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Complex and p-adic branched functions and growth of entire

functions

Alain Escassut, Kamal Boussaf and Jacqueline Ojeda.

2015/ 02/25

Abstract

Following a previous paper by Jacqueline Ojeda and the first author, here we examine the
number of possible branched values and branched functions for certain p-adic and complex
meromorphic functions where numerator and denominator have different kind of growth, either
when the denominator is small comparatively to the numerator, or vice-versa, or (for p-adic
functions) when the order or the type of growth of the numerator is different from this of the
denominator: this implies that one is a small function comparatively to the other. Finally, if a

complex meromorphic function
f

g
admits four perfectly branched small functions, then T (r, f)

and T (r, g) are close. If a p-adic meromorphic function
f

g
admits four branched values, then

f and g have close growth. We also show that, given a p-adic meromorphic function f , there
exists at most one small function w such that f −w admits finitely many zeros and an entire
function admits no such a small function.

1 Introduction

We denote by E an algebraically closed field of characteristic 0, complete with respect to an absolute
value and by K an algebraically closed field of characteristic 0, complete for an ultrametric absolute
value, with residue characteristic p ≥ 0.

We denote by A(E) the E-algebra of analytic functions in E (i.e. the set of power series with
an infinite radius of convergence) and by M(E) the field of meromorphic functions in E (i.e. the
field of fractions of A(E)) and by E(x) the field of rational functions with coefficients in E.

Given α ∈ K and R ∈ R∗+, we denote by d(α,R) the closed disk {x ∈ K : |x− α| ≤ R} and by
d(α,R−) the open disk {x ∈ K : |x− α| < R} contained in K,

Given α ∈ K and R > 0, we denote by A(d(α,R−)) the K-algebra of analytic functions in
d(α,R−) (i.e. the set of power series with a radius of convergence ≥ R) and by M(d(α,R−)) the
field of fractions of A(d(α,R−)). We then denote by Ab(d(α,R−)) the K-algebra of bounded ana-
lytic functions in d(α,R−) and byMb(d(α,R−)) the field of fractions of Ab(d(α,R−)). And we set
Au(d(α,R−)) = A(d(α,R−)) \ Ab(d(α,R−)) and Mu(d(α,R−)) =M(d(α,R−)) \Mb(d(α,R−)).
As in complex functions, a meromorphic function f ∈M(K) is said to be transcendental if it is not
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a rational function. Then, transcendental functions are known to be transcendental on the field
K(x) [8].

In complex functions theory, a notion closely linked to Picard’s exceptional values [8], [10],
[11] was introduced: the notion of ”perfectly branched value” [6]. In [10] the same notion was
introduced on M(K) and on Mu(d(a,R−)). Let us recall these notions.

Definition: Let f ∈ M(E) (resp. f ∈ Mu(d(a,R−))). A value b ∈ E will be called a quasi-
exceptional value for f if f − b has finitely many zeros in E (resp. (d(a,R−))) and an exceptional
value for f if f−b has no zero in E (resp. (d(a,R−))) [2]. Similarly,∞ is called a quasi-exceptional
value for f if f has finitely many poles and an exceptional value for f if f has no pole.

Next, b will be called a perfectly branched value for f if all zeros of f − b are of multiple order
except finitely many. And b will be called a totally branched value for f if all zeros of f − b are
of multiple order, without exception. Similarly, if all poles of f are multiple except finitely many,
∞ will be called a perfectly branched value and if all poles of f are multiple without exception, ∞
will be called a totally branched value.

In C it is known that a transcendental meromorphic function admits at most two quasi-
exceptional values and four perfectly branched values [6]. An entire function admits at most
one quasi-exceptional value and two perfectly branched values [6]. As explained by K. S. Charak
in [6], these numbers of perfectly branched values, respectively four and two, are sharp. The Weier-
strass function ℘ has 4 totally branched values (considering ∞ as a value) and of course, sine and
cosine functions admit two totally branched values: 1 and −1.

On the field K, in [10] it is proven that a meromorphic function f ∈M(K) or f ∈Mu(d(a,R−))
has at most 4 perfectly branched values and more precisely, a meromorphic function f ∈ M(K)
has at most 3 totally branched values. An unbounded analytic function f ∈ Au(d(a,R−)) has at
most 2 perfectly branched values. But it is also proven that a transcendental meromorphic function
having finitely many poles f ∈M(K) has at most one finite perfectly branched value.

In this paper, we propose to look for additional results on these problems by examining mero-

morphic functions in the form
f

g
, by comparing the kind of growth of f and g, either through their

Nevanlinna characteristic functions or through their order of growth or type of growth. We will
also define perfectly branched small functions in order to generalize results obtained on perfectly
branched values. However, in the non-Archimedean setting, such a generalization does not work,
due to the absence of Yamanoi’s Theorem.

Notation: Given R > 0 and f ∈ A(d(0, R−)), for r < R, we put |f |(r) = lim
|x|→r,|x|6=r

|f(x)|. Given

a ∈ K and f(x) =
∑+∞
n=q λn(x− a)n ∈ A(d(a,R−)), with λq 6= 0, we put ωa(f) = q.

The Nevanlinna functions for complex meromorphic functions are well known. We will shortly
recall the definition of their equivalent, or so, for p-adic meromorphic functions in the whole p-adic
field or inside an open disk [3], [4]. Here we will choose a presentation that avoids assuming that
all functions we consider admit no zero and no pole at the origin.

Let f ∈ M(K) (resp, f ∈ M(d(0, R−))). Consider any r > 0 (resp. r ∈]0, R[). We denote by
Z(r, f) the counting function of zeros of f in d(0, r) in the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |an| ≤ r, and for each,
let sn be its respective order.

We then set Z(r, f) = max(ω0(f), 0) log r +
σ(r)∑
n=1

sn(log r − log |an|).
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In order to define the counting function of zeros of f without multiplicity, we put ω0(f) = 0 if
ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.

Now, we denote by Z(r, f) the counting function of zeros of f without multiplicity:

Z(r, f) = ω0(f) log r +
σ(r)∑
n=1

(log r − log |an|).

In the same way, considering the finite sequence (bn), 1 ≤ n ≤ ν(r) of poles of f such that
0 < |bn| ≤ r, with respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r +
ν(r)∑
n=1

tn(log r − log |bn|).

Next, in order to define the counting function of poles of f without multiplicity, we put ω0(f) =
0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we set

N(r, f) = ω0(f) log r +
ν(r)∑
n=1

(log r − log |bn|).

Now we can define the Nevanlinna characteristic function T (r, f) in ]0,+∞[ when f belongs to
M(K) (resp. in ]0, R[ when f belongs to M(d(0, R−))) as:
T (r, f) = max(Z(r, f), N(r, f)) and the function T (r, f) is called the characteristic function of f .

Given f and w ∈ M(E) (resp. f and w ∈ M(d(0, R−))), w is called a small function with

respect to f if lim
r→+∞

T (r, w)
T (r, f)

= 0 (resp. lim
r→R−

T (r, w)
T (r, f)

= 0).

Given f ∈M(E) (resp. f ∈M(d(0, R−))), we denote byMf (E) (resp. Mf (d(0, R−))), the set
of functions w ∈M(E) (resp. the set of functions w ∈M(d(0, R−))) which are small functions with
respect to f . Similarly, we denote by Af (E) (resp. Af (d(0, R−))), the set of functions w ∈ A(E)
(resp. the set of functions w ∈ A(d(0, R−))) which are small functions respectively to f .

We can now define perfectly branched small functions. Let f ∈M(E) (resp. f ∈M(d(0, R−))).
A function w ∈Mf (E) (resp. f ∈Mf (d(0, R−))) will be called a perfectly branched small function
with respect to f if all zeros of f−w except finitely many are multiple and w will be called a totally
branched small function with respect to f if all zeros of f − w are multiple .

Remarks: 1) Given f ∈ A(K) (resp. f ∈ A(d(0, R−)))), we have T (r, f) = Z(r, f).
2) Given f ∈ M(E) or f ∈ M(d(0, R−)) and b ∈ E, it is equivalent that b is a perfectly (resp. a

totally) branched value for f and that
1
b

is a prefectly (resp. a totally) branched value for
1
f

.

3) In M(d(0, R−)), concerning small functions, given any f ∈ Mu(d(0, R−)), all functions h ∈
Mb(d(0, R−)) belong to Mf (d(0, R−)).

Theorem 1 is easily proven with help of Nevanlinna-Yamanoi’s Theorem on n small functions.

Theorem 1: Let f ∈ M(C) be transcendental. There exist at most four small functions wj ∈
Mf (C), j = 1, 2, 3, 4 that are perfectly branched with respect to f . Moreover, if f ∈ A(C), then
there exist at most two small functions wj ∈ Mf (C), j = 1, 2 that are perfectly branched with
respect to f .

Theorem 2 is a serious refinement of Theorem 1.
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Theorem 2: Let f, g ∈ A(C) have no common zero and be such that lim sup
r→+∞

T (r, f)
T (r, g)

> 3 (resp.

lim sup
r→+∞

T (r, f)
T (r, g)

> 2). Then both
f

g
and

g

f
have at most two (resp. three) perfectly branched small

functions.

Example: Set g(z) = ez − 1 and f(z) = e4z − 2 and set φ(z) =
f(z)
g(z)

. Let us estimate

T (r, f), T (r, g). Set h(z) = ez. Then

2πT (r, h) =
∫ +π

−π
log+

∣∣∣ereit∣∣∣dt =
∫ +π

−π
log+

(
er cos(t)

∣∣∣eir sin(t)
∣∣∣)dt =

∫ +π

−π
log+

(
er cos(t)

)
dt

=
∫ +π

2

−π2
log
(
er cos(t)

)
dt =

∫ +π
2

−π2
r cos(t)dt = 2r

and hence T (r, h) =
r

π
. Therefore, by classical theorems on the Nevanlinna theory, we can derive

T (r, f) =
4r
π

+o(T (r, h)) and T (r, g) =
r

π
+o(T (r, h)). Consequently, T (r, f) = 4T (r, g)+o(T (r, h)).

Then, by Theorem 2, φ admits at most two perfectly branched small functions.

Similarly, set ψ(z) =
e3z − 2
ez − 1

. Then by Theorem 2, ψ has at most three perfectly branched

small functions.

Corollary 2.1: Let f ∈ A(C) \ K[x] and let g ∈ Af (C). Then both
f

g
and

g

f
have at most two

perfectly branched small functions. Particularly, they admit at most two perfectly branched values.

Corollary 2.2: Let f ∈ A(C)\K[x]. Then f has at most two perfectly branched small functions.

Theorem 3: Let f, g ∈ A(K)\K[x] (resp. f, g ∈ Au(d(0, R−))) be such that lim sup
r→+∞

T (r, f)
T (r, g)

> 2

(resp. lim sup
r→R−

T (r, f)
T (r, g)

> 2). Then both
f

g
and

g

f
have at most two perfectly branched values.

Corollary 3.1: Let f ∈ A(K) \ K[x], (resp. let f ∈ Au(d(0, R−))) and let g ∈ Af (K), (resp.

g ∈ Af (d(0, R−))). Then both
f

g
and

g

f
have at most two perfectly branched values.

Concerning exceptional small functions in C, the following theorem A is known and generalizes
this on exceptional values for complex meromorphic functions [16]:

Theorem A : Let f ∈ M(C) be transcendental. There exist at most two small functions wj ∈
Mf (C), j = 1, 2 such that f −wj admits finitely many zeros. Moreover, if f ∈ A(C) \C[x], then
there exists at most one function w ∈ Af (C) such that f − w has finitely many zeros.

On the field K, we have a better result with p-adic meromorphic functions:

Theorem 4: Let f ∈ M(K) \ K(x), (resp. f ∈ Mu(d(0, R−))). There exists at most one
function w ∈Mf (K), (resp. w ∈Mf (d(0, R−))) such that f−w has finitely many zeros. Moreover,
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if f belongs to A(K) \ K[x], (resp. to Au(d(0, R−))), then there exists no function w ∈ Mf (K),
(resp. w ∈Mf (d(0, R−))) such that f − w has finitely many zeros.

Theorem B is given in [11] and is an easy consequence of results of [10]:

Theorem B: Let f ∈M(K)\K(x) have finitely many poles. Then f admits at most one rational
function h ∈ K(x) which is perfectly branched with respect to f .

Theorems 1 suggests the following conjecture that we cannot prove due to the absence of a
p-adic Yamanoi’s theorem:

Conjecture: Let f ∈ M(K) \ K(x) (resp. let f ∈ Mu(d(0, R−))). There exists at most four
small functions w ∈ Mf (K) (resp. w ∈ Mf (d(0, R−))) that are perfectly branched with respect to
f . Moreover, if f ∈ A(K) \K[x] (resp. let f ∈ Au(d(0, R−))) then there exists at most two small
functions w ∈ Af (K) (resp. w ∈ Af (d(0, R−))) that are perfectly branched with respect to f .

The next theorems use the growth order and the growth type for p-adic entire functions. Indeed,
in order to obtain some results on branched small functions for p-adic meromorphic functions, since
we don’t enjoy a Yamanoi-Nevanlinna theorem, we will use another strategy combining the order of
growth and the type of growth for entire functions, thanks to the link between the type of growth
and the Nevanlinna characteristic function, for an entire function.

In [1] the growth of p-adic entire functions was examined. Here, we will use the compared
growth of numerator and denominator of a p-adic meromorphic function in order to examine how
many perfectly branched values it can admit.

Definitions and notation: Similarly to the definition known on complex entire functions [15],

given f ∈ A(K), the superior limit lim sup
r→+∞

log(log(|f |(r)))
log(r)

is called the order of growth of f or the

order of f in brief and is denoted by ρ(f). We say that f has finite order if ρ(f) < +∞.

Now, let f ∈ A(K) have an order of growth α < +∞. The superior limit lim sup
r→+∞

log(|f |(r))
rα

is

called the type of growth of f and is denoted by σ(f).

Now, it is useful to look at relations between the growth of functions f, g ∈ A(K) and their
characteristic functions.

Theorem 5: Let f, g ∈ A(K) be such that ρ(f) > ρ(g). Then

lim inf
r→+∞

T (r, g)
T (r, f)

= 0.

By Theorem 3, we can now derive Corollary 5.1:

Corollary 5.1: Let f, g ∈ A(K) be such that ρ(f) 6= ρ(g). Then both
f

g
and

g

f
have at most

two perfectly branched values.

Now, when ρ(f) = ρ(g), we can still give some precision.
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Theorem 6: Let f, g ∈ A(K) and suppose that ρ(f) = ρ(g) ∈]0,+∞[ and σ(f) 6= σ(g). Then

both
f

g
and

g

f
have at most three perfectly branched values. Moreover, if 2σ(g) < σ(f) or if

2σ(f) < σ(g) then
f

g
and

g

f
have at most two perfectly branched values.

Corollary 6.1: Let f, g ∈ A(K) be such that
f

g
admits four distinct branched values. Then

ρ(f) = ρ(g). Moreover, if ρ(f) ∈]0,+∞[, then σ(f) = σ(g).

2 The proofs

In the proof of Theorem 5, we will use the following Theorems N1 and N2, known as Nevanlinna
second main Theorem that holds in complex analysis as in p-adic analysis. In the proof of Theorem
1 we will use Theorem N3. We will also need the following classical lemmas H, J, L, M , P:

Lemma H [9]: Let f ∈ M(K) \ K[x] (resp. f ∈ Mu(d(0, R−))). Then Mf (K) is a sub-
field of M(K) (resp. Mf (d(0, R−)) is a subfield of M(d(0, R−))); Af (K) is subalgebra of A(K)
(resp. Af (d(0, R−)) is a subalgebra of A(d(0, R−))). Moreover, given f, g ∈ M(K) (resp. f, g ∈
M(d(0, R−))), then T (r, 1

f ) = T (r, f) +O(1) and T (r, fg) ≤ T (r, f) + T (r; g) +O(1).

Lemma J [8]: Let f, g ∈ A(K) (resp. f, g ∈ A(d(0, R−))). Then Z(r, f+g) ≤ max(Z(r, f), Z(r, g))+
O(1).

Lemma L [8]: Let f, g ∈ A(K) (resp. f, g ∈ A(d(0, R−))). Then Z(r, f.g) = Z(r, f) + Z(r, g).

Lemma M [8]: Let f ∈ A(K). Then f is a polynomial if and only if there exists q ∈ N such
that T (r, f) ≤ q log(r).

Lemma P [8]: Let f ∈ A(d(0, R−)). Then f belongs to Ab(d(0, R−)) if and only if T (r, f) is
bounded when r tends to R. Moreover, if f has finitely many zeros, then f belongs to Ab(d(0, R−)).

Notation: As usual, given a function ϕ defined in ]0,+∞[ (resp. in ]0, R[) we denote by o(ϕ) any

function ψ defined in ]0,+∞[ (resp. in ]0, R[) such that lim
r→+∞

ψ(r)
ϕ(r)

= 0 (resp. lim
r→R−

ψ(r)
ϕ(r)

= 0).

Theorem N1 [12]: Let f ∈M(C) and let b1, ..., bq ∈ C. Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − bj) +N(r, f) + o(T (r, f)).

In the p-adic context we know a more precise Nevanlinna Theorem:

Theorem N2 [3], [4], [13] Let f ∈ M(K) (resp. f ∈ Mu(d(0, R−))) and let b1, ..., bq ∈ K.
Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − bj) +N(r, f)− log(r) +O(1)
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Theorem N3 is given in [16] and provides us with a Nevanlinna theorem on q small functions.

Unfortunately, it has no equivalent in p-adic analysis when q > 3.

Theorem N3: Let f ∈M(C) and let w1, ..., wq ∈Mf (C). Let ε > 0 be fixed. Then

(q − 1− ε)T (r, f) ≤
q∑
j=1

Z(r, f − wj) +N(r, f) + o(T (r, f)).

Now, by Lemma L, we can easily prove the following Lemma Q:

Lemma Q: Let f ∈M(C) (resp. f ∈M(K), resp.f ∈M(d(0, R−)) ) and let g ∈Mf (C) (resp.

g ∈Mf (K), resp. g ∈Mf (d(0, R−))). Then T (r,
f

g
) = T (r, f) + o(T (r, f)).

Lemma R is obvious:

Lemma R: Let f, g ∈ A(C) (resp. f, g ∈ A(K), resp. f, g ∈ A(d(0, R−))) have no common

zero. Then Z(r,
f

g
) = Z(r, f), N(r,

f

g
) = Z(r, g).

Remark: It is sufficient to prove that the function φ =
f

g
has at most 2 perfectly branched

values in Theorems 3, 4, 6.

Proof of Theorem 1. Suppose that f admits 5 perfectly branched small functions: wj , 1 ≤ j ≤ 5.

Let ε ∈]0,
1
2

[. For each j = 1, ..., 5, let sj be the number of zeros of order 1 of f − wj and let

s =
∑5
j=1 sj . So, we have Z(r, f −wj) ≤

T (r, f)
2

+ sj log(r) +O(1). Consquently, by Theorem N3

we have (4− ε)T (r, f) ≤
5∑
j=1

Z(r, f − wj) +N(r, f) + o(T (r, f)) therefore

(3− ε)T (r, f) ≤
5∑
j=1

Z(r, f − wj) + o(T (r, f)) ≤ 5T (r, f)
2

+ o(T (r, f)).

That holds with ε < 1
2 , which leads to a contradiction.

Suppose now that f ∈ A(C) and that f admits 3 perfectly branched small functions wj , j =

1, 2, 3. The same reasoning as previously leads to (2− ε)T (r, f) ≤
3∑
j=1

Z(r, f − wj) + o(T (r, f)),

therefore (2− ε)T (r, f) ≤ 3T (r, f)
2

+ o(T (r, f)), a contradiction when ε < 1
2 . That ends the proof

of Theorem 1.

Notation: In Theorem 2, 5, 6 we put φ =
f

g
.

Proof of Theorem 2: First we notice that T (r, f) ≤ T (r, φ) + T (r, g) + o(T (r, f)), hence
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(1) T (r, φ) ≥ T (r, f)− T (r, g) + o(T (r, f)).

Suppose that φ has 3 perfectly branched small functions wj , j = 1, 2, 3 and that lim sup
r→+∞

T (r, f)
T (r, g)

> 3.

Applying Theorem N3 to φ, for every ε > 0 we have

(2− ε)T (r, φ) ≤
3∑
j=1

Z(r, φ− wj) +N(r, φ) + o(T (r, φ)) ≤ 3T (r, φ)
2

+N(r, φ) + o(T (r, φ)),

Clearly, N(r, φ) = Z(r, g), hence we obtain.

(2) (2− ε)T (r, φ) ≤ 3T (r, φ)
2

+ Z(r, g) + o(T (r, φ)).

Thanks to the hypothesis lim sup
r→+∞

T (r, f)
T (r, g)

> 3, we can find η > 0 and a sequence (rn)n∈N tending

to +∞ such that when n is big enough, we obtain,

(3) (3 + η)T (rn, g) ≤ T (rn, f).

Consequently, by (2),

(4) (2− ε)T (rn, φ) ≤ 3
2
T (rn, φ) +

1
3 + η

T (rn, f) + o(T (rn, φ)).

On the other hand, by (1) and (3) we have

T (rn, φ) ≥ T (rn, f)− T (rn, g) + o(T (rn, f)) ≥ T (rn, f)− 1
3 + η

T (rn, f) + o(T (rn, f))

and hence,

T (rn, φ) ≥ 2 + η

3 + η
T (rn, f) + o(T (rn, f)).

But we notice that o(T (r, φ)) = o(T (r, f)). Consequently, by (4) we obtain

(2− ε)T (rn, φ) ≤ 3
2
T (rn, φ) +

( 1
3 + η

)(3 + η

2 + η

)
T (rn, φ) + o(T (rn, φ))

hence

(5) (2− ε)T (rn, φ) ≤
(3

2
+

1
2 + η

)
T (rn, φ) + o(T (rn, φ)).

Now, since ε was chosen arbitrarily, we can choose it small enough so that 2− ε > 8 + 3η
4 + 2η

and

then we can check that contradicts (5).

Suppose now that φ has 4 perfectly branched small functions wj , j = 1, 2, 3, 4 and that

lim sup
r→+∞

T (r, f)
T (r, g)

> 2. Applying Theorem N3 to φ, for every ε > 0 we have

(3− ε)T (r, φ) ≤
4∑
j=1

Z(r, φ− wj) +N(r, φ) + o(T (r, φ)) ≤ 2T (r, φ) +N(r, φ) + o(T (r, φ)),



Complex and p-adic branched functions and growth of entire functions 9

So, similarly as in the previous case, we obtain.

(6) (3− ε)T (r, φ) ≤ 2T (r, φ) + Z(r, g) + o(T (r, φ)).

Now, thanks to the hypothesis lim sup
r→+∞

T (r, f)
T (r, g)

> 2, we can find η > 0 and a sequence (rn)n∈N

tending to +∞ such that when n is big enough, we obtain,

(7) (2 + η)T (rn, g) ≤ T (rn, f).

Consequently, by (6),

(8) (3− ε)T (rn, φ) ≤ 2T (rn, φ) +
1

2 + η
T (rn, f) + o(T (rn, φ)).

On the other hand, by (1) and (7) we have

T (rn, φ) ≥ T (rn, f)− T (rn, g) + o(T (rn, f)) ≥ T (rn, f)− 1
2 + η

T (rn, f) + o(T (rn, f))

and hence, we can derive

T (rn, φ) ≥ 1 + η

2 + η
T (rn, f) + o(T (rn, f)).

Consequently, by (8) we obtain

(3− ε)T (rn, φ) ≤ 2T (rn, φ) +
( 1

2 + η

)(2 + η

1 + η

)
T (rn, φ) + o(T (rn, φ))

hence

(9) (3− ε)T (rn, φ) ≤
(

2 +
1

1 + η

)
T (rn, φ) + o(T (rn, φ)).

Now, since ε was arbitrary, we can choose it small enough so that 1 − ε > 1
1 + η

and then we

can check that contradicts (9).

Remark: In Theorems 3, when f and g belong to A(K)\K[x], we can write f and g in the form
f = f̃ .h and g = g̃.h where f̃ and g̃ have no common zero. Then we can check that f̃ and g̃ satisfy
the hypotheses of Theorem 3, like do f and g, thanks to the equality T (r, F ) +T (r,G) = T (r, FG)
that holds in A(K) and in A(d(0, R−)).

Now, if f, g ∈ Au(d(0, r−)), by Lazard’s Theorem [14], we can place ourselves in an algebraically
closed spherically complete extension to obtain the same conclusion because the Nevanlinna func-
tions are the same in such an extension. Therefore we can assume that f and g have no common
zero without loss of generality.

Proof of Theorem 3: As noticed in the above remark, without loss of generality, we can suppose
that f and g have no common zeros. Consequently, we have T (r, φ) = max(T (r, f), T (r, g)).

Now, by hypothesis, there exists λ <
1
2

and a sequence (rn)n∈N such that lim
n→+∞

rn = +∞
(resp. lim

n→+∞
rn = R) and such that

(1) T (rn, g) ≤ λT (rn, f) ∀n ∈ N.
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Suppose that φ has 3 perfectly branched values bj , j = 1, 2, 3. Applying Theorem N2 we have

(2) 2T (r, φ) ≤
3∑
j=1

Z(r, φ− bj) +N(r, φ)− log r +O(1).

But here, for each j = 1, 2, 3, we notice that Z(r, φ − bj) ≤
Z(r, φ− bj)

2
+ qj log(r) with qj ∈ N

and by Lemma J, Z(r, φ− bj) = Z(r, f − bjg) ≤ max(T (r, f), T (r, g)) +O(1). But since T (rn, f) >
T (rn, g), we have T (rn, φ− bj) ≤ T (rn, f) +O(1), hence Z(r, φ− bj) ≤ T (rn,f)

2 + qj log(rn) +O(1).
Now, putting q = q1 + q2 + q3, by (2) we obtain

2T (rn, f) ≤ 3T (rn, f)
2

+ T (rn, g) + q log(rn) +O(1)

hence
T (rn, f) ≤ 2T (rn, g) + 2q log(rn) +O(1),

a contradiction to (1).

Proof of Theorem 4: Suppose that there exist two distinct functions g1, g2 ∈ Mf (K), (resp.
g1, g2 ∈ Mf (d(0, R−))) such that f − gk has finitely many zeros. So, there exist P1, P2 ∈ K[x]

and h1, h2 ∈ A(K) (resp. h1, h2 ∈ A(d(0, R−))) such that f − gk =
Pk
hk
, k = 1, 2 and hence we

notice that

(1) T (r, f) = T (r,
Pk
hk

) + o(T (r, f)) = T (r, hk) + o(T (r, f)), k = 1, 2.

Consequently, putting g = g2 − g1, g belongs to Mf (K) (resp. to Mf (d(0, R−))) and satisfies

P1

h1
=
P2

h2
+ g.

Therefore P1h2 − P2h1 = gh1h2 and hence

(2) T (r, P1h2 − P2h1) = T (r, gh1h2).

Now, by Lemma J we have

T (r, P1h2 − P2h1) ≤ max(T (r, P1h2), T (r, P2h1)) +O(1) ≤ max(T (r, h1), T (r, h2)) + o(T (r, f))

and hence by (1), we obtain

(3) T (r, P1h2 − P2h1) ≤ T (r, f) + o(T (r, f)).

On the other hand, by Lemma L, we have T (r, gh1h2) = T (r, h1h2)+T (r, g) = 2T (r, f)+o(T (r, f)),
a contradiction to (3).

Suppose now that f belongs to A(K) and that there exists a function w ∈ Mf (K) such that

f − w has finitely many zeros. Set w =
l

t
where l and t belong to Af (K) and have no common

zeros. Thus, f −w =
tf − l
t

and each zero of tf − l cannot be a zero of t, hence it is zero of f −w.
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Consequently, since f−w has finitely many zeros, tf− l also has finitely many zeros and hence is a
polynomial. But since l belongs to Af (K), when r is big enough we have |f |(r) > |l|(r) and hence
|tf |(r) > |l|(r) since t ∈ Af (K), therefore |tf − l|(r) = |tf |(r). And since f is transcendental, by
Lemma M for every fixed q ∈ N, |f |(r) > rq when r is big enough. Similarly, |tf − l|(r) > rq when
r is big enough. Consequently, by Lemma M, tf − l is not a polynomial, which proves that w does
not exist.

Suppose finally that f belongs toAu(d(0, R−)) and that there exists a function w ∈Mf (d(0, R−))
such that f −w has finitely many zeros. Without loss of generality, we can assume that the field K
is spherically complete because both f and w have continuation to an algebraically closed spher-
ically complete extension of K where their zeros are the same as in K. Consequently, by results

of [14], we can write w =
l

t
where l and t have no common zeros. Now, the zeros of tf − l are

those of f − w, hence tf − l has finitely many zeros and hence, is bounded in d(0, R−). But since
w belongs toMf (d(0, R−)), so does l and hence |tf |(r) > |l|(r) when r tends to R. Consequently,
|tf − l|(r) = |tf |(r) and hence tf − l is not bounded in d(0, R−), a contradiction proving again
that w does not exist.

Proof of Theorem 5: Let λ =
ρ(f)− ρ(g)

2
. There exists a sequence of intervals [r′n, r

′′
n] such

that
log(log(|f |(r)))

log r
>

log(log(|g|(r)))
log r

+ λ ∀r ∈ [r′n, r
′′
n], ∀n ∈ N

and lim
n→+∞

r′n = +∞. Therefore

log(log(|f |(r))) > log(log(|g|(r))) + λ log(r) ∀r ∈ [r′n, r
′′
n], ∀n ∈ N,

hence
log(|f |(r)) > log(|g|(r))(rλ) ∀r ∈ [r′n, r

′′
n], ∀n ∈ N.

Consequently, putting Sn = sup
r∈[r′n,r

′′
n ]

log(|g|(r))
log(|f |(r))

for every n ∈ N, we have limn→+∞ Sn = 0 and

hence lim inf
r→+∞

T (r, g)
T (r, f)

= 0, which ends the proof.

Proof of Theorem 6: Without loss of generality, we can suppose that σ(f) > σ(g). Since f
and g have no common zero, we have T (r, φ) = max(T (r, f), T (r, g)), r > 0. Put ρ(f) = t. There
exist λ > 0 and a sequence (rn)n∈N in R such that lim

n→+∞
rn = +∞ and

log(|f |(rn))
(rn)t

≥ log(|g|(rn))
(rn)t

+ λ ∀n ∈ N

hence
log(|f |(rn)) ≥ λ(rn)t + log(|g|(rn)) ∀n ∈ N

consequently,

(1) T (rn, f) ≥ λ(rn)t + T (rn, g) ∀n ∈ N.

As in Theorem 3, we can write f and g in the form f = hf̃ , g = hg̃ were h ∈ A(K) and f̃ , g̃

have no common zero. Then T (r, f) = T (r, h) + T (r, f̃), T (r, g) = T (r, h) + T (r, g̃), hence by (1),

T (rn, f̃) ≥ λ(rn)t + T (rn, g̃) ∀n ∈ N.
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Consequently,

(2) T (rn, φ) = T (rn, f̃)

when n is big enough. Suppose now that φ admits 4 perfectly branched values bj , j = 1, 2, 3, 4
and let q be the total number of zeros of order 1 of the φ− bj , j = 1, 2, 3, 4. Applying Theorem
N2 to φ, we have

3T (rn, φ) ≤
4∑
j=1

Z(rn, φ− bj) + q log(rn) +N(rn, φ)− log(rn) +O(1)

(3) ≤ 4T (rn, f̃)
2

+ (q − 1) log(rn) + T (rn, g̃) +O(1)

hence by (2),

3T (rn, f̃) ≤ 2T (rn, f̃) + T (rn, f̃) + (q − 1) log(rn)− λ(rn)t +O(1).

Clearly lim
n→+∞

((q − 1) log(rn)− λ(rn)t) = −∞ and hence that inequality is absurd when n is big

enough, which ends the proof of the first claim.

Suppose now that 2σ(g) < σ(f) and set β =
σ(f)

2
− σ(g). So, there exists a sequence (rn)n∈N

such that lim
n→+∞

rn = +∞ and

2T (rn, g)
(rn)t

+ 2β ≤ T (rn, f)
(rn)t

hence

T (rn, g̃) + T (rn, h) ≤ T (rn, f̃) + T (rn, h)
2

− β(rn)t ∀n ∈ N

therefore

(4) T (rn, g̃) ≤ T (rn, f̃)
2

− β(rn)t ∀n ∈ N.

Suppose now that φ has three perfectly branched values bj , j = 1, 2, 3. As in the proof of Theorem
2, we have o(T (r, φ)) = o(T (r, f̃)). Similarly to (3), thanks to (4) now we can get

2T (rn, φ) = 2T (rn, f̃) ≤
3∑
j=1

Z(rn, φ− bj) + (q − 1) log(rn) + Z(rn, g̃) +O(1)

≤ 3T (rn, f̃)
2

+
T (rn, f̃)

2
+ (q − 1) log(rn)− β(rn)t +O(1)).

Clearly, lim
n→+∞

(q − 1) log(rn)− β(rn)t = −∞, a contradiction which finishes the proof.
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