.

PCHi-C analysis
Reads were mapped and filtered using HiCUP [83].
BAM files for duplicate sequencing lanes were merged
and deduplicated, and interactions were called using
CHiCAGO [33], using a threshold of 5 for significant in-
teractions. An interaction was designated as lost or
gained upon aging if it was significant at only one age
and the difference in score was at least 2. Interactions
for which both ends were baited were designated promo-
ter:promoter interactions, while all others were designated
promoter:PIR. Enrichment for overlap of PIRs with
ChIP-seq and ATAC-seq features was performed within
the CHiCAGO pipeline, using MACS peaks called from
our data as described above; overlaps expected by chance
were simulated within the CHiCAGO pipeline using 100
random subsets of HindIII fragments with similar inter-
action distances. Each promoter and PIR was assigned to
one of the six chromatin states for the chromHMM ana-
lysis as follows: active promoter = fragment overlaps with
active promoter state and does not overlap with polycomb
or bivalent states; polycomb = fragment overlaps with
polycomb state and does not overlap with active promoter
or bivalent state; bivalent = fragment overlaps with bi-
valent state or with both active promoter and polycomb
states; active regulatory = fragment overlaps with active
regulatory state and does not overlap with active promoter,
bivalent or polycomb states; insulator = fragment overlaps
with insulator state and does not overlap with any other
state except background; background = fragment overlaps
exclusively with background state. All active fragments
were defined as those assigned to the active promoter or
active regulatory state, or with overlapping ChIP-seq peaks
of H3K4me3 or H3K27ac, excluding any fragments
assigned to the polycomb or bivalent state or that over-
lapped with an H3K27me3 peak. To compare enrichment
of ATAC-seq and ChIP-seq over PIRs, total read counts
over the PIRs were normalized to the total library size and
the log2 fold change in median read count compared for
PIRs of up- and downregulated genes, excluding upregu-
lated genes predicted to originate from mature cells. Gen-
ome browser interaction plots were generated using the
WashU browser [86]. Virtual 4C was performed using Seq-
monk to import all ditag reads for which the other end
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mapped to the baited HindIII fragment encompassing the
Irs1 gene promoter. Read counts were quantified over
merged HindIII fragments, such that each quantitation win-
dow comprised five adjacent HindIII fragments.

Western blot
Pre- and pro-B cell pellets were sonicated in SDS sample
buffer and proteins resolved by SDS-PAGE. Proteins were
transferred onto PVDF membranes and immunoblotted
with the indicated primary antibodies at 4 °C overnight,
followed by 1 h at room temperature. Membranes were
washed in TBST (40 mM Tris-HCl, pH 8.0 at room
temperature; 0.14 M NaCl; 0.1% Tween-20) and incubated
with HRP-conjugated secondary antibodies. IRS1 antibody
#2382 was from Cell Signaling Technology (CST)/New
England Biolabs (NEB); anti-beta-COP antibody was a
kind gift from Dr. Nick Ktistakis, Babraham Institute, UK;
goat Anti-Rabbit and anti-Mouse IgG (H + L)-HRP conju-
gate was from BioRad. Membranes were washed and sig-
nal detected by enhanced chemiluminescence. Relative
protein expression was quantified using Aida 2D Densi-
tometry software (v3.27).
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